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Heisenberg-type structures of one-dimensional quantum Hamiltonians
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We construct a Heisenberg-like algebra for the one-dimensional infinite square-well potential in quantum
mechanics. The ladder operators are realized in terms of physical operators of the system as in the harmonic-
oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed
noncommutative differential calculus. This ‘‘square-well algebra’’ is an example of an algebra in a large class
of generalized Heisenberg algebras recently constructed. This class of algebras also containsq oscillators as a
particular case. We also discuss the physical content of this large class of algebras.

DOI: 10.1103/PhysRevA.64.012105 PACS number~s!: 03.65.Fd
n
fe
ru
d

d
-

on
ta
ed
b
br
n
er
u

w
e
f
e-
b

th
-
an

er
cu
or
f

l i
he
io
op
ic

s

e
s of

of a
y ei-

of
mil-
op-

ysi-
ive
ns

ies.
ela-
ell

de-

c
obi

der

tion
ave
qs.
f

The one-dimensional quantum harmonic oscillator is
special system in physics for several well-known reaso
The algebra related to it, the Heisenberg algebra, is a re
ence tool in the second quantization approach, and its st
ture, having as generators the Hamiltonian and the lad
operators, is used in several areas of physics.

In recent years, there hase been a intense activity on
formed algebras@1#. A deformed algebra is a nontrivial gen
eralization of a well-known algebra through the introducti
of one or more complex parameters, such that, in a cer
limit of the parameters the well-known algebra is recover
There have been several attempts to generalize Heisen
algebra, and a particular deformation of Heisenberg alge
known asq oscillators@2#, has attracted considerable atte
tion @3–5#. Nevertheless, in all generalizations of Heisenb
algebra, a clear comprehension of the physical problem
der consideration is always lacking.

Recently, a generalization of the Heisenberg algebra
constructed depending on a general functional of one gen
tor of the algebra,f (J0) @6,7#, the characteristic function o
the algebra. For linearf it was shown that the algebra corr
sponds toq oscillators, the Heisenberg algebra being o
tained in the limit when the deformation parameterq→1.
The representations of the algebra, whenf is any analytical
function, was shown to be obtained through the study of
stability of the fixed points off and of their composed func
tions, exhibiting an unsuspected link between algebraic
dynamical system formalisms.

We show here that this generalization of the Heisenb
algebra together with a noncommutative differential cal
lus, developed to be used in space-time discrete netw
@8–10#, are appropriate to describe algebraic aspects o
simple quantum-mechanical system: the one-dimensiona
finite square-well potential. The generators of t
Heisenberg-type algebra that describes the one-dimens
square-well potential are the Hamiltonian and the ladder
erators. The ladder operators are realized in terms of phys
operators of the system in a similar way to what happen
the harmonic oscillator.
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As will be clear in what follows, the approach we hav
developed here exhibits the physical content of the clas
generalized Heisenberg algebras constructed in@7#, i.e., this
class of algebras describes the Heisenberg-type algebras
class of one-dimensional quantum systems having energ
genvalues (en) written asen115 f (en), wheref (x) is a dif-
ferent function for each physical system. This functionf (x)
is exactly the characteristic function of the algebra.

In the final remarks we will show that the introduction
a Heisenberg-type algebra having as generators the Ha
tonian of a one-dimensional quantum system and ladder
erators, realized in terms of physical operators of the ph
cal system, opens the possibility of constructing alternat
formalisms of second quantization with possible applicatio
ranging from condensed matter to quantum field theor
We sketch there the construction of a nonstandard nonr
tivistic free quantum field theory based on the square-w
potential.

The generalization of the Heisenberg algebra recently
veloped in@6,7# can be described by the generatorsJ0 , J6 ,
satisfying the relations

J0J15J1 f ~J0!, ~1!

J2J05 f ~J0!J2 , ~2!

@J1 ,J2#5J02 f ~J0!, ~3!

where, by hypothesisJ25J1
† , J0

†5J0, and f (J0) is a gen-
eral analytic function ofJ0 that we call the characteristi
function of the algebra. It can easily be shown that the Jac
identity of this algebra is trivially satisfied; f analytic func-
tion. The above algebraic relations are constructed in or
that, in the representation theory, thenth eigenvalue of the
operatorJ0 is given by thenth iteration, through the function
f, of an initial valuea0. The operator

C5J1J22J05J2J12 f ~J0!, ~4!

is a Casimir operator of the algebra. The representa
theory of the algebra can be analyzed assuming that we h
an irreducible representation of the algebra given by E
~1!–~3!. Consider the stateu0& with the lowest eigenvalue o
the Hermitian operatorJ0,
©2001 The American Physical Society05-1
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J0u0&5a0u0&. ~5!

