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Teleportation scheme ofS-level quantum pure states by two-level Einstein-Podolsky-Rosen states
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Unknown quantum pure states of &level particle can be transferred onto a group of remote two-level
particles with the aid of two-level Einstein-Podolsky-Rosen states. We present a scheme for such kind of
teleportation. The unitary transformation to more than two particles, which is needed in the scheme, is written
in the product form of two-body unitary transformations.
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I. INTRODUCTION experimental realization in 199&0].
From a general point of view, no matter what form it is,

Quantum mechanics offers us the capabilities of transferthere are four steps to realize the quantum teleportation,
ring quantum informatioriquite different from the classical Wwhich can be seen clearly Bennets initial schemg1]: (a)
one, for the use of either computation or communication.EPR entangled states preparirig) Bell operator measure-
Bennettet al. [1] suggested a quantum method of teleporta-ments by the sendefc) the sender informing the receiver of
tion, through which an unknown quantum pure state of gis outcomes through classical channéd;the receiver per-
spin+ particle (we may call it a “qubit” [2,3]) is teleported formmg unitary transformation according .to the classical in-
from the sender Alice” at the sending terminal; onto the formation. However, here we can substitute stepby a
qubit at the receiving terminal, after that, the receivBoty’ ~ two-particle unitary transformation along with local mea-
needs to perform a unitary transformation on his qubit. Atsurementsthere “local” means to single particlesMore
first it is necessary to prepare two sginparticles in an specifically, Fhe unitary transfqrmauon is performed on the
Einstein-Podolsky-RosefEPR entangled stat¢4] or so- sender’s potion of the EPR pair and the state-unknown par-
called a “Bell state,” and send them to the two different ticle to form some sort of entangled state involving the latter
places to establish a quantum channel betwAtoe and together with both two particles of the EPR pair, V\_/hile the
Boh The second step is faklice to perform aBell operator ~local measurements are performed one by oneAbee's
measuremerf5] to the quantum system involving her share particles. These measurements will result !n.the random col-
of the two entangled particles, together with the particle carlapse of all the sende_r’s partlcles onto deflnllte states. At the
rying the information to be transferred. Then through classiother end of communication, the receiver will got the same
cal channels, for example, broadcastiAjce let Bobknow  results as in the case of performigll operator measure-
her result of theBell operator measurement. Aft8ob per- ~ ments. In other_words_,, the unitary transformation and local
forms on his share of the two formerly entangled particleseasurements is equivalent tdell operator measurement.
one of four unitary transformations determined Ajices ~ More discussions about stép) can be found in Re{21], in
result, this particle will be carrying the original information Which Brassarcet al. indicated the possibility of realizing
state. In this way, the unknown state is teleported from ondeleportation by controlled NOT gates and single qubit op-
place to another. erations used in quantum networks.

The new method of teleportation has interested a lot of
research groups. Research work on quantum teleportation
was soon widely started up, and has got great development,
theoretical and experimental as well. It was generalized to Here we supposed that the unknown state to be trans-
the case of continuous variablgg 7). Yu et al. have inves- ferred is an arbitrary but definitg-level pure quantum state
tigated canonical quantum teleportation of finite-level un-carried by one particle labeled. Here, different from Ref.
known states by introducing a canonically conjugated pair of8], in which the shared state is a maximally entangled EPR
quantum phase and numH&. The successful experimental states ofSlevel, a multichannel made up df two-level
realization of quantum teleportation of unknown polarizationEPR’s is used instead. It means that at fiite and Bob
states carried on a phot¢8] and the succedent experiments have to prepare this group of EPR’s and share each of them,
on finite-level quantum system teleportatiph0,11] have  with one particle of each EPR controllable to the sender and
aroused a series of discussiqdi®—14 and further research the other to the receiver. We shall see how the unknown state
of this topic from various aspecf45—-17. Possible applica- of Slevel is teleported fromC at Alice’'s hand, toBobs
tions have been considered in R€fE8,19, and the method portions of the group of EPR states. It is necessary here to
of teleportation in the case of continuous varialj@sgot its  indicate that the two Hilbert spaces are not the same, one is
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for a single particle while the other fdr particles, but from wheren has the same meaning as in E§). The quantum
the Hilbert space with more dimensioftee bigger ongwe  state of the composite system consistsApfB, and C can
can always select a subspace equivalent to the dther thus be written as

smaller ong In our case, 2=Sis required and therefore we

can selectS normalized orthogonal vectors as the bases of L-1

the subspace from the Hilbert space fotwo-level particles [Wodasc=|t)cll D) a8,

to make them mapping one by one to tBeigenvectors of k=0

C. Two states respectively in the two sorts of Hilbert space 1 SiN-1

will be regarded as the same if the coefficients are the same =— > > apmn))aln)s, (5)

when expressed as linear superposition of their own bases. JN m=0 i=0

Only in this means can we say that the state®rs tele-

ported onto the particles. whereN=2'.

