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Time dependence of the probability density in the transient regime for tunneling
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An exact analytical solution to the time-dependent Sdimger equation with cutoff wave initial conditions
is used to investigate the fast tunneling response of a rectangular potential barrier. We find that just across the
tunneling region, the probability density exhibits at short times a transient behavior that may be characterized
by a peakt, and a widthAt. We show that, provides the earliest tunneling response of the system and that
the top-barrierSmatrix poles play an important role in the process. As a function of the barrier wiigth,
exhibits two regimes. Along the first regimg, remains almost a constant; as the barrier width increases, a
second regime appears whegegrows linearly with the barrier width.
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[. INTRODUCTION extension of the approach to cutoff pulses. Finally, Sec. IV
contains the concluding remarks.
Quantum tunneling, which refers to the possibility that a

particle traverses through a classically forbidden region, con- Il. FORMALISM
stitutes one of the paradigms of quantum mechanics. In the
energy domain, where one solves the stationary Sithger
equation at a fixed enerdy, tunneling is well understood. In
the time domain, however, there are still aspects open
investigation. Recent technological achievements, such
the possibility of constructing artificial quantum structures a

Our analysis is based on a general formalism developed
by Garca-Caldera [8] for the time-dependent solution to
the Schrdinger equation for tunneling through an arbitrary
fotential V(x) that vanishes outside a regiors@<L. We
iconsider the reflecting cutoff wave initial conditip8l,

nanometric scaleqd1], have stimulated work on time- gikx_g-ikx  y
dependent tunneling both at an applied and a fundamental P(x,k;t=0)= )
level. 0, x>0,

In this work, we address the issue of the behavior of th
time-dependent solution to the Sctinger equation for tun-
neling through a potential barrier with cutoff wave initial

conditions [2'5_3]' Our p_rok_JIem may be wsu_ahzed aS &t has a distribution of components aroukdn momentum

gedanken experimenionsisting of a shutter, situated Rt space. One then proceeds along lines similar to those dis-

%O’ that_separates a b(_aam of pa}rtlcles from a potential b""E:'ussed in Ref[8] to derive the time-dependent solution

rier of h_e|ghtV0 located in the r_e_g|0n€>_(s|__. At t=0 the (x,k;t) of the Schrdinger equation for the transmitted re-

shutter is opened. The probability density rises initially fromgion =L

a vanishing value and evolves with time through 0. The ' '

solution at the barrier edge=L gives the probability den- P(X KD =T(K)M(x,k;t) = T(—K)M(x,—k;t)

sity of finding the particle after a timehas elapsed. Since

initially there is no particle along the tunneling region, one

can argue that detecting the particle at the barrier edge at _zn: TaM(Xkq 1) (x=L), 2

time t should provide a time scale for the fast tunneling

response of the system. Our approach does not refer to thehere the quantitie3 (k) and T(—k) refer to transmission

way in which the tunneling particle traverses or transitsamplitudes [10], and T,=2iku,(0)u,(L)exp(ik,L)/(K?

through the tunneling region, though it may be related to that—kﬁ) is given in terms of the set of resonant stafag(x)}

issue. and complex polegk,} of the problen(8,11]. The functions
The paper is organized as follows. Section Il describes the1(x, + k;t) andM(x,k, ;t) are defined as

main features of the formalism to calculate the probability

density in the transient regime. In Sec. lll, we consider the M(x,q;t):%e(imXZ/Zﬁt)eyé erfa(yy), ®)

rectangular potential barrier case and study, in several sub-

sections, the resonant transient regime. Here we emphasiyéere the argumeny, is given by

the analysis of the time-domain resonance peak as a function o

of the barrier parameters, make a comparison of our results Eeiﬂ/“(ﬂ)

with a number of tunneling time definitions, and consider the Ya 2nht

Svhich guarantees that the probability density vanishes ini-
tially at x=0. Note that the initial state is not strictly mono-
chromatic(it extends from— to 0) and hence unavoidably

o
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In Egs.(3) and(4), q stands either for=k or k,,, where the 6.0x10™
index n refers to a given complex pole. Poles are located on
the third and fourth quadrants of the compleylane. The
free case solution to the above problem for a cutoff plane
wave was considered by Moshinsky many years [8].
The solution for the free case with reflecting initial condition
reads

-4
o 40x10

¥

2.0x10"
Po(X, K ) =M(x,k;t) —M(x,—K;t). 5)

