
PHYSICAL REVIEW A, VOLUME 63, 063805
Quantization of evanescent electromagnetic waves based on detector modes
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The problem of field quantization in a half space is discussed based on the detector modes, which provide a
useful basis for the study of atomic or molecular interaction with radiation modes involving evanescent
electromagnetic waves. The detector modes, each of which involves a single outgoing wave, are introduced in
terms of the time-reversal and spatial-rotation transforms of the widely used triplet modes given by Carniglia
and Mandel. The derivation of the orthogonal relation for the detector modes is therefore straightforward. We
represent the creation and annihilation operators for the detector modes in terms of those for the triplet modes,
and obtain the field operator, Hamiltonian, number operator, and pseudomomentum operator. Based on this
formalism, we evaluate the differential radiation probability for atomic dipole radiation near a dielectric
surface. The evaluation of the final-state mode density is straightforward for the detector modes involving
single outgoing waves. With respect to the image dipole picture, the quantum-to-classical correspondence is
clear in the detector-mode formalism.
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I. INTRODUCTION

Photon emission characteristics of atoms and molec
near a piece of matter have been studied extensively in r
tion to cavity quantum electrodynamics~cavity QED! @1–4#
and optical near-field problems@5,6#. The important issues
are the enhancement or reduction of spontaneous emis
and the associated level shift of the radiating system du
variations of the environmental electromagnetic modes
to multiple interaction via the scattered electromagnetic fie
Recently, these effects have been used to control the mo
and radiative properties of atoms and molecules, espec
by using high-Q optical resonators@7–10#. Cavity-QED phe-
nomena in a broad sense also arise in near-field optica
gimes, or in optical near-field interactions of a radiating s
tem with matter lying in the vicinity of its subwavelength
Extensive studies have been made of the radiation prope
of atoms and molecules near a material surface@11–13#, and
also of applications such as atom manipulation@14–16#. Fur-
ther interest in the near-field regime lies in the photon em
sion characteristics of mesoscopic electronic systems, s
as quantum dots and wires, fabricated on a substrate,
also in their observation by optical near-field microscopy a
spectroscopy. One might expect several interesting effec
arise in the near-field regime which reflect the properties
the optical near field as an effective field or a coupled mo
of the electromagnetic field with matter. That is, the disp
sion relations and polarization properties of optical n
fields deviate from those of photons in vacuum. Althou
optical near-field interactions, in general, have a relativ
short period compared with those of high-Q cavities they still
exert a considerable effect because of the high field inten
of the spatially localized fields. For further study in this d
rection, it is important to develop a quantum-mechani
treatment of the optical near field.

So far, theoretical studies have been reported of the p
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ton emission and absorption properties of atoms and m
ecules near a planar material surface. The important is
involved in these half-space problems is the interaction w
evanescent electromagnetic fields@12,17–19#. For example,
when a homogeneous plane wave is incident at a plana
electric boundary from the higher-refractive-index side w
an angle beyond the critical angle of total internal reflectio
an evanescent wave builds up in the lower-index side, pro
gating parallel to the boundary surface and exhibiting
exponential decay in the direction normal to the surface. T
in turn suggests that, for an excited atom or molecule pla
in the subwavelength vicinity of a dielectric surface~the op-
tical near-field regime!, the spontaneous radiation proce
involves both homogeneous and evanescent waves in th
nal state of the radiative quantum transition. The interact
with evanescent waves drives additional outgoing waves
the half space of the dielectric side with a transmission an
beyond the critical angle of total internal reflection@12,11#.
This should result in a variation of the atomic radiative lif
time as a cavity-QED effect in the broad sense; the lifeti
exhibits an exponential dependence on the atom-surface
tance. Therefore, field quantization including evanesc
waves has been extensively studied as the basis of ge
optical near-field problems. It is essential to study plan
boundary problems since, as is shown in classical elec
magnetic treatments, the scattered electromagnetic field f
dielectrics of arbitrary shape can be described in terms
set of homogeneous and evanescent waves by using th
gular spectrum representation@20–22#. That is, if we under-
stand the nature of atomic radiation near a planar dielec
surface, we can extend the results to cases of arbitr
shaped dielectric boundaries by means of the angular s
trum representation of the scattered field@22#.

The spontaneous decay rate of atomic excitation and
related angular distribution of radiation have been stud
both experimentally and theoretically for atomic and molec
©2001 The American Physical Society05-1
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TETSUYA INOUE AND HIROKAZU HORI PHYSICAL REVIEW A 63 063805
lar dipoles put near a planar dielectric surface@3,23–25#. In
our previous work, we extended the theoretical study to
interaction of atomic multipoles with evanescent waves
the semiclassical regime based on analytical expression
the radiation field using the angular spectrum representa
of vector spherical waves@22#. Our numerical results for
electric-dipole radiation with arbitrary orientation are
good agreement both with the numerical results reported
Lukosz@25# and with the experimental results reported by
obtained from the high-resolution laser spectroscopy of
atomic vapor near a dielectric surface at theD2 resonance
line @12,13#. Besides atomic and molecular cases, the sim
effects might also be expected for quantum dots and w
lying on a substrate and also for their radiation measu
ments via optical near-field microscopy, although they ha
not yet been studied systematically@26#.

According to Fermi’s golden rule the probability of
quantum-mechanical transition depends on both the tra
tion matrix element and the density of final states. T
source of our interest in cavity-QED problems lies in t
possibility of controlling the final-state density, especia
for electromagnetic modes involved in the radiative tran
tion under consideration. That is, the electromagnetic fi
state depends strongly on the scheme of our experim
Therefore, in a practical analysis of experimental cavi
QED results, we should consider sources and sinks of p
tons as reservoirs being implemented outside the phot
system~i.e., far-field observation!, each of which couples to
one of the incident and outgoing wave components belo
ing to the photonic mode under consideration. In fact, we
consider several different situations of measurements
quantum treatment, which determine the method of eval
ing the final state of the corresponding transition event.
our context of a radiation study, these are classified roug
into two categories: single-photon-counting measureme
and photon-correlation measurements. In the former o
one of the photodetectors detects single photons, but in
latter signals from several pairs of photodetectors exh
correlation features reflecting the coherence of the radiat
In any case, the quantum electrodynamic processes
evaluated in terms of external sources coupling to incid
waves and external detectors coupling to outgoing wav
both being placed outside the isolated quantum system u
consideration. Therefore, a careful consideration is also
quired of the role of sources and detectors for practical n
field optical measurements concerned with both excita
and interactions of the local mode or its observation in
field, so that the entire process considered here exhibits
nature of an open system. Depending on our experime
scheme, we can select a convenient set of basis function
describe the electromagnetic mode. Here, it is noted that
a study of the level shift of a radiative system, the import
process lies rather in the closed system of multiple inter
tions between the radiative system and the electromagn
field.

For the basis of field quantization including evanesc
waves, Carniglia and Mandel introduced the so-called trip
modes@18#: the set of incident, reflected, and transmitt
waves connected via Fresnel relations at the planar boun
06380
e
n
for
n

y
s
s

r
s
-

e

si-
e

i-
l

nt.
-
o-
ic

g-
n
a
t-
n
ly
ts
ly
he
it
n.
re
t

s,
er

e-
r-
n
r
he
tal
to

or
t

c-
tic

t
t

ry

under consideration. The triplet mode involving a single
cident wave serves as a convenient basis for the theore
treatment of photon absorption processes near a diele
surface, where a single light source placed in far field may
assumed in a practical setup. On the other hand, when
study photon emission processes near a dielectric surface
usually consider a practical setup with a photon-count
scheme by using an independent photodetector place
each of the half spaces separated by the boundary, so tha
may consider a single outgoing wave as the final state of
radiation process. This process is interpreted, in terms of
triplet-mode description, as a result of interference betw
the right and left triplet modes involving the outgoing wa
under consideration. This situation, in some sense, is sim
to beam-splitter problems. In this case, a much more con
nient basis for the theoretical analysis is provided by
so-called detector-mode function including a single outgo
wave, especially when considering the radiative lifetime
atoms and molecules. Indeed, completeness of basis f
tions assures equivalence between various descriptions
the practical treatment of photon absorption or emission
periments is simplified by choosing either of those expr
sions according to the experimental setup under consi
ation: either a single source or a single detector is assume
the far-field region. The detector mode was introduced
Vigoureux and Payen in their theoretical study of the Ram
diffusion due to atoms near a planar dielectric boundary@19#.
In their work, the detector mode was defined in terms o
linear combination of the triplet-mode functions but was n
explicitly quantized.

