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Teleportation scheme ofS-level quantum pure states by two-level Einstein-Podolsky-Rosen state
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Unknown quantum pure states of anS-level particle can be transferred onto a group of remote two-level
particles with the aid of two-level Einstein-Podolsky-Rosen states. We present a scheme for such kind of
teleportation. The unitary transformation to more than two particles, which is needed in the scheme, is written
in the product form of two-body unitary transformations.
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I. INTRODUCTION

Quantum mechanics offers us the capabilities of trans
ring quantum information~quite different from the classica
one!, for the use of either computation or communicatio
Bennettet al. @1# suggested a quantum method of telepor
tion, through which an unknown quantum pure state o
spin-12 particle~we may call it a ‘‘qubit’’ @2,3#! is teleported
from the sender ‘‘Alice’’ at the sending terminal; onto the
qubit at the receiving terminal, after that, the receiver ‘‘Bob’’
needs to perform a unitary transformation on his qubit.
first it is necessary to prepare two spin-1

2 particles in an
Einstein-Podolsky-Rosen~EPR! entangled state@4# or so-
called a ‘‘Bell state,’’ and send them to the two differe
places to establish a quantum channel betweenAlice and
Bob. The second step is forAlice to perform aBell operator
measurement@5# to the quantum system involving her sha
of the two entangled particles, together with the particle c
rying the information to be transferred. Then through clas
cal channels, for example, broadcasting,Alice let Bob know
her result of theBell operator measurement. AfterBob per-
forms on his share of the two formerly entangled partic
one of four unitary transformations determined byAlice’s
result, this particle will be carrying the original informatio
state. In this way, the unknown state is teleported from
place to another.

The new method of teleportation has interested a lot
research groups. Research work on quantum teleporta
was soon widely started up, and has got great developm
theoretical and experimental as well. It was generalized
the case of continuous variables@6,7#. Yu et al. have inves-
tigated canonical quantum teleportation of finite-level u
known states by introducing a canonically conjugated pai
quantum phase and number@8#. The successful experimenta
realization of quantum teleportation of unknown polarizati
states carried on a photon@9# and the succedent experimen
on finite-level quantum system teleportation@10,11# have
aroused a series of discussions@12–14# and further research
of this topic from various aspects@15–17#. Possible applica-
tions have been considered in Refs.@18,19#, and the method
of teleportation in the case of continuous variables@6# got its
1050-2947/2001/64~1!/012301~4!/$20.00 64 0123
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experimental realization in 1998@20#.
From a general point of view, no matter what form it i

there are four steps to realize the quantum teleportat
which can be seen clearly inBennett’s initial scheme@1#: ~a!
EPR entangled states preparing;~b! Bell operator measure
ments by the sender;~c! the sender informing the receiver o
his outcomes through classical channels;~d! the receiver per-
forming unitary transformation according to the classical
formation. However, here we can substitute step~b! by a
two-particle unitary transformation along with local me
surements~here ‘‘local’’ means to single particles!. More
specifically, the unitary transformation is performed on t
sender’s potion of the EPR pair and the state-unknown p
ticle to form some sort of entangled state involving the lat
together with both two particles of the EPR pair, while t
local measurements are performed one by one onAlice’s
particles. These measurements will result in the random
lapse of all the sender’s particles onto definite states. At
other end of communication, the receiver will got the sa
results as in the case of performingBell operator measure
ments. In other words, the unitary transformation and lo
measurements is equivalent to aBell operator measuremen
More discussions about step~b! can be found in Ref.@21#, in
which Brassardet al. indicated the possibility of realizing
teleportation by controlled NOT gates and single qubit o
erations used in quantum networks.

II. TELEPORTATION SCHEME FOR S-LEVEL STATE

Here we supposed that the unknown state to be tra
ferred is an arbitrary but definiteS-level pure quantum state
carried by one particle labeledC. Here, different from Ref.
@8#, in which the shared state is a maximally entangled E
states ofS-level, a multichannel made up ofL two-level
EPR’s is used instead. It means that at firstAlice and Bob
have to prepare this group of EPR’s and share each of th
with one particle of each EPR controllable to the sender
the other to the receiver. We shall see how the unknown s
of S-level is teleported fromC at Alice’s hand, toBob’s
portions of the group of EPR states. It is necessary her
indicate that the two Hilbert spaces are not the same, on
©2001 The American Physical Society01-1
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for a single particle while the other forL particles, but from
the Hilbert space with more dimensions~the bigger one! we
can always select a subspace equivalent to the other~the
smaller one!. In our case, 2L>S is required and therefore w
can selectS normalized orthogonal vectors as the bases
the subspace from the Hilbert space forL two-level particles
to make them mapping one by one to theS eigenvectors of
C. Two states respectively in the two sorts of Hilbert spa
will be regarded as the same if the coefficients are the s
when expressed as linear superposition of their own ba
Only in this means can we say that the state onC is tele-
ported onto theL particles.