Note that the solution given by E) involves a term remi-

niscent of the free case and a resonant sum. We shall refer to 0'00.0 0.0 20.0 300 200 50.0
the former as the free-type term contribution and to the latter Time (fs)

as the resonant contribution. From the analysis given in Ref.
[8], one can see that the exact solution satisfies the initial FiG. 1. Plot of |#(L,t)|? as a function of time, forV,
condition, and that at long times it goes into the stationary-0.3 ev at the barrier edge=L=5.0 nm. At short times, the

solution, namely probability density exhibits a time-domain resonance. See text.
) — ikxn—iEt/h :
P(x.kit) =T(k)e™e = ) tron mass. Our choice of parameters guarantees that most
momentum components of the initial state tunnel through the
1. MODEL potential. In Fig. 1, we show a plot ¢f4|? (normalized to

d v the ab id id q Tcident flux Jo=%k/m) calculated at the barrier edge
In order to apply the above ideas, we consider a modeL | 55 3 fynction of time. One sees thet? rises as soon as

that hgs been used extensively in studi.es on tim'e-dependepqgo [13], and as time evolves, the probability density exhib-
tunnellng, namgly the. rectangu_lar barvier potential, characig 5 "\ell-defined maximum, which constitutes the earliest
terlzgd by a height/ in the reglc.)n G=x<L. To calculgte evidence of significant tunneling events in the transient re-
the time-dependent solutiog(x,k;t) given by Eq.(2), in — gine 'j e the first response of the system. This maximum of
addition to the barrier parzar;netélg, L, and the correspond- |4/ corresponds to a transient structure that can be charac-
ing incidence energi=7°k“/2m, we need to determine the terized by a peak valug and a widthAt; since it appears in
complex poleskp} and.the resonant statga(x)} of the. the time domain, we have namediine-domain resonance
system[lZ]. The Smat'nx poles for the rectangglar barner. The peak value, represents the largest probability of find-
pptentlal may be obtained from-the corresponding tranzsm|si-ng the particle at the barrier edge=L, presumably after
S'O’; ?/gnp.htudg:T(k)=4kq2exp(—|kL)/J(k), whereg=[k tunneling through the potential barrier. In our exampjeis
— ko] " with ky=2mV,/#". They correspond to the zeros of 5 34 t5 e define the width of the distributioat, by the
J(k) in the k plane, namely, rule of the half-width at half maximum. The distribution is
_ 2 o M2 : _ broad, sinceAt~2t,. We have found that for fixedf, and

JK)=(a+k7exp(~igl)~(a-k)"expiqL)=0. (7) E, and a decreasinf, the width diminishes. The same oc-
We followed a well-established method to obtain the solu-curs for fixedE andL, and an increasinyo; systematically,
tions to the above equatidi8]. The resonant statas,(x) however,_ we f|ndAt>tp_. Since the time-domain resonance
satisfy the time-independent Schioger equation of the Plays animportantrole in the fast response of the system, we

in order to determine the origin of such a structure. In Fig. 2

Un(X)=C,[€'9*+b,e 9] (0=x=<L), (8)  we show the contribution of the resonant sum in E2).
. (dashed ling Note that the resonant sufit converges here
whereb,=(q,+kn)/(g,—k,) andC,, may be obtained from  with 3 pole$ is the main contribution to the time-domain

the normalization conditiof8] resonance whereas the free-type term contribution is quite
5 ) small and varies smoothly with time. Calculations using the

fLuz(x)deri Un(0)+up(L) _1 (9p  @bsorbing initial condition exhibit a similar behavior. Hence

o " 2k, ' a linear combination of reflecting and absorbing initial con-

ditions should also exhibit it.
Note that both the complex poles and the resonant states are

a function ofVy andL and hence are a property of the sys-  B. Analysis oft, as a function of the barrier parameters

tem. . . .
In Fig. 3, we plot the exact calculation of (solid dotg

for different values of the barrier width. We can clearly
identify two regimes. In one of thert, remains almost con-
To exemplify the time evolution of the probability den- stant as a function of. This occurs fromL=3.5 nm up to
sity, we consider a set of parameters typical of semiconduck =7.0 nm. For larger values &f, we have a second regime
tor artificial quantum structures[1]: V,=0.3 eV, L where the value of, increases linearly witl.. In the above
=5.0 nm,E=0.01 eV, andn=0.067"n,, with m, the elec- regimes, the opacity of the system defined as

A. The resonant transient regime
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6.0x10 of large values ot considered. Consequently, in that regime
t, is well describedhollow triangles in Fig. Bby
“ L
N 4.0x10 tb:_: (10)
> U1

