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Hydrogen atom in a magnetic field: The quadrupole moment
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The quadrupole moment of a hydrogen atom in a magnetic Befdr field strengths from 0 to 4.414
X 10" G is calculated by two different methods. The first method is variational, and based on a single trial
function. The second method deals with a solution of the Rtihger equation in the form of a linear
combination of Landau orbitals.

DOI: 10.1103/PhysRevA.63.065402 PACS nuntder32.60+i, 31.10+z, 31.15.Pf, 97.20.Rp

[. INTRODUCTION metrical sizes, and oscillator strengtig,13], electric
guadrupole transition probabiliti¢44], and photoionization
Plenty of works has been devoted study of a hydrogergross sectiongl5] have also been successfully calculated for
atom in a magnetic fieldsee, e.g., Refgd.1-3]) and this an atommovingin a strong magnetic fiel@equivalent to an
problem was among the first ever studied in quantum meatom in crossed magnetic and electric fig/dshich is an
chanics. To a great extent, the reason for such interest is d@ssentially three-dimensional system. Despite this progress,
to its importance in various branches of fundamental phystP to now the quadrupole moment was not studied basically
ics: astrophysics, spectroscopy, solid state, and plasma phy&ith perhaps a single excepti¢t6]. A goal of the present
ics. From a physical point of view, the first appearances oBrief Report is to carry out such a study for the ground state
the influence of a magnetic field on the atom arei)  using(i) a variational method, andi) a method based on a
changes in binding energies, including the Zeeman leve$olution of the Schrdinger equation by expansion in Landau
splitting which removes a degeneracy; &iid the develop- orbitals with coord_ina.te—dependent coefficients. We gxplore
ment of a nonvanishing quadrupole momeén,=B,B, asa & range of magnetic field strengtBsfrom 0O to the “relativ-
consequence of the deformation of the spherical-symmetricastic” field B,=m:c®/(fie)=4.414< 10" G.
atomic shape. In contrast to the former phenomenon, the
latter has not been thoroughly studied. Meanwhile, the ap- Il. ASYMPTOTIC RESULTS
pearance of a quadrupole moment leads to a drastic change
in the interaction of the atoms. A standard van der Waals Hereafter, we will measure lengths in units af
attraction which originates in the interaction of induced di-=%°/(m.e°)=0.529177 A and energies in units of Ry
poles is overtaken by quadrupole-quadrupole interactiorF z€%/a,=13.6057 eV. Assuming a constant uniform mag-
(which is repulsive when atoms are situated along magnetigéetic field directed along the axis, we take the vector po-
line — see Refs[4,5]). In many applicationgfor instance, tential A in the symmetric (axia) gauge: B,,A, A,
for construction of an equation of statene needs to include =(B/2)(—y,x,0). A natural parameter of the nonrelativistic
the effects of atom-atom interactions. For example, a studtheory is y=B/By, where BozmgeBI(ﬁ3c)=2.3505
of pressure ionization of a strongly magnetized hydrogenx10® G. The field is called “strong” ify=1.
plasma was performed in Rg6] with a simple occupation Since the magnetic quantum number is equal to zero for
probability model, which was based on a calculation ofthe ground state, the Hamiltonian has the form
guantum-mechanical atomic siz€8|. This model is fully
adequate at sufficiently high temperaturesHowever, in 2 9 ) T
order to extend the domain of applicability to lowkrwhere H==A=—+p%  po=x"+yn 1)
the neutral fraction is large, electrical multipole interactions

of atoms should be taken into account. Thereforege e of the axial symmetry of the problem, the compo-

qguadrupole-quadrupole interaction can be significant at CerﬁentsQa of the quadrupole tensor obey the following rela-

i B
tain plasma parameters. . _ tions (e.g., Ref[17)):
For various quantum-mechanical states of the H atom in a

magnetic field, there have been accurate calculations of bind-
ing energie$8,9], oscillator strengthf10], and photoioniza-
tion rates[11]. Moreover, binding energiels7,12,13, geo-