In the present work, we study the field quantization bas
on the detector modes as the basis for a theoretical ana
of photon emission process in the optical near field. T
paper corresponds to the first part of a quantum-mechan
study of the radiation properties and radiative lifetime
oscillating electric and magnetic multipoles of arbitrary ord
near a planar dielectric surface based on a seco
quantization formalism developed on the basis of the de
tor modes. In contrast to the study reported by Vigoure
and Payen@19#, we introduce the detector modes in terms
time-reversal and spatial-rotation transforms of the trip
modes. This enables us to make a straightforward evalua
of the radiative decay rate in terms of the final-state den
of photonic modes and provides a clear understanding of
meaning of detector modes as well as of the corresponde
between classical and quantum descriptions of electric-
magnetic-multipole radiation of two-level systems in t
near-field regime. In related work, a classical treatment
this problem for magnetic and electric dipoles in a half spa
has been reported by Lukosz and Kunz@23–25#, in which the
boundary-value problem is solved using a combination
single-component magnetic and electric Hertz vectors to p
vide the total light emission intensity per unit time usin
Poynting’s theorem. A semiclassical evaluation has b
given by Wylie and Sipe for electric-dipole radiation near
planar boundary based on general quantum-electrodyna
linear-response theory@4,27#. A full quantum treatment of
electric-quadrupole radiation for a spherical dielectric bou
ary has been reported by Klimov and Letokhov@28#. How-
5-2
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QUANTIZATION OF EVANESCENT ELECTROMAGNETIC . . . PHYSICAL REVIEW A 63 063805
ever, to the authors’ knowledge, no systematic study
been reported so far of the quantum-mechanical treatme
the radiation from higher-order multipoles near a mate
surface.

The contents of this paper are as follows. According
the investigation of the meaning and importance of dete
modes in relation to the roles of sources and sinks in opt
near-field problems, we present the schemes of half-sp
problems to be considered~Sec. II! and a brief review of the
triplet-mode formalism~Appendix A!. The definition of
detector-mode functions and the second-quantization for
lation including evanescent waves are presented in S
III–V. As an application and verification, several numeric
results are presented for electric-dipole radiation near a
electric surface in Secs. VI and VII. To account for t
electric-dipole radiation, we have reported experimental
sults of the angular intensity distribution of radiation fro
excited Cs atoms near a planar dielectric surface by mean
high-resolution laser spectroscopy at theD2 line @12#. The
results obtained in the present work@21# are in good agree
ment with those experiments. In a subsequent paper we
extend this work and report the numerical results for
angular distribution of radiation and associated spontane
lifetime for higher-order electric and magnetic multipol
near a planar dielectric surface@29#, in which the detector-
mode functions are expanded in terms of vector spher
waves. This is reported briefly in this paper.

II. HALF-SPACE PROBLEM

We consider a space half of which is filled with a no
magnetic, transparent, homogeneous, and isotropic diele
medium of refractive indexn ~the left half space,z,0!, and
the other half is vacuum~the right half space,z>0! ~see
Fig. 1!. We will consider the electric fieldE(r ,t) and
its ~positive-frequency! Fourier component E(1)(r ,t)
5E(r )exp(2iKt). Here, K is the optical frequency unde
consideration with the light velocity taken as unity,c51.
The complex amplitudeE(r ) satisfies the Helmholtz equa
tion

¹2E~r !1K2n2~r !E~r !50, ~1!

with the refractive-index function defined as

n~r !5H n for z,0

1 for z>0,
~2!

wheren is assumed to be real. For later convenience, we
denote the wave vectors of incoming fields from the left
the boundary ask5(kx ,ky ,kz), and those of outgoing field
to the right of the boundary asK (D)5(Kx ,Ky ,2Kz), which
satisfy the relations

k5nK, ~3!

Kx5kx , ~4!

Ky5ky , ~5!
06380
s
of
l

o
r

al
ce

u-
cs.
l
i-

-

of

ill
e
us

al

ric

ll
f

Kz52A~K22Kx
22Ky

2!, ~6!

kz51A~k22kx
22ky

2!, ~7!

whereKz is negative in sign andkz positive.k is always a
real vector, butK (D) becomes complex whenKx

21Ky
2.K2.

We also denote the wave vectors of incoming fields from
right of the boundary asK5(Kx ,Ky ,Kz) and those of out-
going fields to the left of the boundary ask(D)5(kx ,ky ,
2kz). In addition, let the projection ofk and K onto the
plane z50 be ki5(kx ,ky,0) and K i5(Kx ,Ky,0), respec-
tively. Here,ki5K i5ki

(D)5K i
(D) due to phase continuity o

the symmetry under parallel displacement with respect to
planar boundary. The triplet-mode description with these
tations is presented in Appendix A.

Sources and sinks of light are introduced on the leftAL
and the rightAR hemispheres of radiusr F lying in the far-
field region, krF , Kr F@1, respectively. Each photoni
source or detector interacts with the photonic system thro
coupling to one of the incoming and outgoing components
the triplet mode as shown in Figs. 1~a! and 1~b!. When the
absorption properties of atoms put into the photonic sys

FIG. 1. The L and R triplet-mode configurations defined b
Carniglia and Mandel@18#. The left half spaceL(z,0) is filled
with an isotropic medium of refractive indexn and the right half
spaceL(z>0) is vacuum.~a! L triplet-mode function. The incident-
wave component is assumed to couple to a single source place
the hemisphereAL in far field. ~b! R triplet mode with a single
source placed on the hemisphereAR .
5-3
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TETSUYA INOUE AND HIROKAZU HORI PHYSICAL REVIEW A 63 063805
are considered in terms of one of the triplet modes, a sin
incident-wave component is coupled with a single sou
placed at far field, a point outside the photonic system un
consideration. This corresponds to the illumination of ato
by a single photonic source. On the other hand, when
radiation properties of atoms are considered in terms of
triplet modes, we should take account of the phase rela
between the right and left triplet modes of the correspond
wave vector in order to evaluate the correlation pho
counts between two photodetectors, each of which is cou
with one of the outgoing-wave components of the trip
modes.

In contrast to the above, we can introduce the dete
modes involving a single outgoing and two incident pla
waves connected via the Fresnel relation at the bound
surface. In this scheme, when accounting for the absorp
properties of atoms, two incident waves are considered to
coupled with a pair of correlated photonic sources. On
other hand, for radiation properties of atoms, the sin
outgoing-wave component of the detector mode is coup
with a single photonic detector. Therefore, the detector-m
description of photon emission processes can be related
simple photon-counting measurement on either of the he
spheresAL andAR .

III. DETECTOR-MODE FUNCTION

When we consider the far-field observation of sponta
ous emission of atoms near a dielectric surface@see Figs.
2~a! and 2~b!#, it is convenient to introduce the detecto
mode functions coupled to a single light sink placed on
ther of the hemispheresAL or AR . Here, we will define the
detector-mode functions as the time reversal and spatia
tation of the triplet-mode functions. We will see that th
provides us with a clear interpretation of the detector-mo
description. It is noted that these transforms preserve
momentum parallel to the boundary surface as well as
angular momentum normal to the boundary surface, wh
represent the conserved quantities in the interacting a
plus photonic system under consideration. In the sens
restricted conservation laws, we refer to these quantitie
pseudomomentum and pseudo-angular-momentum, res
tively.

