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Time dependence of the probability density in the transient regime for tunneling
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An exact analytical solution to the time-dependent Schro¨dinger equation with cutoff wave initial conditions
is used to investigate the fast tunneling response of a rectangular potential barrier. We find that just across the
tunneling region, the probability density exhibits at short times a transient behavior that may be characterized
by a peaktp and a widthDt. We show thattp provides the earliest tunneling response of the system and that
the top-barrierS-matrix poles play an important role in the process. As a function of the barrier width,tp

exhibits two regimes. Along the first regime,tp remains almost a constant; as the barrier width increases, a
second regime appears wheretp grows linearly with the barrier width.
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I. INTRODUCTION

Quantum tunneling, which refers to the possibility tha
particle traverses through a classically forbidden region, c
stitutes one of the paradigms of quantum mechanics. In
energy domain, where one solves the stationary Schro¨dinger
equation at a fixed energyE, tunneling is well understood. In
the time domain, however, there are still aspects open
investigation. Recent technological achievements, such
the possibility of constructing artificial quantum structures
nanometric scales@1#, have stimulated work on time
dependent tunneling both at an applied and a fundame
level.

In this work, we address the issue of the behavior of
time-dependent solution to the Schro¨dinger equation for tun-
neling through a potential barrier with cutoff wave initi
conditions @2,5–8#. Our problem may be visualized as
gedanken experimentconsisting of a shutter, situated atx
50, that separates a beam of particles from a potential
rier of heightV0 located in the region 0<x<L. At t50, the
shutter is opened. The probability density rises initially fro
a vanishing value and evolves with time throughx.0. The
solution at the barrier edgex5L gives the probability den-
sity of finding the particle after a timet has elapsed. Sinc
initially there is no particle along the tunneling region, o
can argue that detecting the particle at the barrier edg
time t should provide a time scale for the fast tunneli
response of the system. Our approach does not refer to
way in which the tunneling particle traverses or trans
through the tunneling region, though it may be related to t
issue.

The paper is organized as follows. Section II describes
main features of the formalism to calculate the probabi
density in the transient regime. In Sec. III, we consider
rectangular potential barrier case and study, in several
sections, the resonant transient regime. Here we empha
the analysis of the time-domain resonance peak as a func
of the barrier parameters, make a comparison of our res
with a number of tunneling time definitions, and consider
1050-2947/2001/64~1!/012107~6!/$20.00 64 0121
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extension of the approach to cutoff pulses. Finally, Sec.
contains the concluding remarks.

II. FORMALISM

Our analysis is based on a general formalism develo
by Garcı´a-Caldero´n @8# for the time-dependent solution t
the Schro¨dinger equation for tunneling through an arbitra
potentialV(x) that vanishes outside a region 0<x<L. We
consider the reflecting cutoff wave initial condition@9#,

c~x,k;t50!5H eikx2e2 ikx, x<0

0, x.0,
~1!

which guarantees that the probability density vanishes
tially at x50. Note that the initial state is not strictly mono
chromatic~it extends from2` to 0) and hence unavoidabl
it has a distribution of components aroundk in momentum
space. One then proceeds along lines similar to those
cussed in Ref.@8# to derive the time-dependent solutio
c(x,k;t) of the Schro¨dinger equation for the transmitted re
gion, x>L,

c~x,k;t !5T~k!M ~x,k;t !2T~2k!M ~x,2k;t !

2(
n

`

TnM ~x,kn ;t ! ~x>L !, ~2!

where the quantitiesT(k) and T(2k) refer to transmission
amplitudes @10#, and Tn52ikun(0)un(L)exp(2iknL)/(k2

2kn
2) is given in terms of the set of resonant states$un(x)%

and complex poles$kn% of the problem@8,11#. The functions
M (x,6k;t) andM (x,kn ;t) are defined as

M ~x,q;t !5 1
2 e( imx2/2\t)eyq

2
erfc~yq!, ~3!

where the argumentyq is given by

yq[e2 ip/4S m

2\t D
1/2Fx2

\q

m
t G . ~4!
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In Eqs.~3! and~4!, q stands either for6k or kn , where the
index n refers to a given complex pole. Poles are located
the third and fourth quadrants of the complexk plane. The
free case solution to the above problem for a cutoff pla
wave was considered by Moshinsky many years ago@2,3#.
The solution for the free case with reflecting initial conditio
reads

c0~x,k;t !5M ~x,k;t !2M ~x,2k;t !. ~5!