Qxy: Qyz: Q.=0,

1 2 2
Qux= ny: - Esz:<Z >_<X > 2
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5 615 atomic wave function over the Landau functions is appropri-
- sz=§72— 57‘4 R (3  ate(e.g., Refs[7,8]).
If there were no Coulomb attraction, then the transverse
In the opposite case of an ultrastrong field,#1, when part pf the wave function c_ould be described_by a Landau
(x2)<(z2), the longitudinal motion can be separated, whichfunction ®n<(p,¢) [where¢ is the polar angle in thex()
gives rise to the one-dimensional mod28]. In the ground ~ Pland which satisfies the equation
state(z?) is mainly determined by the exponential tail of the

one-dimensional wave functiofiz?)~ (2E) 2, whereE is 19/ db,g) 1 Pdpg 2
the binding energy. Using the method of Hasegawa and = , g,\P 5, |~ o2 ;.2 7 Ons=(2n+1)y.
- . ©
Howard[19] for an evaluation of, we find ®)
1 2 In(l 1 .
—Q,~ 5+ n(in Z)+ ( 3) (4)  (e.g., Ref[24]). Heren is the Landau quantum number and
(Iny)* (ny) (Iny) s is the negative of the projection of the electron orbital

momentum (=0, s=—n). The Landau functions form a
complete orthogonal functional basis on the/) plane.
When the atom does not move as a whole across the field,
lll. VARIATIONAL METHOD sis an exact quantum number. Thus a wave functioran
be presented as

at y—oe.

In order to construct an adequate variational trial function
¥, we follow a recipe formulated in Reff20—22. That is,
the potentiaVy=(AV )/ V¥ should reproduce the Coulomb vin=> ¢ 9
singularity at the origin, and harmonic-oscillator behavior at (") ; (P $)9n(2)- ©
large distances. Furthermore, the trial function should have a

correct functional expansion in coordinates at small andrhe sum in Eq(9), if truncated at some=N, can be con-
large distances from the origin, as well as a correct expansigered as a variational trial function. The one-dimensional
sion in powers ofB. Sinpe the.grourjd—state wave function functionsg, are to be found numerically. The minimum of
has no nodal surfa}ces in configuration space, we may Writthe energy functionadW|#|¥) implies zero functional de-
Vo=e?, whe_regb is a_smooth .real function of coordmates_. rivatives: 8(W | H| W)/ 8g,(z) =0 (Vn). Taking into account
The asymptotic behavior of this function was calculated INEq. (8), one arrives at a system of coupled differential equa-
Refs.[23,16]: tions for the set ofy,(z) andE,

¢=yp?l4+0(r) (p—), (5)

d2
) _
=1+ YA (Ar3+Brp2+Cr2+Dp?) +0(y*5) (r—0), d—zzgn(z)+2§ Var (216 (2) = (B 207)0(2), - (10

(6)
where
where A,B,C, andD are known parameters. These expan-

sions prompt to choose the seven-parametric trial function

0 2w 1
V8@~ [ “pdn [ Tdewiiper @uiipe). a1

Wo=exp{ —[a%r?+ (air3+ ayp?r + azp3+ aspr?)y
+(bip*+ bap?r?)y?116]Y%, (7)
! ? } The effective potentialfEg. (11)] can be reduced to a finite
(cf. Refs.[16,22), wherea,a;_,, andb;_, are variational sum of one-dimensional integrals feasible for numerical cal-
parameters. One can check that the effective poteljal culat|9n[7]. .
corresponding to this trial function correctly reproduces the Using the relations
potential in Eq.(1) at r—0 (Coulomb regimg and atp

—oo (Landau regimg Furthermore, Eq(7) gives a correct x? 1., .,

functional form of the first corrections in poweB? to the y2 :r+r,t§(r++r,), (12
exponential phase of the ground-state wave funcfieee

Ref.[23]) and, even more importantly, the functional form of

the first correction to the Landau phase fact@p? at large Ve ®pe=ntsd, o —Vn+1d,. 1 g,
distancegfor a detailed discussion, see REI6]). Thus Eg.

(7) takes into account the available information on the Jyr @ = Jn+s+ 10, q— \/ﬁ®n71YS+1'

ground-state wave function of Hamiltonidmh).

wherer . =pe®'¢, one can calculate the expectation values
IV. EXPANSION IN LANDAU ORBITALS

The shape of the atom is close to a sphei®<B, and to ()= D Jw 22|g.(2)|2dz (13)
a cylinder atB>B,. In the latter case, the expansion of the =0 J - " '
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TABLE |. Binding energyE and absolute value of the quadru- Frr-r 1 oo
pole momenn),, at different magnetic fieldB calculateda) by the o5 P * ]
variational method andb) by expansion in the Landau basis. r 1. ;

