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Photon position operators and localized bases
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We extend a procedure for the construction of photon position operators with transverse eigenvectors and
commuting componen{®hys. Rev. A59, 954(1999] to body rotations described by three Euler angles. The
axial angle can be made a function of the two polar angles, and different choices of the functional dependence
are analogous to different gauges of a magnetic field. Symmetries broken by a choice of gauge are reestab-
lished by transformations within the gauge group. The approach allows several previous proposals to be
related. Because of the coupling of the photon momentum and spin, our position operator, like that proposed
by Pryce, is a matrix that does not commute with the spin operator. Unlike the Pryce operator, however, our
operator has commuting components, but the commutators of these components with the total angular momen-
tum require an extra term to rotate the matrices for each vector component around the momentum direction.
Several proofs of the nonexistence of a photon position operator with commuting components are based on
overly restrictive premises that do not apply here.
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I. INTRODUCTION geometry underlying the operator and allows us to unify sev-
eral previous approaches.

Since the early days of quantum mechanics, it has been While position operators can be defined in several ways,
claimed that there is no photon position operator with comthe one in Ref[19], henceforth to be referred to as I, was
muting components, and hence that a basis of its localizegonstructed by requiring its components to have eigenvectors
eigenvectors|r'), does not exisf1]. As a consequence, itis transverse to the momentum and in the directions of the
widely held that there is no coordinate-space photon wavéomentum-space polar unit vectors. The position operator
function ¢(r')={(r'|) [2]. Wave functions for photons in thus obtained takes the form of a3 matrix and will be
momentum space are commonly used, and it is there wheré€ferred to here as®, where the underscore denotes the
the position operator would be defined. While it may genermatrix character and (0) refers to use of the spherical polar
ally be possible to use a second-quantized formalism imasis vectors) and ¢. The momentum-space operatdf)
which the fields are operators in Fock sp§2e3], the use- can be expressed by a transformation that rotates the compo-
fulness of a coordinate-space photon wave function for denents of the photon state function in momentum space to a
scribing such phenomena as photon interference is sufffixed photon reference frame, differentiates, and then rotates
ciently well recognized that a number of authors haveback to the lab frame. Since two angles suffice to specify the
introduced versions of effective spatial wave functiph®].  direction of the photon momentum, the rotations require
The existence of a position operator may also be importandnly two independent parameters.
for the consistency of some work in the second-quantized Here we follow a more general approach by including, in
formalism. addition to the polar angle and ¢, the axial Euler anglg.

A number of author$6—-12] have discussed and to some Let the unit vectors along the Cartesian axespee,, and
extent resolved well-known problems of Lorentz covariancee;. A rotation aboutp by an angley permits an arbitrary
and causality that exist for any position operator in relativis-choice of the transverse unit vect@s ande,,, which are
tic quantum theory. However, there are additional problemsbtained by a rotation from the fixed unit vectejsande, in
for massless particles of spin one or greater, and a number @fe given reference frame. The same rotation is designed to
“proofs’i have been presenteq of the noneX|stence.of a phoggke e, to the momentum directiop=p/p, but p depends
ton position operator in the literatuf@3—18. In spite of only on the polar angled and ; it is independent of. We

these, one of us has recently produced a counter example g\ pelow that ify is independent of and ¢, the position
Hermitian position operator with commuting componentsgoe ator is just(® as found previously19]. However, we

and Iocali_zed transverse eigenvectdid]. However, the. are also free to choosgto be a functiony= x,(6, ) of the
asymmetric, singular nature of the operator was puzzlmgpolar angles. For a photon with helicity the momentum-

and [guestions concerning its compatibility with work con- space position operator that corresponds to such a choice is
cluding the nonexistence of such operators were not fully

addressed. r=r(°)KVX )
. =1 p
In the present paper we attempt to resolve these issues.
Our principal tool is a generalization of the new positionin units with7 = 1. [It is understood that the second term on
operator to include an arbitrary axial rotation, which may bethe right-hand sidéRHS) is multiplied by a unit 3<3 ma-
a function of the other two Euler angles that parametrize thérix. To simplify notation, we do not indicate unit matrices
body rotation. This generalization provides insight into theexplicitly.] A change in the momentum-space gradient
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Vxp(8,¢) is analogous to a gauge transformatiorr orhe [P ri]=—10, (4)
singularity previously found im(®) is analogous to that of a

monopole string and commonly arises in electromagneticlikeince then the components of eitieror J rotate one com-
gauge potentials. For any choice gf, r has less symmetry ponent ofr into another:

than one would expect and under parity inversion it does not

simply change its sign. However, as we show below, the (3. rd=[L; . re]=&jmnl mlPn Tkl )
symmetry is restored when one includes the full group of .
possible gauge transformations rather than only a single =1&jmlm- (6)

choice of gauge.

In the case of massive particles of siinany component Whereas this clearly applies to the position opera¥ousu-
of the spin can be used to define an eigenstate basis. Ti#dly chosen for massive particles, the photon position opera-
basis functions corresponding to a space-fixed quantizatiofprs proposed by Pryd@2] and one of ug19] are matrices
direction span a rotationally invariant linear manifold andthat do not commute with the spin. As we discuss in more
carry irreducible representations of the Poincgreup. Be-  detail in the following section, components of the Pryce po-
cause the momentum-space basis states for massive particiition operator satisfy the commutation relatid@s but do
have directions in space that are invariant under infinitesimalot commute with each other. Consequently, their eigen-
translations, the position operator can be identified with thé&tates cannot have eigenvalues for more than one component
Hermitian generatorV of such translations, wher® is the  Of the position operator and thus cannot fully define the po-
momentum-space gradient. Sinide is a differential opera-  sition of a photon.
tor proportional to the unit matrix, it commutes with spin ~ On the other hand, our position operator has commuting
matrices that represent space-fixed components of the spigomponents, but at the cost of the commutation relat®n
For massless particles, on the other hand, representations o®r @ given functional form of,, an infinitesimal rotation
the Poincaregroup are reduced to the two irreducible repre-0f I results in an incremental axial rotation of the matrjx
sentations carried by helicity states in which the spin comfor each component byx—dy,, and this yields the extra
ponent along the momentum is =S [20]. Since the two term derived belowsee Eq(67)]. Recent proofs of the non-
helicity subspaces are invariant under the actions of the PoirgXistence of a photon position operator and localized states
care group, the allowed spin states for a massless particl8ave assumed components that satisfy Eq.(3) [17,18],
with S=1 form rotationally invariant manifolds with fewer thus excluding the position operators discussed here.
than the B+1 independent elements required for states As in |, the position operator is constructed with the re-
quantized along a given spatial direction. As elaborated beduirement that its components have transverse eigenvectors.
low (see Sec. V| this is important in understanding the It is related to the position operator for massive particles,
relevance of the nonexistence result of Newton and Wignewhose components have eigenvectors with fixed directions in
[13]. The basis vectors corresponding to the two allowednomentum space, by a transformation with the form of a

helicities are transverse fpand therefore require a modified SPIN rotation and a dilation. As discussed more fully in the

position operator, one that is no longer independent of thdollowing section, this similaritylike transformation includes
spin ' a spin rotatiorD (¢, 6, x) from fixed directions in the photon

The generator of rotations is, as usual, reference frame to the longitudinal and transverse directions
in the lab. Because the longitudinal direction is independent