Note that the solution given by Eq.~2! involves a term remi-
niscent of the free case and a resonant sum. We shall ref
the former as the free-type term contribution and to the la
as the resonant contribution. From the analysis given in R
@8#, one can see that the exact solution satisfies the in
condition, and that at long times it goes into the station
solution, namely

c~x,k;t !5T~k!eikxe2 iEt/\. ~6!

III. MODEL

In order to apply the above ideas, we consider a mo
that has been used extensively in studies on time-depen
tunneling, namely the rectangular barrier potential, char
terized by a heightV0 in the region 0<x<L. To calculate
the time-dependent solutionc(x,k;t) given by Eq.~2!, in
addition to the barrier parametersV0 , L, and the correspond
ing incidence energyE5\2k2/2m, we need to determine th
complex poles$kn% and the resonant states$un(x)% of the
system@12#. The S-matrix poles for the rectangular barrie
potential may be obtained from the corresponding transm
sion amplitudeT(k)54kq exp(2 ikL)/J(k), whereq5@k2

2k0
2#1/2 with k0

252mV0 /\2. They correspond to the zeros o
J(k) in the k plane, namely,

J~k!5~q1k!2 exp~2 iqL !2~q2k!2 exp~ iqL !50. ~7!

We followed a well-established method to obtain the so
tions to the above equation@8#. The resonant statesun(x)
satisfy the time-independent Schro¨dinger equation of the
problem with outgoing boundary conditions@8#. They read

un~x!5Cn@eiqnx1bne2 iqnx# ~0<x<L !, ~8!

wherebn5(qn1kn)/(qn2kn) andCn may be obtained from
the normalization condition@8#

E
0

L

un
2~x!dx1 i

un
2~0!1un

2~L !

2kn
51. ~9!

Note that both the complex poles and the resonant state
a function ofV0 andL and hence are a property of the sy
tem.

A. The resonant transient regime

To exemplify the time evolution of the probability den
sity, we consider a set of parameters typical of semicond
tor artificial quantum structures@1#: V050.3 eV, L
55.0 nm,E50.01 eV, andm50.067me , with me the elec-
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tron mass. Our choice of parameters guarantees that m
momentum components of the initial state tunnel through
potential. In Fig. 1, we show a plot ofucu2 ~normalized to
incident flux J05\k/m) calculated at the barrier edgex
5L as a function of time. One sees thatucu2 rises as soon as
tÞ0 @13#, and as time evolves, the probability density exh
its a well-defined maximum, which constitutes the earli
evidence of significant tunneling events in the transient
gime, i.e., the first response of the system. This maximum
ucu2 corresponds to a transient structure that can be cha
terized by a peak valuetp and a widthDt; since it appears in
the time domain, we have named ittime-domain resonance.
The peak valuetp represents the largest probability of find
ing the particle at the barrier edgex5L, presumably after
tunneling through the potential barrier. In our example,tp is
5.34 fs. We define the width of the distribution,Dt, by the
rule of the half-width at half maximum. The distribution
broad, sinceDt'2tp . We have found that for fixedV0 and
E, and a decreasingL, the width diminishes. The same oc
curs for fixedE andL, and an increasingV0; systematically,
however, we findDt.tp . Since the time-domain resonanc
plays an important role in the fast response of the system
explore the different contributions to the probability dens
in order to determine the origin of such a structure. In Fig
we show the contribution of the resonant sum in Eq.~2!
~dashed line!. Note that the resonant sum~it converges here
with 3 poles! is the main contribution to the time-domai
resonance whereas the free-type term contribution is q
small and varies smoothly with time. Calculations using t
absorbing initial condition exhibit a similar behavior. Hen
a linear combination of reflecting and absorbing initial co
ditions should also exhibit it.

B. Analysis of tp as a function of the barrier parameters

In Fig. 3, we plot the exact calculation oftp ~solid dots!
for different values of the barrier widthL. We can clearly
identify two regimes. In one of them,tp remains almost con-
stant as a function ofL. This occurs fromL53.5 nm up to
L57.0 nm. For larger values ofL, we have a second regim
where the value oftp increases linearly withL. In the above
regimes, the opacity of the system defined asa

FIG. 1. Plot of uc(L,t)u2 as a function of time, forV0

50.3 eV at the barrier edgex5L55.0 nm. At short times, the
probability density exhibits a time-domain resonance. See text.
7-2
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5(@2mV0#
1/2/\)L[k0L is larger than unity, i.e.,a.1. Not

shown in Fig. 3 is a regime that occurs for very shallow
very thin barriers ~in our example that occurs forL
,3.5 nm), characterized by an opacitya,1. There the free-
type term in Eq.~2! dominates over the resonant sum con
bution; consequently, there is no time-domain resonance
the probability density behaves with time in a fashion simi
to the free case@2,8#.