A. TC2 transformation

Using the time reversalT and spatial rotationC2 ~see
Appendix B!, we can obtain the mode functions involving
single outgoing wave in either of the left and right ha
spaces with pseudomomentum\ki for theTC2 transform as
follows.

E~1 !~r ,t !→2@E~1 !
~D ! ~2r ~D !,2t !#* , ~8!

B~1 !~r ,t !→@B~1 !
~D ! ~2r ~D !,2t !#* . ~9!

Here, the detector-mode vectors are labeled by the su
script ~D!, such asv(D)5(vx ,vy ,2vz), which corresponds
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to the triplet-mode vectorv5(vx ,vy ,vz). The subscript de-
notes the positive-frequency component of the field~see Ap-
pendix B!.

The transforms for wave vectors ofL andR triplet mode
functions~see Appendix A 1! are given, respectively, by

k→k~D !, k~D !→k, K ~D !→K* ,

K→K ~D !, K ~D !→K , k~D !→k.

Under these transforms a single light source placed on
hemisphereAL (AR) at a direction2k ~2K ! from the origin

FIG. 2. The L and R detector-mode configurations.~a! L
detector-mode function. The outgoing-wave component is assu
to couple to a single sink placed on the hemisphereAL in far field.
~b! R detector mode with a single sink placed on the hemisph
AR .
5-4
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is transferred into a single light sink placed onAL (AR) at
the directionk(D) (K (D)) ~see Fig. 2!. In addition, we will
rewrite the Fourier components of the fields ashE(1)(r ,t)
and hB(1)(r ,t) with h561 for later convenience, accord
ing to the fact that electromagnetic fields in source-free sp
remain unchanged under such a replacement. Then we o
the mode functions involving a single outgoing wave w
pseudomomentum\ki in either left or right half space fo
the transformTC2h as

E~1 !~r ,t !→2h@E~1 !
~D ! ~2r ~D !,2t !#* , ~10!

B~1 !~r ,t !→h@B~1 !
~D ! ~2r ~D !,2t !#* . ~11!

B. Detector-mode function

We will consider the behavior of the triplet-mode fun
tions under the transformTC2h. For example, the wave vec
tors and polarization vectors of each wave component of
L triplet modes are transformed as

~k,«!→~k~D !,2h«!,

~k~D !,«!→~k,2h«!,

~K ~D !,«!→~K* ,2h«!,

for TE (m51), and as

„k,2~k3«!…→„k~D !,2h~k~D !3«!…,

„k~D !,2~k~D !3«!…→~k,2h~k3«!…,

„K ~D !,2~c~D !3«!…→„K* ,2h~c* 3«!…,

for TM (m52). Then, choosing the factorh5hm as h1
521, h2511, the detector-mode functions with a sing
outgoing wave are derived by the transformTC2hm from the
triplet-mode functions as follows:

EDL~k~D !,m,r !52hm@EL
~D !~k,m,2r ~D !!#* , ~12!

EDR~K ~D !,m,r !52hm@ER
~D !~K ,m,2r ~D !!#* , ~13!

BDL~k~D !,m,r !5hm@BL
~D !~k,m,2r ~D !!#* , ~14!

BDR~K ~D !,m,r !5hm@BR
~D !~K ,m,2r ~D !!#* . ~15!

Here, the suffixDL indicates that the mode involves outg
ing waves into the medium~left to the boundary! with wave
vector k(D), and the suffixDR indicates those into vacuum
~right to the boundary! with wave vectorK (D). Substituting
Eq. ~A1! into Eq.~12! and using Eqs.~A2!–~A7!, the explicit
form of theL detector-mode functions can be obtained@see
Fig. 2~a!#. We can write down the results as

EDL~k~D !,m,r !5EDL
~ I ! ~k~D !,m,r !1EDL

~R!~k,m,r !

1EDL
~T!~K* ,m,r !, ~16!

where
06380
ce
ain

e

EDL
~ I ! ~k~D !,1,r !5H 1

&n
« exp~ ik~D !

•r ! for z,0

0 for z>0,

~17!

EDL
~R!~k,1,r !5H 1

&n
«

kz1Kz*

kz2Kz*
exp~ ik•r ! for z,0

0 for z>0,

~18!

EDL
~T!~K* ,1,r !5H 1

&n
«

2kz

kz2Kz*
exp~ iK* •r ! for z>0

0 for z,0,
~19!

EDL
~ I ! ~k~D !,2,r !

5H 2
1

&n
~k~D !3«!exp~ ik~D !

•r ! for z,0

0 for z>0,

~20!

EDL
~R!~k,2,r !

5H 2
1

&n
~k3«!

kz1n2Kz*

kz2n2Kz*
exp~ ik•r ! for z,0

0 for z>0,

~21!

EDL
~T!~K* ,2,r !

5H 2
1

&n
~c* 3«!

2nkz

kz2n2Kz*
exp~ iK* •r ! for z>0

0 for z,0.

~22!

The magnetic field associated with the electric fie
EDL(k(D),m,r ) is obtained immediately from Maxwell’s
equation as

BDL~k~D !,m,r !5BDL
~ I ! ~k~D !,m,r !1BDL

~R!~k,m,r !

1BDL
~T!~K* ,m,r !. ~23!

In a similar way, substituting Eq.~A8! into Eq. ~13! with
the help of Eqs.~A9!–~A14!, the explicit form of theR de-
tector mode functions is obtained as follows@see Fig. 2~b!#:

EDR~K ~D !,m,r !5EDR
~ I ! ~K ~D !,m,r !1EDR

~R!~K ,m,r !

1EDR
~T!~k,m,r !, ~24!

where
5-5
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TETSUYA INOUE AND HIROKAZU HORI PHYSICAL REVIEW A 63 063805
EDR
~ I ! ~K ~D !,1,r !5H 1

&
« exp~ iK ~D !

•r ! for z>0

0 for z,0,

~25!

EDR
~R!~K ,1,r !5H 1

&
«

Kz1kz

Kz2kz
exp~ iK•r ! for z>0

0 for z,0,
~26!

EDR
~T!~k,1,r !5H 1

&
«

2Kz

Kz2kz
exp~ ik•r ! for z,0

0 for z>0,
~27!

EDR
~ I ! ~K ~D !,2,r !5H 2

1

&
~c~D !3«!exp~ iK ~D !

•r ! for z>0

0 for z,0,
~28!

EDR
~R!~K ,2,r !

5H 2
1

&
~c3«!

n2Kz1kz

n2Kz2kz
exp~ iK•r ! for z>0

0 for z,0,

~29!

EDR
~T!~k,2,r !

5H 2
1

&
~k3«!

2nKz

n2Kz2kz
exp~ ik•r ! for z,0

0 for z>0.

~30!

The magnetic field associated with the electric fie
EDR(K (D),m,r ) is given by Maxwell’s equation as

BDR~K ~D !,m,r !5BDR
~ I ! ~K ~D !,m,r !1BDR

~R!~K ,m,r !

1BDR
~T!~k,m,r !. ~31!

In a practical setup,k(D) and K (D), the outgoing wave
vectors of the detector modes, correspond to the angula
rections of the light sinks placed onAL andAR , respective-
ly. L andR detector modes correspond to the eigenstate
the pseudomomentum operator2 i\“ i as

~2 i\“ i!EDL~k~D !,m,r !5~\ki!EDL~k~D !,m,r !, ~32!

~2 i\“ i!EDR~K ~D !,m,r !5~\ki!EDR~K ~D !,m,r !, ~33!

where2 i\“ i operates on each component ofE.
06380
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From the orthogonality relations for the triplet mode, Eq
~A17!–~A19! in Appendix A with Eqs.~12! and ~13!, the
orthogonality relations for the detector-mode functions
obtained as

E @EDL~k~D !,m,r !#* •EDL~k8~D !,m8,r !n2~r !d3x

5
1

2
~2p!3dm,m8d

3~k~D !2k8~D !!, ~34!

