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Photon position operators and localized bases
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We extend a procedure for the construction of photon position operators with transverse eigenvectors and
commuting components@Phys. Rev. A59, 954 ~1999!# to body rotations described by three Euler angles. The
axial angle can be made a function of the two polar angles, and different choices of the functional dependence
are analogous to different gauges of a magnetic field. Symmetries broken by a choice of gauge are reestab-
lished by transformations within the gauge group. The approach allows several previous proposals to be
related. Because of the coupling of the photon momentum and spin, our position operator, like that proposed
by Pryce, is a matrix that does not commute with the spin operator. Unlike the Pryce operator, however, our
operator has commuting components, but the commutators of these components with the total angular momen-
tum require an extra term to rotate the matrices for each vector component around the momentum direction.
Several proofs of the nonexistence of a photon position operator with commuting components are based on
overly restrictive premises that do not apply here.
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e
m
ize
s
av

he
er

de
uf
v

ta
ze

e
c
is
m
er
ho

le
ts

ing
n-
ull

u
on
b
th
he

ev-

ys,
s
tors
the
tor

he
olar

po-
to a
ates
the

in

d to

e is

n

s
nt
I. INTRODUCTION

Since the early days of quantum mechanics, it has b
claimed that there is no photon position operator with co
muting components, and hence that a basis of its local
eigenvectors,ur 8&, does not exist@1#. As a consequence, it i
widely held that there is no coordinate-space photon w
function c(r 8)5^r 8uc& @2#. Wave functions for photons in
momentum space are commonly used, and it is there w
the position operator would be defined. While it may gen
ally be possible to use a second-quantized formalism
which the fields are operators in Fock space@2,3#, the use-
fulness of a coordinate-space photon wave function for
scribing such phenomena as photon interference is s
ciently well recognized that a number of authors ha
introduced versions of effective spatial wave functions@4,5#.
The existence of a position operator may also be impor
for the consistency of some work in the second-quanti
formalism.

A number of authors@6–12# have discussed and to som
extent resolved well-known problems of Lorentz covarian
and causality that exist for any position operator in relativ
tic quantum theory. However, there are additional proble
for massless particles of spin one or greater, and a numb
‘‘proofs’’ have been presented of the nonexistence of a p
ton position operator in the literature@13–18#. In spite of
these, one of us has recently produced a counter examp
Hermitian position operator with commuting componen
and localized transverse eigenvectors@19#. However, the
asymmetric, singular nature of the operator was puzzl
and questions concerning its compatibility with work co
cluding the nonexistence of such operators were not f
addressed.

In the present paper we attempt to resolve these iss
Our principal tool is a generalization of the new positi
operator to include an arbitrary axial rotation, which may
a function of the other two Euler angles that parametrize
body rotation. This generalization provides insight into t
1050-2947/2001/64~1!/012101~16!/$20.00 64 0121
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geometry underlying the operator and allows us to unify s
eral previous approaches.

While position operators can be defined in several wa
the one in Ref.@19#, henceforth to be referred to as I, wa
constructed by requiring its components to have eigenvec
transverse to the momentum and in the directions of
momentum-space polar unit vectors. The position opera
thus obtained takes the form of a 333 matrix and will be
referred to here asr (0), where the underscore denotes t
matrix character and (0) refers to use of the spherical p
basis vectorsû and f̂. The momentum-space operatorr (0)

can be expressed by a transformation that rotates the com
nents of the photon state function in momentum space
fixed photon reference frame, differentiates, and then rot
back to the lab frame. Since two angles suffice to specify
direction of the photon momentump, the rotations require
only two independent parameters.

Here we follow a more general approach by including,
addition to the polar anglesu andf, the axial Euler anglex.
Let the unit vectors along the Cartesian axes bee1 , e2, and
e3. A rotation aboutp by an anglex permits an arbitrary
choice of the transverse unit vectorsep1 andep2, which are
obtained by a rotation from the fixed unit vectorse1 ande2 in
the given reference frame. The same rotation is designe
take e3 to the momentum directionp̂5pÕp, but p̂ depends
only on the polar anglesu andf; it is independent ofx. We
show below that ifx is independent ofu andf, the position
operator is justr (0) as found previously@19#. However, we
are also free to choosex to be a functionx5xp(u,f) of the
polar angles. For a photon with helicityk the momentum-
space position operator that corresponds to such a choic

r5r (0)k“xp ~1!

in units with\51. @It is understood that the second term o
the right-hand side~RHS! is multiplied by a unit 333 ma-
trix. To simplify notation, we do not indicate unit matrice
explicitly.# A change in the momentum-space gradie
©2001 The American Physical Society01-1
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MARGARET HAWTON AND WILLIAM E. BAYLIS PHYSICAL REVIEW A 64 012101
“xp(u,f) is analogous to a gauge transformation ofr . The
singularity previously found inr (0) is analogous to that of a
monopole string and commonly arises in electromagnetic
gauge potentials. For any choice ofxp , r has less symmetry
than one would expect and under parity inversion it does
simply change its sign. However, as we show below,
symmetry is restored when one includes the full group
possible gauge transformations rather than only a sin
choice of gauge.

In the case of massive particles of spinS, any component
of the spin can be used to define an eigenstate basis.
basis functions corresponding to a space-fixed quantiza
direction span a rotationally invariant linear manifold a
carry irreducible representations of the Poincare´ group. Be-
cause the momentum-space basis states for massive par
have directions in space that are invariant under infinitesi
translations, the position operator can be identified with
Hermitian generatori“ of such translations, where“ is the
momentum-space gradient. Sincei“ is a differential opera-
tor proportional to the unit matrix, it commutes with sp
matrices that represent space-fixed components of the
For massless particles, on the other hand, representatio
the Poincare´ group are reduced to the two irreducible rep
sentations carried by helicity states in which the spin co
ponent along the momentump is 6S @20#. Since the two
helicity subspaces are invariant under the actions of the P
caré group, the allowed spin states for a massless part
with S>1 form rotationally invariant manifolds with fewe
than the 2S11 independent elements required for sta
quantized along a given spatial direction. As elaborated
low ~see Sec. VI!, this is important in understanding th
relevance of the nonexistence result of Newton and Wig
@13#. The basis vectors corresponding to the two allow
helicities are transverse top̂ and therefore require a modifie
position operator, one that is no longer independent of
spin.

The generator of rotations is, as usual,

J52 ip3“1S, ~2!

where the vector components ofS are the spin-1 matricesSj
whose explicit elements depend of the basis used for
state vectors~see discussion in the following section!. The
term 2 ip3“5L is required in order to generate a rotatio
of the argument of the wave function, whereasS generates
the rotation of its components. Our use of the sum~2! for
photons is consistent with Bargman and Wigner’s@21# proof
that J is the generator of rotations for a particle of arbitra
mass.

For the position operatorr to transform as a vector, it is
traditionally required that

@Jj ,r k#5 i« jkl r l , ~3!

where repeated indices are summed over. For massive
ticles, this commutator follows directly from the assumptio
that components of the operatorr commute with each othe
and with the spin matrices, and that they satisfy the canon
commutator relations with momentum,
01210
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@pj ,r k#52 id jk , ~4!

since then the components of eitherL or J rotate one com-
ponent ofr into another:

@Jj ,r k#5@L j ,r k#5« jmnr m@pn ,r k# ~5!

5 i« jkmr m . ~6!

Whereas this clearly applies to the position operatori“ usu-
ally chosen for massive particles, the photon position ope
tors proposed by Pryce@22# and one of us@19# are matrices
that do not commute with the spin. As we discuss in mo
detail in the following section, components of the Pryce p
sition operator satisfy the commutation relations~3! but do
not commute with each other. Consequently, their eig
states cannot have eigenvalues for more than one compo
of the position operator and thus cannot fully define the
sition of a photon.

On the other hand, our position operator has commut
components, but at the cost of the commutation relation~3!.
For a given functional form ofxp , an infinitesimal rotation
of r results in an incremental axial rotation of the matrixr j
for each component bydx2dxp , and this yields the extra
term derived below@see Eq.~67!#. Recent proofs of the non
existence of a photon position operator and localized st
have assumed componentsr j that satisfy Eq.~3! @17,18#,
thus excluding the position operators discussed here.