For each value ofa0 and the parameters of the algebra w
have a different vacuum that for simplicity will be denote
by u0&. As u0& is the vacuum, we require

J2u0&50. ~6!

As consequence of the algebraic relations@~1!–~3!, ~5!, ~6!#
we obtain for a general functionalf

J0um&5 f m~a0!um&, m50,1,2, . . . , ~7!

J1um&5Nmum11&, ~8!

J2um&5Nm21um21&, ~9!

where Nm
2 5 f m11(a0)2a0 and we have usedf 0(a0)5a0.

Note thatf m(a0) denotes themth iterate off,

am[ f m~a0!5 f ~am21!. ~10!

Equations~7!–~9! define the general conditions for a
n-dimensional representation of the algebra. In order to so
it, i.e., to construct the conditions under which we ha
finite- and infinite-dimensional representations, we have
specify the functionalf (J0). The Heisenberg algebra is th
simplest particular case of algebra@~1!-~3!# and we can see
that if we choosef (J0)5J011 the algebra given by Eqs
~1!–~3! becomes the Heisenberg algebra. In@7# we used lin-
ear and quadratic functionals, leading to multiparametric
formations of the Heisenberg algebra. Also, we showed
@7# that it is the iteration aspect of the algebra that allows
to find their representations through the analysis of the
bility of the fixed points of the functionf and their composed
functions@6,7#.

Here, in this paper, we shall use the inverse appro
utilized in @6,7#, where it was studied the representati
theory for general functionsf. Now, we consider a simple
one-dimensional quantum system with a known spectr
and obtain the characteristic functionf (x) of the associated
Heisenberg-type algebra for this physical problem. Mo
over, we also realize the generators of the algebra in term
the physical operators of the system. To implement this p
gram we shall need the formalism of the noncommutat
differential calculus mainly studied by Dimakiset al.
@8–10#.

In @8# a formalism was developed for a one-dimensio
spacial lattice with finite spacing, i.e., a discrete space.
shall summarize here an analogous formalism for a mom
tum space instead of the position space. The reason is th
many physical problems the momentum space is already
cretized. In the one-dimensional infinite square-well pot
tial, for example, which will be analyzed below, the allowe
values for the~adimensional! momenta are only the positiv
integers, as it is well known. Thus, the noncommutative d
ferential calculus approach seems to be appropriate to
used in the momentum space. The formulas used here
analogous to the formulas used in@8#, and the reader shoul
see this paper for a more detailed exposition and explana
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of the noncommutative calculus~remembering again tha
their formulas were derived for a discrete position spac!.
Therefore, let us consider a one-dimensional lattice in a m
mentum space where the momenta are allowed only to
discrete values, sayp0 , p01a, p012a, p013a, etc., with
a.0. The noncommutative differential calculus is based
the expression

@p,dp#5dp a, ~11!

implying that

f ~p!dg~p!5dg~p! f ~p1a! ~12!

for all functionsf andg. Let us introduce partial derivative
by

d f~p!5dp~]pf !~p!5~ ]̄pf !~p!dp, ~13!

where the left and right discrete derivatives are given by

~]pf !~p!5
1

a
@ f ~p1a!2 f ~p!#, ~14!

~ ]̄pf !~p!5
1

a
@ f ~p!2 f ~p2a!#, ~15!

and satisfy

~ ]̄p f !~p!5~]pf !~p2a!. ~16!

The Leibniz rule for the right discrete derivative can be wr
ten as

~]pf g!~p!5~]pf !~p!g~p!1 f ~p1a!~]pg!~p!, ~17!

with a similar formula for the left derivative@8#.
Let us now introduce the momentum shift operators

A511a ]p , ~18!

Ā512a ]̄p , ~19!

which increases~decreases! the momentum value bya

~A f !~p!5 f ~p1a!, ~20!

~Āf !~p!5 f ~p2a!, ~21!

and satisfies

A Ā5ĀA51, ~22!

where 1 means the identity on the algebra of functions op.
Let us now introduce the momentum operator@8#

~P f !~p!5p f~p! ~23!

(P†5P), which returns the value of the variable of the fun
tion f. Clearly,
5-2
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AP5~P1a!A, ~24!

ĀP5~P2a!Ā. ~25!

Integrals can also be defined in this formalism but it
rather a technical point and the interested reader can fin
@8# a detailed explanation on the subject. Here we will on
use the definition of a definite integral of a functionf from pd
to pu (pu being equal topd1Ma, where M is a positive
integer! as

E
pd

pu
dp f~p!5a(

k50

M

f ~pd1k a!. ~26!

