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Local filtering operations on two qubits
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We consider one single copy of a mixed state of two qubits and investigate how its entanglement changes
under local quantum operations and classical communications~LQCC! of the typer8;(A^ B)r(A^ B)†. We
consider a real matrix parametrization of the set of density matrices and show that these LQCC operations
correspond to left and right multiplication by a Lorentz matrix, followed by normalization. A constructive way
of bringing this matrix into a normal form is derived. This allows us to calculate explicitly the optimal local
filtering operations for concentrating entanglement. Furthermore, we give a complete characterization of the
mixed states that can be purified arbitrarily close to a Bell state. Finally, we obtain a new way of calculating
the entanglement of formation.
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Entanglement of two separated quantum systems imp
that there are nonlocal correlations between them. This
ture of nonlocality has found practical applications in qua
tum information theory~see, for example, Ref.@1#!. Most
applications require that both parties share maximally
tangled states. A realistic preparation and transmission
entangled states, however, yields mixed states. There
Bennettet al. @2#, proposed a protocol that allows one
obtain asymptotically a nonzero number of maximally e
tangled pure states by carrying out collective measurem
on a large number of copies of entangled mixed states. T
scheme, however, required that the fidelity of the mix
states exceed 1/2. The Horodeckis subsequently showed
mixed states of arbitrary fidelity could be purified by fir
applying a filtering operation to each copy separately@3#.
Linden et al. @4# then asked whether it is possible to obta
singlets out of mixed states by allowing only local operatio
on each copy separately. While this is possible for p
states, they proved that this is impossible in general
mixed states@4,5#, as the best state one can obtain is a B
diagonal state@6#. The Horodeckis, however, gave an e
ample of a mixed state that could be purified arbitrarily clo
to a singlet state through a process called quasidistilla
@7#.

We shed light on those results by observing that filter
operations on two qubits correspond to Lorentz transform
tions on a real parametrization of their density matrix. Us
Lorentz transformations, this real parametrization can
brought into one of two types of normal forms, thus giving
characterization of all states that can be transformed
each other by local operations. Our scheme also yields a
of calculating the entanglement of formation@8#, with as a
by-product a simple proof of the necessity and sufficiency
the partial transpose criterion of Peres@9,10#. The main re-
sult of this Rapid Communication, however, is the fact th
we provide a constructive way of finding the optimal positi
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operator valued measure~POVM! for concentrating the en
tanglement. We show that there exist two classes of st
corresponding to the two normal forms: those that can
brought into Bell diagonal form leaving the rank of the de
sity matrix constant, and those that can asymptotically
brought into Bell diagonal form with lower rank. This las
class contains a subclass of mixed states that can be pu
arbitrarily close to the singlet state.

In this paper we will consider the filtering operations

r85
~A^ B!r~A^ B!†

Tr@~A^ B!r~A^ B!†#
, ~1!

whereA†A<I 2 ,B†B<I 2. Since a local projective measure
ment destroys all entanglement, we will only consider t
cases det(A)Þ0 and det(B)Þ0. Let us now calculate how
the entanglement of formation~EoF! changes under thes
local operations. The EoF of a two qubit system can be c
culated as a convex monotonically increasing function of
concurrence@8#. As shown in Ref.@11#, the concurrence ofr
is given by max(0,t12t22t32t4) with $t i% the singular
values of XT(sy^ sy)X with r5XX†. Under the filtering
operations we haveX85(A^ B)X/ATr(A†A^ B†Br). Since
(A^ B)T(sy^ sy)(A^ B)5det(A)det(B)(sy^ sy), this
proves the following theorem.

Theorem 1. Under the filtering operations (1), the concu
rence changes as

C85C
udet~A!uudet~B!u

Tr~A†A^ B†Br!
. ~2!

It will turn out to be very useful to introduce the real an
linear parametrization of the density matrix@12#

r5
1

4 (
i , j

Ri j s i ^ s j , ~3!

where the summation extends from 0 to 3 and withs0 the
232 identity matrix ands1 ,s2 ,s3 the Pauli spin matrices
©2001 The American Physical Society01-1
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Below we will often leave out the normalization ofr andR.
Note that normalization ofR is very simple sinceR0,0
5Tr(r).

We will now prove howR transforms under the LQCC
operations~1!.

Theorem 2. The 434 matrix R with elements Ri j
5Tr„r(s i ^ s j )… transforms, up to normalization, unde
LQCC operations (1! as

R85LARLB
T , ~4!

where LA and LB are proper orthochronous Lorentz trans
formations given by

LA5T~A^ A* !T†/udet~A!u, ~5!

