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Maximum-entropy principle with moment recursion relations as constraints

K. Bandyopadhyay,1 K. Bhattacharyya,2 and A. K. Bhattacharya,1,*
1Department of Physics, Burdwan University, Burdwan 713104, India

2Department of Chemistry, Burdwan University, Burdwan 713104, India
~Received 27 July 2000; published 9 May 2001!

We employ the maximum entropy ansatz to obtain reasonably accurate densities for a few quantum oscil-
lators and discrete dynamical systems. An optimization scheme is suggested that does not require anya priori
knowledge of values for moments. Instead, moment recursion relations are used as constraints. Pilot calcula-
tions, with trial densities conforming to correct asymptotic behavior as and when necessary, reveal the advan-
tages readily.
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I. INTRODUCTION

The maximum entropy principle~MEP! @1# provides a
recipe for constructing a probability density~PD! p(x), x
P@a,b# with the usual assumption that the power mome
mn , n50,1,2, . . . ,N, are available as input. The MEP pr
scription is to maximize the information entropy

S52E
a

b

p~x!ln p~x!dx ~1!

subject to these moment constraints. Introducing (N11)
Lagrange parametersl0 ,l1 ,...,lN the constrained optimiza
tion problem yields the formal approximate solution@2#

p̃~x!5expS 2(
n

N

ln50xnD 5exp@2g̃~x!#. ~2!

The parametersl i are determined from the following set o
nonlinear equations:

E
a

b

xj expS 2 (
n50

N

lnxnD dx5m j , j 50,1,2, . . . ,N. ~3!

The success of this scheme rests mainly on~i! the large-
ness ofN and~ii ! the ability to solve Eq.~3!. The knowledge
of the moments presupposes that the exactp(x) is somehow
known beforehand. In that case, the MEP methodology ca
at best have pedagogic interest only. For many phys
problems one can, however, deduce with little effort a se
recursion relations involving the moments although th
problems arenot exactly solvable@3#. These recursion rela
tions have the form

f n5 (
p5K

L

cpmn1p50. ~4!

The aim of this communication is to explore how th
MEP formalism can be used in conjunction with Eq.~4! to
eliminate the need for theexplicit knowledge of any mo-
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ment. In Sec. II we present the general technique and app
to two cases drawn from two very different fields of stud
namely the PD corresponding to the ground states of var
anharmonic oscillators and the PD of a class of logistic m
in the chaotic regime.

II. FORMALISM

We construct a trial PDp̃(x) by exploiting the symmetry
of the problem and the knowledge of the boundary behav
Departing from the common practice, the optimized valu
of the parameters embedded in the PD are here determ
from the condition thatD5(nf n

2 is minimum, whileS̃ cor-
responding to Eq.~1! is at its maximum. To tackle the opti
mization problem, we introduce here three alternat
schemes: ~a! minimization ofD; ~b! minimization of a pe-
nalized function of the form2S̃110gD, whereg is a pa-
rameter which is gradually increased to refine the results;
~c! minimization ofD/S̃. In all these schemes, the Lagran
ian multipliers appearing in Eq.~2! acquire the status o
variational parameters. One can then use the optimized
to compute quantities of interest. This we illustrate below
treating the case of anharmonic oscillators first, and th
logistic maps.

Consider a one-dimensional quantum system defined
H52¹21V(x) with a potential of the form

V~x!5(
m

M

amx2m, xP@2`,`#;mPN. ~5!

From the symmetry of the problem, it is obvious that the o
moments vanish. The even moments satisfy a recursion r
tion that can be deduced@3–5# by calculating the matrix
elements of the commutator†H,@H,xn12/(n12)#‡ between
two eigenstates ofH. This recursion relation has the form

f n54E0~n11!mn24(
m

am~n1m11!mn12m

1~n11!n~n21!mn22

50, ~6!n
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TABLE I. Testing the accuracy of optimized densities for various oscillators. Exact results@11# are
quoted in parentheses.

V(x)
Optimization

scheme

Form
of

p̃(x) r t u

Number of
recursion
relations E0 R

x4 A MEP 3 0 1 5 1.060 365 5 1.0001
A MEP 4 0 1 6 1.060 362 2 0.999 996
A PPA 2 1 1

2 5 1.060 362 097 1.000 004
A PPA 2 2 1

4 5 1.060 362 094 1.000 003
A PPA 3 3 1

2 6 1.060 362 090 6 0.999 999 94
B PPA 2 1 1

2 4 1.060 362 095 0.999 9996
B PPA 2 4 1

8 6 1.060 362 090 5 1.000 000 03
C PPA 2 1 1

2 5 1.060 362 097 1.000 004
C PPA 2 4 1

8 6 1.060 362 090 5 1.000 000 06
~1.060 362 090 48!

x21x4 A PPA 2 1 1
2 5 1.392 351 641 7 1.000 001 5

A PPA 2 2 1
4 5 1.392 351 641 7 1.000 001 4

A PPA 3 3 1
2 6 1.392 351 641 53 1.000 000 02

~1.392 351 641 53!