Using Eq.~26!, an inner product of two~complex! functions
f andg can be defined as

^ f ,g&5E
pd

pu
dp f~p!* g~p!, ~27!

where the asterisk indicates the complex conjugation of
function f. Clearly, the norm̂ f , f &>0 is zero only whenf is
identically null. The set of equivalent classes of normaliza
functions f (^ f , f & is finite! is a Hilbert space and it can b
shown that the operatorsA and Ā are well defined in this
space@8#. We have

^ f ,Ag&5^Āf ,g&, ~28!

where

Ā5A†, ~29!

A† being the adjoint operator ofA. Equations~22! and ~29!
show thatA is a unitary operator. It is also possible to defi
a position operatorX given asX5(]p1 ]̄p)/2i @8#. With this
very short adapted review of the noncommutative differen
calculus we can go further and, together with the general
tion of the Heisenberg algebra, analyze the physical exam
of the quantum-mechanical infinite one-dimensional squa
well potential.

Thus, let us assume a one-dimensional system with z
potential between zero andL and infinite elsewhere. As it is
well known, the spectrum of the Hamiltonian (H5cP2, c
51/2m, \51) with the above boundary conditions is pr
portional to n2, where n51,2,3, . . . . The momentum is
quantized and proportional ton. Therefore, we can see th
momentum space as a one-dimensional periodic lattice
constant spacinga5p/L, clearly a candidate to apply th
noncommutative differential calculus reviewed before. W
then take the momentum operator in the HamiltonianH
5cP2, with the above boundary conditions, as defined in E
~23!.

The Hamiltonian’s eigenvalue associated with then
11)th level is proportional to (n11)2 and we can write
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en115b~n11!25~Aen1Ab!2, ~30!

where en is the eigenvalue of the Hamiltonian associat
with the nth level andb5p2/2mL2. As J0 is related to the
Hamiltonian@6,7# and their eigenvalues satisfy the iteratio
given by a functionf in Eqs. ~1!–~3!, we see that if we
choose this function as

f ~x!5~Ax1Ab!2, ~31!

the J0 in Eqs. ~1!–~3! has eigenvalues equal to the ener
eigenvalues of the square-well potential. Equations~1!–~3!
can then be rewritten for this case as

@J0 ,J1#52Ab J1AJ01b J1 , ~32!

@J0 ,J2#522AbAJ0J22b J2 , ~33!

@J1 ,J2#522AbAJ02b. ~34!

The square root of the generatorJ0 is well defined since this
is a Hermitian and positive definite operator.

We then have an algebra@Eqs.~32!–~34!# where, by con-
struction, the eigenvalues ofJ0 , en , are the energy eigenval
ues of the quantum-mechanical one-dimensional infin
square-well potential andJ6 act as ladder operators. In orde
to have a complete description similar to the case of
one-dimensional harmonic oscillator, we must realize the
eratorsJ(6,0) in terms of physical operators. We propose f
this problem the following realization:

J15~cP22b!1/2 Ā, ~35!

J25A~cP22b!1/2, ~36!

J05c P2. ~37!

Clearly, J0 is the Hamiltonian and can be written, anal
gously to the harmonic-oscillator case, as an ordered pro
of ladder operators

J1J25J02b, ~38!

as according to Eq.~22!, A Ā51. Comparing Eqs.~4! and
~38! we see thatb is the Casimir of the representation for th
square-well potential. Using Eqs.~24! and~25! it is straight-
forward to check that these operators indeed satisfy the c
mutation relations given by Eqs.~32!–~34!. We stress that
the operatorsP andX are the momentum and position oper
tors in the momentum space for the one-dimensional infin
square-well potential. Moreover, as will be seen below it
possible to write the operatorsP andX in terms of the ladder
operatorsJ6 and the operatorJ0.

Fock space representations of the algebra generated bJ0
andJ6 , Eqs.~32!–~34!, are obtained considering eigenstat
of J0, with fixed values of the momentum. Let us callun& the
eigenstate ofJ0 whose momentum is associated with t
quantum numbern, n51,2,3, . . . . Theeigenvaluean that
appears in Eqs.~5!–~10! can be set asan5b(n11)2 and
5-3
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Eqs. ~7!–~9! can be rewritten, after a trivial rename of th
statesun&, such that the lowest-energy state correspond
u1&, as

J0un&5b n2un&, n51,2, . . . , ~39!

J1un&5Ab~n11!22b un11&, ~40!

J2un&5Abn22b un21&, ~41!

Pun&5a nun&, Āun&5un11&, ~42!

whereNn
25b(n11)22b. Note that,J2u1&50 as it happens

in the standard notation of the square-well potential since
lowest-energy state is represented by the stateu1&.

Hence, we see that an algebraic formalism similar to
harmonic-oscillator algebra was constructed for anot
physical problem: the one-dimensional infinite square-w
potential in quantum mechanics. The main point here is
the Hamiltonian itself is one of the generators of the algeb
together with the ladder operators. In other physical real
tions of the ladder operators@12#, the Hamiltonian is not, in
general, one of the generators of the algebra.

