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We consider one single copy of a mixed state of two qubits and investigate how its entanglement changes
under local quantum operations and classical communicatigp€C) of the typep’ ~(A®B)p(A®B)'. We
consider a real matrix parametrization of the set of density matrices and show that these LQCC operations
correspond to left and right multiplication by a Lorentz matrix, followed by normalization. A constructive way
of bringing this matrix into a normal form is derived. This allows us to calculate explicitly the optimal local
filtering operations for concentrating entanglement. Furthermore, we give a complete characterization of the
mixed states that can be purified arbitrarily close to a Bell state. Finally, we obtain a new way of calculating
the entanglement of formation.
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Entanglement of two separated quantum systems impliegperator valued measuf@OVM) for concentrating the en-
that there are nonlocal correlations between them. This fedanglement. We show that there exist two classes of states
ture of nonlocality has found practical applications in quan-corresponding to the two normal forms: those that can be
tum information theory(see, for example, Refl]). Most  brought into Bell diagonal form leaving the rank of the den-
applications require that both parties share maximally ensity matrix constant, and those that can asymptotically be
tangled states. A realistic preparation and transmission ddrought into Bell diagonal form with lower rank. This last
entangled states, however, yields mixed states. Therefor€lass contains a subclass of mixed states that can be purified
Bennettet al. [2], proposed a protocol that allows one to arbitrarily close to the singlet state.
obtain asymptotically a nonzero number of maximally en- In this paper we will consider the filtering operations
tangled pure states by carrying out collective measurements
on a large number of copies of entangled mixed states. Their ) (A®B)p(A®B)T
scheme, however, required that the fidelity of the mixed p = ;
states exceed 1/2. Tthorodeckis subsequgntly showed how T(A®B)p(ASB)"]
mixed states of arbitrary fidelity could be purified by first

applying a filtering operation to each copy separafd@y : .
: e . ._ment destroys all entanglement, we will only consider the
Linden et al. [4] then asked whether it is possible to obtain cases de)+0 and detB)£0. Let us now calculate how

singlets out of mixed states by allowing only local operations .
on each copy separately. While this is possible for puri[he entanglement of formatiofEoR) changes under these

states, they proved that this is impossible in general fo ocal operations. The EoF of a two qubit system can be cal-

mixed state$4.5], as the best state one can obtain is a BeII_culated as a convex monotonically increasing function of the

diagonal statd§6]. The Horodeckis, however, gave an ex- pongurrencés]. As shown in Ref[ll],.the concurrence of

ample of a mixed state that could be purified arbitrarily closdS 9IVen bmiaX(O”'l_ T2 T3 7) V¥'th {7} the smgu]ar

to a singlet state through a process called quasidistillatiof@!uesS ofX'(o,® ‘TY?X with p=XX'. Under the filtering

[7]. operatlgns we hav’'=(A®B)X/{Tr(A'A®QB'Bp). Smge
We shed light on those results by observing that filtering(A® B) ' (0y® o)) (A®B) =det(A)det(B)(oy®0y),  this

operations on two qubits correspond to Lorentz transformaProves the following theorem. _

tions on a real parametrization of their density matrix. Using 1 heorem 1Under the filtering operations (1), the concur-

Lorentz transformations, this real parametrization can b&€nce changes as

brought into one of two types of normal forms, thus giving a

characterization of all states that can be transformed into ) |det A)||de(B)]

each other by local operations. Our scheme also yields a way C'= M' @

of calculating the entanglement of formati@8], with as a

by-product a simple proof of the necessity and sufficiency of

the partial transpose criterion of Pell@10]. The main re-

sult of this Rapid Communication, however, is the fact that

we provide a constructive way of finding the optimal positive

@

whereATA<1,,B'B=I,. Since a local projective measure-

It will turn out to be very useful to introduce the real and
linear parametrization of the density matfik?]

1
p:ZZ Rijo-i®0-ji (3)
i
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*Email address: bart.demoor@esat.kuleuven.ac.be 2X 2 identity matrix ando,,0,,03 the Pauli spin matrices.
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Below we will often leave out the normalization pfandR. a 0 o b

Note that normalization ofR is very simple sinceRgq 0d o 0

=Tr(p). =10 o0 -4 0 : ©)
We will now prove howR transforms under the LQCC

operationg1). c 0 0 atc—b
Theorem 2 The 4X4 matrix R with elements R

=Tr(p(o;®0j)) transforms, up to normalization, under with a,b,c.d real

LQCC operations (Las The proof of this theorem is quite technical. It heavily

depends on results of matrix decompositions in spaces with
R =LARLS, (4) indefinite metric[13]. We first introduce the matrixC

