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Maximum-entropy principle with moment recursion relations as constraints
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We employ the maximum entropy ansatz to obtain reasonably accurate densities for a few quantum oscil-
lators and discrete dynamical systems. An optimization scheme is suggested that does not requmeosiny
knowledge of values for moments. Instead, moment recursion relations are used as constraints. Pilot calcula-
tions, with trial densities conforming to correct asymptotic behavior as and when necessary, reveal the advan-
tages readily.
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I. INTRODUCTION ment. In Sec. Il we present the general technique and apply it
to two cases drawn from two very different fields of study,
The maximum entropy principléMEP) [1] provides a namely the PD corresponding to the ground states of various
recipe for constructing a probability densit?D) p(x), x  anharmonic oscillators and the PD of a class of logistic maps
e[a,b] with the usual assumption that the power momentsn the chaotic regime.
Mmn, N=0,1,2 ... N, are available as input. The MEP pre-
scription is to maximize the information entropy . FORMALISM
— b We construct a trial P[P(x) by exploiting the symmetry
S fa PO p(x)dx @ of the problem and the knowledge of the boundary behavior.
Departing from the common practice, the optimized values
subject to these moment constraints. Introducimg(L) of the parameters embedded in the PD are here determined

Lagrange parameterg, Ay ,...,Ay the constrained optimiza- from the condition that\ == ,f2 is minimum, whileS cor-

tion problem yields the formal approximate solutig responding to Eq(1) is at its maximum. To tackle the opti-
N mization problem, we introduce here three alternative
“p(x)=eXp( _z N Oxn) —exd —G(X)] 2 schemes: (a) minimization of A; (b) minimization of a pe-
no nalized function of the form-S+10"A, wherey is a pa-

rameter which is gradually increased to refine the results; and

(c) minimization of A/S. In all these schemes, the Lagrang-
ian multipliers appearing in Eq2) acquire the status of
) N variational parameters. One can then use the optimized PD
f xi exg — E )\nxn) dx=g;, j=012...N. (3 to co_mpute quantities of mterest: This we |Ilustfate below by
a n=0 treating the case of anharmonic oscillators first, and then
logistic maps.
The success of this scheme rests mainly(igrihe large- Consider a one-dimensional quantum system defined by
ness ofN and(ii) the ability to solve Eq(3). The knowledge H=—V?+V(x) with a potential of the form
of the moments presupposes that the exdg) is somehow
known beforehand In that case, the MEP methodology can M
at best have pedagogic interest only. For many physical V(x)=2 ax®™  xe[—»,%];meN. (5)
problems one can, however, deduce with little effort a set of m
recursion relations involving the moments although the

problehms arre]no; exactly solvablg3]. These recursion rela- £y, the symmetry of the problem, it is obvious that the odd
tions have the form moments vanish. The even moments satisfy a recursion rela-

The parameterk; are determined from the following set of
nonlinear equations:

L tion that can be deduceB-5] by calculating the matrix
fo= copnsp=0 () elements of the commutatdH,[H,x"*2/(n+2)]] between
nogsk e T two eigenstates dfi. This recursion relation has the form

The aim of this communication is to explore how the
MEP formalism can be used in conjunction with Ed) to fo=4Eo(N+1) =4, am(N+m+1)mnsom
eliminate the need for thexplicit knowledge of any mo- m

+(n+1)n(n—1) 5
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TABLE |I. Testing the accuracy of optimized densities for various oscillators. Exact rddudltsare
quoted in parentheses.