2x21x4 A PPA 2 1 1
2 5 0.657 653 094 0.999 975 8

A PPA 2 2 1
4 5 0.657 653 007 5 0.999 998 3

A PPA 2 4 1
8 6 0.657 653 005 2 0.999 999 8

~0.657 653 005 18!

x6 A PPA 3 1 1 6 1.144 802 473 0.999 998 6
A PPA 4 2 1 6 1.144 802 455 0.999 999 5

~1.444 802 453 79!

x21x6 A PPA 3 1 1 6 1.435 624 643 8 0.999 999 92
A PPA 4 2 1 6 1.435 624 623 4 0.999 999 90

~1.435 624 619 00!

x8 A PPA 3 1 1
2 5 1.225 821 12 1.000 012

A PPA 3 2 1
4 6 1.225 820 189 1.000 004 75

~1.225 820 113 80!
s
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wheren50,2,4,...,mn5^0uxnu0&, andE0 is the energy of the
ground state. Without any loss of generality, one can
m051. The knowledge of the even moments fromn52 to
n52M is then sufficient to generate all the higher even m
ments by recursive use of Eq.~6!. Since the virial theorem
relatesE0 to m4 , the quartic oscillator (M52) gives rise to
a ‘‘one-missing-moment problem’’@6#. A number of authors
@4–6# have adopted different strategies to exploit Eq.~6! for
the calculation of ground-state properties with varying d
grees of accuracy. But, in the MEP context, these relati
have never been employed. Note that the MEP ansatzp̃(x)
for the PD here has the form~2! with even powers ofx only.
This form, however, fails to satisfy the boundary behavi
For V(x)5x2M, one can easily check that the true PD mu
decay as exp@2uxuM11/(M11)# when uxu→`. On the other
hand, whenuxu→0, p(x);exp(2ax2), with a.0. If we con-
sider the specific case ofM52, it is not immediately obvious
how a seriesg̃(x), as in Eq.~2!, of even powers ofx can
behave asuxu3/3 for largex. Elsewhere@7#, we have argued
that in situations of this sort, it is expedient to modify th
06410
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-
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MEP ansatz so as to incorporate the correct boundary be
ior. With this motivation, we replace the seriesg̃(x) by a
power-Pade´ approximant~PPA!

g̃~x!'
@Pr~x!#s

@Qt~x!#u [@r ,s/t,u#. ~7!

Here Pr(x) is a polynomial inx2 of degreer with the con-
stant term zero, andQt(x) is a polynomial in which the
highest power ofx2 is t, while the constant term is taken a
unity. On expansion,g̃(x) in Eq. ~7! generates the even se
ries exponentiated in Eq.~2!. A broad range of PD can be
handled by choosingr, s, t, and u in such a way that the
behavior ofp(x) for uxu→0 anduxu→` for a given potential
problem is satisfied. Thus, for the ground state of thex4

problem our simplest choice ofp̃(x) has the formp̃(x)
5C exp@2(l1 x21l2x

4)/(11l3x
2)1/2#, where C is fixed by

the normalization condition.
As our second example, we consider the logistic map
1-2
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xn115bxn~12xn
j !5f~xn!, ~8!

which serves as a rudimentary laboratory for the study
some aspects of chaos. The casej 51 has been extensivel
studied@8# over decades. The asymmetric map correspo
ing to j 52 has also attracted some attention@9#. Such maps
turn chaotic at some critical value ofb, say,bc . To confine
x in the range@0, 1#, we chooseb<bmax, where lnbmax
5(j11)ln(j11)/j2ln j. For these maps we can definep(x)
such that

m t5E
0

1

ytp~y!dy, t50,1,2, . . . . ~9!