LB5T~B^ B* !T†/udet~B!u, ~6!

T5
1

A2 S 1 0 0 1

0 1 1 0

0 i 2 i 0

1 0 0 21

D . ~7!

This theorem can be proven by introducing the mat
r̃kl,k8 l 85rkk8,l l 8 and noting thatR54Tr̃TT. It is easy to
check that under the LQCC operations~1! r̃ transforms as
r̃85(A^ A* ) r̃(B^ B* )T, where the notationA* is used to
denote the elementwise complex conjugate. ThereforeR
transforms asR85LARLB

Tudet(A)uudet(B)u with LA5T(A
^ A* )T†/udet(A)u, LB5T(B^ B* )T†/udet(B)u. Using the
identities AsyA

T5det(A)sy and T†MT* 52sy^ sy with
M the matrix associated with the Lorentz metricM
5diag@1,21,21,21#, it is easily checked thatLAMLA

T

5M5LBMLB
T . Furthermore, the determinant ofLA andLB

is equal to11, and the (0,0) element ofL is positive, which
completes the proof.

As the complex 232 matrices with determinant one in
deed form the spinor representation of the Lorentz gro
there is a 1-to-2 correspondence between eachLA and
A/Adet(A). It is interesting to note that when bothA andB
are unitary, the theorem reduces to the well known fact@12#
that the rows and columns ofR transform underSO(3),
which is indeed a subgroup of the Lorentz group.

With the above theorem in mind, a natural aim is to find
decomposition ofR as R5L1SL2

T with S diagonal and
L1 ,L2 proper orthochronous Lorentz transformations. T
would be the analog of a singular value decomposition,
now in the Lorentz instead of the Euclidean metric.

Theorem 3. The 434 matrix R with elements Ri j
5Tr(r s i ^ s j) can be decomposed as

R5L1SL2
T , ~8!

with L1 ,L2 proper orthochronous Lorentz transformation
and S either of diagonal formS5diag[s0,s1,s2,s3] with s0
>s1>s2>us3u, or of the form
01010
p,

s
t

S5S a 0 0 b

0 d 0 0

0 0 2d 0

c 0 0 a1c2b

D , ~9!

with a,b,c,d real.
The proof of this theorem is quite technical. It heavi

depends on results of matrix decompositions in spaces
indefinite metric @13#. We first introduce the matrixC
5MRMRT, which isM self-adjoint, i.e.,MC5CTM . Using
theorem~5.3! in Ref. @13#, it follows that there exist matrices
X and J with C5X21JX, J consisting of a direct sum o
real Jordan blocks andXMXT5NJ with NJ a direct sum of
symmetricn3n matrices of the form@Si j #56@d i 1 j ,n11#,
with n the size of the corresponding Jordan block. Usi
Sylvester’s law of inertia, there exists orthogonalOJ such
that NJ5OJ

TMOJ . It is then easy to check thatOJX5L1
T is

a Lorentz transformation. Therefore, the relationsC
5MRMRT5ML1MOJJOJ

TL1
T hold. Left multiplying byM,

Sylvester’s law of inertia implies that there exists a matrixS
with the same rank asJ such thatMOJJOJ

T5SMST. There-
fore, we have the relationRMRT5L1SMSTL1

T . If R has the
same rank asRMRT, this relation implies that there exists
Lorentz transformationL2 such thatR5L1SL2

T .
Let us now investigate the possible forms ofS. Since

NJ5OJ
TMOJ has the signature (1222), J can only be a

direct sum of the following form: four 131 blocks; one
orthogonal 232 block and two 131 blocks; one 232 Jor-
dan block and two 131 blocks; one 333 Jordan block and
one 131 block. Noting the eigenvalues ofC as $l i%, it is
easy to verify that a ‘‘square root’’S in the four cases is
respectively given by

~1! S5diag@Aul0u,Aul1u,Aul2u,Aul3u#P with P a permu-
tation matrix permutating the first column with one oth
column;

~2! S5diagFAul0uS cos~f! sin~f!

sin~f! 2cos~f!
D ,Aul2u,Aul3uG ;

~3! S5diagF S a b

c a1c2bD ,Aul2u,Aul3uG ;

~4! S5diagF S a 0 0

b Aa21b2 0

0
2ab

Aa21b2

a2

Aa21b2

D ,Aul3uG
with a5Aul0u and b521/A2ul0u.