J=—ipXV+S5, (2)  of the axial angley, a family of transformations with differ-

- - ent functional dependencgs= x,( 6, ¢) is possible. We find

where the vector components $fare the spin-1 matriceS; that this family of transformations includes ones that relate
whose explicit elements depend of the basis used for théhe Shirokov and Lomont-Moses irreducible helicity repre-
state vectorgsee discussion in the following sectioThe ~ Sentations to the Foldy form of the Poincalgebra. The use
term —ipX V=L is required in order to generate a rotation Of Euler angles thus gives a unified approach to the relation-
of the argument of the wave function, whereagenerates Ships among these representations and to the position opera-
the rotation of its components. Our use of the s(@nfor tors with transverse eigenvectors obtained in the present pa-
photons is consistent with Bargman and Wigné2&] proof ~ Per- _ _ o

thatJ is the generator of rotations for a particle of arbitrary N Sec. Il we briefly review the Foldy and helicity repre-

mass. sentations of the Poincamperators. We then describe the
For the position operatar to transform as a vector, it is 'elationship of the angular momentum and boost operators to
traditionally required that the Pryce[22] position operator. In Sec. Il the results of
paper | are reviewed and then generalized to an arbitrary
[ rd=iejr, (3)  functional dependence= x,(0,¢) of the axial Euler angle

on the polar angles q3‘ The Poincargroup, the relationship
where repeated indices are summed over. For massive pasf the position operator to the angular momentum and to the
ticles, this commutator follows directly from the assumptionsboost operators, and the localized states are then examined in
that components of the operatocommute with each other Sec. IV. The connection of our work to Berry’s phase is
and with the spin matrices, and that they satisfy the canonicdteated in Sec. V, and the relation of string singularities to
commutator relations with momentum, nonintegrable angles is stressed. In Sec. VI, the consistency
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of our position operator with nonexistence proofs is ad-licity representation are thus given by the Foldy representa-
dressed, and its implications for the photon wave functiortion and the inverse of Eq®8) to be[24] p=Xp;g, H

are briefly discussed. Details and alternative derivations ofpc,

some of the geometric arguments are presented in the Ap-

pendixes. . [3+e3
=—ipXV+|——=
Jim=—1PX VA s 2 (10
[I. FOLDY AND HELICITY REPRESENTATIONS
OF THE POINCARE OPERATORS and
Foldy [23] wrote down the form of the ten generators of -
- : S . pxe;
inhomogeneous Lorentz transformatidtise Poincarepera- Kuu=ipV+ —) S, (11)
tors) for particles with spinS and massm in the standard - 1+cosf) =

space-fixed representation. His operators also exist immthe ] )

—0 limit, the only case considered here, and in momentury/here the matrxS; can be replaced by when restricted to
space they comprise the momentymthe HamiltonianH ~ the invariant subspace of definite helicity. .

= pc, the total angular momentum operatbfEq. (2)], and A different helicity representation was obtained earlier by
the boost operator Shirokov[26]. After conversion to polar coordinates, his an-

gular momentum and boost operators are

K=ipVHpxsS ™ Jeh= —ipX V+(Dcot+p)Ss (12)
(Foldy's symmetrized form of thépV term was criticized and
by Chakrabarti[24]. The correct form is related to the
momentum-space normalization weight used for scalar prod- . -
ucts, which is discussed toward the end of this section. Note Ksn=ipV + ¢ cotdS;. (13

Egii[ )the boost generatdt is —N in Chakrabart's paper Biatynicki-Birula and Biatynicki-Birula[27,28 derived re-

The standard helicity representation was introduced b ults eqylvalent to Eqs(12) and (13) by considering the
Lomont and Mose$25] to provide a realization of the gen- axwellian momentum 'and ang.ular momentum tensors.
erators for the zero-mass case. The representation is distinkpey also found2s] a unitary matrbW, that relgtes opera-
from the zero-mass limit of the Foldy representation, giventorS in the Foldy and Shirokov representations:
above, because the carrier space has been split into invariant
subspaces labeled by the two helicity componests*S.

Vector components of the spi are referred to the photon

reference frame in which the momentum d|rec.tm)_ns G from a Cartesian to an angular momentum basis and another
Chakrabarti[24] showed that the zero-mass limit of the rotation:

Foldy representation is related to the Lomont-Moses helicity
representation by the unitary transformation D(¢,6,0)=exg —iSsb)exp —iS,0) (15)

=W, ORW, ™. (14

We can express theW/; as the product of a transformatidn

_ -1 ~
Or=U0OwY ", ®  Wwhich takese, into p:W,=D(,6,0)T=TD@(4,6,0). The

. . ) . unitary transformation
whereOg is an operator in the Foldy representati@,, is

the corresponding operator in the helicity representation of 1 0 1
Lomont and Moses, and the unitary transformation has a 1. )
matrix representationJ, which we recognize as the spin I:E b0 i (16)
rotation 0 V2 0
U=exp —ifep-9). 9) is required only because different bases for the momentum-

space vectors have been assumed in the two representations.

. . . - Specifically, in the transformatiofil4), the Foldy operator
The transformatioi8) rotatesS; directly intoS-p. As above, O uses a Cartesian basis, in which the unit vecere, e,

6 and¢ are th? PS“a' sp_herlcal polar ang!espoﬁ mom_en- are represented by column vectors with elemenrgg, (
Fum spgce and -|s the unit tfangent vector in thefilrectlon of _ » whereasg(slh) uses an angular momentum basis in
increasingé. It is perpendicular to botfe; and p. In the  which the complex unit vectors,, x==+1,0, are column
transformation(8) and its inverse, it is important to recog- matrices with elementse(), = 8. k2. They are given in the
nize that the unitary operator, E(9), does not generally Cartesian basis by the columns BfEq. (16). The spin ma-
commute with the momentum-space gradi¥hbecause of trices are different in the two bases. In the Cartesian basis,
the dependence dof and ¢ on p. The Hermitian generators the matricesS; have elementsy),,= —igj whereas in the

of the infinitesimal transformations of the Lomont-Moses he-spin-1 angular momentum basis the corresponding matrices
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are (85)=(2—K) 6, and SN +iSE) =28 +1. The  degrees of freedom, it is the components sfp and & (pr
body rotation matrices, expressed in terms of the Eulerrp) that generate rotations and boosts, respectively. One
angles¢, 0, x by set of commonly accepted photon position operators consists

of components of the Pryce operaf@?2,1§,
D(é,0,x)=exp(—iSp)exp(—iS,0)exp( —iSzx),
(17 pXxS
. . ) re=ip*vp- “+ ——. (22

have correspondingly different elements in the two bases. - p?

Explicit values in the Cartesian basis are given in the follow-

ing section and in Appendix A. Elements QI‘”=I‘1E The parametet in the expression

in the angular momentum basis have the standard form

D, =exp(—ix¢—iK’X)d(1),(9), where the real matrid") is _ a ap
(28] e = peVp “=V+—[p,V]=V-— (23
P p
1 cos§+1 2sing cosé—1 depends on the integration weight used in the definition of
d®(g)= 5| - \/Esina 2cosf - \/Esina : the scalar product. Pryce used the parameter valad/2,

which is appropriate when the Hilbert-space states are elec-
tromagnetic fields, and this value was implicitly assumed in
(18) Egs.(7), (11), and(13). However, one needs=—3 when

We will generally assume that the different representation%he,vector pot_er)t.iaﬂ30] Is used for the phot.o.n states. Alter-
both use the Cartesian basis or both use an angular mome'ﬁgt'vely’ a definition of s_calar product reqU|r|ng_=_0 can be
tum basis for their momentum-space vectors, as is actuallyS€d[18,3l. In the following, we leavex unspecified.
implicit in relation (8) between the Foldy and Lomont-Moses . | "€ Pryce position operat¢@?] rp is based on expres-

representations. We can then omit the facfoand replace SIOnS in terms of a classical energy-momentum tensor of a
the transformatiori14) by = noncovariant definition of the center of mass given by Fok-

ker[31]. The components af, are 3< 3 matrices that do not
Or=D(¢,0,0005D (¢,6,0). (199 commute withS;. When expressed in terms of, the rota-
- = - tion and boost generators of Foldigs. (2) and (7)] are
The helicity representations of Lomont and Moses and opartitioned differently into orbital and spin parts
Shirokov are both seen to be unitarily equivalent to the stan-
dard Foldy representation, and the unitary transformations J=—pXrpt+pp-S, (24)

for both are rotations that rotat®; into S- p. It seems sur-

prising that the two helicity representations appear so differ-

ent. As Chakrabarfi24] points out, the Shirokov form of the K=
operators) andK is of a singular nature that makes them

appear unsatisfactory for many uses. However, the Lomonty/hile components of » do satisfy the canonical commuta-
Moses form(10),(11) also has first-order singularities 8t  tion relations withp, they do not commute with each other
=ar; they are just better disguised. The differences in thg32 33. Instead, they have a nonvanishing commutator that
unitary transformationg8) and (19) is clearer ifU is ex- s analogous to the field of a Dirac monopéieit in momen-

cosf—1 2sine cosh+1

N -

(rpp+pre). (25

pressed in terms of Euler angles. Since tum spacgwhose “charge” is given by the helicity operator
- , . ~ p-S[18]:
exp(—iS3¢)S; expliSzp) = S, Cosp— Sy sinp=S- ¢, -
- - - - ~ (20
. Pr -
. S s Y 2
then from the Euler-angle forrfl7) we can equate [Tey T =~ p3p S (26)