2.0x10™ wherev,=%ay/m is slightly larger tharv .
With respect to the plateau regime in Fig. 3, notice, from

Fig. 2, that the peak of the resonant sum almost coincides

0.0 with that of the exact calculation. Note also that the free-type
[ . . . term is small and almost a constant, and that its interference

0.0 f 100 200 300 400 500 with the resonant term exhibits a similar shape to that of the
Time (fs) resonant contribution. It turns out that the main contribution

) _ to the sum comes from the first pole tere,=e€,—11'1/2,
FIG. 2. Plot of|#(L,t)|* at the barrier edgg=L=5.0 nm for  and hence one may explore, followirig7], the first-term

Vy=0.3 eV, as a func.tion.of time. Exact calculati¢solid Iin.e), approximation to the probability density using E@) at x
resonant sunfdashed ling interference ternidashed-dotted line =L

and free-type ternfdotted ling are also shown. See text.
|p|2IT~1+e TVh—2e T1W2hcod Act/h],  (11)

=(2mV,Y%h)L=koL is larger than unity, i.e.¢>1. Not o

shown in Fig. 3 is a regime that occurs for very shallow or’hereAg=(E—e;) andT stands for the transmission coef-

very thin barriers (in our example that occurs fot f|C|en'§. The main co.ntnbutu.)n to the_ maximum to the above

<3.5 nm), characterized by an opacity 1. There the free- equa_\tlon_as a function of time is given, to an excellent ap-

type term in Eq(2) dominates over the resonant sum Comri_prommanon, by

bution; consequently, there is no time-domain resonance and h

the probability density behaves with time in a fashion similar t;’:—,

to the free cas€2,8]. (e1—E)
The linear regime with. in Fig. 3 can be understood from

(12

i o o which holds provided £, — E)>1"4/2, fulfilled in typical sys-
an argument given by Hartme]: since the incident wave tems. The result of the calculation using EtR) is indicated

is not strictly monochromatic, it has momentum component%y the hollow squares in Fig. 3. Surprisingly, it provides an

above the barrier height. As the barrier width increases, ity a|jent approximation to the exact calculation along the

reaches a point where those components dominate over thg,ieay region, even though the other pole contributions have
tunneling components. Hartman suggested an approxima

; X en omitted in the derivation of E¢L2). Notice that Eq.
traversal time for these Lcomponents gs- L/vo, With vo  (12) resembles a time-energy uncertainty relationship, which
="%ko/m andko=[2mV,] *“/A. We obtain a better descrip- griginates from the interference contribution between the
tion by noting that the first top-barrier resonankg=a;  free-type term and the resonant contribution. Hence the time
—ib, acts as a filter and hence it favors that only the_mo'scalets is not an intrinsic quantity of the system since it
mentum components close & traverse above the barrier. jenends also on the incidence enerBy.associated to the
This might not hold in general but it does hold in the rangejnjjia| state. In Fig. 3, we exhibit the range of validity of both

tlf) andtg. We have obtained similar results for other sets of

20.0 potential parameters. The inset to Fig. 3 shows results for an
8.0 9 analogous calculation fdy,, t;, andt} by varying the po-
150l &° \ tential height keeping the barrier width fixed €£5.0 nm).
4.0 *\g; a An appropriate form to understand the difference between
m 2.0 Ty the plateau and linear regimes discussed previously is to ex-
f; 10.0F 0.2 04 0.6 08 1.0 amine the complex top-barrier poles,, as a function of the
S barrier widthL. Figure 4 displays the evolution of the first
= 5.0k three values of the real part af,, corresponding to the
AAAA“ potential barrier of height/;=0.3 eV. Notice that along the
“ plateau region (3.5 nmL<7.5 nm), the energies of the
095 5.0 100 5.0 20.0 poles are quite separated. In this region, it is easy to convince

oneself by inspection of Eq.12) and by the dramatically
different behavior ofe; (also depicted in the insethat the

FIG. 3. Plot of an exact calculation fa, (solid dot3 as a  first top-barrier pole governs the behaviortgfobserved in
function of the barrier widthL with the barrier height/, fixed.  Fig. 3. AsL increases away from the plateau region, the
Hollow squares refer to a calculation wittff=n#/(e;—E)  values ofe, approach essentially the barrier heigi,
whereas hollow triangles refer to that usitfp: L/vy. The inset It is of interest to note that along the plateau regime, the
shows a similar calculation varying, with L fixed. See text. interference between the resonant and the free-type terms is

L (nm)
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4.0 30.0
n=3

8.0 «

6.0 :\\
20.0}40 SWege
2.0 i

3.0

Time (fs)