Now we return to the relationR5L1SL2
T . L1 andL2 can be

made proper and orthochronous by absorbing factors21
into the rows and columns ofS, yielding S8. Theorem 2
now implies that thisS8 corresponds to an unnormalize
physical state, which means thatr8 corresponding toS8 has
no negative eigenvalues. It is easy to show that this requ
1-2
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ment excludes cases 2 and 4 of the possible forms ofS. The
third case corresponds to Eq.~9!. Furthermore, in the firs
case the permutation matrix has to be the identity andul0u
>max(ul1u,ul2u,ul3u). Multiplying by proper orthochronous
Lorentz transformations, the elements$si% of this diagonalS
can always be ordered ass0>s1>s2>us3u.

The case where the rank ofC is lower than the rank ofR
still has to be considered. This is only possible if the ro
space ofR has an isotropic subspaceQ for which QMQT

50. Some straightforward calculations reveal that the o
physical states for which this holds have normal form~9!
with a5b5c and d50 or a5b and c5d50. This com-
pletes the proof.

The two normal forms can be computed very efficien
by calculating the Jordan canonical decomposition ofC
5MRMRT and ofC85MRTMR. It is easy indeed to show
that, for example, in the case of diagonalizableR, the eigen-
vectors ofC form a Lorentz matrix andusi u5Al i(C). Note
that we always order the diagonal elements such thas0
>s1>s2>us3u.

States that are diagonal inR correspond to~unnormalized!
Bell-diagonal states with ordered eigenvalues

l15~s01s11s22s3!/4, ~10!

l25~s01s12s21s3!/4, ~11!

l35~s02s11s21s3!/4, ~12!

l45~s02s12s22s3!/4, ~13!

whereas states of type~9! correspond to the rank deficien
states

r5
1

2 S a1c 0 0 d

0 0 0 0

0 0 b2c 0

d 0 0 a2b

D . ~14!

For both cases it is easy to calculate the entanglemen
formation analytically, respectively given by Ref.@14#

C5max„0,~l12l22l32l4!/~l11l21l31l4!…

5max„0,~2s01s11s22s3!/~2s0!…

andC5max(0,udu/a).
Let us now consider an arbitrary stater with correspond-

ing R. Combining theorems 1, 2, and 3, it follows that t
concurrence ofr is equal to the concurrence of the sta
corresponding toS multiplied by R00. We have therefore
proven the following theorem.

Theorem 4. Given a stater, and associated with this
state R5L1SL2

T , the concurrence ofr is given by C
5max„0,(2s01s11s22s3)/2… or by C5max(0,udu) de-
pending on the normal formS.

We thus have obtained a new method of calculating
entanglement of formation of a system of two qubits. Int
estingly, it turns out that this characterization relates the c
01010
-

y

of

e
-
n-

cepts of entanglement of formation and of part
transposition ~PT! @9#. Let us therefore defineRi j

PT

5Tr(rPTs i ^ s j ), which changes the sign of the third co
umn of R. In the case of diagonal normal form ofR, it is
readily verified that the normal form ofRPT equals that ofR
except for the last element, wheres3

PT52s3. Retransform-
ing SPT to the rPT picture, we see that the correspondin
Bell-diagonal partial transposed state has minimal eig
value (s02s12s21s3)/4. We readily recognize the expres
sion of the concurrence of Theorem 4 and therefore this
genvalue is negative if and only if the concurrence exce
0. Moreover, we know thatrPT is related to this Bell-
diagonal state by some similarity transformationA^ B,
which cannot change the signature of a matrix due to
inertia law of Sylvester. In the case of normal form~9!, ana-
log reasoning shows thatrPT has a negative eigenvalue
and only if udu.0, which again is necessary and sufficient
have entanglement. This completes the proof of:

Theorem 5. Given a system of two qubits, this state
separable if and only if its partial transpose has a negat
eigenvalue.

Although this result was already proven by Horodec
@10#, we believe the previous derivation is of interest, since
connects the entanglement measures concurrence and
tivity. Using this formalism, it indeed becomes possible
prove that the concurrence always exceeds the negati
and it is furthermore possible to find a complete charac
ization of all states with maximal or minimal negativity for
given concurrence. This is important because in the two
bit case the negativity is a measure of the robustness of
tanglement against noise.