The linear regime withL in Fig. 3 can be understood from
an argument given by Hartman@16#: since the incident wave
is not strictly monochromatic, it has momentum compone
above the barrier height. As the barrier width increases
reaches a point where those components dominate ove
tunneling components. Hartman suggested an approxim
traversal time for these components ast0'L/v0, with v0
5\k0 /m andk05@2mV0#1/2/\. We obtain a better descrip
tion by noting that the first top-barrier resonancek15a1
2 ib1 acts as a filter and hence it favors that only the m
mentum components close toa1 traverse above the barrie
This might not hold in general but it does hold in the ran

FIG. 2. Plot ofuc(L,t)u2 at the barrier edgex5L55.0 nm for
V050.3 eV, as a function of time. Exact calculation~solid line!,
resonant sum~dashed line!, interference term~dashed-dotted line!,
and free-type term~dotted line! are also shown. See text.

FIG. 3. Plot of an exact calculation fortp ~solid dots! as a
function of the barrier widthL with the barrier heightV0 fixed.
Hollow squares refer to a calculation withtp

P5p\/(e12E)
whereas hollow triangles refer to that usingtp

L5L/v1. The inset
shows a similar calculation varyingV0 with L fixed. See text.
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of large values ofL considered. Consequently, in that regim
tp is well described~hollow triangles in Fig. 3! by

tp
L5

L

v1
, ~10!

wherev15\a1 /m is slightly larger thanv0.
With respect to the plateau regime in Fig. 3, notice, fro

Fig. 2, that the peak of the resonant sum almost coinci
with that of the exact calculation. Note also that the free-ty
term is small and almost a constant, and that its interfere
with the resonant term exhibits a similar shape to that of
resonant contribution. It turns out that the main contributi
to the sum comes from the first pole term,E15e12 iG1/2,
and hence one may explore, following@17#, the first-term
approximation to the probability density using Eq.~2! at x
5L,

ucu2/T'11e2G1t/\22e2G1t/2\cos@DEt/\#, ~11!

whereDE5(E2e1) andT stands for the transmission coe
ficient. The main contribution to the maximum to the abo
equation as a function of time is given, to an excellent a
proximation, by

tp
P5

p\

~e12E!
, ~12!

which holds provided (e12E).G1/2, fulfilled in typical sys-
tems. The result of the calculation using Eq.~12! is indicated
by the hollow squares in Fig. 3. Surprisingly, it provides
excellent approximation to the exact calculation along
plateau region, even though the other pole contributions h
been omitted in the derivation of Eq.~12!. Notice that Eq.
~12! resembles a time-energy uncertainty relationship, wh
originates from the interference contribution between
free-type term and the resonant contribution. Hence the t
scale tp

P is not an intrinsic quantity of the system since
depends also on the incidence energy,E, associated to the
initial state. In Fig. 3, we exhibit the range of validity of bot
tp
L and tp

P . We have obtained similar results for other sets
potential parameters. The inset to Fig. 3 shows results fo
analogous calculation fortp , tp

L , and tp
P by varying the po-

tential height keeping the barrier width fixed (L55.0 nm).
An appropriate form to understand the difference betwe

the plateau and linear regimes discussed previously is to
amine the complex top-barrier poles,en , as a function of the
barrier widthL. Figure 4 displays the evolution of the firs
three values of the real part ofen , corresponding to the
potential barrier of heightV050.3 eV. Notice that along the
plateau region (3.5 nm<L<7.5 nm), the energies of th
poles are quite separated. In this region, it is easy to conv
oneself by inspection of Eq.~12! and by the dramatically
different behavior ofe1 ~also depicted in the inset! that the
first top-barrier pole governs the behavior oftp observed in
Fig. 3. As L increases away from the plateau region, t
values ofen approach essentially the barrier height,V0.

It is of interest to note that along the plateau regime,
interference between the resonant and the free-type term
7-3
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an important contribution~dashed-dotted line in Fig. 2!,
whereas along the linear regime both the free-type and
interference contributions become negligible as exempli
in Fig. 5 forL510 nm. This is consistent with the discussio
given above regarding the behavior oftp along that regime.