25.0

0.0 5.0 10.0 15.0 20.0 25.0
L (nm)

FIG. 4. The real part of the first three top-barrier resonant poles FIG. 6. Plot of an exact calculation fdr, (solid dotg as a
€, (E,=€,—iI',/2), corresponding to a potential barrier of height function of the barrier widthL with V, fixed. For comparison, we
V,=0.3 eV. The main graph shows the evolutionegffor n=1,2,  plot the Biitiker traversal timetg (dashed ling the semiclassical
and 3 as a function of the barrier width The inset exhibits the timetg_ (dotted ling, and the phase-delay tintg (solid line). The
peculiar behavior ok, (solid dots in the plateau region (3.5 nm inset shows a calculation fot, and tg varying Vo, with L
<L=7.5 nm). FromL=7.5 nm onwards, the energiesget closer = =5.0 nm. See text.
to the barrier heighV,. See text.

. I R parison for the tunneling time problem go beyond the scope

an important contr|put|or(da§hed-dotted line in Fig.)2 of this work and will be considered elsewhere.

whereas along the linear regime both the free-type and the Lo N

. oo . . Some tunneling time definitions, such as the phase-delay

interference contributions become negligible as exemphﬂet%. based lona-ti \sis of th luti

in Fig. 5 forL=10 nm. This is consistent with the discussion Ime, are based on a long-ime analysis of the solution

given above regarding the behaviortgfalong that regime. [16.19 and her.lce \gnore tran§|ent eff.ects, as do approaches,
at least explicitly, dealing with semiclassical and Larmor

times[20]. The arrows in Fig. 2 indicate the values calcu-

lated for a number of definitions of tunneling times for the

In the literature, one finds a number of definitions of tun-rectangular barrier potentigl20], as the semiclassical or
neling times attempting to answer the question of the timesiitiker-Landauer timetg, ; the Bittiker traversal timetg ;
spent by an incident particle through a tunneling redl.  and the phase-delay timg, [21]. All of them fall within the
As mentioned previously, instead of providing a new defini-proad range of values given kyt. Note, however, that the
tion for the tunneling time, which has become a controversialittiker traversal timeg is the closest td,, .
issue, our approach considers the response time of the sys- |y Fig. 6, we compare systematically the exact calculation
tem to the tunneling process. In this subsection, we compargy ¢ (solid dotg, exhibited already in Fig. 3, with exact
our fmdmgs vynh the predlcuo_ns o'f a number of defmmons calculations fortg (dashed ling tg, (dotted line, andtp
of tunneling times. The possible implications of this com- (solid line). One sees that botty andtg, are close to the

. values oft,, especially along the regime in which it in-

2.0x10 creases linearly with., wheretg gets closer td,. This is
not surprising becausdg =mL/%iq, with g=[2m(V,
—E)]Y¥#% andg~k,~a,. However,tg andtg do not de-
scribe the plateau regime. On the other hand, the phase time
tp exhibits a plateau, though shifted in time from thattior
Recalling thatt, follows from a difference between tunnel-
ing and free solutions at asymptotically long times, quite
differently that fort,, suggests that both plateaus are unre-
lated. This deserves further study. It is not surprising that
0.0 does not reproduce the regime linear wiithThis is because
the energy involved in its calculation is monochromatic, oth-
erwisetp would eventually increase linearly with as dis-
cussed above following the argument given by Hartifrig).

FIG. 5. The time evolution ofy|? (solid ling) in the linear The inset exhibits a comparison betwgen the e’$@¢9°'!d
regime corresponding to a barrier width=10.0 nm, with,  dot9 andtg (hollow squarepas a function of barrier height
=0.3 eV andE=0.01 eV. As can be seen, the time-domain reso-Yo for fixed barrier widthL=5 nm. This is a value ot
nance arises entirely from to the contribution of the resonant surivheretg andt, are close to each other fof,=0.3 eV and
(dashed ling whereas the contribution of the free-tyfatted ling remain so by varying/.
and interferencédashed-dotted lineterms becomes almost negli- It is appropriate to mention here some recent work by
gible. See text. Muga and Bttiker [22]. Although these authors consider

C. Comparison with tunneling time scales

~  1.0x10%

¥l

0.0 10.0 20.0 30.0 400 50.0
Time (fs)
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both a different systenithe step potentialand initial state
(frequency-dependent point souycthey find a transient be-
havior in the time dependence of the evanescent probability
density characterized by a peak close to but smallertkan

in agreement with our Fig. 6 for large values of the barrier
width L.