As in I, the position operator is constructed with the r
quirement that its components have transverse eigenvec
It is related to the position operator for massive particl
whose components have eigenvectors with fixed direction
momentum space, by a transformation with the form o
spin rotation and a dilation. As discussed more fully in t
following section, this similaritylike transformation include
a spin rotationD(f,u,x) from fixed directions in the photon
reference frame to the longitudinal and transverse directi
in the lab. Because the longitudinal direction is independ
of the axial anglex, a family of transformations with differ-
ent functional dependencesx5xp(u,f) is possible. We find
that this family of transformations includes ones that rel
the Shirokov and Lomont-Moses irreducible helicity repr
sentations to the Foldy form of the Poincare´ algebra. The use
of Euler angles thus gives a unified approach to the relat
ships among these representations and to the position op
tors with transverse eigenvectors obtained in the present
per.

In Sec. II we briefly review the Foldy and helicity repre
sentations of the Poincare´ operators. We then describe th
relationship of the angular momentum and boost operator
the Pryce@22# position operator. In Sec. III the results o
paper I are reviewed and then generalized to an arbit
functional dependencex5xp(u,f) of the axial Euler angle
on the polar angles ofp̂. The Poincare´ group, the relationship
of the position operator to the angular momentum and to
boost operators, and the localized states are then examin
Sec. IV. The connection of our work to Berry’s phase
treated in Sec. V, and the relation of string singularities
nonintegrable angles is stressed. In Sec. VI, the consiste
1-2
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PHOTON POSITION OPERATORS AND LOCALIZED BASES PHYSICAL REVIEW A64 012101
of our position operator with nonexistence proofs is a
dressed, and its implications for the photon wave funct
are briefly discussed. Details and alternative derivations
some of the geometric arguments are presented in the
pendixes.

II. FOLDY AND HELICITY REPRESENTATIONS
OF THE POINCARÉ OPERATORS

Foldy @23# wrote down the form of the ten generators
inhomogeneous Lorentz transformations~the Poincare´ opera-
tors! for particles with spinS and massm in the standard
space-fixed representation. His operators also exist in thm
→0 limit, the only case considered here, and in moment
space they comprise the momentump, the HamiltonianH
5pc, the total angular momentum operatorJ @Eq. ~2!#, and
the boost operator

K5 ip“1p̂3S. ~7!

~Foldy’s symmetrized form of theip“ term was criticized
by Chakrabarti@24#. The correct form is related to th
momentum-space normalization weight used for scalar p
ucts, which is discussed toward the end of this section. N
that the boost generatorK is 2N in Chakrabarti’s paper
@24#.!

The standard helicity representation was introduced
Lomont and Moses@25# to provide a realization of the gen
erators for the zero-mass case. The representation is dis
from the zero-mass limit of the Foldy representation, giv
above, because the carrier space has been split into inva
subspaces labeled by the two helicity componentsk56S.
Vector components of the spinS are referred to the photo
reference frame in which the momentum directionp̂ is e3.
Chakrabarti @24# showed that the zero-mass limit of th
Foldy representation is related to the Lomont-Moses heli
representation by the unitary transformation

OF5UOLMU21, ~8!

whereOF is an operator in the Foldy representation,OLM is
the corresponding operator in the helicity representation
Lomont and Moses, and the unitary transformation ha
matrix representationU, which we recognize as the spi
rotation

U5exp~2 iuf̂•S!. ~9!

The transformation~8! rotatesS3 directly intoS"p̂. As above,
u andf are the usual spherical polar angles ofp in momen-
tum space andf̂ is the unit tangent vector in the direction o
increasingf. It is perpendicular to bothe3 and p̂. In the
transformation~8! and its inverse, it is important to recog
nize that the unitary operator, Eq.~9!, does not generally
commute with the momentum-space gradient“ because of
the dependence ofu and f̂ on p̂. The Hermitian generator
of the infinitesimal transformations of the Lomont-Moses h
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licity representation are thus given by the Foldy represen
tion and the inverse of Eq.~8! to be @24# p[( j pjej , H
5pc,

JLM52 ip3“1S p̂1e3

11cosu
DS3 , ~10!

and

KLM5 ip“1S p̂3e3

11cosu
DS3 ~11!

where the matrixS3 can be replaced byk when restricted to
the invariant subspace of definite helicity.

A different helicity representation was obtained earlier
Shirokov@26#. After conversion to polar coordinates, his a
gular momentum and boost operators are

JSh52 ip3“1~ û cotu1p̂!S3 ~12!

and

KSh5 ip“1f̂ cotuS3 . ~13!

Białynicki-Birula and Białynicki-Birula@27,28# derived re-
sults equivalent to Eqs.~12! and ~13! by considering the
Maxwellian momentum and angular momentum tenso
They also found@28# a unitary matrixW1 that relates opera
tors in the Foldy and Shirokov representations:

OF5W1OSh
(1)W1

21 . ~14!

We can express theirW1 as the product of a transformationT
from a Cartesian to an angular momentum basis and ano
rotation:

D~f,u,0!5exp~2 i S3f!exp~2 i S2u!, ~15!

which takese3 into p̂:W15D(f,u,0)T5TD (1)(f,u,0). The
unitary transformation

T5
1

A2 S 1 0 1

i 0 2 i

0 A2 0
D ~16!

is required only because different bases for the moment
space vectors have been assumed in the two representa
Specifically, in the transformation~14!, the Foldy operator
OF uses a Cartesian basis, in which the unit vectorse1 ,e2 ,e3
are represented by column vectors with elements (ej )k

5d jk , whereasOSh
(1) uses an angular momentum basis

which the complex unit vectorsek , k561,0, are column
matrices with elements (ek)k5dk,k22. They are given in the
Cartesian basis by the columns ofT Eq. ~16!. The spin ma-
trices are different in the two bases. In the Cartesian ba
the matricesSj have elements (Sj )kl52 i« jkl whereas in the
spin-1 angular momentum basis the corresponding matr
1-3
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MARGARET HAWTON AND WILLIAM E. BAYLIS PHYSICAL REVIEW A 64 012101
are (S3
(1))kl5(22k)dkl , and (S1

(1)6 iS2
(1))kl5A2dk,l 61. The

body rotation matrices, expressed in terms of the Eu
anglesf,u,x by

D~f,u,x!5exp~2 i S3f!exp~2 i S2u!exp~2 i S3x!,
~17!

have correspondingly different elements in the two bas
Explicit values in the Cartesian basis are given in the follo
ing section and in Appendix A. Elements ofD (1)5T21DT
in the angular momentum basis have the standard f
Dkk8

(1)
5exp(2ikf2ik8x)dkk8

(1) (u), where the real matrixd(1) is
@29#

d(1)~u!5
1

2 S cosu11 A2 sinu cosu21

2A2 sinu 2 cosu 2A2 sinu

cosu21 A2 sinu cosu11
D .

~18!

We will generally assume that the different representati
both use the Cartesian basis or both use an angular mo
tum basis for their momentum-space vectors, as is actu
implicit in relation~8! between the Foldy and Lomont-Mose
representations. We can then omit the factorT and replace
the transformation~14! by

OF5D~f,u,0!OShD
21~f,u,0!. ~19!

The helicity representations of Lomont and Moses and
Shirokov are both seen to be unitarily equivalent to the st
dard Foldy representation, and the unitary transformati
for both are rotations that rotateS3 into S•p̂. It seems sur-
prising that the two helicity representations appear so dif
ent. As Chakrabarti@24# points out, the Shirokov form of the
operatorsJ and K is of a singular nature that makes the
appear unsatisfactory for many uses. However, the Lom
Moses form~10!,~11! also has first-order singularities atu
5p; they are just better disguised. The differences in
unitary transformations~8! and ~19! is clearer if U is ex-
pressed in terms of Euler angles. Since

exp~2 i S3f!S2 exp~ i S3f!5S2 cosf2S1 sinf5S•f̂,
~20!

then from the Euler-angle form~17! we can equate

U5D~f,u,2f!; ~21!

that is, the unitary transformationU that rotatesS3 directly
to S•p̂ is just the Euler-angle rotationD(f,u,0) required for
the Shirokov form preceded by an axial rotation through
angle 2f. It is important to note that the transformation
involved arespin rotations and therefore transform only sp
components and the vector components of the photon st
We explore a generalization of such rotations further in
next section.