U=D(¢,0,— ¢); (21)  As discussed in the next section, such monopole terms occur
) ] ) ] frequently in commutators with gauge potentials.
that is, the unitary transformatiod that rotatesS; directly

to §-[3 is just the Euler-angle rotatidd (¢, 8,0) required for Ill. PHOTON POSITION OPERATORS
the Shirokov form preceded by an axial rotation through the WITH COMMUTING COMPONENTS

angle — ¢. It is important to note that the transformations
involved arespinrotations and therefore transform only spin  In I, a modification of the Pryce position operator was
components and the vector components of the photon statesnstructed to have commuting components . In this section
We explore a generalization of such rotations further in theve summarize the results of I, emphasizing how the new
next section. position operator can be expressed as a spin rotation of the
While the position operators are not explicitly required toweight-modified position operator for massive particles. We
complete the Poincaragebra, they are implicit in the angu- then extend the construction to an arbitrary functional depen-
lar momentum and boost operators since, apart from internalencey,( ¢, $) among the three Euler anglés 0, x.
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The position operator explore a generalization of the rotation used i and show
that the breakdown of the expected symmetry is related to
the selection of a specific “gauge” far.

r@=ipevp -+ —=-a%:s, (27) The spin rotation that plays a central role in this paper can
P be written in Cartesian form as the real unitary matrix of
) -~ ) elements
with a(®= ¢p ! cots, was constructed in Ref19] by re-
quiring that the components of”) have transverse eigenvec- D=6 -6y, (29)
tors in the directionsd and ¢. The operator® can be o
expressed as a spin rotationipf*Vp~: B which relate vector components in the orthonormal labora-
tory basis{e, ,e,,e;} to those in the photon-momentum basis
r©=iD(¢,6,0p*Vp~“D"X(4,6,0). (28)  {e 6,603, Where ez=p. Thus, for any vectol, V;

_ ) . ) =V.g=D\V-ex=DVy. This gives the action of the
Since this has the same form as E9), it is equivalent to  matrix D as a passive transformatiol (s fixed; the “ob-
usingip“Vp~“ as the corresponding position operator in theserver™ basis changesHowever, only the relative orienta-
helicity representation. The constructi@8) may be under-  tjon of the vector to the observer basis enters the formalism
stood by analyzing the problems of the Pryce position operagng, in particularg- 6= 8 =€; - &k . As a result, an active
tor (22). The reason components pf do not commute is interpretation of the action dd (observer fixedV changes
that the photon spin and its momentum are inextricablyis also possible and often more natural. As an active trans-
coupled through the restriction on allowed spin states, and ifgrmation, D rotates each of the vectoes, e,, e, of the
partic_ular, the components of th_e momentum-space wav@poratory frame into the corresponding_ve(ﬁ@r,_epz, €3
function depend on momentum direction. Consequently, thgys the photorp frame, with both vectors expressed in the lab
action of the usual momentum-space position operator fopasis:e = De, . The mathematical consistency of the differ-
massive particles,V, is no longer restricted to the argument gnt interpretations is readily confirmed by writing out the
of the wave function but also acts on its components. Icolumn matrix representations of the vectors. Further details
expression(28), on the other hand, the spin rotati@ * e given in Appendix B.
rotates vector components of the state function from the lab Tpe body rotatiorD generalizes the polar rotation used in
to the reference frame, whepe=e;, so that the operataiv I. One can expresB in terms of spin matrices and the Euler
can induce translations in its arguments without mixing itsangles¢, 8, andy as in Eq.(17), and it is given explicitly in
components. FinallyD rotates the translated vector back to Eq. (B4). The treatment in | corresponds to the chojge
the laboratory frame. This is a straightforward way to restore_ g i which e,1= 0, e,,= b, ande,z=p. For more general
the usual translational role oV, and it is required to ensure
that helicity eigenstates are not mixed by infinitesimal™’
momentum-space translations generated 8y away from

the originp=0. This is an important property that follows €1 = OCOSY+ psiny, (30
from the invariance of the helicity subspaces under the Poin- A .

caregroup and has been confirmed, for example, in experi- €2 = pCcOSy — @siny. (3D
ments demonstrating Berry’s pha$84] for photons in R

curved optical fiber$35]. The angley represents an axial rotation abquand is asso-

The terma(® = ¢p ! cot# multiplying the helicity opera- Ciated below with the phase of a photon with definite helic-
tor p-S in the new position operatd®7) is singular in the ity. As seen by inspection of Eqe30),(31), the transverse

limits §— 0,7, that is, ap approaches the: e; axes, and has UNit VECtorse,, &y, are just the polar unit vecto® ¢, ro-
the momentum-space form of the electromagnetic vector paated aboup through the angley, so that use of the Euler
tential of a pair of Dirac monopole strings in coordinate angle y allows an arbitrary orientation of the two directions
space. The relationship is discussed in more detalil at the ergl, ,,,, in the transverse plane. The unit vectors describing
of Sec. V. It seems curious for the position operator to destates of definite helicity,

pend on the choice of coordinates in the laboratory. The

singularity together with the dependence on laboratory coor- 1

dinates may have deterred other authors from including such €= =(61tTikE) (32

a term. Nevertheless, we show below that some form of this ‘/5

term is required to give the correct phase changes of the ,

photon state under rotations. Laboratory coordinates enter —e g, (33
the formulation ofr(® in the spin rotatiorD from e; to p A
and in the implicit dependence pfon its polar angle®, . ~ are just phase shifted relative to the helicity stadgd= (0
The singular term arises from the differentiation of this rota-+ix¢)/\2 with y=0. Under the general rotatiafl7), the
tion and from the path-dependent valuedaflt is consistent  spin matrices themselves are transformed as

with the relatively large changes i# that can result from

infinitesimal changes ip at the string. In this section we §pj=D_Sj9‘1=§kaj, (34)

012101-5



MARGARET HAWTON AND WILLIAM E. BAYLIS

where in particular§p3=§-f). Consequently, we can also
expressD in terms of rotations about the-frame axes:

D=DDD* (39
— e 1DSD '¢g-IDSD 10g-iDSD Iy
=exp(—iSpsd)exp —iSpf)exp( —iSyx).  (36)

Alternatively, we can make the axial rotation the

last of the Euler-angle rotations by puttingD,

=exp(—iSp)exp(—iS,f) and noting
D=Dgexp(~iS;x)Dg ‘Do (37)
=exp(~iDS;Dx)Dg (39)

=exp(—iS py)exp —iSsp)exp —iS,0).
- - - (39

The position operator that generalizes E2j7) is the 3
X 3 matrix

r=D(ip“Vp *)D"* (40)
=ip*Vp *—A, (41)
where
A=-iD(VD Y)=i(VD)D ! (42
Sxp .
:—T+ap~§, (43

anda is a vector with dimensions of length. }fis indepen-
dent of 6, ¢, then the axial rotation elements commute with
V andr is given byr(©® as found in I. However, the momen-
tum p is invariant under the axial rotation by, and we can
choose a functional dependenge: x,(¢,¢). Then the ma-
trix D is a function of the two parameters ¢, and direct
calculation of the gradient of the rotation matrix gives

a=a®+Vy,, (44)
with
RONSA coto _ e X pp- e3.
P (exp)?