E @EDR~K ~D !,m,r !#* •EDR~K 8~D !,m8,r !n2~r !d3x

5
1

2
~2p!3dm,m8d

3~K ~D !2K 8~D !!, ~35!

E @EDR~K ~D !,m,r !#* •EDL~k8~D !,m8,r !n2~r !d3x50.

~36!

Here, the superscript~D! is put into thed function because
d(x)5d(2x).

IV. TRANSFORMS BETWEEN TRIPLET MODES
AND DETECTOR MODES

Since theTC2h transform of the triplet-mode function
can be described in terms of the superposition of the trip
mode functions,EDL(k(D),m,r ) andEDR(K (D),m,r ) can be
described as the superposition ofEL(k,m,r ) and
ER(K ,m,r ),

EDL~k~D !,m,r !5~CL,m
L !*EL~k,m,r !1CL,m

R QHER~K ,m,r !,
~37!

EDR~K ~D !,m,r !5CR,m
L QHEL~k,m,r !1CR,m

R QHER~K ,m,r !.
~38!

HereQH is the projection function onto homogeneous mod
defined by

QH5Q~ki
2!2Q~ki

22K2!, ~39!

whereQ(ki
2) is the step function with respect to the arg

ment ki
25kx

21ky
2, so thatQH51 represents homogeneou

waves andQH50 evanescent waves. Equations~37! and
~38! show that only theL detector modes involve evanesce
waves, so long as the outgoing waves are propagating.
expansion coefficientsCR,m

R , CR,m
L , CL,m

R , and CL,m
L are de-

rived using Eq.~A1! with the help of Eqs.~A2!–~A7!, and
Eq. ~A8! with Eqs.~A9!–~A14!, with the mode functions in
Eqs.~16!–~22! and Eqs.~24!–~30!, as

CL,m
L 5S kz1Kz

kz2Kz
D dm,11S kz1n2Kz

kz2n2Kz
D dm,2 , ~40!

CL,m
R 5

1

n S 2kz

kz2Kz
D dm,11

1

n S 2nkz

kz2n2Kz
D dm,2 , ~41!
5-6
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CR,m
L 5n2jCL,m

R , ~42!

CR,m
R 52CL,m

R , ~43!

where the complex coefficientj is defined by

j52
Kz

kz
. ~44!

The following relations are also available:

~CL,m
L !* CL,m

L 1n2jCL,m
R CL,m

R QH51, ~45!

~CL,m
L !* CL,m

R 2CL,m
L CL,m

R QH5~CL,m
R !* ~12QH!. ~46!

Also, from Eqs.~37! and ~38! with Eq. ~45!, we get the
representations of the triplet-mode functions in terms of
detector-mode functions as follows:

EL~k,m,r !5CL,m
L EDL~k~D !,m,r !1CL,m

R QHEDR~K ~D !,m,r !,
~47!

ER~K ,m,r !5CR,m
L QHEDL~k~D !,m,r !

1CR,m
R QHEDR~K ~D !,m,r !. ~48!

V. FIELD QUANTIZATION BASED ON
THE DETECTOR MODES

In the same manner as for the second-quantization form
ism with the triplet modes, we can introduce the quantiz
electric-field operator based on the detector modes as

Ê~r ,t !5
1

~2p!3/2E
~2kz!,0

d3k~D ! (
m51

2 S \K

e D 1/2

3@ âDL~k~D !,m!EDL~k~D !,m,r !e2 iKt1H.c.#

1
1

~2p!3/2E
~2Kz!.0

d3K ~D ! (
m51

2 S \K

e D 1/2

3@ âDR~K ~D !,m!EDR~K ~D !,m,r !e2 iKt1H.c.#,

~49!

where

E
~2kz!,0

d3k~D !5E
2`

` E
2`

` E
2`

0

dkxdkyd~2kz!

5E
kz.0

d3k,

E
~2Kz!.0

d3K ~D !5E
2`

` E
2`

` E
0

`

dKxdKyd~2Kz!

5E
Kz,0

d3K.

The operators âDL(k(D),m), âDL
† (k(D),m) and also

âDR(K (D),m), âDR
† (K (D),m) indicate, respectively, the ann
06380
e

l-
d

hilation and creation operators of photons labeled by the
larizationm and the wave vectorsk(D) andK (D) of outgoing
waves to be coupled with photodetectors on either he
sphereAL or AR in the far field.

Here, we will investigate the commutation relations f
the detector-mode operators. SinceâDL(k(D),m) and
âDR(K (D),m) can be described in terms ofâL(k,m) and
âR(K ,m), we can utilize the commutation relations given f
âL(k,m) and âR(K ,m) by Eqs. ~A21!–~A24!. Substituting
Eqs.~47! and~48! into Eq. ~A20! with the help of Eqs.~45!
and ~46!, and using the relations

E
kz.0

d3k QH5E
Kz,0

d3K n2jQH , ~50!

E
Kz,0

d3K QH5E
kz.0

d3k~n2j!21QH ~51!

with d3k52n2j d3K, we can obtain

âDL~k~D !,m!5CL,m
L âL~k,m!1CL,m

R QHâR~K ,m!, ~52!

âDR~K ~D !,m!5CR,m
L QHâL~k,m!1CR,m

R QHâR~K ,m!.
~53!

The following relations hold for real variables:

QHd~K2K 8!5n2jQHd~k2k8!, ~54!

QHd~k2k8!5~n2j!21QHd~K2K 8!. ~55!

For example, using Eqs.~45! and ~54!, we obtain

@ âDL~k~D !,m!,âDL
† ~k8~D !,m8!#

5dm,m8@~CL,m
R !2QHd~K2K 8!1~CL,m

L !* CL,m
L d~k2k8!#

5dm,m8@n2j~CL,m
R !2QH1~CL,m

L !* CL,m
L #d~k2k8!

5dm,m8d~k2k8!

5dm,m8d~k~D !2k8~D !!.

Similarly, we have the whole set of commutation relation

@ âDL~k~D !,m!,âDL
† ~k8~D !,m8!#5dm,m8d~k~D !2k8~D !!,

~56!

@ âDR~K ~D !,m!,âDR
† ~K 8~D !,m8!#5dm,m8d~K ~D !2K 8~D !!,

~57!

with the trivial ones

@ âDL~k~D !,m!,âDR~K 8~D !,m8!#50, ~58!

@ âDL~k~D !,m!,âDR
† ~K 8~D !,m8!#50. ~59!

From Eqs.~52! and ~53! with Eq. ~45!, the reversals of the
relations in Eqs.~52! and ~53! are given, respectively, by

âL~k,m!5~CL,m
L !* âDL~k~D !,m!1CL,m

R QHâDR~K ~D !,m!,
~60!
5-7
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âR~K ,m!5CR,m
L QHâDL~k~D !,m!1CR,m

R QHâDR~K ~D !,m!.
~61!

Finally, we consider the HamiltonianĤ, number operator
N̂, and pseudomomentum operatorP̂i of the quantized elec
tromagnetic fields. Substituting Eqs.~60! and ~61! into Eqs.
~A25!–~A27! and using Eqs.~45! and ~46!, we obtain

Ĥ5E
~2kz!,0

d3k~D ! (
m51

2

\KâDL
† ~k~D !,m!âDL~k~D !,m!

1E
~2Kz!.0

d3K ~D ! (
m51

2

\KâDR
† ~K ~D !,m!âDR~K ~D !,m!,

~62!

N̂5E
~2kz!,0

d3k~D ! (
m51

2

âDL
† ~k~D !,m!âDL~k~D !,m!

1E
~2Kz!.0

d3K ~D ! (
m51

2

âDR
† ~K ~D !,m!âDR~K ~D !,m!,

~63!