While the position operators are not explicitly required
complete the Poincare´ algebra, they are implicit in the angu
lar momentum and boost operators since, apart from inte
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degrees of freedom, it is the components ofr3p and 1
2 (pr

1rp) that generate rotations and boosts, respectively. O
set of commonly accepted photon position operators cons
of components of the Pryce operator@22,18#,

rP5 ipa
“p2a1

p3S

p2
. ~22!

The parametera in the expression

pa
“p2a5“1

a

p
@p,“#5“2

ap

p2
~23!

depends on the integration weight used in the definition
the scalar product. Pryce used the parameter valuea51/2,
which is appropriate when the Hilbert-space states are e
tromagnetic fields, and this value was implicitly assumed
Eqs. ~7!, ~11!, and ~13!. However, one needsa52 1

2 when
the vector potential@30# is used for the photon states. Alte
natively, a definition of scalar product requiringa50 can be
used@18,3#. In the following, we leavea unspecified.

The Pryce position operator@22# rP is based on expres
sions in terms of a classical energy-momentum tensor o
noncovariant definition of the center of mass given by Fo
ker @31#. The components ofrP are 333 matrices that do no
commute withSj . When expressed in terms ofrP, the rota-
tion and boost generators of Foldy@Eqs. ~2! and ~7!# are
partitioned differently into orbital and spin parts

J52p3rP1p̂p̂•S, ~24!

K5
1

2
~rPp1prP!. ~25!

While components ofrP do satisfy the canonical commuta
tion relations withp, they do not commute with each othe
@32,33#. Instead, they have a nonvanishing commutator t
is analogous to the field of a Dirac monopole~but in momen-
tum space! whose ‘‘charge’’ is given by the helicity operato
p̂•S @18#:

@r Pj ,r Pk#52 i« jkl

pl

p3
p̂•S. ~26!

As discussed in the next section, such monopole terms o
frequently in commutators with gauge potentials.

III. PHOTON POSITION OPERATORS
WITH COMMUTING COMPONENTS

In I, a modification of the Pryce position operator w
constructed to have commuting components . In this sec
we summarize the results of I, emphasizing how the n
position operator can be expressed as a spin rotation of
weight-modified position operator for massive particles. W
then extend the construction to an arbitrary functional dep
dencexp(u,f) among the three Euler anglesf,u,x.
1-4
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PHOTON POSITION OPERATORS AND LOCALIZED BASES PHYSICAL REVIEW A64 012101
The position operator

r (0)5 ipa
“p2a1

p3S

p2
2a(0)p̂•S, ~27!

with a(0)5f̂p21 cotu, was constructed in Ref.@19# by re-
quiring that the components ofr (0) have transverse eigenve
tors in the directionsû and f̂. The operatorr (0) can be
expressed as a spin rotation ofipa

“p2a:

r (0)5 iD~f,u,0!pa
“p2aD21~f,u,0!. ~28!

Since this has the same form as Eq.~19!, it is equivalent to
usingipa

“p2a as the corresponding position operator in t
helicity representation. The construction~28! may be under-
stood by analyzing the problems of the Pryce position ope
tor ~22!. The reason components ofr P do not commute is
that the photon spin and its momentum are inextrica
coupled through the restriction on allowed spin states, an
particular, the components of the momentum-space w
function depend on momentum direction. Consequently,
action of the usual momentum-space position operator
massive particles,i“, is no longer restricted to the argume
of the wave function but also acts on its components.
expression~28!, on the other hand, the spin rotationD21

rotates vector components of the state function from the
to the reference frame, wherep̂5e3 , so that the operatori“
can induce translations in its arguments without mixing
components. Finally,D rotates the translated vector back
the laboratory frame. This is a straightforward way to rest
the usual translational role ofi“, and it is required to ensur
that helicity eigenstates are not mixed by infinitesim
momentum-space translations generated byr (0) away from
the origin p50. This is an important property that follow
from the invariance of the helicity subspaces under the P
carégroup and has been confirmed, for example, in exp
ments demonstrating Berry’s phase@34# for photons in
curved optical fibers@35#.

The terma(0)5f̂p21 cotu multiplying the helicity opera-
tor p̂•S in the new position operator~27! is singular in the
limits u→0,p, that is, asp approaches the6e3 axes, and has
the momentum-space form of the electromagnetic vector
tential of a pair of Dirac monopole strings in coordina
space. The relationship is discussed in more detail at the
of Sec. V. It seems curious for the position operator to
pend on the choice of coordinates in the laboratory. T
singularity together with the dependence on laboratory co
dinates may have deterred other authors from including s
a term. Nevertheless, we show below that some form of
term is required to give the correct phase changes of
photon state under rotations. Laboratory coordinates e
the formulation ofr (0) in the spin rotationD from e3 to p̂
and in the implicit dependence ofp̂ on its polar anglesu,f.
The singular term arises from the differentiation of this ro
tion and from the path-dependent value off. It is consistent
with the relatively large changes inf that can result from
infinitesimal changes inp at the string. In this section we
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explore a generalization of the rotation used inr (0) and show
that the breakdown of the expected symmetry is related
the selection of a specific ‘‘gauge’’ forr .

The spin rotation that plays a central role in this paper c
be written in Cartesian form as the real unitary matrix
elements

D jk[ej•epk , ~29!

which relate vector components in the orthonormal labo
tory basis$e1 ,e2 ,e3% to those in the photon-momentum bas

$ep1 ,ep2 ,ep3%, where ep3[p̂. Thus, for any vectorV, Vj
5V•ej5D jkV•epk[D jkVpk . This gives the action of the
matrix D as a passive transformation (V is fixed; the ‘‘ob-
server’’ basis changes!. However, only the relative orienta
tion of the vector to the observer basis enters the formal
and, in particular,ej•ek5d jk5epj•epk . As a result, an active
interpretation of the action ofD ~observer fixed;V changes!
is also possible and often more natural. As an active tra
formation, D rotates each of the vectorse1 , e2 , e3, of the
laboratory frame into the corresponding vectorep1 , ep2 , ep3 ,
of the photonp frame, with both vectors expressed in the l
basis:epj5Dej . The mathematical consistency of the diffe
ent interpretations is readily confirmed by writing out th
column matrix representations of the vectors. Further det
are given in Appendix B.

The body rotationD generalizes the polar rotation used
I. One can expressD in terms of spin matrices and the Eule
anglesf,u, andx as in Eq.~17!, and it is given explicitly in
Eq. ~B4!. The treatment in I corresponds to the choicex

50, in whichep15û, ep25f̂, andep35p̂. For more general
x,

ep15û cosx1f̂ sinx, ~30!

ep25f̂ cosx2û sinx. ~31!

The anglex represents an axial rotation aboutp̂ and is asso-
ciated below with the phase of a photon with definite hel
ity. As seen by inspection of Eqs.~30!,~31!, the transverse
unit vectorsep1 ,ep2, are just the polar unit vectorsû,f̂, ro-
tated aboutp̂ through the anglex, so that use of the Eule
anglex allows an arbitrary orientation of the two direction
ep1 ,ep2, in the transverse plane. The unit vectors describ
states of definite helicityk,

epk[
1

A2
~ep11 ikep2! ~32!

5e2 ikxepk
(0) , ~33!

are just phase shifted relative to the helicity statesepk
(0)5(û

1 ikf̂)/A2 with x50. Under the general rotation~17!, the
spin matrices themselves are transformed as

Spj5DSjD
215SkDk j , ~34!
1-5
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where in particularSp35S•p̂. Consequently, we can als
expressD in terms of rotations about thep-frame axes:

D5DDD21 ~35!

5e2 iDS3D21fe2 iDS2D21ue2 iDS3D21x

5exp~2 i Sp3f!exp~2 i Sp2u!exp~2 i Sp3x!. ~36!

Alternatively, we can make the axial rotation th
last of the Euler-angle rotations by puttingD0
[exp(2iS3f)exp(2iS2u) and noting

D5D0 exp~2 i S3x!D0
21D0 ~37!

5exp~2 iDS3D21x!D0 ~38!

5exp~2 iS•p̂x!exp~2 i S3f!exp~2 i S2u!.
~39!