When operating on a subspace of definite heligity =1, r
is related to the Pryce operatos of form (22) by a trans-
verse displacement whose sign dependscon

(45

r=rp—«a (46)

PHYSICAL REVIEW A 64 012101

(47)

and making the dependence of the rotation malrixon p
explicit, we find

VD=-iAD

D(p+dp)=D(p)+dp-VD(p) (48

=(1-idp-A)D(p). (49)
Thus, A-dp generates the infinitesimal rotation induced
whenp is incremented bylp.

The possibility of choosing different functiong,(, ¢)
dependent on the positiofy ¢ in parameter space expresses
the invariance op under axial rotations as a local symmetry
and is analogous to gaugirgand hence. The gauge group
of axial rotations is 1), and a is thus analogous to the
electromagnetic vector potential. The scalar gauging function
Xp is a concrete example of Berry’s gauf@] that sets the
local phase of an eigenstate in parameter space. It also ap-
pears closely related to the functio®, introduced by
Staruszkiewicz in his earlier stud®6] of parallel transport
of photons. For all choices of single-valued differentiable
functionsx,, the gauge field

VXa=— %
p

sinf+0, (50)

has the same monopole form. It follows thaaitself cannot
be replaced by a gradient term. As we discuss belsee
especially Sec. Y however,y, is generally not single val-
ued and can affect stringlike singularities in the fi¢kD).
The “Abelian vector potential”’a is just part of a non-
Abelian operato’ = Sx p/p+ap-S.

Berry[34] has found analogous monopole fie(8$) both
for the case of a pair of adiabatic states that are degenerate at
an isolated point in parameter space and for spirharges
in a magnetic field that are degenerate where the field van-
ishes. Our derivation shows that such fields arise more gen-
erally in calculations of topological phase, even when there
is no isolated point of degeneracy. Indeed, monopole terms
of the formp/p? frequently arise in the commutators involv-
ing gauge potentials associated with massless representations
of the Poincaregroup[18,28,32,33,37—40In our case, di-
rect calculation gives

[Aj Ad=igj(VpxXA)-§ (51)
, . axp+p Sxa
=l&; . = . ,
gjki| P-o 0? b 8
(52

which includes the monopole terﬁrlp2 multiplied by the

This clearly manifests the basic coupling between the helichelicity operatorp- S. Similar terms also arise from the dis-

ity (and therefore the spirand the position. However, as we
see in the following section, the eigenvaluesrofio not
depend explicitly or.

The matrixA, with transverse vectors as its matrix ele-
ments, has a simple interpretation. Writing

tinct “covariant derivatives” ®'=V —ipxS/p? and ©"

=V —ika introduced for photon operators by Ppt0] and
Biatynicki-Birula and Bialynicki-Birula[28], respectively.

The common appearance of monopole terms and their asso-
ciated string singularitysee Sec. Yis a direct consequence
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of the topology of momentum spa¢86,41] (see also Ap-

1 -
pendix A). Here, the monopole “field”(50) turns out to be K=5(pr+rp+ px s (58)
just what is required to cancel the singularity in the commu-
tator (26) of the Pryce position operators. Furthermore, the 1
relation (V+iA)D =0 implies thatd=V +iA is the appro- —Z(Dr+1D)+an.
priate “covariant derivative” in our formulation. 2(pE rp)+ap:S (59

There is a wide range of possible gauge choices since
xp(0,¢) can in principle be any differentiable function. as the Foldy operatorgeneralized to arbitrary) in terms
However, three choices o, are of particular interest: If,  of our position operator. With these expressions, transforma-
is the zero functionxé,o)=0, then the transverse directions tion to one of the helicity forms is straightforward. By in-
are the usual spherical polar unit vectoasis justal® Eq.  verting Egs.(40) and (34) the position operator becomes
(45), andr is given by Eq.(27). If x, is x{”=—¢, then, as D~D=ipeVp~¢, while D~1p-SD=S,. The general he-
noted in Sec. IID is the Chakrabar{i24] transformationJ ﬁ:ity?epresentation is givgn b@h?D *_10D, which gives
Eq. (9), anda takes the form - - —

cosf—1. pxe, Ih=(ip*Vp ) Xp+(axp+p)S;, (60)
al= o= (53)
psiné p+p-e

i
Kn=5p“(pV+Vp)p “+apS;. 61
in Eq. (41). We note that this choice eliminates the singular- =P (P PP PSs (61

ity in a at =0, but doubles the strength of the oneat

=7 (see also Sec. VIf insteady,, is xP=—¢coso, then | xp=0, thena= ¢ cotdlp and J, and K;, reduce to the
ais given by Shirokov operators given by Eq€L2) and(13) generalized
A to arbitrary @, while if xy,=—¢, a is given by f/)(cose
a(2):f¢sin0. (54) —=1)/(psin 0)=—¢?>sin 0/(1+cos#) and J, andKj, rgduce to
p the Lomont-Moses operators, Eq40) and (11), with arbi-
trary a. Thus both the Lomont-Moses and the Shirokov
In this case, both string singularities are removed, i  transformations are special cases of Euler-angle rotations
now path dependent, since the valuedoidepends on how relative to the Foldy form. In any irreducible helicity repre-
many times the path wraps around theaxis. Consequently, sentation the position operator is jugt*Vp~¢ as it is for
al® is “nonintegrable” [38]. By subtracting another path- massive particles in the Foldy form, since the transverse di-
dependent term, it is also possible to reintroduce a stringections are fixed in the reference frame where the photon

singularity about a different axis. momentum is parallel t@;. The helicity reference frame is
the photon frame, while the Foldy frame is the laboratory
IV. POINCARE GENERATORS AND COMMUTATION frame.
RELATIONS The commutation relations satisfied by the generators of

. N ) time and space translations, rotations, and bodstspc,
Here we examine the position operatan the context of . J;, andK;, are the standard ones required by the Poin-
the Poincarelgebra and write explicit momentum-space ex-cg/g algebra:[J;, J]=i€pdr, [J) Kil=i €k, [K; K]
pressions for the localized bases. To see the relationship of —i€ds [J; ,D;]:ifjmm_, [g ,[ﬂ]=i5ij70, [K; ,H]
our position operator and the Poincareperators in the =icp;, [J:,H]=0,[p; ,H]=0.Analogous commutation re-
existing literature, note that translation generatorand H Iationjs a_r]e valid if Ii(r) is substituted forJ; and (r,
=pc are unchanged, and the FoldwndK operators can be +r1;p)/2 for K;, since they are unitarily equivalent to the
written in terms of an orbital angular momentum operator ¢, spin case of the above. Commutation relations involv-
L=y x (55 ingr; in_the Iabora_tory fra_me can be most simply derived by
LErxp, performing a matrix rotation to the photon reference frame,

in whichr is replaced byip“Vp~ ¢ and noting that compo-

. . o *__nentsp; in the momentum representation commute with the
spin operator, which has a transverse contribution in additio Pi b

to the helicity term that is frequently assumed to be the tota o'_taﬂon rr;atnx(%. Thug[r_i =0, L1y, pd =i 5“"(E)r' H]
spin contribution32,33,43, =iHp;/p% [Li nd=Tepary, [rj,Spk]=0, and[L}", Spk]
=0. It follows from the last two relations that a photon can
simultaneously have definite helicity and either a definite

corresponding to our position operatdr), and an effective

D=(axp+p)p-S.
§( (@xp+pp-S (56) position or a well-defined spatial component of orbital angu-
We obtain lar momentum. In other words, measurement of either the
position or the orbital angular momentum of a photon state
J=LM4gn (57) does not change its helicity. Furthermore, because
and [3.P-SI=0, [K,p-SI=0, [py,p-S|=0, (62
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the helicity is an invariant of the Pomcageoup_; it is invari- Wo,(p)=Npep,, (69)
ant under all rotations, boosts, and translatiéas long as

these avoid the origip=0). Consequently, every represen- gives

tation of the Poincargroup for photons can be reduced to Na -

the direct sum of representations for the two helicities, and LVep=—pXxre,=0 (70

every irreducible representation will be carried by states of Qince W is an eigenvector of with eigenvalue 0. The
0,k .