=MRMR', which isM self-adjoint, i.e.MC=C"M. Using
where L, and Lg are proper orthochronous Lorentz trans- theorem(5.3) in Ref.[13], it follows that there exist matrices

formations given by X and J with C=X"1JX, J consisting of a direct sum of
real Jordan blocks andM X"=N; with N a direct sum of
LA=T(A®A*)TT/|de‘(A)|, (5) symmetricnxXn matrices of the forn{S;;]=*[&,; n+1l,
with n the size of the corresponding Jordan block. Using
Le=T(B®B*)T'/|de(B)|, (6) Sylvester's law of inertia, there exists orthogor@ such
thatN;=0]MO;. It is then easy to check th@;X=L] is
1 0 0 1 a Lorentz transformation. Therefore, the relatios
=MRMR'=ML;MO;JO]L] hold. Left multiplying byM,
T= i 01 1 0 @) Sylvester’s law of inertia implies that there exists a makrix
J210 i —i 0 with the same rank agsuch thaM 0;J0]=3M3T. There-
10 0 -1 fore, we have the relatioRMR'=L,3M3TL]. If Rhas the

same rank aRMR', this relation implies that there exists a

This theorem can be proven by introducing the matrix-orentz transformatioi., such thalR=L,L;. .

Pk =P 1 and noting thatR=4TpTT. It is easy to N Ee(t)Tul\jc;IO\;]v mvestlgate the p_os_S|EIe forms Bf Since
. ~ =0, ;3 has the signature ), J can only be a

EheCk that uDder the LQCC operatiof®§ p transforms as direct sum of the following form: four X1 blocks; one

p'=(A®A*)p(B®B*)T, where the notatiol* is used 10 qrthogonal 22 block and two & 1 blocks; one X 2 Jor-

denote the elementwise complex conjugate. Theref®e, §an plock and two X 1 blocks: one X 3 Jordan block and

transforms asR’=LRLg|det(A)||det®)| with La=T(A  gne 1x1 block. Noting the eigenvalues & as{\,}, it is

@A*)T'/|det(A)], Lg=T(B®B*)T"/|det(B)]. Using the easy to verify that a “square rootS. in the four cases is

identities A(TyAT: det(A) O'y anq TTMT* = O'y® O'y with respective|y given by

M the matrix associated with the Lorentz metrid (1) 3 =diaq V[No|, VINa], VINS], VN3] 1P with P a permu-

=diad1,-1,-1,~1], it is easily checked thatsMLA tation matrix permutating the first column with one other

=M=LgM LE. Furthermore, the determinant by andLp column;

is equal to+1, and the (0,0) element &fis positive, which

completes the proof. cog @) sin(¢)

AE the comglex X 2 matrices with determinant one in-  (2) sziag{ m( sin( ) —cos(¢)) NI, m}

deed form the spinor representation of the Lorentz group,

there is a 1-to-2 correspondence between ehghand a b

Aldet(A). It is interesting to note that when bofhand B (3) 2=dia4 )\/W \/W}
are unitary, the theorem reduces to the well known fa2} ¢ atc-b

that the rows and columns d® transform underSQ(3), a 0 0

which is indeed a subgroup of the Lorentz group.
With the above theorem in mind, a natural aim is to find a b Ja?+b? 0

decomposition ofR as R=L;3L} with 3 diagonal and  (4) X=diag , |V
L,,L, proper orthochronous Lorentz transformations. This —ab a
would be the analog of a singular value decomposition, but Ja?+b? \a?+b?
now in the Lorentz instead of the Euclidean metric.
Theorem 3 The 4x4 matrix R with elements R with a=|\o| and b=—1/2|\|.

=Tr(p oi® o;) can be decomposed as
Now we return to the relatioR=L;> Lg. L, andL, can be
R=L,3LJ, (80 made proper and orthochronous by absorbing factefs
into the rows and columns dt, yielding 3'. Theorem 2
with L,,L, proper orthochronous Lorentz transformations, now implies that thisX’ corresponds to an unnormalized
and X, either of diagonal form® =diag[sy,s;,S;,S3] with s, physical state, which means thalt corresponding t& ' has
=s,=5,=|s4|, or of the form no negative eigenvalues. It is easy to show that this require-
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ment excludes cases 2 and 4 of the possible forn3s.dthe  cepts of entanglement of formation and of partial
third case corresponds to E(Q). Furthermore, in the first transposition (PT) [9]. Let us therefore defineRiFj’T
case the permutation matrix has to be the identity janl :Tr(pPTUi(@gj), which changes the sign of the third col-
=max(\|,[A2],\4). Multiplying by proper orthochronous ymn of R. In the case of diagonal normal form & it is
Lorentz transformations, the elemefiss; of this diagonal  yeadily verified that the normal form &"T equals that oR
can always be ordered 8g=s,=>5,=|ss|. except for the last element, whes§'= —s,. Retransform-
The case where the rank Gfis lower than the rank oR ing 3P to the pPT picture, we see that the corresponding