The position operator that generalizes Eq.~27! is the 3
33 matrix

r5D~ ipa
“p2a!D21 ~40!

5 ipa
“p2a2A, ~41!

where

A52 iD~“D21!5 i ~“D !D21 ~42!

5
S3p̂

p
1ap̂•S, ~43!

anda is a vector with dimensions of length. Ifx is indepen-
dent ofu,f, then the axial rotation elements commute w
“ andr is given byr (0) as found in I. However, the momen
tum p is invariant under the axial rotation byx, and we can
choose a functional dependencex5xp(u,f). Then the ma-
trix D is a function of the two parametersu,f, and direct
calculation of the gradient of the rotation matrix gives

a5a(0)1“xp , ~44!

with

a(0)5f̂
cotu

p
5

e33pp̂•e3

~e33p!2
. ~45!

When operating on a subspace of definite helicityk561, r
is related to the Pryce operatorrP of form ~22! by a trans-
verse displacement whose sign depends onk:

r5rP2ka. ~46!

This clearly manifests the basic coupling between the he
ity ~and therefore the spin! and the position. However, as w
see in the following section, the eigenvalues ofr do not
depend explicitly onk.

The matrixA, with transverse vectors as its matrix el
ments, has a simple interpretation. Writing
01210
-

“D52 iAD ~47!

and making the dependence of the rotation matrixD on p
explicit, we find

D~p1dp!5D~p!1dp•“D~p! ~48!

5~12 idp•A!D~p!. ~49!

Thus, A•dp generates the infinitesimal rotation induce
whenp is incremented bydp.

The possibility of choosing different functionsxp(u,f)
dependent on the positionu,f in parameter space express
the invariance ofp under axial rotations as a local symmet
and is analogous to gauginga and hencer . The gauge group
of axial rotations is U~1!, and a is thus analogous to the
electromagnetic vector potential. The scalar gauging func
xp is a concrete example of Berry’s gauge@34# that sets the
local phase of an eigenstate in parameter space. It also
pears closely related to the functionG0 introduced by
Staruszkiewicz in his earlier study@36# of parallel transport
of photons. For all choices of single-valued differentiab
functionsxp , the gauge field

“3a52
p̂

p2
, sinu5” 0, ~50!

has the same monopole form. It follows thata itself cannot
be replaced by a gradient term. As we discuss below~see
especially Sec. V!, however,xp is generally not single val-
ued and can affect stringlike singularities in the field~50!.
The ‘‘Abelian vector potential’’a is just part of a non-
Abelian operatorA5S3p̂/p1ap̂•S.

Berry @34# has found analogous monopole fields~50! both
for the case of a pair of adiabatic states that are degenera
an isolated point in parameter space and for spin-S charges
in a magnetic field that are degenerate where the field v
ishes. Our derivation shows that such fields arise more g
erally in calculations of topological phase, even when th
is no isolated point of degeneracy. Indeed, monopole te
of the formp̂/p2 frequently arise in the commutators involv
ing gauge potentials associated with massless representa
of the Poincare´ group @18,28,32,33,37–40#. In our case, di-
rect calculation gives

@Aj ,Ak#5 i« jkl~“p3A!•el ~51!

5 i« jklS p̂•S
a3p1p̂

p2
1

S3a

p D •el ,

~52!

which includes the monopole termp̂/p2 multiplied by the
helicity operatorp̂•S. Similar terms also arise from the dis
tinct ‘‘covariant derivatives’’ D85“2 ip3S/p2 and D9
5“2 ika introduced for photon operators by Pati@40# and
Białynicki-Birula and Białynicki-Birula @28#, respectively.
The common appearance of monopole terms and their a
ciated string singularity~see Sec. V! is a direct consequenc
1-6
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of the topology of momentum space@36,41# ~see also Ap-
pendix A!. Here, the monopole ‘‘field’’~50! turns out to be
just what is required to cancel the singularity in the comm
tator ~26! of the Pryce position operators. Furthermore,
relation (“1 iA)D50 implies thatD5“1 iA is the appro-
priate ‘‘covariant derivative’’ in our formulation.

There is a wide range of possible gauge choices s
xp(u,f) can in principle be any differentiable function
However, three choices ofxp are of particular interest: Ifxp
is the zero function,xp

(0)50, then the transverse direction
are the usual spherical polar unit vectors,a is just a(0) Eq.
~45!, andr is given by Eq.~27!. If xp is xp

(1)52f, then, as
noted in Sec. II,D is the Chakrabarti@24# transformationU
Eq. ~9!, anda takes the form

a(1)5
cosu21

p sinu
f̂ 5

p̂3e3

p1p•e3
~53!

in Eq. ~41!. We note that this choice eliminates the singul
ity in a at u50, but doubles the strength of the one atu
5p ~see also Sec. V!. If insteadxp is xp

(2)52f cosu, then
a is given by

a(2)5
û

p
f sinu. ~54!

In this case, both string singularities are removed, buta is
now path dependent, since the value off depends on how
many times the path wraps around thee3 axis. Consequently
a(2) is ‘‘nonintegrable’’ @38#. By subtracting another path
dependent term, it is also possible to reintroduce a st
singularity about a different axis.

IV. POINCARÉ GENERATORS AND COMMUTATION
RELATIONS

Here we examine the position operatorr in the context of
the Poincare´ algebra and write explicit momentum-space e
pressions for the localized bases. To see the relationsh
our position operatorr and the Poincare´ operators in the
existing literature, note that translation generatorsp and H
5pc are unchanged, and the FoldyJ andK operators can be
written in terms of an orbital angular momentum operato

L (r )[r3p, ~55!

corresponding to our position operator~41!, and an effective
spin operator, which has a transverse contribution in addi
to the helicity term that is frequently assumed to be the to
spin contribution@32,33,42#,

S(r )[~a3p1p̂!p̂•S. ~56!

We obtain

J5L (r )1S(r ) ~57!

and
01210
-
e

e

-

g

-
of

n
l

K5
1

2
~pr1rp!1p̂3S(r ) ~58!

5
1

2
~pr1rp!1ap•S ~59!

as the Foldy operators~generalized to arbitrarya) in terms
of our position operator. With these expressions, transfor
tion to one of the helicity forms is straightforward. By in
verting Eqs.~40! and ~34! the position operator become
D21rD5 ipa

“p2a, while D21p̂•SD5S3. The general he-
licity representation is given byOh5D21OD, which gives

Jh5~ ipa
“p2a!3p1~a3p1p̂!S3 , ~60!

Kh5
i

2
pa~p“1“p!p2a1apS3 . ~61!

If xp50, then a5f̂ cotu/p and Jh and Kh reduce to the
Shirokov operators given by Eqs.~12! and ~13! generalized
to arbitrary a, while if xp52f, a is given by f̂(cosu

21)/(psinu)52f̂ sinu/(11cosu) and Jh and Kh reduce to
the Lomont-Moses operators, Eqs.~10! and ~11!, with arbi-
trary a. Thus both the Lomont-Moses and the Shirok
transformations are special cases of Euler-angle rotat
relative to the Foldy form. In any irreducible helicity repre
sentation the position operator is justipa

“p2a as it is for
massive particles in the Foldy form, since the transverse
rections are fixed in the reference frame where the pho
momentum is parallel toe3. The helicity reference frame is
the photon frame, while the Foldy frame is the laborato
frame.