P̂i5E
~2kz!,0

d3k~D ! (
m51

2

\ki
~D !âDL

† ~k~D !,m!âDL~k~D !,m!

1E
~2Kz!.0

d3K ~D ! (
m51

2

\ki
~D !âDR

† ~K ~D !,m!âDR~K ~D !,m!.

~64!

Here, we have used the relationki
(D)5ki . Our definition of

detector modes as theTC2h transform of the triplet modes
including both homogeneous and evanescent waves,
vides a general and clear representation compared with t
given by Vigoureux and Payen. The eigenstates ofĤ, N̂,
and P̂i are produced by operatingâDL

† (k(D),m) and
âDR

† (K (D),m) on the vacuum stateu0&. For example, the
single-photon eigenstates with the energy eigenvalue\K are
given by

uD,1~k~D !,m!&5âDL
† ~k~D !,m!u0&, ~65!

uD,1~K ~D !,m!&5âDR
† ~K ~D !,m!u0&, ~66!

whereD indicates the states of the detector modes. The n
malization relations are given by

^D,1~k~D !,m!uD,1~k8~D !,m8!&5dm,m8d~k~D !2k8~D !!,
~67!

^D,1~K ~D !,m!uD,1~K 8~D !,m8!&5dm,m8d~K ~D !2K 8~D !!,
~68!

^D,1~K ~D !,m!uD,1~k8~D !,m8!&50, ~69!

with ^0u0&51. From Eqs.~52! and~53!, the states created b
the detector-mode operatorsâDL

† (k(D),m),âDR
† (K (D),m) can
06380
ro-
se

r-

be described in terms of those created by the triplet-m
operatorsâL

†(k(D),m),âR
†(K (D),m),

uD,1~k~D !,m!&5~CL,m
L !* uT,1~k,m!&1CL,m

R QHuT,1~K ,m!&,
~70!

uD,1~K ~D !,m!&5CR,m
L QHuT,1~k,m!&1CR,m

R QHuT,1~K ,m!&.
~71!

The reversals of these expressions are given by

uT,1~k,m!&5CL,m
L uD,1~k~D !,m!&1CL,m

R QHuD,1~k~D !,m!&,
~72!

uT,1~K ,m!&5CR,m
L QHuD,1~k~D !,m!&

1CR,m
R QHuD,1~K ~D !,m!&. ~73!

VI. RADIATION FROM AN ATOM NEAR
A PLANAR DIELECTRIC BOUNDARY

Let us consider a photon emission process from an
cited atom placed in the vacuum-side half space near a pl
dielectric surface, as shown in Fig. 3~a!. The interaction
Hamiltonian is given by

V̂~ t !52
e

m
Â~r01R,t !•p, ~74!

where R5(X,Y,Z) is the position vector of the atomi
nucleus (Z.0), r05(x0 ,y0 ,z0) the relative position vector
of the atomic electron with respect to the nucleus, ande, m,
and p the electron charge, mass, and momentum, resp
tively. Â is the vector potential in the Coulomb gauge o
tained from Eq.~49! by using the relation

Ê~r ,t !52~]/]t !Â~r ,t !. ~75!

A. Radiation into the vacuum side

We will consider a photon emission process of a tw
level atom with am-polarized outgoing wave in the vacuum
side half space with wave vectorK (D)5(Kx ,Ky ,
2Kz)(2Kz.0). Here it is stressed that a single detec

FIG. 3. The interaction of an atom with theR detector mode.
The interaction between the atom andEDR

(R) component is equivalen
to the radiation from an image dipoledf i

(R)(m) placed atR(R) in
completely free space.
5-8
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mode is specified by its outgoing wave vectorK (D) and po-
larization m. For photon emission into the detector mo
specified byK (D) and m, the final state of the atom plu
photon system is described by u f &
5uD,1(K (D),m)&uw f(r0 ,t)&, where uw f& corresponds to the
atomic ground state. The initial state of the system is
scribed byu i &5u0&uw i(r0 ,t)&, with uw i& the atomic excited
state under consideration. By separating the temporal ev
tion of the wave functions, the matrix element of the inte
action Hamiltonian in Eq.~74! can be represented in terms
the time-independent matrix elementVf i as

Vf i~ t !5Vf ie
2 i ~v02K !t, ~76!

wherev0 is the atomic transition frequency. The probabili
dG of the i→ f transition resulting in a single-photon emi
sion is given by

dG5
2p

\2 uVf i u2d~v02K !dr~K !, ~77!

wheredr(K) is the final-state mode density of the electr
magnetic field.

When we consider single-photon emission into t
vacuum side, the state of the photon is described by thR
detector mode alone. From Eqs.~49! and ~74!, we can find
the time-independent transition matrix element as

Vf i~K ~D !,m!52 i
e

m F \

~2p!3KeG1/2

3^w f u@EDR~K ~D !,m,r01R!#* •puw i&.

~78!

The atom in the vacuum side (Z.0) interacts with two com-
ponentsEDR

(I ) andEDR
(R) of the R detector mode given in Eqs

~24!–~30!. A single sink or photodetector is coupled with th
outgoing wave of theR mode with the complex electric-field
amplitude described by

EV~K ~D !,m,r !

55
E0

&
« exp~2 iK ~D !

•r ! for m51

E0

&
~2c~D !3«!exp~2 iK ~D !

•r ! for m52,

~79!

where

E05F \K

~2p!3e0
G1/2

. ~80!

Using the long-wavelength approximation and the relat
^w f upuw i&52 imv0^w f ur0uw i&, the matrix element can b
written in the following form corresponding to the dipo
approximation:
06380
-

lu-
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n

Vf i~K ~D !,m!52~v0 /K !@df i~m!•EV~K ~D !,m,R!

1df i
~R!~m!•EV~K ~D !,m,R~R!!#. ~81!

We consider the near-resonance condition and, herea
omit the factor (v0 /K). The first term of Eq.~81! is attrib-
uted to radiation from a real electric dipoledf i(m)
5^w f uer0uw i& placed atR5(X,Y,Z) with the electric field
amplitudeEV entirely in free space@see Fig. 3~b!#. The sec-
ond term can be interpreted as the radiation from an im
dipole df i

(R)(m) placed atR(R)5(X,Y,2Z) entirely in free
space, so thatdf i

(R)(m) can be rewritten using the refractiv
index n of the medium as

df i
~R!~m!5H S Kz1kz

Kz2kz
D ^w f uer0uw i& for m51

S n2Kz1kz

n2Kz2kz
D ^w f uer0

~R!uw i& for m52,

~82!

wherer0
(R)5(2x0 ,2y0 ,z0).

The first term in the right-hand side of Eq.~81! represents
the interaction of the atom withEDR

(I ) , so thatEDR
(I ) corre-

sponds to the radiation field from the real dipoledm . The
second term of Eq.~81! represents the interaction withEDR

(R) ,
andEDR

(R) can be considered as the radiation field from t
imaginary dipole which is often used in semiclassical tre
ments. The radiation field involves only one outgoing wa
with wave vectorK (D) and polarizationm, so that the mode
densitydr(K) for the final state of the photon for eachm is
given simply by

dr~K !5d3K ~D !5K2dK dV~c~D !!, ~83!

with the infinitesimal solid angledV(c(D)) in the direction of
the unit propagation vectorc(D). Here, it is stressed that th
detector mode provides a clear understanding of the radia
process from the viewpoints of the classical-quantum co
spondence and the straightforward evaluation of the fin
state mode density discussed above. Such a straightforw
interpretation is not available in the usual triplet-mode-ba
field quantization.

Substituting Eqs.~81! and~83! into Eq.~77! and integrat-
ing overdK, the differential radiation probabilitydG for pho-
ton emission into the mode involving the outgoing wave w
K (D) lying in the solid angledV(c(D)) is given by

dG~c~D !,m!5S 2pK2

\2 D udf i~m!•EV~K ~D !,m,R!

1df i
~R!~m!•EV~K ~D !,m,R~R!!u2dV~c~D !!,

~84!

whereK5v0 .