1.4x10%

o -4

7.0x10

D. Extension to cutoff pulses

In Sec. A, we mentioned that other types of cutoff
initial conditions should exhibit structures similar to the
time-domain resonance. In contrast with teemi-infinite
cutoff plane previously considered, in the present subsection
we deal withfinite cutoff states. In what follows, we discuss

the time evolution ofcutoff pulsesand the associated reso- FIG. 7. The i luti 2 (solid I dina t
nant transient response. . 7. The time evolution ofis,|* (solid line) corresponding to

Our discussion deals with the solution of the time-2 cutoff pulse of widtla=213.35 nm, at the barrier edge=L. The

dependent Schidinger equation for a finite range potential potential parameters are the same as in Fig. 2. At early times, a
. . . N . time-domain resonance is clearly appreciated. For comparison, a

V(x) that va_mlshes outsidesox<L, V_V'th an_lnltl_al (_:ondltlon plot of || (dashed lingis also included. Note that both plots are

corresponding to a_a:utoff pulseof width a impinging frpm superimposed along the short time regime.

the left on a reflecting shutter &&= 0. The condition is given

by

0.0
0.0

20.0 30.0 40.0

Time (fs)

10.0 50.0

oscillations aroundy|2. As time elapsegnot shown herg

0, x<-—a these rapid oscillations end smoothly at approximately
Po(X,kit=0)= e -k _asx<0 (13 =1.0 ps; from this value of time onwards, the probabili.ty
0 x>0 density starts to decrease monotonically reaching vanish-

ingly small values as—c. For pulses of shorter width, a
few times the barrier widtlinot shown, we found that the
shape of the time-domain resonance becomes blurred by a
series of oscillations.

The above results for cutoff pulses suggest that in numeri-
cal solutions of the time-dependent Sdfirmer equation,
where commonly the initial state consists of a Gaussian wave
packet initially located far away from the interaction region
[23], one would expect to find a time-domain resonance in a
plot of | (L ,t)|? vst, provided(a) the widthd of the Gauss-
ian is taken much larger than the barrier widthi.e.,d>L,
—(—1)"M(x+a,q;t)], where theM functions are defined (b) the opacityx of the potential, as defined previously, is
by Eq. (3) and the coefficient3(k), T(—k), andT, are the larger than unity, i.e.¢>1, and(c) the incidence energy is
same as those in Eq2). Since the above solution corre- much less than the barrier height, i.Es V.
sponds to a pulse that vanishes exactlyat—a, the initial
state must be chosen in such a way that it satisfies the con-
dition ka=mw(m=1,2,3...).

For the sake of comparison with the semi-infinite plane
wave in our example we consider the set of typical param-

For the above initial condition, the solutiak,(x,k;t) for
the transmitted regionx(>L) may be obtained along the
same lines as discussed in Sec. llI; the solution reads

Pp(X, ki) =T(K) M(x,k;t) = T(= k) M(x, = Kk;t)

— > T M(XK,it) (x=L). (14)

We have introduced the functions1(x,q;t)=[M(x,q;t)

IV. CONCLUDING REMARKS

eters found in Sec. Il A. In this example, we choase 9,
which yields a pulse of widtlta=213.35 nm, much larger
than the barrier width.=5.0 nm, i.e.a/d=42.67. The time

Using an analytic dynamical approach involving cutoff
semi-infinite waves and extended pulses, a relevant time
scale for tunneling has been obtained in the transient regime.

evolution of the probability density can be appreciated inWe find at short times that the probability density may ex-
Fig. 7, where we plotzpp|2 (solid line) as a function of time  hibit a peculiar transient structure called the time-domain
at the fixed positiorx=L. As can be seen in Fig. 7, the resonance. This structure can be characterized by a peak
probability density exhibits a time-domain resonance in thevalue t, that governs the fast response of the system. We
short time regime; notice that this structure coincides exactlfound that the top-barrier resonant poles and residues play a
with the one obtained using a semi-infinite cutoff plane wavemost relevant role in describing such transient behavior. We
(dashed ling The two curves become indistinguishable have identified two different regimes: the linear regime, oc-
among them in the short time regime<(10 fs). This result curring at large barrier widths, where tunneling is inhibited
is of relevance since it illustrates that the observed behaviagind the particle goes over the barrier, and the plateau regime,
is not an artifact of the semi-infinite extension of the cutoff dominated by the interplay between tunneling and top-barrier
state. For increasing values of tirﬁﬁf,pl2 exhibits a series of resonant processes. We have found simple analytic expres-
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