We label all the EPR’s with serial numbers 0,1, . . . ,L
21, while the corresponding particles atAlice and Bob’s
places are labeledA0 ,A1 , . . . ,AL21 and B0 ,B1 , . . . ,BL21
respectively. The EPR entangled state of each pair of
ticles Ak and Bk (k50,1, . . . ,L21) can be chosen as fo
lows

uF&AkBk
5

1

A2
~ u0&Ak

u0&Bk
1u1&Ak

u1&Bk
), ~1!

where we express the eigenvectors of the two-level parti
asu0&,u1& which in the case of12 -spin particles, for example
refer to spin-up state and spin-down state, respectiv
Moreover, the state ofC is generally written as

uc&C5 (
m50

S21

amum&C ~2!

in which am (m50,1, . . . ,S21) is a complex number sat
isfying (m50

S21 uamu251, andu0&,u1&, . . . ,uS21& denote the
S eigenvectors of theS-level particle. It is convenient for us
to distinguishu0& and u1& only with subscript, i.e.,u0&Ak

or

u0&Bk
is not the same state asu0&C , and so is notu1&Ak

,

u1&Bk
, u1&C . Further restriction 2L21,S is set onL, so thatL

EPR’s is the least, but enough to realize teleportation.
Any number can be expressed in its binary form. We w

mark the symbol ‘‘2 ’’ above the number if it is expresse
in the binary form. For example, a number customar
in decimal form n is decomposed intoL-bit number n
52L21

•nL211•••121
•n1120

•n0, where 2L>n and nk
50 or 1 (k50,1, . . . ,L21), and is written as

n5nL21•••n1n0. ~3!

On the other hand, any binary number has its decim
correspondence. If we regard theL particles
A0 ,A1 , . . . ,AL21 or B0 ,B1 , . . . ,BL21 as ‘‘qubits’’ @2,3#,
each stateunL21&AL21

. . . un1&A1
un0&A0

5unL21 . . . n1n0&A or

unL21&BL21
. . . un1&B1

un0&B0
5unL21 . . . n1n0&B (nk50 or 1,

k50,1, . . .L21) will correspond to a binary numbe
nL21•••n1n0 and we introduce a symbol ‘‘u&& ’’ to simplify
the denotation of the state as

un&&[unL21•••n1n0&, ~4!
01230
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wheren has the same meaning as in Eq.~3!. The quantum
state of the composite system consists ofA, B, and C can
thus be written as

uC0&ABC5uc&C)
k50

L21

uF&AkBk

5
1

AN
(

m50

S21

(
n50

N21

amum&Cun&&Aun&&B , ~5!

whereN52L.
In principle, Alice is able to perform on the composit

systemAC any quantum operations, including unitary tran
formations and measurements. To realize the teleportatio
two-particle unitary transformationUAC to all the bodies in-
cluded in systemAC is performed.UAC will realize the fol-
lowing transformation

UACum&Cun&&A5
1

AS
(
j 50

S21

ei ~2m jp/S!u j &Cu f n~ j ,m!&&A ~6!

in which m50,1, . . . ,S21, and f n( j ,m) is a number of
decimal form determined byj, m, andn so thatu f n( j ,m)&& is
one of theN eigenstates. If we expressj, m, and f n( j ,m) in
the binary form

j [ j L21••• j 1 j 0

m[mL21•••m1m0

f n~ j ,m![ f L21
n ~ j ,m!••• f 1

n~ j ,m! f 0
n~ j ,m!

j k ,mk , f k
n~ j ,m!50,1~k50,1, . . . ,L21! ~7!

f n( j ,m) will be determined byf k
n( j ,m) satisfying

f k
n~ j ,m!5nk% j k% mk , ~8!

where ‘‘% ’’ denotes addition modulo 2. One can easi
prove the unitarity ofUAC and the following orthogonal con
ditions

^^ f n~ j ,m!u f n8~ j ,m!&&5dn8n

^^ f n~ j ,m!u f n~ j 8,m!&&5d j 8 j

^^ f n~ j ,m8!u f n~ j ,m!&&5dm8m . ~9!

For example, Eq.~9! means that any two bases amo
u f n( j ,m)&& with the samen andj, but differentm will not be
the same.

After the transformation ofUAC , due to Eqs.~6!–~8!, the
quantum state of systemABC will change to
1-2
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uC&ABC5UACuC0&ABC

5
1

AS
(
j 50

S21 H u j &C

1

AN
(
n51

N21 S un&&A

3 (
m50

S21

amei ~2m jp/S!u f n~ j ,m!&&BD J , ~10!

which is the entangled quantum state involving all the p
ticles in systemABC.

If now Alice perform measurements on the single partic
C,A0 ,A1 , . . . ,AL21, with the same possibility of 1/NS, she
will acquire one of the outcomes, i.e., the collapse of
state of these particles to the possible eigenstateu j &Cun&&A
( j 50,1, . . . ,L21 and n50,1, . . . ,N21). Thus the en-
tanglement amongA, B, and C will be destroyed andBob
will acquire the state ofB

ucn~ j !&B5 (
m50

S21

amei ~2m jp/S!u f n~ j ,m!&&B , ~11!

which is an entangled quantum state of partic
B0 ,B1 , . . . ,BL21. If n andj are definite, Eq.~9! ensures that
we can defineum&85ei2m jp/Su f n( j ,m)&&,m50,1, . . . ,S21,
which form the bases of the subspace of the Hilbert space
systemB. Therefore we get

ucn~ j !&B5 (
m50

S21

amum&B8 . ~12!

