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Heisenberg-type structures of one-dimensional quantum Hamiltonians
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We construct a Heisenberg-like algebra for the one-dimensional infinite square-well potential in quantum
mechanics. The ladder operators are realized in terms of physical operators of the system as in the harmonic-
oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed
noncommutative differential calculus. This “square-well algebra” is an example of an algebra in a large class
of generalized Heisenberg algebras recently constructed. This class of algebras also qasailtetors as a
particular case. We also discuss the physical content of this large class of algebras.
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The one-dimensional quantum harmonic oscillator is a As will be clear in what follows, the approach we have
special system in physics for several well-known reasonsdeveloped here exhibits the physical content of the class of
The algebra related to it, the Heisenberg algebra, is a refegeneralized Heisenberg algebras constructddjini.e., this
ence tool in the second quantization approach, and its strugfass of algebras describes the Heisenberg-type algebras of a
ture, having as generators the Hamiltonia_n and the laddeflass of one-dimensional quantum systems having energy ei-
operators, is used in several areas of physics. genvalues §,) written ase, . 1= f(e,), wheref(x) is a dif-

In recent years, there hase been a intense activity on dgsrent function for each physical system. This functigx)
formed algebrakl]. A deformed algebra is a nontrivial gen- g exactly the characteristic function of the algebra.
eralization of a well-known algebra through the introduction | +1a"final remarks we will show that the introduction of

of one or more complex parameters, such that, in a certaig Heisenberg-type algebra having as generators the Hamil-

limit of the parameters the well-known algebra is recolvered,[onian of a one-dimensional quantum system and ladder op-
There have been several attempts to generalize He|senberga . . . .
tors, realized in terms of physical operators of the physi-

algebra, and a particular deformation of Heisenberg algebra, e ; 4
known asq oscillators[2], has attracted considerable atten-cal system, opens the possibility of constructing alternative

tion [3—5]. Nevertheless, in all generalizations of Heisenberg®Malisms of second quantization with possible applications

algebra, a clear comprehension of the physical problem urf2n9ing from condensed matter to quantum field theories.

der consideration is always lacking. We sketch there the construction of a nonstandard nonrela-
Recently, a generalization of the Heisenberg algebra walVistic free quantum field theory based on the square-well

constructed depending on a general functional of one gener&otential.

tor of the algebraf(J,) [6,7], the characteristic function of ~ The generalization of the Heisenberg algebra recently de-

the algebra. For linedrit was shown that the algebra corre- veloped in[6,7] can be described by the generatdgs J..

sponds toq oscillators, the Heisenberg algebra being ob-satisfying the relations

tained in the limit when the deformation parametes 1.

The representations of the algebra, wliéa any analytical Jod+ =3+ 1(Jo), @)

function, was shown to be obtained through the study of the 3_Jg=f(Jg)d @

stability of the fixed points of and of their composed func- -0 0=

tions, exhibiting an unsuspected link between algebraic and 1

dynamical system formalisms. [J+:3-1=d0=1(J0), ©
We show here that this generalization of the Heisenbergyhere, by hypothesid_=J" , Ji=J,, andf(J,) is a gen-

algebra together with a noncommutative differential calcu-grg| analytic function of], that we call the characteristic

lus, developed to be used in space-time discrete networkgnction of the algebra. It can easily be shown that the Jacobi
[8-10), are appropriate to describe algebraic aspects of fentity of this algebra is trivially satisfied f analytic func-
simple quantum-mechanical system: the one-dimensional injon The above algebraic relations are constructed in order
finite  square-well potential. The generators of theyat in the representation theory, théh eigenvalue of the

Heisenberg-type algebra that describes the one-dimensiong,erator, is given by thenth iteration, through the function
square-well potential are the Hamiltonian and the ladder ops "¢ an initial valueay. The operator

erators. The ladder operators are realized in terms of physical

operators of the system in a similar way to what happens in C=J,J_-Jo=J3_J,.—1(Jp), (4)

the harmonic oscillator.
is a Casimir operator of the algebra. The representation
theory of the algebra can be analyzed assuming that we have