single helicity. It may therefgre b_e conven?ent to specify thereIatioFr €,.=0 also follows directly from the transforma-
operators for the separate invariant helicity subspaces. Th[ " P

_.tions (40) an . UsingJ=L "+ 35" whereS" is given
momentum and energy operators are unchanged, the posﬂugn (40) and(B1). U J E(r) §(r) h §(r)
operator is as given above in EG16), andJ and K take y Eq.(56), we find the rotation by an infinitesimal anglg

exactly their Pryce forms about the axis to be
J:L(r)+S(r):rp><p+f)K 63) exp(—ig.dg)gp,(:exq-igr).dg)gpk
nd =exf —ik(axp+p)-déle,, (71
1 1 with d&=Zdé&. Thus the rotated transverse basis vectors of
K=3(pr+rp)+ax=3(prptrep), (64  helicity « satisfy
with rp=r+ ka. exp(—iJ-dé)e, =exd —ix(dx—dxp)le., (72

It is important that our position operators obey the correcyng are thus changed only by an infinitesimal phase shift
dynamical equations. In the Heisenberg picture, the dynam-

ics are determined by the equation of motion, which from — k(dy—dyp)=— k(axp+p)-d& (73
Eq. (40 is

ar o Here,dx,=dp- V x, is the change in the functiog,( 6, ¢)

e ——+i[H,r]:i[cp,r]=C|6. (65) that results from the changdp in the photon monjentum.

dt gt - - (Note thata and S™ depend on the orientation qf, and
therefore ordered integral expressions of the Dyson type are
required for finite rotations. See also the Appendix.

SinceepOEf) is a longitudinal basis vector corresponding

Thus our theory predicts that the photon has a veloeity
=cp, as required. We also note thatEq. (41), is Hermitian
and symmetric under time reversal. One may in addition ex- . o ~ _ .
pectr to change sign under parity inversion, but this depend4 helicity k=0 it follows from p- Se,p=0 that Eq.(72) is

on the gauge potential. It is valid far®, but for other also true of the longitudinal vector. Indeed, E@2) may be
gauges we must generally replace the_inversiompirh)y the considered an extension of the expected invariance of the
gauge changg,— — x,, in order to ensure the invariance of radial vector fieldo under rotations. Also, iE=e; and y,, is

Vo constant, then it is readily shown thdf—dyxp=0 so that
In general, the position operator rotates as a simple vectdhis cylindrically symmetric transverse vector field is invari-
underL ™ since[LJ(r) Tk]=i€jqr;, but not unded: ant under rotations aboeg. Note further from Eq(49) that

with dp=dé&Xp, the infinitesimal rotation factor becomes
Jird=iepnr+[S",r]. (66)
[ =Ten #1570 D(p+dp)D Y(p)=1—iA -dp=1—i(S—S")-d&
From[p-S,r;]=0 and Eq.(56), we thus find (74)

The part —iS-dé gives the additional rotation whereas
iS(.dé corrects the axial rotation implied by the functional
_ _ 9 N dependence (6, ¢).
:|6jkI£I_|K((9_pk(aX p+ D)'ej]- (67) One can understand the extra term in the commutator of
the position with the angular momentum by comparing Egs.
The extra term represents a deviation from the usual commuy67) and(73). Rotations generally change the “gauge poten-
tator (3), and is due to the coupling of the momentum andtial” ain a way analogous to transformations of the electro-
spin of a photon. Note that the deviation vanishes for rotamagnetic potentialA under Lorentz transformations. The

tions aboup. It also vanishes in the special case of a rotation?(ax p+p) - /dp; term in Eq.(67) is required in order to

[3; 1] =ieri+[(axp+p) g .rdx

aboute; when x,, is independent ot. give the axial spin rotation needed by the matrices associated
For a photon with helicity« the momentum-space states With each component af. Such axial rotations result in the
localized atr are phase change of eigenvectors during a rotation that maintains
the functional dependence gf, and is required in order to
W, (p)= Np%e "’ Pe,,, (68)  give the correct Berry's phase for photofsee the next sec-

tion). The possible transformations are discussed in more
as may be verified by direct application of the operatdeq.  detail in the Appendixes, and Eq8.3) and(67) are indepen-
(40). In particular, the localized state at the origin, dently derived in Appendixes B and C, respectively.
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V. RELATION TO BERRY’S PHASE

—k(Ax—Axp) = (jgcosad +§V .d)
The phase angle-«(dxy—dy,) is important and has K(AX—Axp) =K ¢ Xp AP

measurable consequences. In particular, it can be integrated

to give the total phase change of a state vector of helicity = K( é cosfdo+ A)(p). (80
when transported along a closed loop in parameter space.
The result depends on the type of transport, but it will not
depend on any single-valued functional choicexgt How-
ever, it is natural to makg, multivalued and path dependent
(nonintegrablg and in that case the phase change will de
pend linearly on the changky, around the closed loop, as
we show explicitly below. If we use parallel transport, the
angle — x(dxy—dy,) is Berry's phasg¢34,43 vy,, a topo-

The result depends on the functigp. We must choose a
function that eliminates superfluous axial rotations. Recall
that the basis vectors,, are obtained from the reference
frame by the rotationD(¢,6,xp)e,. To avoid unwanted
axial rotations, we ensure thptis also parallel transported
by this rotation. This requires the function choice

logical phase accumulated by the photon. This is consistent Yo(0,0)=x1(6,)=—¢ (81)
: o ; - pLYs Xp LY,
with a more general association of Berry’s phase in quantum
systems with geometrical anglpé4]. to makeD(¢,6,x,) equivalent to the direct great-circle ro-

Wh|le_z Berry_s derivation as_sumed adiabatic transport Oftation frome; to p. The phase shift is then
energetically discrete states, his results can also be applied to

degenerate helicity states in parallel transpé#,35. Paral- L
lel transport on the spherical surface of constant ragiis Y=~ K(AX—AXEJ =« fﬁ 0059d¢—277) =—kQ,
most easily realized by piecing the path together from many (82)

small segments of great circles and employing nonrotating
transport along each segment. Each great-circle segment rghere () is the solid angle enclosed by the loop. This is
quires an axis of rotation that is perpendiculaptbut gen-  Berry’s geometrical phag@4] which has been confirmed in
erally changes ap moves. From Eqs(73) and (72), the  experiments on light in helically wound optical fibgf35].
accumulated phase for great-circle segménd@izo) is The sign conventio34] is taken such that the dynamic
phase of a stationary stafdue to a factor of exp{iwt)]
decreases in timésee also Appendix D

One often seeks to generalize the above result by an ap-
plication of the Stokes theorem. In our case,

—k(Ax—Axp) =« jg (axp)-dg

=—K 3g a-(pxdé)
ﬂgaﬂ)-dp:f (Vxaby.pp?dQ
Q
=K jg a-dp, (75 R
~ P,
=— -—pcdQ=-0Q, 83
where we noteddp=d&Xp. The same resul(75) can be Qp p2p @3

obtained directly from Berry’'s derivatidrd4] of the geomet-
ric phasey,. We can write his starting point in differential where( is the solid angle of the integrated area. The result
form as should be valid as long as the integrated area and its bound-
. ary avoid singularities and branch cuts. Since it is the curl of
dy.=i{u(p)|Vu.(p))-dp (76)  athat appears in the surface integrati@8), gauge transfor-

since the relevant parameter for the photon as it is guided irr]nat|onsa—>a+ Vxp Will not change the result if, is a

. o . single-valued function op. This is consistent with the line
an optical fiber is its momentum In our case, the eigenstate . . .