We label all the EPR’s with serial numbers 0,1. L In principle, Alice is able to perform on the composite
—1, while the corresponding particles Atice and Bobs  systemAC any quantum operations, including unitary trans-
places are labelefg, A1, ... ,AL—1 andBg,By, ... ,BL_1  formations and measurements. To realize the teleportation, a

respectively. The EPR entangled state of each pair of pakwo-particle unitary transformatiod ,¢ to all the bodies in-
ticles Ay and By (k=0,1,...L—1) can be chosen as fol- cluded in systen\C is performedU »c will realize the fol-

lows lowing transformation
1 1 S°1
| P)a e, = ﬁ(IO>AkIO>Bk+|1>Ak|1>sk), @ Unclm)cln)a=—g ,Zo el M) [ (], m)))a (6)

where we express the eigenvectors of the two-level particle
as|0),|1) which in the case of-spin particles, for example,
refer to spin-up state and spin-down state, respectivel
Moreover, the state df is generally written as

M which m=0,1,...S—1, andf"(j,m) is a number of
decimal form determined by m, andn so that|f"(j,m))) is
Yone of theN eigenstates. If we expregsm, andf"(j,m) in
the binary form

S-1

)= >, ap|m)c 2 I=ji-1J1o

m=0
in which o, (m=0,1, ... S—1) is a complex number sat- M=M -~ -M1Mo
isfying =5_%|am|?=1, and|0),|1), ... /S—1) denote the
S eigenvectors of th&-level particle. It is convenient for us (G, m)=f_,(j,m)-- - f1(j,m)f5(j,m)
to distinguish|0) and|1) only with subscript, i.e.|0),, or

|0)g, is not the same state 38)c, and so is nojl),, Jomi, f2(,m)=0,4k=0,1, ... L—1) )
|1)g,, |1)c - Further restriction 2~ '<Sis set o, so that.

EPR'’s is the least, but enough to realize teleportation. f7(j,m) will be determined byf.(j,m) satisfying
Any number can be expressed in its binary form. We will

mark the symbol “-" above the number if it is expressed

in the binary form. For example, a number customarily

in decimal formn is decomposed intd-bit number n o " .
=2L-1n ,+---+2%n,+2%n, where 2=n and n, where “@®” denotes addition modulo 2. One can easily

—0 or1 (k=0,1 L—1), and is written as prove the unitarity ofJ o and the following orthogonal con-
e ' ditions

fr(i,m=n@j@dm, (8

n=n, _+1---N1Nn. (3) . .
. (G (j,m))) =Sy

On the other hand, any binary number has its decimal

correspondence. If we regard theL particles (EGm) (T m))) =6y
Ag, A, ..., A_q Or Bg,By, ... B _; as “qubits” [2,3],
eaCh Stat¢nL,l>AL_l P |n1>Al|no>AO:|nL,1 P nln0>A or <<fn(] ’mr)“:n(J ,m)>>: §m’m- (9)

|nL—1>BL,1 . -|nl>81|n0>80:|nL—l ...N1Ng)g (Nk=0 or 1,
k=0,1,...L—1) will correspond to a binary number For example, Eq.9) means that any two bases among

n__1---Ning and we introduce a symbol|¥)” to simplify [f"(j,m))) with the samen andj, but differentm will not be
the denotation of the state as the same.
After the transformation o) 5, due to Egs(6)—(8), the
In)y=|n__1---Nning), (4)  quantum state of systedBC will change to
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|¥) asc=UaclWo)asc 1 b
o 1 Uoeliolk)e =75 > e AT ])) e
—iz[m =3 (|n>> o
Vs =0 : C\/N n=1 A The result state is
S-1 s—1 1
i(2mjm/S)|¢n i : ;
szzlo ame( ] )|f (j,m)))B) ], (10 UDqu)n(j»DB:mE:O amel(ZmJﬂ'/S)Ts
which is the entangled quantum state involving all the par- st .
ticles in systemABC. x 2, e TS M j)))g
If now Alice perform measurements on the single particles =0
C,Ag, A1, ... A _1, with the same possibility of NS, she s-1 1 S
will acquire one of the outcomes, i.e., the collapse of the =D apm—= >, ell2im=DaIsly
state of these particles to the possible eigengtatgn))a m=0 /S0
(j=0,1,...L-1 and n=0,1,... N—1). Thus the en- n
X|f (l,m)>>B,

tanglement amond\, B, and C will be destroyed andob

will acquire the state oB where the equalityf™" 0™ (1 j)=£"(1,m) is utilized. Then