According to the preceding discussion and the compariso
Eqs. ~2! and ~12!, we can regarducn( j )& and uc& as the
same. However, we need to indicate thatum&8 relies onj and
n, which makes it still necessary to setup the classical ch
nels betweenAlice andBob to transfer the information abou
Alice’s outcomes, or the information ofj andn in the other
words, sinceBob could not know exactly what theum&8
means without the knowledge ofj andn. It is just the neces-
sity of classical information transferring that makes fast
than-light communication impossible. This type of telepo
tion that transfer the information carried on oneS-level
particle toL two-level particles can also be used as a meth
to store and express arbitrary signal state~need not be two-
level! by standard qubit storages.

Furthermore, the receiver can also recover the initial s
nal state on anS -level particle at his hand that will make
the teleportation process thoroughly complete. The recov
procedure can be realized as follows.

SinceBob is told the resultsj andn that Alice got, he can
prepare anS-level particleD on the stateu j &D . The state of
two particles (D andB) at his hand is

uFn~ j !&DB5 (
m50

S21

amei ~2m jp/S!u j &Du f n~ j ,m!&&B .

First perform the following transformation@it is the in-
verse ofU in Eq. ~6!# to D andB,
01230
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UDBu j &Duk&&B5
1

AS
(
l 50

S21

e2 i ~2 j l p/S!u l &Du f k~ l , j !&&B .

The result state is

UDBuFn~ j !&DB5 (
m50

S21

amei ~2m jp/S!
1

AS

3 (
l 50

S21

e2 i ~2 j l p/S!u l &Du f f n( j ,m)~ l , j !&&B

5 (
m50

S21

am

1

AS
(
l 50

S21

ei @2 j (m2 l )p/S#u l &D

3u f n~ l ,m!&&B ,

where the equality:f f n( j ,m)( l , j )5 f n( l ,m) is utilized. Then
perform measurements on the single partic
B0 ,B1 , . . . ,BL21, Bob will acquire one of the outcomes
i.e., the collapse of the state of these particles to the poss
eigenstateuq&&B (q50,1, . . . ,N21). The state of particleD
becomes

uCq
n~ j !&D5 (

m50

S21

amei @2 j (m2(m% n% q))p/S#

3um% n% q&D

here ‘‘% ’’ means addition in binary form without carry~e.g.,
0110% 101051100). If we can construct the unitary tran
formation operatorV( j ,n% q):

VD~ j ,n% q!ur &D5ei @2 j (r 2(r % n% q))p/S#ur % n% q&D ,

and perform it on particleD. The original signal state is the
recovered:

uC f&D5 (
m50

S21

amum&D .

III. DECOMPOSITION OF THE TRANSFORMATION

We have discussed above in principle the possibility
teleportation of anyS-level quantum states by no less tha
L. log2S two-level EPR’s. In our discussion, we use th
complicated unitary transformationUAC , which means the
evolution of the quantum state of systemAC under the in-
teraction of all those particles involved inAC. The compli-
cation ofUAC may lead to the complication of operation. It
even impossible for us to operate such a transformation
less further consideration is taken. The method of quan
computational networks has shown out the most feasible
of realizing the operation. The quantum computational n
works have been much studied in Refs.@22–24#. Following
their method, we make the transformation more practical
decomposingUAC , which applies to 2L11 particles, into a
sequence of two-body unitary transformations and a sim
single-body unitary transformation. Only two classes of su
1-3
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transformations are used:~a! the discrete Fourier transform
moduloS, denoted DFTS , which is a unitary transformation
in S dimensions. It is defined relative to the bas
u0&C ,u1&C , . . . ,uS21&C by

DFTSum&C5
1

AS
(
j 50

S21

ei ~2m jp/S!u j &C , ~13!

~b! a combined unitary transformationUCk to the two par-
ticles C andAk (k50,1, . . . ,L21). UCk is defined by

UCkum&Cunk&Ak
5um&Cumk% nk&Ak

. ~14!

At last, UAC can be decomposed into the product of the
two classes of transformation

UAC5S )
k50

L21

UCkD •DFTS•S )
k50

L21

UCkD ~15!

since@UCk8 ,UCk#50 for anyk,k850,1, . . . ,L21, we need
not distinguish their order. By Eq.~15! we simplify the prob-
lem in operation ofUAC , for the quantum operation on tw
bodies is far more feasible than that on a many bodies.
, a

r,

cu

01230
s

e

IV. CONCLUSION

In summary, we construct the scheme of transferring
arbitrary S-level quantum state by using two-level EPR’
The importance of this construction lies not only on t
scheme itself, but also on the possibility of further resea
and application of teleportation. It leads us to more gene
more feasible, and simultaneously more challenging con
erations on the problem of teleportation. A lot of questio
such as probabilistic teleportation and teleportation of
known quantum states by definite number of EPR’s, are t
put forward as challenge to future research works.
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