. ) integral (80) since, for any single-valuegl,, the difference
u,.(p) is proportional to the column vector P

Axp vanishes over a closed loop.

e =De, (77) If, as in the optical-fiber experimenf85], p describes a
- circular path that makes a fixed anglewith any fixed di-
so that Berry’s relatior{76) reduces to rection, thenQd=27(1—cosé) so that the change in phase
angle is

dy,=i(e\D'(VD)e,)-dp=(e[D'ADe,)-dp (78
= (el Ae,,)-dp=r«a-dp, (79) V=K fﬁ dp-aP=2mx(cosh—1). (84)

where the matrix sandwich indicated by angular bracketgjowever, the derivation also apparently worksi is re-
(---)isavector-valued X 1 matrix, and we have noted that pjaced bya(®, even though these results should differ by
SXp has a vanishing diagonal in tieg, basis. In terms of KAXE:,l): —2mk for a closed loop around,;. While such a
the polar angle®, ¢, displacement on the spherical surfacedifference is not observable, we can trace its origin to the
is given bydp= ¢p sin dp+8p do, and therefore with Eqs.  nonintegrable nature of\" and the associated string singu-
(44) and (45) for a, the line integral75) gives larity through the integrated area of the surface inte(ga).
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The argument can in fact be turned around to imply that VI. DISCUSSION

because the difference cannot be observable, the helicity In thi ton. th ist ; q N
must be quantized. n this section, the nonexistence proofs and recent papers

Since the string contribution is frequently ignored, it may CONcerning localized states are briefly reviewed, the new
be useful to elaborate its role. Recall that Dirac’s magneti®®"0ton position operators are discussed in the context of this
monopole contains a string to bring the magnetic flux to thditerature, and our results are summarized. .
monopole inside a solenoid with a vanishing diameter. Al- The most quoted paper is that Of. NeWtoln an'd Wigner
though strings are not evident in our expressibf) of V [13]. These authors assumed a rotationally invariant set of

X a, their presence is implied by the expressidd) for a®). localized states and arrived at the position operator of the
The physics is clearer if we writa® as the limit of a non- form ip“Vp~™« for spinless particles with or without mass.
singular function: They also obtained an expression of the position operator for
massless particles of spin Regarding photons, they stated
©_ % i PL cosé that for S=1 and higher “we found that no localized states
ar=¢lim ——-o7H, (85  in the above sense exist. This is an unsatisfactory, if not
Po—0 P Po unexpected, feature of our work.” As a result of their con-

wherep, =p sin 6 is the momentum-space distance from theclusi(_)n, it is frequently_ stated that (apatia} photon wave
function does not exisf2]. The localization postulate

e; axis andpg represents the approximate diameter of the q db q Wi ) displ
solenoid. The “magnetic field” corresponding to the “vec- adopted by Nevvton_ and Wigner is stro(gny Isplacement
tor potential” is of a localized state is assumed to make it orthogonal to states

of the undisplaced seand has been the focus of a number of

in? 2 more recent studies. In particular, Wightman and oth&4$

) ~ SinFé 2pgcosd ; | AR

Vxa®=lim|-p > +t8&— |- (86  have used generalized imprimitivitie45] to reformulate lo-
Po—0 P +Po (pL+po) calization more rigorously in terms of localizability in a re-

, o o gion. However, their work did not alter the conclusion that a
The first term becomes the monopole field in the limit, andgingle photon is not localizable. Other authors have sought

the second term represents the two axial strings. It vanishegective wave functions that satisfy a somewhat relaxed lo-
everywhere except on the axis and can be expressed ascgization conditior{5,18,27,46,47

two-dimensional Dirac delta function, giving We suggest a different potential problem with the conclu-
- sion of Newton and Wigner for massless particles of pin
Vxa®=_ %-1—27783 cos05@(p,), (87 =1. To ensure a rotationally invariant linear manifold of

localized states for a system with total angular momentum

quantum numbeyj, they assumed aomplete sebtf 2j+1
where we can also writé®)(p, )= 8(p,) 8(p,), and the co-  wave functionsy;,,,—j<m=j, wherem is a component
efficient of the second term on the RHS has been chosen {@ferenced to an external direction. While the existence of a
give the correct surface integral overdp, d¢ at fixed complete set is sufficient to give a rotationally invariant
|p cosf=py. On the string, cog=*1, so that we have two manifold, it is not necessary for massless particles of spin
half strings along the two halves of tieg axis, both taking S>1. Massless particles with spin have only two spin states,
“magnetic flux” away from the origin. The string term adds namely those corresponding to the helicitieS. For a sys-
exactly 27 to the surface integrdB3), thereby restoring the tem of states at the coordinate origin, the orbital angular
Stokes theorem and bringing the surface and line integralfhomentum vanishes arjé= S. The states in the linear mani-
into agreement. As mentioned above, gauge transformatiorfsid are characterized by components afot along a space-
with various functional formsy,(6,¢) can shift the strings  fiyeq direction but along the momentum directipnFor S
and_ replace1 them by epric_itIy nonintegrablg functions. The>%’ the manifold is not complete and consequently it cannot
choice of y i) makesa nonsingular over the integrated sur- gescribe a state with spin quantized alongaabitrary direc-
face in Eq.(83) between the loop and the upper pdle:0,  tion. However, itcan describe the allowed states with either
buta(® has a singularity penetrating the same surface, givingelicity. Furthermore, since the helicity operator commutes
both line and surface integrals for the phase differencgyith the generatod of rotations, the two helicity subspaces
—k(Ax—Axy) that differ by kAx{". The agreement also are separately rotationally invariantBecause the helicity
extends to use of the surface that includes the pole=atr  eigenstates form a complete rotational set onlySsr}, it is
for both cases 0 and 1. For the choigf”, the line and clear why Newton and Wigner's insistence on a complete
surface integrals both vanish if the branch cut is insertedotational manifold is stronger than necessary for massless
explicitly in the surface integral, so that the nonintegrableparticles withS=1.
function in Eq.(54) is replaced by In the papers based on the method of generalized im-
primitivities [14], it appears that the system of commuting
imprimitivities, through which the position operator is de-
fined, is assumed to be independent of sfiihis arises from
Wightman's axiom V[14].) As seen above, for example in
for example, with G<¢o<27 where h(¢—¢y) is the  Eq.(46), the spin is inextricably coupled to the momentum
Heaviside step function. and thereby to the position operator. Position operators are

a(z)zg[d)—th(q‘)—q‘)o)]sin 0, (88
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known to exist for massless particles of spin 0, and it may bef the Hamiltonian, the symmetry is obtained within the full
possible to find a system of imprimitivities like that for the group of possible gauges. The forms that result from a selec-
scalar case for each value of the invariant helicity. In anytion of y, are all unitarily equivalent to each other and to the
case, the imprimitivities must be distinct for different helici- position operator for a massive particdlpVp~ ¢, where the
ties because the position operators are. unitary operator is the rotation through Euler angles. The
In several more recent proofs of the nonexistence of aperatorip®Vp~* has eigenvectors with a fixed direction in
photon position operator with commuting components, opspace and is independent of the spin. Consequently, for mas-
erator algebra was used with the assumption that the positiasive particles the description of spin is a separable problem.
operators satisfy Eq3) [15—18. However, we have shown However, the spin and momentum of a photon are inexora-
above and in Appendix C that the matrixncludes a “gauge  bly coupled, since the direction pfdetermines the direction