Next we want to solve the problem of finding the POV
such as to have a nonzero chance to produce a new state
the highest possible entanglement. From Eq.~2!, the maxi-
mum EoF is obtained withA,B minimizing the expression
Tr(A†A^ B†Br)/„udet(A)det(B)u…. Absorbing the factors
udet(A)u andudet(B)u into A andB, it is sufficient to consider
A andB with determinant 1. In theR picture, the optimiza-
tion is then equal to minimizing the (0,0) element ofR
5L1SL2

T by appropriateLA ,LB . AbsorbingL1 andL2 into
LA85LAL1

TM and LB85LBL2
TM , this is equivalent to finding

the optimal vectorsl A and l B such thatl a
TS l B is minimized

under the constrainsl A
TMl A515 l B

TMl B .
Let us first consider the case of diagonalS with elements

s0>s1>s2>us3u. Parametrizingl A as (A11ixW i2,xW ) and l B

as (A11iyW i2,yW ), the following inequalities hold:l A
TS l B

>s0A11ixW i2A11iyW i22s1ixW iiyW i>s0. Therefore, the con-
currence will be maximized forxW5yW50, leavingS in diag-
onal form. Collecting the previous results, it follows that ifR
is diagonalizable, the state with maximal concurrence t
can be obtained from it by single copy LQCC operations
the one corresponding toS that is a Bell-diagonal state. Thi
is in complete accord with the results of Kentet al. @6#. The
optimal A andB are thus given by the 232 matrices corre-
sponding toL1

TM andL2
TM . The optimal POVM can then be

obtained by dividingA andB by their largest singular value
such thatA†A<1 andB†B<1, followed by calculating the
1-3
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square rootsAc5AI 22A†A and Bc5AI 22B†B, which are
rank 1. The optimal POVM’s to be performed on the tw
qubits are then given by$A,Ac% and $B,Bc%, respectively.
Note that the probability of measuring (A,B) is given by the
inverse of the gain in concurrence divided by the produc
the largest singular values ofA and B, and that the rank of
the Bell-diagonal state is equal to the rank of the origi
state. It has to be emphasized that this single copy distilla
protocol is optimal. Moreover, the previous derivation giv
us a complete continuous parametrization of the surface
constant concurrence in state space: these surfaces are
erated by applying all trace-preserving Lorentz transform
tions to all the Bell-diagonal states with given entangleme
with as a special case the boundary between separable
entangled states.

The optimal single copy distillation protocol for state
with normal form~9! still have to be derived. An analogou
reasoning as in the diagonal case leads to the conclusion
l A andl B are vectors associated with the Lorentz transform
tions bringing Eq.~9! into diagonal form. This is, however
only possible in the limit wherel A and l B contain factors
limt→`@A11t2,0,0,t# and limt→`@A11t2,0,0,2t#, respec-
tively. This indeed allows one to bringR asymptotically into
diagonal form with diagonal elements given b
@A(a2b)(a1c),d,2d,A(a2b)(a1c)# and off-diagonal
elements of order 1/t2, yielding a state infinitesimally close
to a Bell-diagonal state. The probability of getting this sta
during a measurement of the optimal POVM, howev
scales as limt→`1/t2. This is equivalent to the quasidistilla
tion protocol by Horodecki@7#. In this limit of t→`, the
rank of the new state is less than the original one, and
concurrence is given byudu/A(a2b)(a1c).

In the case wherea2b5a1c5udu, we are therefore able
to create a state arbitrarily close to the singlet state. Th
fore, the only mixed states that can be quasipurified to
singlet state by single copy LQCC operations are the ran
,

r,

v
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states having normal form~9! with a2b5a1c5udu. These
states are mixtures of a Bell state with a separable pure s
orthogonal to it, and are therefore of measure zero in co
parison with the class of rank 2 states.

In conclusion, we obtained insight into the problem
local filtering on one copy of two qubits by introducing th
notion of Lorentz transformations on a real matrix parame
zation of their density matrix. This matrix can be broug
into one of two types of normal forms. These normal form
contain all the information about the entanglement of form
tion and reveal an elementary connection between con
rence and the partial transpose criterion of Peres. Moreo
this formalism enabled us to derive in a constructive way
optimal local filtering operations for concentrating entang
ment on an arbitrary mixed state of two qubits. This could
of great utility in constructing optimal distillation protocols
We showed that states of the first type can be locally tra
formed into a Bell-diagonal state of the same rank with fin
probability, whereas states of the second kind can asymp
cally be transformed into Bell diagonal states with low
rank. This last class is of special interest as is contains
mixed states that can be transformed arbitrarily close to
singlet state.
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