The density function satisfies the Frobenius-Perron inte
equation

p~y!5E
0

1

p~x!d„y2f~x!…dx, ~10!

which, in general, cannot be solved analytically. Only for t
case j 51, the analytical form ofp(x) corresponding tob
5bmax54 is known. Forj 52 onwards,p(x) can only be
obtained numerically@10#. Here we construct this PD within
the framework of the MEP, using the procedure describ
earlier. To this end, we first obtain a set of recursion relati
involving the moments of the PD by raising both sides of E
~8! to their kth powers and taking the averages of each te
over a sufficiently large number of iterations. In the chao
regime,^xn

k11&5^xn
k&5mk . So, we get

f k5mk2bk(
r 50

k

~21!k2rm~ j 11!~k2r !1r50. ~11!

For reasons of symmetry, we use the following form of P
for the quadratic map (j 51):

p̃~x!5expS 2(
i

l i~x21/2! i D 1expS 2(
i

l i~1/22x! i D .

~12!

For other values ofj, we employ the MEP form~2!. The
Lyapunov exponentL corresponding to a given value of th
control parameterb and order of the mapj can now be com-
puted from the formulaL5* p̃(x)lnudf/dxudx ~see, e.g,
@10#!.

III. RESULTS AND DISCUSSION

Let us first take up the case of anharmonic oscillators
Table I we display a few results for the potential form~5!
with M<4. The trial PD p̃(x) has the power-Pade´ form
given by Eqs.~2! and~7! with s51 andr, t, u so chosen tha
p̃(x) satisfies the boundary behavior for the specific poten
problem. The total number of adjustable parameters inp̃(x)
is r 1t. These are determined via the optimization schem
A, B, and C. The number of recursion relations~6! taken into
consideration are indicated in Table I. For the purpose
comparison, we also exhibit some results correspondin
06410
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the traditional MEP form ofp̃(x). The values of the globa
properties like the ground-state energyE0 and the virial ratio
R52^T&/^dV/d ln x&51, whereT is the kinetic energy, pro-
vide a test of the accuracy of the optimizedp̃(x). From the
quoted near-exact results@11#, we happily note that our strat
egy works satisfactorily. The three optimization schem
outlined in Sec. II yield almost identical results as is evide
from our data for thex4 problem. This is because, by virtu
of the choice of the MEP form~or its variant! of p̃(x),S̄ after
optimization isnearly at its maximum valuein all the cases.
However, our numerical experience is that scheme A p
sesses a better convergence profile. Therefore, we stic
scheme A for the other problems. Our results reveal tha
few as three parameters in the trial PD yield highly accur
values ofE0 and R. Further, the PPA form ofp̃(x) gives
much better results than the traditional MEP form. This
expected, because the latter ignores information regard
the boundary behavior of the PD. Canosaet al. @2# employed
the MEP in this context. Our present work has successf
modified the method to achieve higher accuracy.

We now turn our attention to the generalized logistic m
~8!. The optimized densities are obtained by taking a trial

FIG. 1. Plot of exact and approximate probability densities
the quadratic (j 51) map.

FIG. 2. Plot of near-exact and approximate probability densi
for the cubic (j 52) map.
1-3
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BRIEF REPORTS PHYSICAL REVIEW A 63 064101
of the form ~2! @and the symmetrized form~12! for j 51#.
Here, we have fixed the number of parameters in the trial
to 6. Figures 1 and 2 show plots of the optimized PD
casesj 51 and j 52. Exactp(x) are also displayed for com
parison. As regards the efficacy of our scheme, the figu
speak for themselves. Let us note that an application of M
to the j 51 case was made earlier@12#, assuming explicit
knowledge of moments. But, a lack of symmetrization a
the use of just two parameters inp̃(x) yielded far less accu
rate results. Here, we have also computedL from the opti-
mized PD, and have plottedL vs j in Fig. 3. The nature of
the variation is similar to what is found fromaccuratecom-
putations. In fact, the error is around 0.5%. Workability
the present endeavor is thus justified further.

IV. CONCLUDING REMARKS

Requiring the knowledge of exact or near-exact values
individual moments has been a serious practical limitation
the MEP. In this work we have suggested an alternative ro
where the chosen density is optimized by insisting on m
mization of a certain function constructed from a set of m
ment relations satisfied by exact densities. We have
demonstrated how profitable it can be, in certain situatio
to employ a variant of the MEP ansatz for the trial dens
that takes due care of the asymptotic behavior or the s
metry of the problem. The performance of a power-Pa´
-
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form for g̃(x) in dealing with oscillators, and a symmetrize
form for the same in connection with the logistic map, su
ports our contention that such modifications may pro
rewarding.
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FIG. 3. Variation of the Lyapunov exponent with orderj ~see
text!.
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