*Email address: eme@cbpf.br an irreducible representation of the algebra given by Egs.
TEmail address: regomont@cbpf.br (1)—(3). Consider the stat®) with the lowest eigenvalue of
*Email address: hugo@iccmp.br the Hermitian operatod,
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Jol0) = ag|0). (5 of the noncommutative calculugemembering again that

their formulas were derived for a discrete position space
For each value ofry and the parameters of the algebra weTherefore, let us consider a one-dimensional lattice in a mo-
have a different vacuum that for simplicity will be denoted mentum space where the momenta are allowed only to take

by |0). As |0) is the vacuum, we require discrete values, sagy, pota, pot2a, pot+3a, etc., with
a>0. The noncommutative differential calculus is based on
J_|0)=0. (6)  the expression
As consequence of the algebraic relatip(i—(3), (5), (6)] [p,dp]=dp a, (11
we obtain for a general functionél
implying that
Jom)=f"(ap)|m), m=0,12..., (7)
f(p)dg(p)=dg(p)f(p+a) (12)
J+|m>:Nm|m+1>v tS) . . . L.
for all functionsf andg. Let us introduce partial derivatives
J_|my=Np_4/m—1), (9 by
where N2 =f""1(aq) — o and we have uset®(ag)= ap. d f(p)=dp(a,f)(p)=(d,F)(p)dp, (13
Note thatf™(«y) denotes thenth iterate off,
where the left and right discrete derivatives are given by
am=f"(ao)=f(amn-1). (10 L
Equations(7)—(9) define the general conditions for an (apf)(p):a[f(p+a)—f(p)], (14)

n-dimensional representation of the algebra. In order to solve
it, i.e., to construct the conditions under which we have _ 1
finite- and infinite-dimensional representations, we have to (9pF)(p)= 5[f(p)—f(p—a)], (15
specify the functionaf(Jy). The Heisenberg algebra is the
simplest particular case of algelrd)-(3)] and we can see
that if we choosef(Jg)=Jo+1 the algebra given by Egs.
(1)—(3) becomes the Heisenberg algebra] Thwe used lin- — _
ear and quadratic functionals, leading to multiparametric de- (95 1)(p)=(3pf)(p~a). (16)
formations of the Heisenberg algebra. Also, we showed iRryq | aibniz rule for the right discrete derivative can be writ-
[7] that it is the iteration aspect of the algebra that allows USen as
to find their representations through the analysis of the sta-
bility of the fixed points of the functiofand their composed (9,F9)(p)=(3,5)(p)g(p)+F(p+a)(d,g)(p), (17)
functions[6,7]. P P P

Here, in this paper, we shall use the inverse approaclith a similar formula for the left derivativgs].

utilized in [6,7], where it was studied the representation | et us now introduce the momentum shift operators
theory for general function& Now, we consider a simple

and satisfy

one-dimensional quantum system with a known spectrum A=1+ad,, (18
and obtain the characteristic functidé(x) of the associated
Heisenberg-type algebra for this physical problem. More- Kzl—agp, (19)

over, we also realize the generators of the algebra in terms of

the physical operators of the sys_tem. To implement this Prowhich increasegdecreasesthe momentum value bg
gram we shall need the formalism of the noncommutative

differential calculus mainly studied by Dimakist al. (Af)(p)=Tf(p+a), (20
[8-10.
In [8] a formalism was developed for a one-dimensional (Kf)(p)zf(p—a) (21)

spacial lattice with finite spacing, i.e., a discrete space. We

shall summarize here an analogous formalism for a momergng satisfies

tum space instead of the position space. The reason is that in

many physical problems the momentum space is already dis- AA=AA=1, (22)
cretized. In the one-dimensional infinite square-well poten-

tial, for example, which will be analyzed below, the allowed yyhere 1 means the identity on the algebra of functiong. of

values for the(adimensionalmomenta are only the positive | et us now introduce the momentum operdi®f
integers, as it is well known. Thus, the noncommutative dif-

ferential calculus approach seems to be appropriate to be (PH)(p)=p f(p) (23
used in the momentum space. The formulas used here are

analogous to the formulas used[B], and the reader should (P=P), which returns the value of the variable of the func-
see this paper for a more detailed exposition and explanatiotion f. Clearly,
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AP=(P+a)A, (24 en+1=b(n+1)*=(Ve,+1b)?, (30)
AP=(P—a)A, (25 where g, is the eigenvalue of the Hamiltonian associated

with the nth level andb= 72/2mL2. As J, is related to the

Hamiltonian[6,7] and their eigenvalues satisfy the iterations

Integrals can also be defined in this formalism but it isgiven by a functionf in Egs. (1)—(3), we see that if we
rather a technical point and the interested reader can find iBhgose this function as