:t'gcheasofﬁg ESSCSQSif()etrridichlljsbés ggﬁoﬁo\i’ﬂgﬁ gmgTrOW'Bell—diagonal partial transposed state has minimal eigen-
_p . P ba value (sp—S;—S,+S3)/4. We readily recognize the expres-
=0. Some straightforward calculations reveal that the only

physical states for which this holds have normal fo{@ sion of th? concurrence of Theor_em 4 and therefore this ei-
with a=b=c andd=0 ora=b andc=d=0. This com- genvalue is negative if and only if the concurrence exceeds

pletes the proof 0. Moreover, we know thap®T is related to this Bell-

The two normal forms can be computed very efﬁcientlydi?].g(r’]naI state hby son;]e s.imilarity t;ansformgti?@B, h
by calculating the Jordan canonical decompositionGof WHICh cannot change the signature of a matrix due to the

=MRMR' and ofC’'=MRTMR. It is easy indeed to show inertia law of Sylvester. In the case of normal fo(®), ana-
that, for example, in the case of diagonalizaR|ehe eigen- log reasqning ShOWS. thatPT.h‘T’lS a negative eigenv_al_ue i
vectors ofC form a Lorentz matrix ands;| = yx(C). Note and only if|d| >0, which again is necessary and sufficient to

that we always order the diagonal elements such #jat have entanglemgnt. This completes the prqof Of:. .
=5,=>5,>|s4]. Theorem 5 Given a system of two qubits, this state is

States that are diagonal Ricorrespond téunnormalized separable if and only if its partial transpose has a negative

. . i eigenvalue.
Bell-diagonal states with ordered eigenvalues Although this result was already proven by Horodecki

N1=(So+S;+Sy—Sa)/4, (10) [10], we believe the previous derivation is of interest, since it
connects the entanglement measures concurrence and nega-

No=(So+S;— Sy +S3)/4, (11  tivity. Using this formalism, it indeed becomes possible to
prove that the concurrence always exceeds the negativity,

N3=(So—S1+ S+ S3)/4, (120  and it is furthermore possible to find a complete character-
ization of all states with maximal or minimal negativity for a

Na=(So—S1— Sy—S3)/4, (13)  given concurrence. This is important because in the two qu-

bit case the negativity is a measure of the robustness of en-
whereas states of typ@) correspond to the rank deficient tanglement against noise.

states Next we want to solve the problem of finding the POVM
such as to have a nonzero chance to produce a new state with
atc 0 O d the highest possible entanglement. From &), the maxi-
1| o 0 mum EoF is obtained witlA,B minimizing the expression
p== (14  Tr(ATA®B'Bp)/(|det(d)det(B)|). Absorbing the factors
21 0 0 b-c 0 |det(A)| and|det(B)| into A andB, it is sufficient to consider
d 0 0 a-b A and B with determinant 1. In thé picture, the optimiza-

tion is then equal to minimizing the (0,0) element Rf
For both cases it is easy to calculate the entanglement oileLg by appropriate_»,Lg. AbsorbingL, andL, into
formation analytically, respectively given by Refl4] Li=LaLIM andL.=LgLIM, this is equivalent to finding
the optimal vectors, andlg such thaﬂlElB is minimized
under the constraing Ml =1=I1gMlg.
=max(0,( —sg+S1+S,—53)/(25)) Let us first consider the case of diagoRalvith elements

dcC (0|d|/a) So=5,=5,=|5,|. Parametrizing o as (V1+|x|2x) andlg
andC=max(0|d|/a). = nd, as (V1+ an
Let us now consider an arbitrary statewith correspond- 25 (V1FIYI%y). the following inequalities holdi X1