C. Comparison with tunneling time scales

In the literature, one finds a number of definitions of tu
neling times attempting to answer the question of the ti
spent by an incident particle through a tunneling region@18#.
As mentioned previously, instead of providing a new defi
tion for the tunneling time, which has become a controver
issue, our approach considers the response time of the
tem to the tunneling process. In this subsection, we comp
our findings with the predictions of a number of definitio
of tunneling times. The possible implications of this com

FIG. 4. The real part of the first three top-barrier resonant po
en (En5en2 iGn/2), corresponding to a potential barrier of heig
V050.3 eV. The main graph shows the evolution ofen for n51,2,
and 3 as a function of the barrier widthL. The inset exhibits the
peculiar behavior ofe1 ~solid dots! in the plateau region (3.5 nm
<L<7.5 nm). FromL57.5 nm onwards, the energiesen get closer
to the barrier heightV0. See text.

FIG. 5. The time evolution ofucu2 ~solid line! in the linear
regime corresponding to a barrier widthL510.0 nm, with V0

50.3 eV andE50.01 eV. As can be seen, the time-domain re
nance arises entirely from to the contribution of the resonant s
~dashed line!, whereas the contribution of the free-type~dotted line!
and interference~dashed-dotted line! terms becomes almost negl
gible. See text.
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parison for the tunneling time problem go beyond the sco
of this work and will be considered elsewhere.

Some tunneling time definitions, such as the phase-de
time, are based on a long-time analysis of the solut
@16,19# and hence ignore transient effects, as do approac
at least explicitly, dealing with semiclassical and Larm
times @20#. The arrows in Fig. 2 indicate the values calc
lated for a number of definitions of tunneling times for th
rectangular barrier potential@20#, as the semiclassical o
Büttiker-Landauer time,tBL ; the Büttiker traversal time,tB ;
and the phase-delay time,tD @21#. All of them fall within the
broad range of values given byDt. Note, however, that the
Büttiker traversal timetB is the closest totp .

In Fig. 6, we compare systematically the exact calculat
for tp ~solid dots!, exhibited already in Fig. 3, with exac
calculations fortB ~dashed line!, tBL ~dotted line!, and tD
~solid line!. One sees that bothtB and tBL are close to the
values of tp , especially along the regime in which it in
creases linearly withL, wheretBL gets closer totp . This is
not surprising becausetBL5mL/\q, with q5@2m(V0
2E)#1/2/\ andq'k0'a1. However,tB and tBL do not de-
scribe the plateau regime. On the other hand, the phase
tD exhibits a plateau, though shifted in time from that fortp .
Recalling thattD follows from a difference between tunne
ing and free solutions at asymptotically long times, qu
differently that fortp , suggests that both plateaus are un
lated. This deserves further study. It is not surprising thattD
does not reproduce the regime linear withL. This is because
the energy involved in its calculation is monochromatic, o
erwise tD would eventually increase linearly withL as dis-
cussed above following the argument given by Hartman@16#.
The inset exhibits a comparison between the exacttp ~solid
dots! and tB ~hollow squares! as a function of barrier heigh
V0 for fixed barrier widthL55 nm. This is a value ofL
wheretB and tp are close to each other forV050.3 eV and
remain so by varyingV0.

It is appropriate to mention here some recent work
Muga and Bu¨ttiker @22#. Although these authors conside

s

-
m

FIG. 6. Plot of an exact calculation fortp ~solid dots! as a
function of the barrier widthL with V0 fixed. For comparison, we
plot the Büttiker traversal timetB ~dashed line!, the semiclassical
time tBL ~dotted line!, and the phase-delay timetD ~solid line!. The
inset shows a calculation fortp and tB varying V0 with L
55.0 nm. See text.
7-4
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both a different system~the step potential! and initial state
~frequency-dependent point source!, they find a transient be
havior in the time dependence of the evanescent probab
density characterized by a peak close to but smaller thantBL ,
in agreement with our Fig. 6 for large values of the barr
width L.

D. Extension to cutoff pulses

In Sec. III A, we mentioned that other types of cuto
initial conditions should exhibit structures similar to th
time-domain resonance. In contrast with thesemi-infinite
cutoff plane previously considered, in the present subsec
we deal withfinite cutoff states. In what follows, we discus
the time evolution ofcutoff pulsesand the associated reso
nant transient response.