B. Radiation into the medium side

Next, we will consider emission of am-polarized photon
resulting in an outgoing wave in the medium side withk(D)
5-9
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5(kx ,ky ,2kz)(2kz,0). The final state corresponds
u f &5uD,1(k(D),m)&uw f&. From Eqs.~49! and ~74!, the time-
independent matrix element of the interaction Hamiltonian
given by

Vf i~k~D !,m!52 i
e

m F \

~2p!3KeG1/2

3^w f u@EDL~k~D !,m,r01R!#* •puw i&.

~85!

According to Eqs.~16!–~22!, the atom interacts with the field
only via theEDL

(T) component of theL detector mode. The
transition matrix element can be written as

Vf i~k~D !,m!52~v0 /K !df i
~T!~m!•EM~k~D !,m,R~T!!,

~86!

with the electric-field amplitude of the outgoing wave

EM~k~D !,m,r !

55
E0

&n
« exp~2 ik~D !

•r ! for m51

E0

&n
~2k~D !3«!exp~2 ik~D !

•r ! for m52.

~87!

This shows that the radiation process, viewed from
medium-side half space, is equivalent to that from an elec
dipole df i

(T)(m)5^w f ud(T)(m)uw i& placed atR(T)5(X,Y,jZ)
in the entirely filled medium~see Fig. 4!. Here the equivalen
dipole moment operatordf i

(T)(m) is described in terms of the
transmission coefficient

df i
~T!~m!5H 1

j S 2Kz

Kz2kz
D ^w f uer0uw i& for m51

1

j S 2nKz

n2Kz2kz
D ^w f uer0

~T!uw i& for m52,

~88!

FIG. 4. The interaction of an atom with theL detector mode.
The interaction between the atom andEDL

(L) component is equivalen
to the radiation from a dipoledf i

(T)(m) placed atR(T) in a space
entirely filled with dielectric medium.
06380
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wherer0
(T)5n(jx0 ,jy0 ,z0). It is noted that, since Eq.~86!

represents the radiation viaEDL
(T) , the electric dipole

df i
(T)(m) and its positionR(T) become complex vectors whe

the atom interacts with the evanescent wave in theL detector
mode. As the final-state mode function is labeled byk(D) and
m in EDL(k(D),m,r ), the differential mode densitydr(K) is
given simply by

dr~K !5d3k~D !5n3K2dK dV~k~D !!, ~89!

with the infinitestimal solid angledV(k(D)) in the direction
of the unit propagation vectork(D). Substituting Eqs.~86!
and~89! into Eq. ~77! and integrating overdK, the differen-
tial transition probabilitydG is given by

dG~k~D !,m!5S 2pn3K2

\2 D
3udf i

~T!~m!•EM~k~D !,m,R~T!!u2dV~k~D !!.

~90!

VII. NUMERICAL EVALUATION OF
THE ANGULAR DISTRIBUTION OF RADIATION

INTO THE MEDIUM SIDE

As an example of numerical evaluation, we will consid
the electric-dipole radiation near a planar dielectric surfa
The atomic initial state is assumed to be an excited s
without spin and described in terms of the superposition
states with orbital angular momentuml 51 oriented in the
direction angle~Q, F! by

uw i&5(
m

~21!mC2muwn,1,m&, ~91!

where

C1152
1

&
sinQeiF,

C05cosQ, ~92!

C2151
1

&
sinQe2 iF.

The ground state, or the final state of the atomic transition
uw f&5uwn8,0,0&.

Let us introduce the electric-dipole operators defined b

d11
~1!52

e

&
~x01 iy0!,

d0
~1!5ez0 , ~93!

d21
~1!51

e

&
~x02 iy0!.
5-10
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According to the Wigner-Eckart theorem, the matrix elem
of the electric-dipole operators is written by

^wn8,0,0udm
~1!uwn,1,m8&5~21!12mdm8,2m

^wn8,0id~1!iwn,1&

)
,

~94!

where^wn8,0id(1)iwn,1& is the reduced matrix element. Thu
we have the matrix elements of the electric dipoledf i

(T)(m);

df i
~T!~1!52

1

j S 2Kz

Kz2kz
D ^wn8,0id~1!iwn,1&

)

3~sinQ cosF,sinQ sinF,cosQ!, ~95!

df i
~T!~2!52

1

j S 2nKz

n2Kz2kz
D ^wn8,0id~1!iwn,1&

)

3n~j sinQ cosF,j sinQ sinF,cosQ!.

~96!
fr
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06380
t As in our previous work@21#, we introduce spherica
anglesa1 , a2 , andb as shown in Fig. 5 for theL detector
mode function. The vectorsk(D) and« are represented by

k~D !5~sina2 cosb,sina2 sinb,2cosa2!,

«5~2sinb,cosb,0!,

k~D !3«5~cosa2 cosb,cosa2 sinb,sina2!,

andKz52K cosa1 andkz5nK cosa2. Here,a1 is real (0
<a1,p/2) for 0<a2,a2c5arcsin(1/n). a1 is complex
for a2c<a2,p/2 and is described asa15(p/2)2 ig1 (0
<g1,g1c), with sin@(p/2)2 ig1c#5n. a2c is the critical
angle of the total internal reflection. (p/2)2 ig1c is another
critical angle corresponding toa25(p/2), above which
waves in the dielectric side also become evanescent wa
so that the field forms a kind of localized mode on t
boundary surface@21#. The differential transition probabili-
ties in Eq.~90! are evaluated as
dG~k~D !,1!5S 3n3

2p DG0Ucosa2 sinQ sin~b2F!

cosa11n cosa2
eiKZ cosa1U2

dV~k~D !!, ~97!

dG~k~D !,2!5S 3n3

2p DG0Ucosa2@cosQ sina11sinQ cos~b2F!cosa1#

n cosa11cosa2
eiKZ cosa1U2

dV~k~D !!, ~98!
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with the coefficientG0 defined by

G05
1

4pe\ S 4K3

3 D z^wn8,0id~1!iwn,1& z2

3
. ~99!

This corresponds to the spontaneous emission rate in
space (n→1). In practice, integration of the differential ra
diation probability over the left half space forn→1 gives
G0/2:

G0/25 lim
n→1

(
m

E
AL

dG~k~D !,m! @~Q,F!→~0,0!#.

~100!

Figure 6 shows one of the numerical results of

dG~k~D !!/G05(
m

dG~k~D !,m!/G0 , ~101!

calculated forn5&@a2c5(p/4)#, r51, and b150 ~zx
plane!. Since the angular intensity distributiondI(k(D),m)
into the solid angledV(k(D)) is given by dI(k(D),m)
5\KdG(k(D),m), the normalized probability of photon
emission dG(k(D),m)/G0 equals the normalized intensit
dI(k(D),m)/I 0 , with total radiation intensityI 0 . Our present
results are in agreement with those obtained by a class
treatment in our previous work@21# based on the angula
ee

al

spectrum representation of electromagnetic fields, for wh
a comparison with experimental results@12# has also been
reported. As the experimental results given in Ref.@12# are
for the optical transition between the hyperfine states of
atoms at theD2 line (6 2P3/2→6 2S1/2), the excited state is
composed of the hyperfine states. Therefore, the polariza
state is mixed even for a well-defined TE or TM excitatio
Based on the agreement between our quantum and clas
treatments, it is straightforward to evaluate experimental
sults by taking all the hyperfine components into account
averaging over the atomic distanceZ from the surface, ac-
counting for the Cs vapor experiment@12#. As shown already
in our previous work with the semiclassical evaluation, t
theoretical results reproduce the experimental results v
well.