The commutation relations satisfied by the generators
time and space translations, rotations, and boosts,H5pc,
pi , Jj , andK j , are the standard ones required by the Po
caré algebra:@Jj ,Jk#5 i e jklJl , @Jj ,Kk#5 i e jklKl , @K j ,Kk#
52 i e jklJl , @Jj ,pk#5 i e jkl pl , @K j ,pk#5 id jkH/c, @K j , H]
5 icpj , @Jj ,H#50, @pj ,H#50. Analogous commutation re
lations are valid if L j

(r ) is substituted forJj and (pr j

1r j p)/2 for K j , since they are unitarily equivalent to th
zero-spin case of the above. Commutation relations invo
ing r j in the laboratory frame can be most simply derived
performing a matrix rotation to the photon reference fram
in which r is replaced byipa

“p2a and noting that compo-
nentspj in the momentum representation commute with t
rotation matrixD. Thus @r j ,r k#50, @r j ,pk#5 id jk , @r j ,H#

5 iHp j /p2, @L j
(r ),r k#5 i e jkl r l , @r j ,Spk#50, and@L j

(r ),Spk#
50. It follows from the last two relations that a photon ca
simultaneously have definite helicity and either a defin
position or a well-defined spatial component of orbital ang
lar momentum. In other words, measurement of either
position or the orbital angular momentum of a photon st
does not change its helicity. Furthermore, because

@Jk ,p̂•S#50, @Kk ,p̂•S#50, @pk ,p̂•S#50, ~62!
1-7
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MARGARET HAWTON AND WILLIAM E. BAYLIS PHYSICAL REVIEW A 64 012101
the helicity is an invariant of the Poincare´ group; it is invari-
ant under all rotations, boosts, and translations~as long as
these avoid the originp50). Consequently, every represe
tation of the Poincare´ group for photons can be reduced
the direct sum of representations for the two helicities, a
every irreducible representation will be carried by states o
single helicity. It may therefore be convenient to specify t
operators for the separate invariant helicity subspaces.
momentum and energy operators are unchanged, the pos
operator is as given above in Eq.~46!, and J and K take
exactly their Pryce forms

J5L (r )1S(r )5rP3p1p̂k ~63!

and

K5
1

2
~pr1rp!1ak5

1

2
~prP1rPp!, ~64!

with rP5r1ka.
It is important that our position operators obey the corr

dynamical equations. In the Heisenberg picture, the dyn
ics are determined by the equation of motion, which fro
Eq. ~40! is

dr

dt
5

]r

]t
1 i @H,r #5 i @cp,r #5cp̂. ~65!

Thus our theory predicts that the photon has a velocitv
5cp̂, as required. We also note thatr , Eq. ~41!, is Hermitian
and symmetric under time reversal. One may in addition
pectr to change sign under parity inversion, but this depe
on the gauge potential. It is valid forr (0), but for other
gauges we must generally replace the inversion inxp by the
gauge changexp→2xp in order to ensure the invariance o
“xp .

In general, the position operator rotates as a simple ve
underL (r ) since@L j

(r ) ,r k#5 i e jkl r l , but not underJ:

@Jj ,r k#5 i e jkl r l1@Sj
(r ) ,r k#. ~66!

From @ p̂"S,r j #50 and Eq.~56!, we thus find

@Jj ,r k#5 i e jkl r l1@~a3p1p̂!•ej ,r k#k

5 i e jkl r l2 ikH ]

]pk
~a3p1p̂!•ej J . ~67!

The extra term represents a deviation from the usual com
tator ~3!, and is due to the coupling of the momentum a
spin of a photon. Note that the deviation vanishes for ro
tions aboutp̂. It also vanishes in the special case of a rotat
aboute3 whenxp is independent off.

For a photon with helicityk the momentum-space state
localized atr are

Cr8,k~p!5Npae2 i r8•pepk , ~68!

as may be verified by direct application of the operatorr , Eq.
~40!. In particular, the localized state at the origin,
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C0,k~p!5Npaepk , ~69!

gives

L (r )epk52p3repk50 ~70!

since C0,k is an eigenvector ofr with eigenvalue 0. The
relationr , epk50 also follows directly from the transforma
tions ~40! and ~B1!. UsingJ5L (r )1S(r ) whereS(r ) is given
by Eq.~56!, we find the rotation by an infinitesimal angledj

about the axisĵ to be

exp~2 iJ•dj!epk5exp~2 iS(r )
•dj!epk

5exp@2 ik~a3p1 p̂!•dj#epk , ~71!

with dj5 ĵ dj. Thus the rotated transverse basis vectors
helicity k satisfy

exp~2 iJ•dj!epk5exp@2 ik~dx2dxp!#epk , ~72!

and are thus changed only by an infinitesimal phase shif

2k~dx2dxP!52k~a3p1p̂!•dj. ~73!

Here,dxp5dp•“xp is the change in the functionxp(u,f)
that results from the changedp in the photon momentum
~Note thata and S(r ) depend on the orientation ofp̂, and
therefore ordered integral expressions of the Dyson type
required for finite rotations. See also the Appendix.!

Sinceep0[p̂ is a longitudinal basis vector correspondin
to helicity k50, it follows from p̂•Sep050 that Eq.~72! is
also true of the longitudinal vector. Indeed, Eq.~72! may be
considered an extension of the expected invariance of
radial vector fieldp̂ under rotations. Also, ifĵ5e3 andxp is
constant, then it is readily shown thatdx2dxP50 so that
this cylindrically symmetric transverse vector field is inva
ant under rotations aboute3. Note further from Eq.~49! that
with dp5dj3p, the infinitesimal rotation factor becomes

D~p1dp!D21~p!512 iA•dp512 i ~S2S(r )!•dj.
~74!

The part 2 iS•dj gives the additional rotation wherea
iS(r )

•dj corrects the axial rotation implied by the function
dependencexp(u,f).

One can understand the extra term in the commutato
the position with the angular momentum by comparing E
~67! and~73!. Rotations generally change the ‘‘gauge pote
tial’’ a in a way analogous to transformations of the elect
magnetic potentialA under Lorentz transformations. Th
](a3p1p̂)•ej /]pi term in Eq.~67! is required in order to
give the axial spin rotation needed by the matrices associ
with each component ofr . Such axial rotations result in th
phase change of eigenvectors during a rotation that maint
the functional dependence ofxp and is required in order to
give the correct Berry’s phase for photons~see the next sec
tion!. The possible transformations are discussed in m
detail in the Appendixes, and Eqs.~73! and~67! are indepen-
dently derived in Appendixes B and C, respectively.
1-8
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V. RELATION TO BERRY’S PHASE

The phase angle2k(dx2dxp) is important and has
measurable consequences. In particular, it can be integr
to give the total phase change of a state vector of helicitk
when transported along a closed loop in parameter sp
The result depends on the type of transport, but it will n
depend on any single-valued functional choice ofxp . How-
ever, it is natural to makexp multivalued and path depende
~nonintegrable!, and in that case the phase change will d
pend linearly on the changeDxp around the closed loop, a
we show explicitly below. If we use parallel transport, t
angle 2k(dx2dxp) is Berry’s phase@34,43# gk , a topo-
logical phase accumulated by the photon. This is consis
with a more general association of Berry’s phase in quan
systems with geometrical angles@44#.

While Berry’s derivation assumed adiabatic transport
energetically discrete states, his results can also be appli
degenerate helicity states in parallel transport@44,35#. Paral-
lel transport on the spherical surface of constant radiusp is
most easily realized by piecing the path together from m
small segments of great circles and employing nonrota
transport along each segment. Each great-circle segmen
quires an axis of rotation that is perpendicular top but gen-
erally changes asp moves. From Eqs.~73! and ~72!, the
accumulated phase for great-circle segment (p̂•dj50) is

2k~Dx2Dxp!52k R ~a3p!•dj

52k R a•~p3dj!

5k R a"dp, ~75!

where we noteddp5dj3p. The same result~75! can be
obtained directly from Berry’s derivation@34# of the geomet-
ric phasegk . We can write his starting point in differentia
form as

dgk5 i ^uk~p!u“uk~p!&•dp ~76!

since the relevant parameter for the photon as it is guide
an optical fiber is its momentump. In our case, the eigensta
uk(p) is proportional to the column vector

epk5Dek ~77!

so that Berry’s relation~76! reduces to

dgk5 i ^ek
†D†~“D !ek&•dp5^ek

†D†ADek&•dp ~78!

5^epk
† Aepk&•dp5ka•dp, ~79!

where the matrix sandwich indicated by angular brack
^•••& is a vector-valued 131 matrix, and we have noted tha
S3p̂ has a vanishing diagonal in theepk basis. In terms of
the polar anglesu, f, displacement on the spherical surfa
is given bydp5f̂p sinu df1ûp du, and therefore with Eqs
~44! and ~45! for a, the line integral~75! gives
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2k~Dx2Dxp!5kS R cosu df1 R “xp•dpD
5kS R cosu df1DxpD . ~80!