S5-1 perform  measurements on the single particles
Ny — el (2mimlS) fn(i m ' 11 By,B1, ...,B._1, Bob will acquire one of the outcomes,
[7())e mz:O “m [°G.m))e a3 i.e., the collapse of the state of these particles to the possible

eigenstatéq))s (q=0,1, ... N—1). The state of particl®
which is an entangled quantum state of particlesbecomes

Bo.B1, ...,BL_1. If nandj are definite, Eq(9) ensures that o1
we can defingm)’ =e'*™™9f7(j,m))),m=0,1,... 5-1, PNp= S ayell2im-(mono)ms)
which form the bases of the subspace of the Hilbert space for | q(] )>D_m:0 Am€
systemB. Therefore we get
X|mendq)p
s-1
[4"(j))sg= > ap| mg . (12 here “®” means addition in binary form without carie.g.,
m=0 011091010=1100). If we can construct the unitary trans-

. . . . . formation operatoi(j,n®q):
According to the preceding discussion and the comparison of

Egs. (2) and (12, we can regardy”(j)) and[) as the Vo(j,neq)|r)p=el2-enoa)/slr g ngq)y

same. However, we need to indicate tha}’ relies onj and

n, which makes it still necessary to setup the classical charand perform it on particl®. The original signal state is then
nels betweerlice andBobto transfer the information about recovered:
Alice’'s outcomes, or the information ¢fandn in the other

words, sinceBob could not know exactly what thém)’

means without the knowledge pandn. It is just the neces- |‘I’f>D=mZO amM)p -

sity of classical information transferring that makes faster- -

than-light communication impossible. This type of telepora-

tion that transfer the information carried on oSdevel lll. DECOMPOSITION OF THE TRANSFORMATION
particle toL two-level particles can also be used as a method
to store and express arbitrary signal stateed not be two-
level) by standard qubit storages.

Furthermore, the receiver can also recover the initial sig
nal state on ars -level particle at his hand that will makes
the teleportation process thoroughly complete. The recove
procedure can be realized as follows.

SinceBobis told the result$ andn that Alice got, he can
prepare arSlevel particleD on the statdj)y. The state of
two particles D andB) at his hand is

S-1

We have discussed above in principle the possibility of
teleportation of anySlevel quantum states by no less than
L=log,S two-level EPR’s. In our discussion, we use the
complicated unitary transformatidd o, which means the
revolution of the quantum state of systeh€ under the in-
feraction of all those particles involved ®C. The compli-
cation ofU o may lead to the complication of operation. It is
even impossible for us to operate such a transformation un-
less further consideration is taken. The method of quantum
computational networks has shown out the most feasible way

s-1 of realizing the operation. The quantum computational net-
DN _ gl 2MimlS)| iy 1£0(j m _ wor_ks have been much studied in RG[EZ—ZZH. Followir]g
[©%(1))oe mz=0 om [1olfG.m)))e their method, we make the transformation more practical by

decomposindJ oc, Which applies to 2+ 1 particles, into a
First perform the following transformatiofit is the in-  sequence of two-body unitary transformations and a simple
verse ofU in Eq. (6)] to D andB, single-body unitary transformation. Only two classes of such
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transformations are use¢h) the discrete Fourier transform
modulo S, denoted DFE, which is a unitary transformation
in S dimensions. It is defined

[0)c.|1)c, ... .|S—1)c by
s-1

1 o
DFTsIm)e=— 2 €M™ li)e, (13

(b) a combined unitary transformatiddc, to the two par-
ticlesC andA, (k=0,1,...L—1). Ugy is defined by

UcM)clna, = m)clme@nia, (14

At last, Upc can be decomposed into the product of these

two classes of transformation

L-1

L-1
I1 UCK) 'DFTS~( I1 UCK>
k=0 k=0

since[Ucy ,Uc]=0 foranyk,k’=0,1,...L—1, we need
not distinguish their order. By E¢15) we simplify the prob-
lem in operation olU 5c, for the quantum operation on two
bodies is far more feasible than that on a many bodies.

Uac= ( (15

relative to the bases

PHYSICAL REVIEW A64 012301

IV. CONCLUSION

In summary, we construct the scheme of transferring an
arbitrary Slevel quantum state by using two-level EPR’s.
The importance of this construction lies not only on the
scheme itself, but also on the possibility of further research
and application of teleportation. It leads us to more general,
more feasible, and simultaneously more challenging consid-
erations on the problem of teleportation. A lot of questions,
such as probabilistic teleportation and teleportation of un-
known quantum states by definite number of EPR'’s, are thus
put forward as challenge to future research works.
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