VIII. CONCLUSION

We have developed a second-quantization formalism
electromagnetic fields including evanescent waves base
the detector-mode functions defined as the time reversal
spatial rotation of the triplet-mode functions. This provides
convenient basis for the evaluation of atomic and molecu
radiation near a dielectric boundary surface, especially fo
practical setup, in which a single photodetector is assume
the far-field region. The detector-mode formalism provid
us with a clear understanding of quantum radiation proces
5-11
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in terms of their classical correspondence. In fact, we h
considered the radiation from an atom placed near a pla
dielectric surface and found that the two componentsEDR

(I )

andEDR
(R) of theR detector modeEDR can be related, respec

tively, to the radiation fields from a real dipole and an ima
dipole in entirely free space, involving an outgoing wave
be coupled with a single photodetector placed in the vacu
side far field. On the other hand, the componentEDL

(T) of theL
detector modeEDL represents the radiation field involving a
outgoing wave from an electric dipole in an entirely fille

FIG. 5. The incident and refracted angles and polarization v
tors. The incident plane makes an angle ofb to thezx plane.

FIG. 6. The numerical results for the normalized different
emission rate, which is equivalent to the angular intensity distri
tion from an electric dipole oriented to (Q,F)5(0,0), ~p/2, 0!, and
~p/2, p/2!. The light emission is observed at a point on the int
section of the hemisphereAL and thezx plane.a2c is the critical
angle of total internal reflection. Numerical results are given fon
5& (a2c5p/4), r51.
06380
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medium, into a single photodetector placed in the mediu
side far field. Such a direct comparison of quantum radiat
processes with semiclassical ones makes it easy to eva
the electromagnetic final-state density. This point is essen
for studies of the atomic radiative lifetime and its modulati
due to variations in the electromagnetic environment.
study of the interaction of atoms with theL detector mode
would be one of the most interesting issues with respec
optical near-field phenomena and cavity-quantu
electrodynamics problems, since theL detector mode in-
cludes evanescent waves. With respect to coherent inte
tion processes such as multiple scattering of radiation
associated level shifts, both the detector-mode and trip
mode formalisms provide us with a convenient basis for t
oretical consideration. As an extension of the present wo
we have derived a general analytic expression for the ang
distribution of radiation from electric and magnetic mul
poles near a planar dielectric surface by using the trans
mations of detector-mode functions into vector spheric
mode functions reported in our previous paper@21#. Further,
based on the formalisms provided in the present work,
have evaluated modulations of the radiative lifetimes of el
tric and magnetic multipoles of arbitrary order due to ne
field interactions at a boundary surface. These results wil
published elsewhere. These results should be useful not
in basic cavity-QED studies but also in theoretical studies
optical near-field diagnosis and control of quantum el
tronic systems in a wide variety of mesoscopic devices, s
as quantum dots and wires. It is especially important to g
careful consideration of observation processes and assoc
signal transport properties in systems showing quantu
mechanical properties. The detector modes, coupled w
multipole expansions and mode transforms by means of
angular spectrum representation, would serve as a co
nient basis for these theoretical studies.
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APPENDIX A: TRIPLET-MODE FUNCTIONS

Here, in order to make notations of triplet modes cle
and being coincident with the detector-mode formalisms
the present work, we will define the wave components ofL-
andR-triplet-mode functions.

1. Triplet-mode functions

Following Carniglia and Mandel@18#, the L triplet mode
functions@see Fig. 1~a!# are defined with respect to the ele
tric field as a composition of incident, reflected, and tra
mitted fields by

c-

l
-

-
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EL~k,m,r !5EL
~ I !~k,m,r !1EL

~R!~k~D !,m,r !

1EL
~T!~K ~D !,m,r !. ~A1!

Here, the subscriptL indicates light incident from the me
dium side~left to the planar boundary!. The components ofL
triplet-mode functions for TE and TM polarizations are wr
ten explicitly, using our definition of incoming wave vecto
k andK and outgoing wave vectorsk(D) andK (D) ~see Sec.
II !, as follows:

EL
~ I !~k,1,r !5H 1

&n
« exp~ ik•r ! for z,0

0 for z>0,

~A2!

EL
~R!~k~D !,1,r !5H 1

&n
«

kz1Kz

kz2Kz
exp~ ik~D !

•r ! for z,0

0 for z>0,
~A3!

EL
~T!~K ~D !,1,r !5H 1

&n
«

2kz

kz2Kz
exp~ iK ~D !

•r ! for z>0

0 for z,0,
~A4!

EL
~ I !~k,2,r !5H 2

1

&n
~k3«!exp~ ik•r ! for z,0

0 for z>0,

~A5!

EL
~R!~k~D !,2,r !

55 2
1

&n
(k(D)3«)

kz1n2Kz

kz2n2Kz
exp(ik(D)

•r )

for z,0

0 for z>0,

~A6!

EL
~T!~K ~D !,2,r !

55 2
1

&n
~c~D !3«!

2nkz

kz2n2Kz
exp~ iK ~D !

•r !

for z>0

0 for z,0,

~A7!

where«5«(ki) is a real unit vector orthogonal to the wav
vectors lying on the boundary planez50, so that« indicates
the polarization vector of TE waves.k, k(D), and c(D) are
unit vectors directing, respectively,k, k(D), andK (D). Since
a light source is assumed to be placed onAL as shown in
Fig. 1~a!, we considerEL

(I )(k,m,r ) as homogeneous wave
so thatk is a real vector with components

2`,kx,1`, 2`,ky,1`, 0,kz,1`.
06380
The corresponding wave-vector componentKz on the other
side of the boundary is a real number for 0<kx

21ky
2,K2,

but a complex number forK2<kx
21ky

2,n2K2. Therefore,k
andk(D) always form real vectors, butc(D) possibly involves
a complex component.

The R triplet-mode functions@see Fig. 1~b!# are also de-
fined by

ER~K ,m,r !5ER
~ I !~K ,m,r !1ER

~R!~K ~D !,m,r !

1ER
~T!~k~D !,m,r !. ~A8!

Here, the suffixR indicates light incident from the vacuum
side ~right to the boundary!. The three components of theR
triplet-mode functions for TE and TM polarizations are wr
ten explicitly as follows:

ER
~ I !~K ,1,r !5H 1

&
« exp~ iK•r ! for z>0

0 for z,0,

~A9!

ER
~R!~K ~D !,1,r !5H 1

&
«

Kz1kz

Kz2kz
exp~ iK ~D !

•r ! for z>0

0 for z,0,
~A10!

ER
~T!~k~D !,1,r !5H 1

&
«

2Kz

Kz2kz
exp~ ik~D !

•r ! for z,0

0 for z>0,
~A11!

ER
~ I !~K ,2,r !5H 2

1

&
~c3«!exp~ iK•r ! for z>0

0 for z,0,

~A12!

ER
~R!~K ~D !,2,r !

55 2
1

&
~c~D !3«!

n2Kz1kz

n2Kz2kz
exp~ iK ~D !

•r !

for z>0

0 for z,0,

~A13!

ER
~T!~k~D !,2,r !

55 2
1

&
~k~D !3«!

2nKz

n2Kz2kz
exp~ ik~D !

•r !

for z,0

0 for z>0,

~A14!

where c is the unit vector directingK . Since the incident
wave ER

(I )(K ,m,r ) is assumed to be coupled with a ligh
source placed in the far-field region as shown in Fig. 1~b!,
we considerER

(I )(K ,m,r ) as homogeneous waves with re
wave vectorK with components
5-13
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2`,Kx,1`, 2`,Ky,1`, 2`,Kz,0.

The corresponding wave-vector componentkz on the other
side of the boundary is a real number since 0<kx

21ky
25Kx

2

1Ky
2,K2. Therefore,c(D), c, and k(D) always form real

vectors.
According to the translational symmetry of the sy

tem along thex and y directions,L and R triplet modes
correspond to eigenstates of the operator2 i\“ i5
2 i\(]/]x,]/]y,0):

~2 i\¹i!EL~k,m,r !5~\ki!EL~k,m,r !, ~A15!

~2 i\¹i!ER~K ,m,r !5~\ki!ER~K ,m,r !. ~A16!