Form Number of
Optimization of recursion
V(x) scheme P(x) r t u relations Eo R
x4 A MEP 3 0 1 5 1.060 3655 1.0001
A MEP 4 0 1 6 1.060362 2 0.999 996
A PPA 2 1 3 5 1.060 362 097 1.000 004
A PPA 2 2 ; 5 1.060 362 094 1.000 003
A PPA 3 3 3 6 1.060362 0906 0.999 999 94
B PPA 2 1 3 4 1.060 362 095 0.999 9996
B PPA 2 4 3 6 1.0603620905 1.000 000 03
C PPA 2 1 3 5 1.060 362 097 1.000 004
C PPA 2 4 % 6 1.0603620905 1.000 000 06
(1.060 362 090 48
x2+ x4 A PPA 2 1 3 5 1.3923516417 1.0000015
A PPA 2 2 i 5 1.3923516417 1.000 001 4
A PPA 3 3 3 6 1.392 351 64153 1.000 000 02
(1.392 35164158
—x%+x4 A PPA 2 1 3 5 0.657 653 094 0.9999758
A PPA 2 2 ; 5 0.657 653007 5 0.999 998 3
A PPA 2 4 % 6 0.657 653 005 2 0.999 999 8
(0.657 653 005 18
x8 A PPA 3 1 1 6 1.144 802 473 0.999 998 6
A PPA 4 2 1 6 1.144 802 455 0.999 999 5
(1.444 802 453 79
x2+x8 A PPA 3 1 1 6 1.435624 6438 0.999 999 92
A PPA 4 2 1 6 1.435624 6234 0.999 999 90
(1.435624 61900
x8 A PPA 3 1 3 5 1.22582112 1.000 012
A PPA 3 2 ; 6 1.225820 189 1.000 004 75

(1.22582011380

wheren=0,2,4,....u,=(0|x"|0), andE, is the energy of the MEP ansatz so as to incorporate the correct boundary behav-

ground state. Without any loss of generality, one can seior. With this motivation, we replace the serigéx) by a
wo=1. The knowledge of the even moments frors2 to  power-Padepproximant(PPA)

n=2M is then sufficient to generate all the higher even mo-

ments by recursive use of E(). Since the virial theorem

relatesk, to u,4, the quartic oscillator 1 =2) gives rise to (%)
a “‘one-missing-moment problem[6]. A number of authors

[4—-6] have adopted different strategies to exploit Ej.for

the calculation of ground-state properties with varying de-Here P,(x) is a polynomial inx? of degreer with the con-
grees of accuracy. But, in the MEP context, these relationstant term zero, an®@;(x) is a polynomial in which the
have never been employed. Note that the MEP arfséty  highest power ok? is t, while the constant term is taken as
for the PD here has the for(2) with even powers ok only.  unity. On expansiorig(x) in Eq. (7) generates the even se-
This form, however, fails to satisfy the boundary behavior.ries exponentiated in Ed2). A broad range of PD can be
For V(x)=x?M, one can easily check that the true PD musthandled by choosing, s, t, andu in such a way that the
decay as eXp-|xM*Y(M+1)] when |x|—%. On the other behavior ofp(x) for |x|]—0 and|x|— o for a given potential
hand, whenx| —0, p(x) ~ exp(— ax?), with «>0. If we con-  problem is satisfied. Thus, for the ground state of e
sider the specific case df =2, it is not immediately obvious problem our simplest choice di(x) has the formp(x)
how a seriegj(x), as in Eq.(2), of even powers ok can  =C exf —(\; X2+ A xX)/(1+71x9)Y?], where C is fixed by
behave as$x|%/3 for largex. Elsewherd7], we have argued the normalization condition.

that in situations of this sort, it is expedient to modify the  As our second example, we consider the logistic map

[P(x)]°_

~[Qt(—x)]u=[r,3/t,u]. (7)
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Xn+1:,3Xn(1_XL)=¢(Xn), 8 6.0
which serves as a rudimentary laboratory for the study of 5.0 approx
some aspects of chaos. The c@sel has been extensively %‘ _____ '
studied[8] over decades. The asymmetric map correspond- g 40 oxac
ing to j =2 has also attracted some attentj@h Such maps ';
turn chaotic at some critical value @f say, .. To confine = 3.0
x in the range[0, 1], we chooseB< Bmax, Where InB .y E
=(j+1)In(+1)/j—Inj. For these maps we can defipéx) o 20
such that =
1.0 1
1
Mt:f y'p(y)dy, t=012.... 9 0.0 -

0 0.0 0.5 10
The density function satisfies the Frobenius-Perron integral value of x
equation