The result depends on the functionxp . We must choose a
function that eliminates superfluous axial rotations. Rec
that the basis vectorsepk are obtained from the referenc
frame by the rotationD(f,u,xp)ek . To avoid unwanted
axial rotations, we ensure thatp is also parallel transported
by this rotation. This requires the function choice

xp~u,f!5xp
(1)~u,f!52f ~81!

to makeD(f,u,xp) equivalent to the direct great-circle ro
tation frome3 to p̂. The phase shift is then

gk52k~Dx2Dxp
(1)!5kS R cosu df22p D52kV,

~82!

where V is the solid angle enclosed by the loop. This
Berry’s geometrical phase@34# which has been confirmed in
experiments on light in helically wound optical fibers@35#.
The sign convention@34# is taken such that the dynami
phase of a stationary state@due to a factor of exp(2ivt)#
decreases in time~see also Appendix D!.

One often seeks to generalize the above result by an
plication of the Stokes theorem. In our case,

R a(1)
•dp5E

V
~“3a(1)!•p̂p2 dV

52E
V

p̂•
p̂

p2
p2 dV52V, ~83!

whereV is the solid angle of the integrated area. The res
should be valid as long as the integrated area and its bo
ary avoid singularities and branch cuts. Since it is the cur
a that appears in the surface integration~83!, gauge transfor-
mationsa→a1“xp will not change the result ifxp is a
single-valued function ofp. This is consistent with the line
integral ~80! since, for any single-valuedxp , the difference
Dxp vanishes over a closed loop.

If, as in the optical-fiber experiments@35#, p describes a
circular path that makes a fixed angleu with any fixed di-
rection, thenV52p(12cosu) so that the change in phas
angle is

gk5k R dp•a(1)52pk~cosu21!. ~84!

However, the derivation also apparently works ifa(1) is re-
placed bya(0), even though these results should differ
kDxp

(1)522pk for a closed loop arounde3. While such a
difference is not observable, we can trace its origin to
nonintegrable nature ofxp

(1) and the associated string sing
larity through the integrated area of the surface integral~83!.
1-9
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The argument can in fact be turned around to imply t
because the difference cannot be observable, the hel
must be quantized.

Since the string contribution is frequently ignored, it m
be useful to elaborate its role. Recall that Dirac’s magne
monopole contains a string to bring the magnetic flux to
monopole inside a solenoid with a vanishing diameter.
though strings are not evident in our expression~50! of “
3a, their presence is implied by the expression~44! for a(0).
The physics is clearer if we writea(0) as the limit of a non-
singular function:

a(0)5f̂ lim
p0→0

p' cosu

p'
2 1p0

2
, ~85!

wherep'[p sinu is the momentum-space distance from t
e3 axis andp0 represents the approximate diameter of
solenoid. The ‘‘magnetic field’’ corresponding to the ‘‘vec
tor potential’’ is

“3a(0)5 lim
p0→0

F2p̂
sin2u

p'
2 1p0

2
1e3

2p0
2 cosu

~p'
2 1p0

2!2G . ~86!

The first term becomes the monopole field in the limit, a
the second term represents the two axial strings. It vanis
everywhere except on the axis and can be expressed
two-dimensional Dirac delta function, giving

“3a(0)52
p̂

p2
12pe3 cosud (2)~p'!, ~87!

where we can also writed (2)(p')5d(p1)d(p2), and the co-
efficient of the second term on the RHS has been chose
give the correct surface integral overp'dp'df at fixed
up cosuu@p0. On the string, cosu561, so that we have two
half strings along the two halves of thee3 axis, both taking
‘‘magnetic flux’’ away from the origin. The string term add
exactly 2p to the surface integral~83!, thereby restoring the
Stokes theorem and bringing the surface and line integ
into agreement. As mentioned above, gauge transformat
with various functional formsxp(u,f) can shift the strings
and replace them by explicitly nonintegrable functions. T
choice ofxp

(1) makesa nonsingular over the integrated su
face in Eq.~83! between the loop and the upper poleu50,
but a(0) has a singularity penetrating the same surface, giv
both line and surface integrals for the phase differe
2k(Dx2Dxp) that differ by kDxp

(1) . The agreement also
extends to use of the surface that includes the pole atu5p
for both cases 0 and 1. For the choicexp

(2) , the line and
surface integrals both vanish if the branch cut is inser
explicitly in the surface integral, so that the nonintegra
function in Eq.~54! is replaced by

a(2)5
û

p
@f22ph~f2f0!#sinu, ~88!

for example, with 0,f0,2p where h(f2f0) is the
Heaviside step function.
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VI. DISCUSSION

In this section, the nonexistence proofs and recent pa
concerning localized states are briefly reviewed, the n
photon position operators are discussed in the context of
literature, and our results are summarized.

The most quoted paper is that of Newton and Wign
@13#. These authors assumed a rotationally invariant se
localized states and arrived at the position operator of
form ipa

“p2a for spinless particles with or without mas
They also obtained an expression of the position operator
massless particles of spin12 . Regarding photons, they state
that for S51 and higher ‘‘we found that no localized state
in the above sense exist. This is an unsatisfactory, if
unexpected, feature of our work.’’ As a result of their co
clusion, it is frequently stated that a~spatial! photon wave
function does not exist@2#. The localization postulate
adopted by Newton and Wigner is strong~any displacement
of a localized state is assumed to make it orthogonal to st
of the undisplaced set! and has been the focus of a number
more recent studies. In particular, Wightman and others@14#
have used generalized imprimitivities@45# to reformulate lo-
calization more rigorously in terms of localizability in a re
gion. However, their work did not alter the conclusion tha
single photon is not localizable. Other authors have sou
effective wave functions that satisfy a somewhat relaxed
calization condition@5,18,27,46,47#.

We suggest a different potential problem with the conc
sion of Newton and Wigner for massless particles of spinS
>1. To ensure a rotationally invariant linear manifold
localized states for a system with total angular moment
quantum numberj, they assumed acomplete setof 2 j 11
wave functionsc jm ,2 j <m< j , where m is a component
referenced to an external direction. While the existence o
complete set is sufficient to give a rotationally invaria
manifold, it is not necessary for massless particles of s
S. 1

2 . Massless particles with spin have only two spin stat
namely those corresponding to the helicities6S. For a sys-
tem of states at the coordinate origin, the orbital angu
momentum vanishes andj 5S. The states in the linear man
fold are characterized by components ofj not along a space
fixed direction but along the momentum directionp̂. For S
. 1

2 , the manifold is not complete and consequently it can
describe a state with spin quantized along anarbitrary direc-
tion. However, itcan describe the allowed states with eith
helicity. Furthermore, since the helicity operator commu
with the generatorJ of rotations, the two helicity subspace
are separately rotationally invariant. Because the helicity
eigenstates form a complete rotational set only forS< 1

2 , it is
clear why Newton and Wigner’s insistence on a compl
rotational manifold is stronger than necessary for mass
particles withS>1.

In the papers based on the method of generalized
primitivities @14#, it appears that the system of commutin
imprimitivities, through which the position operator is d
fined, is assumed to be independent of spin.~This arises from
Wightman’s axiom V@14#.! As seen above, for example i
Eq. ~46!, the spin is inextricably coupled to the momentu
and thereby to the position operator. Position operators
1-10
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known to exist for massless particles of spin 0, and it may
possible to find a system of imprimitivities like that for th
scalar case for each value of the invariant helicity. In a
case, the imprimitivities must be distinct for different helic
ties because the position operators are.

In several more recent proofs of the nonexistence o
photon position operator with commuting components,
erator algebra was used with the assumption that the pos
operators satisfy Eq.~3! @15–18#. However, we have shown
above and in Appendix C that the matrixr includes a ‘‘gauge
potential’’ a that is transformed by rotations. As a result, t
commutator@Jj ,r k# contains an additional term involvin
the spin, and indeed that this extra term is required in or
to give the correct phase of the rotated photon state.
components of the position operators~40! thus satisfy Eq.
~67!, which, unlike the more familiar relation~3!, is compat-
ible with commuting components. Thus, nonexistence pro
that assume Eq.~3! do not apply.