[8] a detailed explanation on the subject. Here we will only

use the definition of a definite integral of a functibinom py f(x)=( \/§+ \/5)2, (31
to py (p, being equal topy+Ma, whereM is a positive
intege) as the Jy in Egs. (1)—(3) has eigenvalues equal to the energy

eigenvalues of the square-well potential. Equati@hs-(3)

oy M can then be rewritten for this case as
f dp f(p)=a2, f(pgtka). (26)
o o [Jo.d:1=2Vb I, VIo+b J,, (32
Using EQ.(26), an inner product of twgcomplex functions [Jo.d_]1=— 2\/6\/\]—03, -bJ_, (33
f andg can be defined as
[3:,9-1=-2'b\3p—b. (34)
Pu
(f.9)= de dp f(p)*g(p), (27 The square root of the generatiyis well defined since this

is a Hermitian and positive definite operator.

where the asterisk indicates the complex conjugation of theé\ trl\j\égt;zetr;\gageeig;ﬁeesbg&gqse- (3§1)r_e(?r?£:rl12?re’£iy:r?\?a-1l-
functionf. Clearly, the norm{f,f)=0 is zero only wherf is : 9 PN gy €l

) ; : . ues of the quantum-mechanical one-dimensional infinite
identically null. The set of equivalent classes of normalizable

: AN . . square-well potential andl. act as ladder operators. In order
functionsf ({f,f) is finite) is a Hilbert space a.nd |t.can .be to have a complete description similar to the case of the
shown that the operatos and A are well defined in this  gne-dimensional harmonic oscillator, we must realize the op-

space[8]. We have erators] . o) in terms of physical operators. We propose for
this problem the following realization:

(f,Ag)=(Af,g), (28) _
\]+:(CP2_b)l/2A, (35)
where
J_=A(cP?-h)12 (36)
A=A, 29 Jp=c P2 (37)

A" being the adjoint operator @f. Equations(22) and(29)  Clearly, J, is the Hamiltonian and can be written, analo-

show thatA is a unitary operator. It is also possible to definegously to the harmonic-oscillator case, as an ordered product

a position operatoX given asX=(d,+ dp)/2i [8]. With this  of ladder operators

very short adapted review of the noncommutative differential

calculus we can go further and, together with the generaliza- JJ-=Jp—b, (39)

tion of the Heisenberg algebra, analyze the physical example .

of the quantum-mechanical infinite one-dimensional squareas according to Eq22), A A=1. Comparing Eqgs(4) and

well potential. (38) we see thab is the Casimir of the representation for the
Thus, let us assume a one-dimensional system with zersquare-well potential. Using Eq&4) and (25) it is straight-

potential between zero arldand infinite elsewhere. As it is forward to check that these operators indeed satisfy the com-

well known, the spectrum of the Hamiltonia & cP?, ¢ mutation relations given by Eq$32)—(34). We stress that

=1/2m, #i=1) with the above boundary conditions is pro- the operator® andX are the momentum and position opera-

portional to n?, wheren=1,2,3.... The momentum is tors in the momentum space for the one-dimensional infinite

quantized and proportional te. Therefore, we can see the square-well potential. Moreover, as will be seen below it is

momentum space as a one-dimensional periodic lattice withossible to write the operatoPsandX in terms of the ladder

constant spacing= /L, clearly a candidate to apply the operators].. and the operatody.

noncommutative differential calculus reviewed before. We Fock space representations of the algebra generatdg by

then take the momentum operator in the Hamiltontan andJ. , Eqs.(32)—(34), are obtained considering eigenstates

=cP?, with the above boundary conditions, as defined in Eqof Jg, with fixed values of the momentum. Let us dal) the

(23). eigenstate of], whose momentum is associated with the
The Hamiltonian’s eigenvalue associated with the ( quantum numben, n=1,2,3.... Theeigenvaluex, that
+1)th level is proportional tor{(+1)? and we can write appears in Eqs(5)—(10) can be set asy,=b(n+1)? and
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Egs. (7)—(9) can be rewritten, after a trivial rename of the Q:;_ P (45)
states|n), such that the lowest-energy state corresponds to bR
|1), as

where d, andgp are the left and right discrete derivatives
defined in Eqs(14) and (15). Of course, in the continuous