Rounded-off data from Ref9] are given for comparison. R 3 ,"I/‘
= /1
B E (Ry) ~Q,da.u) AL A g
(a) (b) Ref. [9] (a) (b) Q?’ 0.05 :_ j//" ‘!2 ---------- perturbation
0.1B, 1.095 05274 - 1.09505296 0.0235 - - i'/ LR Variati9na1
10° G 1.346 292 - 0.2185 - : /’ Z’EP‘“‘S”“
Bg 1.662 322 1.63 1.662338 0.4155 0.38 F
10° G 261473 261 0.5085 0.48 R 0 1 2 3 4
10B, 3.4948 3.490 3.4956 0.4370 0.447 log,, 7
10" G 5.713 5.717 0.2806 0.290
100B, 75642 7579 75796 02071 0.217 FI_G. 1. Absolute value of the quadrupole mom@gz_ag a
10% G 11.87 11.924 0.1228 ~0.1308 fmuggtggg(sc:cyITDBa{rgfj.?ﬁj ig\gnd(;)u’ oizlig:llaef;ianbs)go:lh:lp;?c:g:): :
18103020 1252'253 125237275 15.3249 006%9725 006%2%1 IV): numerical results are compe}red with.perturbation the&xy.
) : ) ) (3)] [curve 1 corresponds to the first term in E8), and curve 2 to
B, 325 32.92 0.0380 0.0406 0 termd and the analytic fifEq. (15)]. At y—0 the quadrupole
momentQ,, tends to zero.
() =(y?) is superior at lower field strengths. This is confirmed by a
0 ) comparison with the results of Rg®]. We emphasize that
= Vrgo 7m[(2n+3+ 1)|gn(2)| our methods give very close results for the quadrupole mo-
ment. This agrees with the qualitative behavior founflis.
—2yJ(n+1)(n+s+1)[g5 (2)gn+1(2)|]dz. (14) The data in Table | can be approximated by the
expression
and finally the quadrupole mome@,,.

At y>1 the first termn=0 dominates in the sum in Eq. 714
(9). Hence Eq.(14) results in{x?)=(y?)~(s+1)/y. It is ~Q,~ £y (15)
worthwhile to note that neglecting all terms in E§) except 2 0.3392+ (1+&3) ™
the one ah=0 is equivalent to the adiabatic approximation
used in early workge.g., Refs[1,19]). where

V. RESULTS AND DISCUSSION £=41n(1+0.212y4).

The results of our calculations of the binding eneigy
and the quadrupole momefl,, are presented in Table |. This approximation reproduces the exact asymptotic behav-
When available, we compare the binding energy with théor: —Q,,~(Iny)"2 at y—= and —Q,,~32v? at y—0. Its

most accurate up-to-date resyl€s. deviation from the results in Table | does not exceed a few
The variational approach of Sec. Ill, based orsiagle  percent in the whole range of studied magnetic fields.
seven-parametric functiofEq. (7)], gives a very high rela- Figure 1 shows$Q),,| as a function ofy. Numerical results

tive accuracy in the binding energy on the order of i@t  obtained as described in Secs. (8hown by dots and IV
small magnetic fields, which then falls to 1Dat the largest  (solid line) are compared with perturbation theories of order
studied magnetic fields. Basically, this corresponds to th&? andB* (lines marked ‘1’ and ‘2’, respectivelyand with
same absolute accuraéygn the order of 107) in thetotal  the fit [Eq. (15)] (dashed ling The quadrupole moment
energy for the whole explored range of magnetic fields. Twagrows smoothly with magnetic field increase, reaching the
major parameters and b, are changed as a function of maximum aty~3 and then decreases. For the strongly elon-
magnetic field in a very smooth and slow manner, fram gated atom aty>1, the van der Waals constant can be
~1, b;~0.9 for 10 G to a~3, b;~0.99 at 16* G, re- roughly estimated adV~E(z?)3x(Iny)~% Thus W de-
spectively. Other parameters also vary smoothly and slowlycreases ay— « at the same rate a@ﬁz. This means that the

For the second methodSec. V), we retain n,n’ distanceR, where the van der Waals potentiaW/R® be-
=0,1, ...,12 in thesystem of equation&0) and solve it for comes comparable with the quadrupole-quadrupole interac-
the ground state ay=1 using the algorithm described in tion potential~Q?/ R®, tends to a finite value ag—o. Our
Ref.[7]. Then we calculat€),, from Eq.(2) using Eqs(13) results may have an important impact on the modeling of
and(14). relatively cool neutron star atmospheres, whose spectra are

In Table | we see that for the binding energy the methodbeing measured with the x-ray telescopes onboard the re-
of expansion in the Landau orbitals turns out to be morecently launchedChandraand XMM-Newtonspace observa-
accurate aty= 10, whereas the variational method of Sec. Ill tories (e.g., Refs[25,26]).
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