potential” a that is transformed by rotations. As a result, the of the observable componeptS of the internal angular mo-
commutator[J;,ry] contains an additional term involving mentum. Position operators with transverse and longitudinal
the spin, and indeed that this extra term is required in ordegigenvectors could in principle be used to describe a massive
to give the correct phase of the rotated photon state. ThBarticIe, but this is probably not useful singe*Vp~“ is a
components of the position operatd#0) thus satisfy Eq.  simpler alternative. For a massless particle this choice does
(67), which, unlike the more familiar relatio8), is compat-  not exist, reflecting the fact that for a photon, the orbital and
ible with commuting components. Thus, nonexistence proofgpin angular momenta are not separable.
that assume Ed3) do not apply. In summary, the arguments presented here show that a
Our construction of the photon position operator uses gnoton is much like any other particle in that its position is
spin rotation to decouple the spin from the momentum whilezn opservable described by a set of three commuting Hermit-
the gradient operator acts to generate momentum-spaggn operators. However, the photéms well as other mass-
translations. It seems to be the most natural way to retain thpgg particles of spits>13) has only two linearly indepen-
usual role of the position operator in momentum spacegent spin states, and in these states the spin is coupled to the
While we have not touched on important questions about thgyomentum. As a result, its position operator is a matrix that
limits to which the photon position is observable in a dy-does not commute with the spin. Different selections of the
namic measurement, our demonstration that a photon poSjgnction y,( ¢, ¢) generally give different position operators,
tion operator does in fact exist means that there is no nonvagg that the position operator is not unique and does not trans-
nishing commutatofrr;,r ] to limit the calculation of photon  form underJ as a simple vector. However, the eigenvectors
probability amplitudes. Simultaneous eigenvectors of the opgy any one of these unitarily equivalent position operators
eratorsr; are available for calculation of the probability that give a basis of localized states with unique eigenvalues that
the corresponding eigenvalue is observed. Of course limitagre independent of helicity, and there is consequently no dis-
tions arising from Fourier analysis, similar to those appli-agreement as to the actual position of the photon. Contrary to
cable to massive particles, still apply. Our work thereforeine traditional view, localized basis sets do exist, and it ap-

supports the view that photons have wave functions that argears that photon wave functions can be defined according
not qualitatively different from those of massive particles, asqne ysual rules of quantum mechanics.

concluded by Biatynicki-Biruld46] and Sip€g/5]. The rules
of quantum mechanics require that each observable be rep-
resented by a Hermitian operator. The localized basis sets
found here make it possible to treat photons like massive The authors wish to thank the Natural Sciences and Engi-
particles in quantum calculations of interference experimentseering Research Council of Canada for financial support. It
and other situations where particle amplitudes in coordinatés also a pleasure to acknowledge stimulating and helpful
space are useful; in both cases the usual rules of quantuoommunication from B.-S. Skagerstam. One of(W5E.B.)
mechanics can be applied. thanks A. Lasenby and the Astrophysics Group of the Cav-
There is no unique representation of the photon positiorendish Laboratory, University of Cambridge, for hospitality
operator. Just as there are many spin bases that can be uskding a sabbatical leave taken there, and he thanks J. P.
to describe the internal state of a massive particle, there ait@rawford for helpful discussions of string singularities.
many bases that can be used to describe the combined trans-
lational and internal motion of a phOtOﬂ. The peculiar aspect APPENDIX A: DECOMPOSITION OF ROTATIONS
of the photon is that, because of the coupling of the spin to
the momentum, the position operator is a matrix that does The purpose of this appendix is to derive relations be-
not commute with the spin. Different position operators withtween an infinitesimal rotation about an arbitrary axis in
commuting components can be defined by specifying the de¢hree-dimensional space and angular parameters in a product
pendencey,(0,¢) of the axial rotation angle on the polar of rotations ground s_pecn‘led axes. These relations are Fhen
angles ofp. Different choices o, lead to different “gauge used to predlpt ro.tat|onal properties of the photon position
potentials” a for the phase of the photon state at different®P€rator and its eigenstates. The angular parameters are the
positions in momentum space. In general, phase changes Jeuler angles that specify the polar and §Z|muthal coordinates
pend on the path and are thus described by a nonintegrabfeandé, respectively, of a given directigmtogether with an
function. While a specific choice of gauge usually results inaxial angley aboutp. One can express the Euler-angle pa-
operator expressions with less than the expected symmetrametrization in terms of active rotations about spaced-fixed
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axes: with thep-frame axes initially coincident with the R(¢+de¢,0+d6,x+dy)
space-fixed axeg;,e,,e;, of the laboratory frame, a first
rotation byy aboute; is followed by a rotation by aboute, _
and finally a rotation byp aboute;. The axial rotation angle
x does not affect the directiqfx and may be chosen to be a i
function, sayx,(6,¢), of the “local coordinates”6, ¢ that = [ 1— E[el(sin 6 cos¢ dy—sing dd)+e,(cose db
specifyp. A rotation by the Euler angle@p, 6, x,(0,¢)) has
only two degrees of freedom and is uniquely determined by
the directionp. +sinfsing dy)+e;(d¢+cosh dX)]]R(qﬁ,G,X),

The derivation is easily constructed using tools of Clif-
ford’'s geometric algebr&l; of 3-dimensional spacf48— (AS)
50]. Those not familiar with the algebra can follow the deri-

vation in terms of the X2 matrices that form the common ) o
matrix representation in which the Cartesian unit vectordn Which we have explicitly accounted for the lack of com-

e,,6,,6; are replaced by the corresponding Pauli spin matrimutivity o_f roFations about different axes. EquatidA4)
ces familiar to physicists. In the algebra, vectors are rotateferefore implies
by transformations of the form

i .
1- §(e3 dp+e &%, do+ RegRTdX)}R(d),G,X)

dé=¢e(sinfcosp dy—sinep do)
v—RVRT, (A1)
+ey,(cospdh+sindsing dy)+e(dep+cosfdy),

whereR(&€) =exp(—i&/2) e SU(2) is the element for a rota- (AB)

tion by the angle=|& about the axis. The rotation speci-

fied by the Euler anglesd,6,x) is given by the rotation which is readily solved to give

element
R(¢,0,x)=R(des)R(6e;)R(xe3) d¢=d¢;—cotf(dé; cosp+dE; sing)
=exp —i¢esl2)exp —ibde/2)exp( —ixes/2).
(A2) do=d¢&, cos¢p—dé; sing

An additional rotation will generally change all three angular
parametersp, 6, y. We want to determine the changes caused _d§;cosgp+dé,sing
by an infinitesimal rotatiorR(d£). dyx= sing : (A7)

To clarify our objective, we first consider the simple case
in whichdé=d¢& e;. The only effect oR(d§) is to increment
the azimuthal anglep: Note the singular nature of the relations & anddy in the

limit #— 0. Singularities are common whenever general ro-
R(b,0,x)—R(dE )R (b, 6, x)=R(p+dE, 8, x). tations are parametrized in terms of rotations about specified

(A3)  axes. They are related to the nonuniqueness of the parametri-
zation for some rotations, for example all of the rotations
D(¢,0,x— ¢) for fixed y and arbitrary¢ are equal. We can

This result is easily written in terms of the rotations giso express the rotatid@5) in terms of rotations with two
R(,0,xp(0,¢)) that have only two degrees of freedom:  gegrees of freedom:

R(dE &) R(, 0, xp( 0. b)) = R($+dE, 0, x,( 0,5+ dE)) R(AER( b, 6, o)
0, Xp

XR(—e3dyxp,), A4
(~esdxp) (Ad) —R(p+dep,0+d0,x,+dy)
wherex(6, ¢ +dé&) = xp(6, $) + dxp anddyp=dé ax,/d¢. =R(¢+dg,0+d0,x,+dxp)R((dx—dxp)es)
Now we generalize this approach to an arbitrary infinitesi- B ~
mal rotation bydé=dé&; e +dé, e,+déze;. We initially =R((dx=dxp)P)R(¢+d¢,0+d0, xp+dxp),
consider y an independent parameter and solve (A8)

R(A&R(d,0,x)=R(Pp+d¢,0+d6,x+dy) for the infini-
tesimal changed¢,dd,dy in the Euler angles. To first order
in the changes, where = xp(6,¢) and
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dy—dyxp,=dx— ( dd)-l— dﬁ) (A9)

d
CoS¢

“|'sing

1+cos€—¢) +sm¢ }dgl

1+ 050—

d

—Cos ¢> }dgz
(A10)

=(axp+p)-d& (A11)

where in the last step we used the definiti@d) and(45) of
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These results can also be obtained from the Hermitian con-
jugate of the relations(A5) and (A4) by noting that
DY(#,0,x)=D(—x,— 6,— ¢). Such added rotations from
the RHS are rotations in the frame and can also be ex-
pressed by

(A16)

Evidently the Cartesian components d§’ are just the
p-frame components afé, that is,dgj’ =d§p; . We make use
of this result in Appendix D.

a. While the derivation employs tools of geometric algebra,

the result is generally valid for spatial rotations in three-

dimensional space.