= 2 =
Jolm=bnfn), n=12,..., (39 limit (a—0) the operatoR is identically null since7, and
5 dp represent, in this limit, the same derivative. It can be
Ji[n)=+b(n+1)*~b[n+1), (40 checked that the operatoBs X, andQ generate an algebra
on the momentum lattice that reduces to the standard Heisen-
N sy berg algebra whea— 0. With the help of Eqs(18) and(19)
J-[n)=+bn*=b]n-1), (41) and (35) and (36) we can rewriteX and Q in terms of the
- ladder operators of the sugare-well algebra as
P|ln)=an|n), Aln)=|n+1), (42
[
whereN2=b(n+1)?—b. Note thatJ_|1)=0 as it happens X= Z(S‘lAT—AS‘l), (46)

in the standard notation of the square-well potential since the
lowest-energy state is represented by the dtate
Hence, we see that an algebraic formalism similar to the 1
harmonic-oscillator algebra was constructed for another Q= a(—2+ SAT+ASY), (47)
physical problem: the one-dimensional infinite square-well
potential in quantum mechanics. The main point here is that
the Hamiltonian itself is one of the generators of the algebrawhere S=(cP?—b)Y2 Using an independent copy of the
together with the ladder operators. In other physical realizaoperatorsQ andX for each point of a three-dimensional lat-
tions of the ladder operatof42], the Hamiltonian is not, in tice we can define two fields and two momentum fields that
general, one of the generators of the algebra. can be used to construct a free quantum field theory Hamil-
Generally speaking, suppose we have an arbitrary ondonian. This Hamiltonian can be written as
dimensional quantum system such that two successive en-
ergy eigenvalueg, can be related as _ R R
H=> J.(KJ_(K)=> S=> [cPi—b(K)], (48)
enr1="F(ey), (43 k k k
wheref(x) is a different function for each physical system.
If we assume that the generatal, of the class of
Heisenberg-type algebras in Eq$)—(3) is the Hamiltonian

wherePy, for eachk, is the momentum operator for a par-

ticle with massm in a square-well potential. This is a non-

operator of this one-dimensional quantum system, (E6) relatl\{lstlc free qua.nt.ur_n field theory and'the details of con-

tells us that the algebra in Eqfl)—(3) with f appearing in fstruc(;u_)n[ﬂ]a relativistic free quantum field theory can be
) : . ound in .

Eq. (43) describes the algebraic structure of this quantum The eigenvectors dfl form a complete set and span the

system. Moreover, from Eq¢8) and (9) we see thad, and Hilbert space of this system. The eigenvectors are
J_ are the ladder operators of this quantum system. In sum-

mary, the Heisenberg-type algebia$ given in Eqs.(1)—(3)

describe the algebraic structure of one-dimensional quantum |1), ‘]+(|Z)|1>, J+(E)J+(|Z’)|1> for
systems having successive eigenvalues related by(43). o R
where the characteristic function of the algebra is the func- k#k', [I.(K)131),.... (49

tion f(x) appearing in Eq(43).

uSnr:ﬁﬁqtges?:ﬁgbf,:gggtiosémfﬁgrig;tasfene{:?agss'ona‘:f‘iS Hilbert space has a different interpretation with respect
9 y ' P, PEG the standard spin-0 quantum field theory based on the

formed here for the square—well_ potential, is to real?ze thqﬂarmonic oscillator. While in the standard quantum field
ladder operators of the algebra in terms of the physical op; '

erators of the system, such that the algebra is still satisfiet eory the creation operator creates one particle of mass

and is the producd, J.. proportional to the Hamiltonian of ach time it is applied to the vacuum, in this nonrelativistic
. SR . . ntum field theory one r from that the cre-
the one-dimensional quantum system under con5|derat|oqua um field theory one reads from Hg8) that the cre

Rtion operator in this case creates excited states of a particle

This program could_su_pply an alternative approach to U3y 5 pox. This could provide an alternative quantum field
tum field theory as indicated in what follows.

Using the momentum operatBrdefined on a lattice, Eq. theory phenomenological approach to hadronic interactions.

(23), and the associated lattice derivatives we can define two
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1 for useful comments. E. M. F. C. and M. A. R. M., thank
o PRONEX for partial support. E. M. F. C. and H. N. Naza-
X 2i (9p+ Jp), (44) reno thank CNPQ for a grant.
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