Our construction of the photon position operator use
spin rotation to decouple the spin from the momentum wh
the gradient operator acts to generate momentum-s
translations. It seems to be the most natural way to retain
usual role of the position operator in momentum spa
While we have not touched on important questions about
limits to which the photon position is observable in a d
namic measurement, our demonstration that a photon p
tion operator does in fact exist means that there is no non
nishing commutator@r j ,r k# to limit the calculation of photon
probability amplitudes. Simultaneous eigenvectors of the
eratorsr j are available for calculation of the probability th
the corresponding eigenvalue is observed. Of course lim
tions arising from Fourier analysis, similar to those app
cable to massive particles, still apply. Our work therefo
supports the view that photons have wave functions that
not qualitatively different from those of massive particles,
concluded by Białynicki-Birula@46# and Sipe@5#. The rules
of quantum mechanics require that each observable be
resented by a Hermitian operator. The localized basis
found here make it possible to treat photons like mass
particles in quantum calculations of interference experime
and other situations where particle amplitudes in coordin
space are useful; in both cases the usual rules of quan
mechanics can be applied.

There is no unique representation of the photon posi
operator. Just as there are many spin bases that can be
to describe the internal state of a massive particle, there
many bases that can be used to describe the combined t
lational and internal motion of a photon. The peculiar asp
of the photon is that, because of the coupling of the spin
the momentum, the position operator is a matrix that d
not commute with the spin. Different position operators w
commuting components can be defined by specifying the
pendencexp(u,f) of the axial rotation angle on the pola
angles ofp̂. Different choices ofxp lead to different ‘‘gauge
potentials’’ a for the phase of the photon state at differe
positions in momentum space. In general, phase change
pend on the path and are thus described by a nonintegr
function. While a specific choice of gauge usually results
operator expressions with less than the expected symm
01210
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of the Hamiltonian, the symmetry is obtained within the fu
group of possible gauges. The forms that result from a se
tion of xp are all unitarily equivalent to each other and to t
position operator for a massive particle,ipa

“p2a, where the
unitary operator is the rotation through Euler angles. T
operatoripa

“p2a has eigenvectors with a fixed direction
space and is independent of the spin. Consequently, for m
sive particles the description of spin is a separable probl
However, the spin and momentum of a photon are inexo
bly coupled, since the direction ofp determines the direction
of the observable componentp̂•S of the internal angular mo-
mentum. Position operators with transverse and longitud
eigenvectors could in principle be used to describe a mas
particle, but this is probably not useful sinceipa

“p2a is a
simpler alternative. For a massless particle this choice d
not exist, reflecting the fact that for a photon, the orbital a
spin angular momenta are not separable.

In summary, the arguments presented here show th
photon is much like any other particle in that its position
an observable described by a set of three commuting Her
ian operators. However, the photon~as well as other mass
less particles of spinS. 1

2 ) has only two linearly indepen
dent spin states, and in these states the spin is coupled t
momentum. As a result, its position operator is a matrix t
does not commute with the spin. Different selections of
functionxp(u,f) generally give different position operator
so that the position operator is not unique and does not tr
form underJ as a simple vector. However, the eigenvecto
of any one of these unitarily equivalent position operat
give a basis of localized states with unique eigenvalues
are independent of helicity, and there is consequently no
agreement as to the actual position of the photon. Contrar
the traditional view, localized basis sets do exist, and it
pears that photon wave functions can be defined accor
the usual rules of quantum mechanics.
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APPENDIX A: DECOMPOSITION OF ROTATIONS

The purpose of this appendix is to derive relations b
tween an infinitesimal rotation about an arbitrary axis
three-dimensional space and angular parameters in a pro
of rotations around specified axes. These relations are
used to predict rotational properties of the photon posit
operator and its eigenstates. The angular parameters ar
Euler angles that specify the polar and azimuthal coordina
u andf, respectively, of a given directionp̂ together with an
axial anglex aboutp̂. One can express the Euler-angle p
rametrization in terms of active rotations about spaced-fi
1-11
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axes: with thep-frame axes initially coincident with the
space-fixed axese1 ,e2 ,e3, of the laboratory frame, a firs
rotation byx aboute3 is followed by a rotation byu aboute2
and finally a rotation byf aboute3. The axial rotation angle
x does not affect the directionp̂ and may be chosen to be
function, sayxp(u,f), of the ‘‘local coordinates’’u,f that
specifyp̂. A rotation by the Euler angles„f,u,xp(u,f)… has
only two degrees of freedom and is uniquely determined
the directionp̂.

The derivation is easily constructed using tools of C
ford’s geometric algebraCl3 of 3-dimensional space@48–
50#. Those not familiar with the algebra can follow the de
vation in terms of the 232 matrices that form the commo
matrix representation in which the Cartesian unit vect
e1 ,e2 ,e3 are replaced by the corresponding Pauli spin ma
ces familiar to physicists. In the algebra, vectors are rota
by transformations of the form

v→RvR†, ~A1!

whereR(j)5exp(2ij/2)PSU(2) is the element for a rota
tion by the anglej5uju about the axisĵ. The rotation speci-
fied by the Euler angles (f,u,x) is given by the rotation
element

R~f,u,x![R~fe3!R~ue2!R~xe3!

5exp~2 ife3/2!exp~2 iue2/2!exp~2 ixe3/2!.

~A2!

An additional rotation will generally change all three angu
parametersf,u,x. We want to determine the changes caus
by an infinitesimal rotationR(dj).

To clarify our objective, we first consider the simple ca
in whichdj5dj e3. The only effect ofR(dj) is to increment
the azimuthal anglef:

R~f,u,x!→R~dj e3!R~f,u,x!5R~f1dj,u,x!.
~A3!

This result is easily written in terms of the rotation
R„f,u,xp(u,f)… that have only two degrees of freedom:

R~dj e3!R„f,u,xp~u,f!…5R„f1dj,u,xp~u,f1dj!…

3R~2e3 dxp!, ~A4!

wherexp(u,f1dj)5xp(u,f)1dxp anddxp5dj ]xp /]f.
Now we generalize this approach to an arbitrary infinite

mal rotation by dj5dj1 e11dj2 e21dj3 e3. We initially
consider x an independent parameter and so
R(dj)R(f,u,x)5R(f1df,u1du,x1dx) for the infini-
tesimal changesdf,du,dx in the Euler angles. To first orde
in the changes,
01210
y
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i-
d

r
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-

R~f1df,u1du,x1dx!

5F12
i

2
~e3 df1e2 ie3fe2 du1Re3R†dx!GR~f,u,x!

5H 12
i

2
@e1~sinu cosf dx2sinf du!1e2~cosf du

1sinu sinf dx!1e3~df1cosu dx!#JR~f,u,x!,

~A5!

in which we have explicitly accounted for the lack of com
mutivity of rotations about different axes. Equation~A4!
therefore implies

dj5e1~sinu cosf dx2sinf du!

1e2~cosf du1sinu sinf dx!1e3~df1cosu dx!,

~A6!

which is readily solved to give

df5dj32cotu~dj1 cosf1dj2 sinf!

du5dj2 cosf2dj1 sinf

dx5
dj1 cosf1dj2 sinf

sinu
. ~A7!

Note the singular nature of the relations fordf anddx in the
limit u→0. Singularities are common whenever general
tations are parametrized in terms of rotations about spec
axes. They are related to the nonuniqueness of the param
zation for some rotations, for example all of the rotatio
D(f,0,x2f) for fixed x and arbitraryf are equal. We can
also express the rotation~A5! in terms of rotations with two
degrees of freedom:

R~dj!R~f,u,xp!

5R~f1df,u1du,xp1dx!

5R~f1df,u1du,xp1dxp!R„~dx2dxp!e3…

5R„~dx2dxp!p̂…R~f1df,u1du,xp1dxp!,

~A8!

wherexp5xp(u,f) and
1-12
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dx2dxp5dx2S ]xp

]f
df1

]xp

]u
du D ~A9!

5Fcosf

sinu S 11cosu
]xp

]f D1sinf
]xp

]u Gdj1

1Fsinf

sinu S 11cosu
]xp

]f D2cosf
]xp

]u Gdj2

2
]xp

]f
dj3 ~A10!

5~a3p1p̂!•dj, ~A11!

where in the last step we used the definition~44! and~45! of
a. While the derivation employs tools of geometric algeb
the result is generally valid for spatial rotations in thre
dimensional space.

A similar analysis gives the result of an infinitesimal r
tation added to the RHS:

R~f,u,xp!R~dj8!5R~f1df,u1du,xp1dx! ~A12!