Our discussion deals with the solution of the tim
dependent Schro¨dinger equation for a finite range potenti
V(x) that vanishes outside 0<x<L, with an initial condition
corresponding to acutoff pulseof width a impinging from
the left on a reflecting shutter atx50. The condition is given
by

cp~x,k;t50!5H 0, x,2a

eikx2e2 ikx, 2a<x<0

0, x.0.

~13!

For the above initial condition, the solutioncp(x,k;t) for
the transmitted region (x.L) may be obtained along th
same lines as discussed in Sec. III; the solution reads

cp~x,k;t !5T~k!M~x,k;t !2T~2k!M~x,2k;t !

2(
n

`

TnM~x,kn ;t ! ~x>L !. ~14!

We have introduced the functionsM(x,q;t)5@M (x,q;t)
2(21)mM (x1a,q;t)#, where theM functions are defined
by Eq. ~3! and the coefficientsT(k), T(2k), andTn are the
same as those in Eq.~2!. Since the above solution corre
sponds to a pulse that vanishes exactly atx52a, the initial
state must be chosen in such a way that it satisfies the
dition ka5mp(m51,2,3, . . . ).

For the sake of comparison with the semi-infinite pla
wave in our example we consider the set of typical para
eters found in Sec. III A. In this example, we choosem59,
which yields a pulse of widtha5213.35 nm, much large
than the barrier widthL55.0 nm, i.e.,a/d542.67. The time
evolution of the probability density can be appreciated
Fig. 7, where we plotucpu2 ~solid line! as a function of time
at the fixed positionx5L. As can be seen in Fig. 7, th
probability density exhibits a time-domain resonance in
short time regime; notice that this structure coincides exa
with the one obtained using a semi-infinite cutoff plane wa
~dashed line!. The two curves become indistinguishab
among them in the short time regime (t<10 fs). This result
is of relevance since it illustrates that the observed beha
is not an artifact of the semi-infinite extension of the cut
state. For increasing values of time,ucpu2 exhibits a series of
01210
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oscillations arounducu2. As time elapses~not shown here!,
these rapid oscillations end smoothly at approximatelyt
.1.0 ps; from this value of time onwards, the probabil
density starts to decrease monotonically reaching van
ingly small values ast→`. For pulses of shorter width, a
few times the barrier width~not shown!, we found that the
shape of the time-domain resonance becomes blurred
series of oscillations.

The above results for cutoff pulses suggest that in num
cal solutions of the time-dependent Schro¨dinger equation,
where commonly the initial state consists of a Gaussian w
packet initially located far away from the interaction regio
@23#, one would expect to find a time-domain resonance i
plot of uc(L,t)u2 vs t, provided~a! the widthd of the Gauss-
ian is taken much larger than the barrier widthL, i.e., d@L,
~b! the opacitya of the potential, as defined previously,
larger than unity, i.e.,a.1, and~c! the incidence energy is
much less than the barrier height, i.e.,E!V0.

IV. CONCLUDING REMARKS

Using an analytic dynamical approach involving cuto
semi-infinite waves and extended pulses, a relevant t
scale for tunneling has been obtained in the transient reg
We find at short times that the probability density may e
hibit a peculiar transient structure called the time-dom
resonance. This structure can be characterized by a p
value tp that governs the fast response of the system.
found that the top-barrier resonant poles and residues pl
most relevant role in describing such transient behavior.
have identified two different regimes: the linear regime, o
curring at large barrier widths, where tunneling is inhibit
and the particle goes over the barrier, and the plateau reg
dominated by the interplay between tunneling and top-bar
resonant processes. We have found simple analytic exp

FIG. 7. The time evolution ofucpu2 ~solid line! corresponding to
a cutoff pulse of widtha5213.35 nm, at the barrier edgex5L. The
potential parameters are the same as in Fig. 2. At early time
time-domain resonance is clearly appreciated. For compariso
plot of ucu2 ~dashed line! is also included. Note that both plots ar
superimposed along the short time regime.
7-5
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sions for the behavior oftp along the above regimes, give
respectively, by Eqs.~10! and ~12!. The possible relevanc
of our results for the tunneling time problem requires furth
study and will be considered elsewhere. The formalism
plies to arbitrary potential barriers and hence we expect
results to hold provided the cutoff initial state is mu
broader than the barrier width and also that in the exact ti
dependent solution given by Eq.~2! the resonant sum domi
nates over the free-type term.
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