Generally speaking, suppose we have an arbitrary o
dimensional quantum system such that two successive
ergy eigenvaluesen can be related as

en115 f ~en!, ~43!

where f (x) is a different function for each physical system
If we assume that the generatorJ0 of the class of
Heisenberg-type algebras in Eqs.~1!–~3! is the Hamiltonian
operator of this one-dimensional quantum system, Eq.~10!
tells us that the algebra in Eqs.~1!–~3! with f appearing in
Eq. ~43! describes the algebraic structure of this quant
system. Moreover, from Eqs.~8! and~9! we see thatJ1 and
J2 are the ladder operators of this quantum system. In s
mary, the Heisenberg-type algebras@7# given in Eqs.~1!–~3!
describe the algebraic structure of one-dimensional quan
systems having successive eigenvalues related by Eq.~43!
where the characteristic function of the algebra is the fu
tion f (x) appearing in Eq.~43!.

Once the Heisenberg-type structure of a one-dimensio
quantum system is understood, the next step, as was
formed here for the square-well potential, is to realize
ladder operators of the algebra in terms of the physical
erators of the system, such that the algebra is still satis
and is the productJ1J2 proportional to the Hamiltonian o
the one-dimensional quantum system under considera
This program could supply an alternative approach to qu
tum field theory as indicated in what follows.

Using the momentum operatorP defined on a lattice, Eq
~23!, and the associated lattice derivatives we can define
type coordinate operators as

X5
1

2i
~ ]̄p1]p!, ~44!
01210
to

e

e
r

ll
at
a,
-

e-
n-

-

m

-

al
er-
e
-
d

n.
n-

o

Q5 ]̄p2]p , ~45!

where ]p and ]̄p are the left and right discrete derivative
defined in Eqs.~14! and ~15!. Of course, in the continuou
limit ( a→0) the operatorQ is identically null since]p and
]̄p represent, in this limit, the same derivative. It can
checked that the operatorsP, X, andQ generate an algebr
on the momentum lattice that reduces to the standard Hei
berg algebra whena→0. With the help of Eqs.~18! and~19!
and ~35! and ~36! we can rewriteX and Q in terms of the
ladder operators of the suqare-well algebra as

X5
i

2a
~S21A†2AS21!, ~46!

Q5
1

a
~221S21A†1A S21!, ~47!

where S5(cP22b)1/2. Using an independent copy of th
operatorsQ andX for each point of a three-dimensional la
tice we can define two fields and two momentum fields t
can be used to construct a free quantum field theory Ha
tonian. This Hamiltonian can be written as

H5(
kW

J1~kW !J2~kW !5(
kW

SkW
2
5(

kW
@cPkW

2
2b~kW !#, ~48!

wherePkW , for eachkW , is the momentum operator for a pa
ticle with massm in a square-well potential. This is a non
relativistic free quantum field theory and the details of co
struction of a relativistic free quantum field theory can
found in @11#.

The eigenvectors ofH form a complete set and span th
Hilbert space of this system. The eigenvectors are

u1&, J1~kW !u1&, J1~kW !J1~kW8!u1& for

kWÞkW8, @J1~kW !#2u1&, . . . . ~49!

This Hilbert space has a different interpretation with resp
to the standard spin-0 quantum field theory based on
harmonic oscillator. While in the standard quantum fie
theory the creation operator creates one particle of masm
each time it is applied to the vacuum, in this nonrelativis
quantum field theory one reads from Eq.~48! that the cre-
ation operator in this case creates excited states of a par
in a box. This could provide an alternative quantum fie
theory phenomenological approach to hadronic interactio

The authors thank S. Sciuto, C. Tsallis, and L. Castell
for useful comments. E. M. F. C. and M. A. R. M., than
PRONEX for partial support. E. M. F. C. and H. N. Naz
reno thank CNPQ for a grant.
5-4



d

s.

pf-
s.

B

e
.
rint

HEISENBERG-TYPE STRUCTURES OF ONE- . . . PHYSICAL REVIEW A 64 012105
@1# See, for instance, V. Chari and A. Pressley,A Guide to Quan-
tum Groups~Cambridge University Press, Cambridge, 1994!.

@2# A.J. Macfarlane, J. Phys. A22, 4581~1989!; L.C. Biedenharn,
ibid. 22, L873 ~1989!.

@3# C. Zachos, Contemp. Math.134, 351 ~1992!, and references
therein.

@4# See, for instance~this is not a complete list!, M. Martin-
Delgado, J. Phys. A24, 1285 ~1991!; L. Baulieu and E.G.
Floratos, Phys. Lett. B258, 171 ~1991!; P. Něskovic and B.
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