5R~f1df,u1du,xp1dxp!

3R„~dx2dxp!e3…. ~A13!

In this case, we obtain

df5
2dj18 cosx1dj28 sinx

sinu

du5dj18 sinx1dj28 cosx ~A14!

dx5dj382df cosu

dx2dxp5dj18Fcosx

sinu S cosu1
]xp

]f D2sinx
]xp

]u G
2dj28Fsinx

sinu S cosu1
]xp

]f D1cosx
]xp

]u G1dj38 .

~A15!
01210
,
-

These results can also be obtained from the Hermitian c
jugate of the relations~A5! and ~A4! by noting that
D†(f,u,x)5D(2x,2u,2f). Such added rotations from
the RHS are rotations in thep frame and can also be ex
pressed by

R~f,u,xp!R~dj j8 ej !5R~dj j8 epj !R~f,u,xp!.
~A16!

Evidently the Cartesian components ofdj8 are just the
p-frame components ofdj, that is,dj j85djpj . We make use
of this result in Appendix D.

APPENDIX B: APPLICATION TO ROTATIONS
OF STATE VECTORS

The helicity state vectorsepk are obtained by rotating the
constant column vectorsek ,

epk5D~f,u,x!ek , ~B1!

by the rotation matrix

D5exp~2 i S3f!exp~2 i S2u!exp~2 i S3x! ~B2!

generated by the spin-1 matricesSj . Starting in the Cartesian
basis with

e05S 0

0

1
D , e615

1

A2 S 1

6 i

0
D , ~B3!

the rotation matrix is, explicitly,
D5S cosu cosf cosx2sinf sinx 2~sinf cosx1cosu cosf sinx ! sinu cosf

cosu sinf cosx1cosf sinx cosf cosx 2cosu sinf sinx sinu sinf

2sinu cosx sinu sinx cosu
D , ~B4!
and we thus find

ep05S sinu cosf

sinu sinf

cosu
D , ~B5!
epk5
e2 ikx

A2 S cosu cosf2 ik sinf

cosu sinf1 ik cosf

2sinu
D , k561. ~B6!

Note thatep0 is a matrix representation ofp̂, andepk depends
on x simply through the phase factore2 ikx. We put x
1-13
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5xp(u,f) to obtain vectorsepk that depend only on the two
anglesu and f, and hence only on the direction ofp̂. The
direction ofp̂ can be changed by a further rotation ofepk by
dj of the form exp(2i dj•S)epk :

5D~f1df,u1du,xp1dx!ek ~B7!

5exp@2 ik~dx2dxp!#D~f1df,u1du,xp1dxp!ek

5exp@2 ik~dx2dxp!#ep1dpk . ~B8!

The rotation matrix exp(2i dj•S) shuffles the components o
the vectorepk . A complete rotation ofepk also includes the
operator exp(2i dj•L) which changes the angular argumen
u,f so as to rotatep̂ to p̂2dp̂. We thus find

exp~2 i dj•J!epk

5exp@2 ik~dx2dxp!#exp~2 i dj•L!ep1dpk

~B9!

5exp@2 ik~dx2dxp!#epk ~B10!

and consequently the only effect of a rotation ofepk by dj is
to change its phase by2k(dx2dxp), wheredx2dxp is
given by Eq.~A10!. This agrees with the partition ofJ into

J5L (r )1S(r ) ~B11!

since

L (r )epk5DLD21epk5DLek50 ~B12!

and

S(r )5p̂•S~a3p1p̂! ~B13!

p̂•Sepk5DS3D21epk5DS3ek5kepk ~B14!

~a3p1p̂!•dj5dx2dxp . ~B15!

APPENDIX C: APPLICATION TO ROTATIONS
OF THE POSITION OPERATOR

The new position operator has components

r l5 ipaD
]

]pl
D21p2a. ~C1!

The components of vector operators are expected to ro
into one another as given by the commutation relation~3!.
However, an additional factor arises by the need to transf
the matrix associated with each vector component by
axial rotation. The required spin rotation is given by that
the rotation matrixD. From relation~A8! we see that the
rotation transformsD(f,u,xp) to
01210
te

m
n

r

~12 iS•dj!D~f,u,xp!

5D~f1df,u1du,xp1dxp!@12 i S3~dx2dxp!#

~C2!

5@12 i p̂•S~dx2dxp!#D~f1df,u1du,xp1dxp!,
~C3!

where, from Eqs.~A11! and ~A10!,

p̂•S~dx2dxp!5p̂•Sdj•~ p̂1a3p!5S(r )
•dj. ~C4!

The result is to add@Sj
(r ) ,r k# to the RHS of Eq.~3!. The

added term is required for consistency with the pha
changes~B10! induced in the basis vectors by rotations.

APPENDIX D: ROTATIONS OF THE REFERENCE
FRAME AND BERRY’S PHASE

An extra rotation acting on the RHS ofR(f,u,x) is
equivalent to the opposite rotation to the reference frame.
shown in relation~A16!, it is also equivalent to a rotation
from the left by the same angles but aboutp frame axes
instead of laboratory axes. This relation is useful in derivi
an expression for Berry’s phase@34#. Berry’s phase is a to-
pological phase that arises from adiabatic transport of a
crete state around a closed loop, and it is usually derived
a purely quantum phenomenon@34,43,44#. For the polarized
light, however, it was shown by Haldane@51# to be a conse-
quence of classical differential geometry. We derive it he
by means of the classical rotation operators introdu
above.

Transport in the adiabatic limit corresponds to para
transport in the given gauge@35,52#, which is equivalent to
nonrotating ~Fermi-Walker! transport on geodesics. W
achieve this in rotations ofp by piecing together the close
loop from a sequence of great-circle rotations, in each
which the rotation axis is orthogonal top and the axial rota-
tion vanishes. Thus, in Eq.~A8! we vary j8 such thatdj38
50. Then, from Eq.~A14!,

dx52cosu df. ~D1!

We vary the parametersj18 andj28 so as to complete a close
loop, increasingf by 2p. The conditiondj3850 ensures that

the change inp̂ is always along a great circle. There is
change in the axial angle2x by

2Dx5 R cosu df ~D2!

even afterp has looped back to its original direction. If th
initial orientation of the photon frame is given byR(f,u,x)
with the momentum directionp̂, the orientation afterf has
increased by 2p is R(f12p,u,x1Dx), giving a the net
rotation of
1-14
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R~f12p,u,x1Dx!R21~f,u,x!

5exp@2 i ~x1Dx!p̂/2#exp~2 ipe3!exp~ ixp̂/2!

5exp@2 i ~Dx12p!p̂/2#, ~D3!

where we used the symmetry

R~f,u,x!5exp~2 ixp̂/2!R~f,u,0!, ~D4!

which allows us to cancel theu rotations, and we noted tha
exp(2ipe3)5215exp(2ip p̂). The total rotation under
parallel transport about the loop is thus the rotation aboup̂
by the angleh5Dx12p5r(12cosu)df.

Note that the result does depend on the parallel trans
of p. If we rotatep directly around the space-fixede3 axis,
then we simply changef by 2p and the axial anglex does
not change. The mathematical confirmation of this resul
found from Eq.~A7! with dj15dj250. The rotation in this
case is not on a great circle~unless cosu50) andp is there-
fore not parallel transported.

The phase change for electromagnetic plane waves
given helicity is proportional to the rotation angle. To see
relation, consider electromagnetic plane waves of helicityk,
for which the fieldF5E1 icB is @49#
s

ic

-

er

01210
rt

is

of
e

F5~11p̂!E0 exp@ ik~vt2p•x!p̂#. ~D5!

An additional axial rotation byh transforms this to

exp~2 ihp̂/2!F exp~ ihp̂/2!

5F exp~ ihp̂! ~D6!

5~11p̂!E0 exp@ ik~vt2p•x1kh!p̂# ~D7!

and gives the phase change2kh relative to2vt. This is
exactly Berry’s phase~80!,

k R ~cosu21!df52kV, ~D8!

whereV is the solid angle subtended by the loop. It is ju
that calculated directly from the line integral in Sec. V wh
xp5xp

(1)52f so that the rotation matrixD(f,u,xp) rotates

S3 directly into S•p̂, and it agrees with the relation betwee
angle and geometric phase found by Berry@53#.
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