FIG. 1. Plot of exact and approximate probability densities for

1 the quadratic |=1) map.
p(y)= | P00 8ty— $00)dx 10

0 the traditional MEP form of(x). The values of the global
properties like the ground-state eneigyyand the virial ratio
R=2(T)/(dV/dInx)=1, whereT is the kinetic energy, pro-
vide a test of the accuracy of the optimiZp¢x). From the
guoted near-exact resultsl], we happily note that our strat-
f20)Y works satisfactorily. The three optimization schemes

earlier. To this end, we first obtain a set of recursion relation utlined in Sec. I y|eld almost identical results as is evident
involving the moments of the PD by raising both sides of Eq. rom our data for thex” problem. This is because, by virtue
(8) to theirkth powers and taking the averages of each ternPf the choice of the MEP forrtor its varian} of B(x), S after
over a sufficiently large number of iterations. In the chaoticoptimization isnearly at its maximum valui all the cases.
regime,(xX* 1) = (x¥)= u,. So, we get However, our numerical experience is that scheme A pos-
sesses a better convergence profile. Therefore, we stick to
scheme A for the other problems. Our results reveal that as
fo=p— B> (— 1)k‘r,u(j+l)(k,,)+r=0. (11)  few as three parameters in the trial PD yield highly accurate
r=0 values ofEy and R. Further, the PPA form op(x) gives
much better results than the traditional MEP form. This is
expected, because the latter ignores information regarding
the boundary behavior of the PD. Canesal.[2] employed
the MEP in this context. Our present work has successfully
+exp( —E Ni(1/2— x)i). modified the method to achieve higher accuracy.
‘ We now turn our attention to the generalized logistic map
(12 (8). The optimized densities are obtained by taking a trial PD

For other values of, we employ the MEP form?2). The

which, in general, cannot be solved analytically. Only for the
casej =1, the analytical form ofp(x) corresponding tqB

= Bmax=4 is known. Forj=2 onwards,p(x) can only be
obtained numerically10]. Here we construct this PD within
the framework of the MEP, using the procedure describe

For reasons of symmetry, we use the following form of PD
for the quadratic mapjE1):

b(x)zexp{ — > N(x—1/2)

Lyapunov exponenA corresponding to a given value of the 80

control parameteB and order of the mapcan now be com- 7.0 |

puted from the formulaA=P(x)In|dp/dxdx (see, e.g, 60 | approx

[10D. I N IRTRES near-exact ;

IIl. RESULTS AND DISCUSSION

Let us first take up the case of anharmonic oscillators. In
Table | we display a few results for the potential fo(B)
with M=<4. The trial PDP(x) has the power-Padéorm
given by Eqs(2) and(7) with s=1 andr, t, u so chosen that 1.0
P(x) satisfies the boundary behavior for the specific potential
problem. The total number of adjustable parameteiig(ij
is r+t. These are determined via the optimization schemes
A, B, and C. The number of recursion relatigieés taken into
consideration are indicated in Table I. For the purpose of FIG. 2. Plot of near-exact and approximate probability densities
comparison, we also exhibit some results corresponding téor the cubic {=2) map.

probability density
r-N
o

0.0 05 1.0
value of x
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of the form (2) [and the symmetrized forrtl2) for j=1]. 0.7

Here, we have fixed the number of parameters in the trial PD 069 | approx

to 6. Figures 1 and 2 show plots of the optimized PD for - N e near-exact
caseg =1 andj=2. Exactp(x) are also displayed for com- § 0.88 1

parison. As regards the efficacy of our scheme, the figures 2 067

speak for themselves. Let us note that an application of MEP E 0.66

to the j=1 case was made earligt2], assuming explicit 5

knowledge of moments. But, a lack of symmetrization and 3 0651

the use of just two parametersix) yielded far less accu- 5 0.64 -

rate results. Here, we have also computedrom the opti- 063

mized PD, and have plottedl vsj in Fig. 3. The nature of

the variation is similar to what is found froaccuratecom- 062 . ; . ]

putations. In fact, the error is around 0.5%. Workability of

the present endeavor is thus justified further. order of map (j)

FIG. 3. Variation of the Lyapunov exponent with ordetsee
text).

~ Requiring the knowledge of exact or near-exact values ok, for g(x) in dealing with oscillators, and a symmetrized
individual moments has been a serious practical limitation oty for the same in connection with the logistic map, sup-

the MEP. In this work we have suggested an alternative routgorts our contention that such modifications may prove
where the chosen density is optimized by insisting on MiNiewarding.

mization of a certain function constructed from a set of mo-

ment relations satisfied by exact densities. We have also
demonstrated how profitable it can be, in certain situations,
to employ a variant of the MEP ansatz for the trial density The first author thanks CSIR, India, for financial support.
that takes due care of the asymptotic behavior or the symfhe last two authors acknowledge the DSA programs of

IV. CONCLUDING REMARKS
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