The orthogonality relations forL and R triplet mode func-
tions @18# are given by

E @EL~k,m,r !#* •EL~k8,m8,r !n2~r !d3x

5
1

2
~2p!3dm,m8d

3~k2k8!, ~A17!

E @ER~K ,m,r !#* •ER~K 8,m8,r !n2~r !d3x

5
1

2
~2p!3dm,m8d

3~K2K 8!, ~A18!

E @EL~k,m,r !#* •ER~K 8,m8,r !n2~r !d3x50. ~A19!

2. Field quantization based on triplet-mode functions

As a preparation, we will briefly review the field quant
zation based on the triplet modes@11# according to our de-
scription of theL and R modes. For planar boundary prob
lems, an arbitrary electric field is expanded in terms of
triplet-mode functions as

Ê~r ,t !5
1

~2p!3/2E
kz.0

d3k (
m51

2 S \K

e D 1/2

3@ âL~k,m!EL~k,m,r !e2 iKt1c.c.#

1
1

~2p!3/2E
Kz,0

d3K (
m51

2 S \K

«0
D 1/2

3@ âR~K ,m!ER~K ,m,r !e2 iKt1c.c.#, ~A20!

with

E
kz.0

d3k5E
2`

` E
2`

` E
0

`

dkxdkydkz ,

E
Kz,0

d3K5E
2`

` E
2`

` E
2`

0

dKxdKydKz .
06380
e

Here we have replacedû(k,m) and v̂(K ,m) in Ref. @11#,
respectively, by âL(k,m)5û(k,m)/@(2p)3\#1/2 and
âR(K ,m)5 v̂(K ,m)/@(2p)3\#1/2. The quantization of elec-
tric field is achieved by considering the expansion coe
cientsâL(k,m) andâR(K ,m) as quantum-mechanical oper
tors and replacing the complex conjugate by the Hermit
conjugate. Here,âL(k,m) and âR(K ,m) correspond to the
annihilation operators forL and R triplet modes, respec
tively, which satisfy the following commutation relations:

@ âL~k,m!,âL
†~k8,m8!#5dm,m8d~k2k8!, ~A21!

@ âR~K ,m!,âR
†~K 8,m8!#5dm,m8d~K2K 8!, ~A22!

@ âR~K ,m!,âL~k8,m8!#50, ~A23!

@ âR~K ,m!,âL
†~k8,m8!#50. ~A24!

We can construct the HamiltonianĤ, number operatorN̂,
and pseudomomentum operatorP̂i , according to the ortho-
dox procedure of second quantization as follows:

Ĥ5E
kz.0

d3k (
m51

2

\KâL
†~k,m!âL~k,m!

1E
Kz,0

d3K (
m51

2

\KâR
†~K ,m!âR~K ,m!, ~A25!

N̂5E
kz.0

d3k (
m51

2

âL
†~k,m!âL~k,m!

1E
Kz,0

d3K (
m51

2

âR
†~K ,m!âR~K ,m!, ~A26!

P̂5E
kz.0

d3k (
m51

2

\kiâL
†~k,m!âL~k,m!

1E
Kz,0

d3K (
m51

2

\kiâR
†~K ,m!âR~K ,m!. ~A27!

The number eigenstates can be produced by opera
âL

†(k,m) or âR
†(K ,m) on the vacuum stateu0& with the nor-

malization ^0u0&51. For example, the single-photon stat
(N51) with energy\K, pseudomomentum\ki , and polar-
ization m are given by

uT,1~k,m!&5âL
†~k,m!u0&, ~A28!

uT,1~K ,m!&5âR
†~K ,m!u0&, ~A29!

with the normalization relations

^T,1~k,m!uT,1~k8,m8!&5dm,m8d~k2k8!, ~A30!

^T,1~K ,m!uT,1~K 8,m8!&5dm,m8d~K2K 8!, ~A31!

^T,1~k,m!uT,1~K 8,m8!&50, ~A32!
5-14
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where the labelT indicates photonic states corresponding
the triplet modes. It is noted again that the wave vectork
and K are used to specify those of theL and R modes, re-
spectively.

APPENDIX B: TIME REVERSAL
AND SPATIAL ROTATION

Here we study the behavior of the triplet-mode functio
under the time-reversal transform and spatial rotation w
anglep around thez axis.

1. Time-reversal „T… transform

The electromagnetic fields satisfy Maxwell’s equations

“3E~r ,t !52~]/]t !B~r ,t !, ~B1!

“3B~r ,t !5n2~r !~]/]t !E~r ,t !. ~B2!

According to Eqs.~B1! and~B2!, the Fourier components o
the electromagnetic fieldsE(1)(r ,t)5E(r )exp(2iKt) and
B(1)(r ,t)5B(r )exp(2iKt) for the light frequencyK satisfy
the equations

“3E~1 !~r ,t !5 iKB~1 !~r ,t !, ~B3!

“3B~1 !~r ,t !52 in2~r !KE~1 !~r ,t !. ~B4!

Under the time-reversal operation~T transform!, the Fourier
components of the electric and magnetic fields are tra
formed as

E~1 !~r ,t !→@E~1 !~r ,2t !#* , ~B5!

B~1 !~r ,t !→2@B~1 !~r ,2t !#* , ~B6!

where the asterisk denotes the complex conjugate. We
consider the behavior ofL triplet-mode functions under theT
transform, which is straightforward for the wave vectors
incident, reflected, and transmitted components:

k→2k, k~D !→2k~D !, K ~D !→2K ~D !* .

When we consider an observation scheme to be coupled
the photonic system under consideration, a single li
source is transformed into a single light sink. Since the s
in the z component of each wave vector is changed for r
values ofKz , the time-reversal operator transforms theL
triplet-mode functions into mode functions involving an ou
going wave to the left-hand side half space~medium! of the
le,
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boundary. For imaginary values ofKz , the sign in thez
components ofK (D) remains unchanged, and the transmitt
component of the triplet presents a damped wave along tz
direction.

Similarly, under the time-reversal operation, the wa
vectors of incident, reflected, and transmitted component
the R triplet-mode functions are transformed as

K→2K , K ~D !→2K ~D !, k~D !→2k~D !.

Thus the single light source assumed is transformed in
single light sink. Since the sign of thez component of each
wave vector is changed, the time-reversal operation tra
forms theR triplet-mode functions into mode functions in
volving a single outgoing wave into the right-hand side h
space~vacuum! of the boundary.

In addition, under the time-reversal operation, the sign
x and y components of every wave vector changes as\ki

→2\ki .

2. Spatial rotation „C2… transformation

We consider next the behavior of electric and magne
fields under the spatial rotationC2 with anglep around thez
axis ~a two-dimensional inversion with respect to the inc
dent plane!. As we user (D)5(x,y,2z) for the transformed
position vector corresponding tor5(x,y,z), the spatial ro-
tation C2 is given by the transformr→2r (D). Under the
transformC2 , the refractive-index function is unchanged
n(r )→n(2r (D))5n(r ). Therefore, the Fourier componen
of electric and magnetic fields are transformed as

E~1 !~r ,t !→2E~1 !
~D ! ~2r ~D !,t !, ~B7!

B~1 !~r ,t !→2B~1 !
~D ! ~2r ~D !,t !, ~B8!

where E(1)5(Ex ,Ey ,Ez), B(1)5(Bx ,By ,Bz), E(1)
(D)

5(Ex ,Ey ,2Ez), and B(1)
(D) 5(Bx ,By ,2Bz), according to

our usage of the label~D!.
Under C2 , the incident, reflected, and transmitted wa

vectors inL andR triplet-mode functions are transformed a

k→2k~D !, k~D !→2k, K ~D !→2K ,

K→2K ~D !, K ~D !→2K , k~D !→2k.

When we consider an observation process, the position o
light source is rotated by the anglep around thez axis. In
addition, C2 transforms the pseudomomentum as\ki→
2\ki .
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