A similar analysis gives the result of an infinitesimal ro-

tation added to the RHS:

R($,0,xp)R(AE")=R(p+d¢,0+d0, x,+dx) (A12)
=R(p+de¢,0+do,xp,+dx,)
XR((dy—dxp)es). (A13)
In this case, we obtain
—d¢§j cosy+dé;siny
de= sing
do=d¢; siny+d&;, cosy (A14)
dy=d¢;—d¢ cosé
,| €OSY ax 24
dx—dx,=d¢; no (COSH+ (9—(;) —Sln)(a—;}
- §4—§<cosﬁ+%¢p +cosX(7—‘9'O +dé&;
(A15)

€0Sf cos¢ cosy —sSin¢ siny

APPENDIX B: APPLICATION TO ROTATIONS
OF STATE VECTORS

The helicity state vectors,, are obtained by rotating the
constant column vectors, ,

&=D(¢.0,x)e,, (B1)
by the rotation matrix
D=exp—iS;p)exp —iS,0)exp(—iS;x) (B2)

generated by the spin-1 matricBs Starting in the Cartesian
basis with

0 . 1
e=|0], e, =—4|*i], (B3)
1 V2 0

the rotation matrix is, explicitly,

—(sing cosy+cosfcosgsiny) sSinfhcose

D=| cosésin¢ cosy+ cos¢ siny COS¢ COSy —cosésing siny sinfsin¢ (B4)
—sinéd cosy sin@siny cosé
|
and we thus find . cosf cos¢p—ikSing
epKzT cosfsing+ik cos¢ k==*1. (B6)
- 2 .
sinf cos¢ —siné
€o=| SN osing |, (BS) Note thate,, is a matrix representation of ande,, depends

cosé

on y simply through the phase fact@™'“X. We put y
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=Xp( 0, ¢) to obtain vectors,, that depend only on the two (1—iS-d§)D(¢,0,x,)

angles# and ¢, and hence only on the direction f)f The —D(b+dd 0+do.v.td 1—iSy(dy—dy.)
direction ofp can be changed by a further rotationegf. by Dig+dd. Kot Axp) 1S dx = dxp)]
dé of the form exptidé: S)e,,: (C2

a o (C3
=exfd —ik(dx—dxp)|D(¢p+de,0+d6, xp,+dxp) e
) - R where, from Eqs(A11) and(A10),
—exi] i k(dx—dxp) 18- cp- (88)

N . —_ = A . . N = ).
The rotation matrix exp{idé- S) shuffles the components of p-S(dx—dxp)=p-Sd§ (p+axp)=S"-d& (CH
the vectore,, . A complete rotation o, also includes the . ")
operator exptidé- L) which changes the angular argumentsThe result is to addS;”.r,] to the RHS of Eq.(3). The
6.6 so as to rotat® to p—dp. We thus find added term is required for consistency with the phase
¢ ® PP changeqB10) induced in the basis vectors by rotations.

exp(— 1 0§ 2)&
_ _ APPENDIX D: ROTATIONS OF THE REFERENCE
=exf —ix(dy—dxp)Jexp(—id& L)€ g« FRAME AND BERRY'S PHASE

(B9) An extra rotation acting on the RHS d&&(¢,0,y) is

. equivalent to the opposite rotation to the reference frame. As
=exf —ix(dy—dxp) J€nx (B10  shown in relation(A16), it is also equivalent to a rotation
_ _ from the left by the same angles but abquframe axes
and consequently the only effect of a rotatioregf by d€ IS jnstead of laboratory axes. This relation is useful in deriving
to change its phase by «(dx—dx,), wheredx—dx, IS 3 expression for Berry's pha§@4]. Berry's phase is a to-
given by Eq.(A10). This agrees with the partition dfinto 5 ngical phase that arises from adiabatic transport of a dis-
crete state around a closed loop, and it is usually derived as
QZEU)’L?[) (B1) 4 purely quantum phenomengd¥,43,44. For the polarized
. light, however, it was shown by Haldaf®&1] to be a conse-
since guence of classical differential geometry. We derive it here
by means of the classical rotation operators introduced
L"e, =DLD 'e,=DLe=0 (B12)  above.
Transport in the adiabatic limit corresponds to parallel
and transport in the given gaudé&5,57, which is equivalent to
nonrotating (Fermi-Walkej transport on geodesics. We
s(f)zf)-S(ax p+p) (B13) achieve this in rotations gf by piecing together the closed
- - loop from a sequence of great-circle rotations, in each of
~ _ S _ which the rotation axis is orthogonal fpand the axial rota-
PS8 =DSD "6y =D S, = K&y, (B14) tion vanishes. Thus, in EGA8) we vary ¢’ such thatd&;
. =0. Then, from Eq(A14),
(axXp+p)-dé=dy—dx,. (B15)
dxy=—cosfddg. (D1
APPENDIX C: APPLICATION TO ROTATIONS
OF THE POSITION OPERATOR We vary the parametey and£; so as to complete a closed
loop, increasingp by 24r. The conditionrdé;=0 ensures that

the change irp is always along a great circle. There is a
change in the axial angle y by

The new position operator has components

r=ip®D i D lp @ (cy
n=ip 2op= p .

—Ayxy= fﬁ cosfdo (D2)
The components of vector operators are expected to rotate

into one another as given by the commutation relati®n ] o o
However, an additional factor arises by the need to transforrgven afterp has looped back to its original direction. If the
the matrix associated with each vector component by ainitial orientation of the photon frame is given 1B(¢, 6, x)
axial rotation. The required spin rotation is given by that forwith the momentum directiop, the orientation aftegp has
the rotation matrixD. From relation(A8) we see that the increased by 2 is R(¢+2m,0,x+AY), giving a the net
rotation transformsf_?( $,0,xp) 0 rotation of

012101-14



PHOTON POSITION OPERATORS AND LOCALIZED BASES

R(¢+2m, 0, x+AxY)R X, 0,x)

=exf —i(x+Ax)p/2lexp —ime;)exp(i xp/2)

=exf —i(Ax+2m)p/2], (D3)
where we used the symmetry
R(¢,0,x)=exp—ixp/2)R(5,0,0), (D4)

which allows us to cancel thé rotations, and we noted that
exp(—ime;)=— 1=exp(-imp). The total rotation under

parallel transport about the loop is thus the rotation alpout
by the anglen=Ax+27=¢(1—cosd)dd.

PHYSICAL REVIEW 84 012101

F=(1+p)Eyexdix(wt—p-x)p]. (D5)
An additional axial rotation byy transforms this to
exp( —i np/2)F expli np/2)
=F exp(i 7p) (D6)
=(1+p)Eg exd i k(wt—p-x+ k7)p] (D7)

and gives the phase changex# relative to — wt. This is

Note that the result does depend on the parallel transpof*actly Berry’s phas¢s0),

of p. If we rotatep directly around the space-fixed axis,
then we simply changé by 27 and the axial anglg does

not change. The mathematical confirmation of this result is

found from Eq.(A7) with d¢;=d&,=0. The rotation in this
case is not on a great circlanless co$=0) andp is there-
fore not parallel transported.

The phase change for electromagnetic plane waves dh

K fﬁ (cosf—1)dp=—k(, (D8)

where () is the solid angle subtended by the loop. It is just

at calculated directly from the line integral in Sec. V when

3 .. R . ) _ l _ . u
given helicity is proportional to the rotation angle. To see theXp= X4 = — ¢ so that the rotation matri® (¢, 0, ) rotates

relation, consider electromagnetic plane waves of heliejty
for which the fieldF=E+icB is [49]

S, directly into S- p, and it agrees with the relation between
angle and geometric phase found by Bdi53].
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