ing R. Combining theorems 1, 2, and 3, it follows that the =50V1+ |X|>V1+lyl|2— s4]X][| Y| = so. Therefore, the con-
concurrence ofp is equal to the concurrence of the state currence will be maximized fak=y=0, leavings in diag-
corresponding t& multiplied by Ryy. We have therefore onal form. Collecting the previous results, it follows thaRif
proven the following theorem. is diagonalizable, the state with maximal concurrence that
Theorem 4 Given a statep, and associated with this can be obtained from it by single copy LQCC operations is
state R=L,3L), the concurrence ofp is given by C the one corresponding b that is a Bell-diagonal state. This
=max0,(—sp+S;+S,—S3)/2) or by C=max0,d|) de- isin complete accord with the results of Keeital.[6]. The
pending on the normal for. optimal A andB are thus given by the’22 matrices corre-
We thus have obtained a new method of calculating thesponding toL ;M andL M. The optimal POVM can then be
entanglement of formation of a system of two qubits. Inter-obtained by dividingA and B by their largest singular value
estingly, it turns out that this characterization relates the consuch thatA’TA<1 andB'B=<1, followed by calculating the
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square root#A.= \I,—ATA andB.=\I,—B'B, which are states having normal forit®) with a—b=a+c=|d|. These
rank 1. The optimal POVM'’s to be performed on the two states are mixtures of a Bell state with a separable pure state
qubits are then given byA,A.} and{B,B.}, respectively. orthogonal to it, and are therefore of measure zero in com-
Note that the probability of measuring\(B) is given by the  parison with the class of rank 2 states.

inverse of the gain in concurrence divided by the product of In conclusion, we obtained insight into the problem of
the largest singular values éf and B, and that the rank of |ocal filtering on one copy of two qubits by introducing the
the Bell-diagonal state is equal to the rank of the originalnotion of Lorentz transformations on a real matrix parametri-
state. It has to be emphasized that this single copy distillatioRation of their density matrix. This matrix can be brought
protocol is optimal. _Moreover, the p_revi_ous derivation givesijnto one of two types of normal forms. These normal forms
us a complete continuous parametrization of the surfaces Qfynain all the information about the entanglement of forma-
constant concurrence in state space: these surfaces are 968r and reveal an elementary connection between concur-

erated by applying all trace-preserving Lorentz ransformasen e ang the partial transpose criterion of Peres. Moreover,
tions to all the Bell-diagonal states with given entanglementth

: : s formalism enabled us to derive in a constructive way the
with as a special case the boundary between separable and.. - . :
optimal local filtering operations for concentrating entangle-
entangled states.

The optimal single copy distillation protocol for states ment on an arbitrary mixed state of two qubits. This could be

with normal form(9) still have to be derived. An analogous of great utility in constructing optimal distillation protocols.

reasoning as in the diagonal case leads to the conclusion thAfé showed that states of the first type can be locally trans-

|, andl are vectors associated with the Lorentz transformaformed into a Bell-diagonal state of the same rank with finite

tions bringing Eq.(9) into diagonal form. This is, however, probability, whereas stgtes of the _second kind can _asymptoti—
only possible in the limit wheré, andlg contain factors Cally be transformed into Bell diagonal states with lower

lim,_...[V1+t2,0,0t] and lim_.[V1+t20,0—t], respec- rank. This last class is of special interest as is contains the
tivetE/.wThis indeed allows one to bririg a'sy’m,ptoti'cally into Mixed states that can be transformed arbitrarily close to the

diagonal form with diagonal elements given by Singlet state.
[V(a—b)(a+c),d,—d,{(a—b)(a+c)] and off-diagonal This work was supported by the Flemish government
elements of order 17, yielding a state infinitesimally close through Research Council K. U. Leuvgoncerted Re-
to a Bell-diagonal state. The probability of getting this statesearch Action Mefisto-666 FWO Project Nos. G.0240.99,
during a measurement of the optimal POVM, however,G.0256.97 and Research Communities ICCoS and
scales as lim...1/t?. This is equivalent to the quasidistilla- ANMMM; and IWT projects EUREKA 2063-IMPACT,
tion protocol by Horodeck[7]. In this limit of t—, the  STWW; the Belgian State: through IUAP P4-02 and IUAP
rank of the new state is less than the original one, and it®4-2 and the Sustainable Mobility Programme Project No.
concurrence is given bid|/+/(a—b)(a+c). MD/01/24; the European Commission through TMR Net-
In the case whera—b=a+c=|d|, we are therefore able works ALAPEDES and System Identification, Brite/Euram
to create a state arbitrarily close to the singlet state. TheréFhematic NetworKNICONET), and Industrial Contract Re-
fore, the only mixed states that can be quasipurified to theearch: ISMC, Data4S, Electrabel, Laborelec, Verhaert, Eu-
singlet state by single copy LQCC operations are the rank 2opay.
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