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Quantization of evanescent electromagnetic waves based on detector modes
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The problem of field quantization in a half space is discussed based on the detector modes, which provide a
useful basis for the study of atomic or molecular interaction with radiation modes involving evanescent
electromagnetic waves. The detector modes, each of which involves a single outgoing wave, are introduced in
terms of the time-reversal and spatial-rotation transforms of the widely used triplet modes given by Carniglia
and Mandel. The derivation of the orthogonal relation for the detector modes is therefore straightforward. We
represent the creation and annihilation operators for the detector modes in terms of those for the triplet modes,
and obtain the field operator, Hamiltonian, number operator, and pseudomomentum operator. Based on this
formalism, we evaluate the differential radiation probability for atomic dipole radiation near a dielectric
surface. The evaluation of the final-state mode density is straightforward for the detector modes involving
single outgoing waves. With respect to the image dipole picture, the quantum-to-classical correspondence is
clear in the detector-mode formalism.
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[. INTRODUCTION ton emission and absorption properties of atoms and mol-
ecules near a planar material surface. The important issue
Photon emission characteristics of atoms and moleculesivolved in these half-space problems is the interaction with
near a piece of matter have been studied extensively in relavanescent electromagnetic fie[d®,17-19. For example,
tion to cavity quantum electrodynami¢savity QED [1-4]  when a homogeneous plane wave is incident at a planar di-
and optical near-field probleni®,6]. The important issues electric boundary from the higher-refractive-index side with
are the enhancement or reduction of spontaneous emissi@m angle beyond the critical angle of total internal reflection,
and the associated level shift of the radiating system due tan evanescent wave builds up in the lower-index side, propa-
variations of the environmental electromagnetic modes andating parallel to the boundary surface and exhibiting an
to multiple interaction via the scattered electromagnetic fieldexponential decay in the direction normal to the surface. This
Recently, these effects have been used to control the motidn turn suggests that, for an excited atom or molecule placed
and radiative properties of atoms and molecules, especially the subwavelength vicinity of a dielectric surfatke op-
by using high® optical resonatorg7—10]. Cavity-QED phe- tical near-field regimg the spontaneous radiation process
nomena in a broad sense also arise in near-field optical reavolves both homogeneous and evanescent waves in the fi-
gimes, or in optical near-field interactions of a radiating sys-al state of the radiative quantum transition. The interaction
tem with matter lying in the vicinity of its subwavelength. with evanescent waves drives additional outgoing waves into
Extensive studies have been made of the radiation propertiese half space of the dielectric side with a transmission angle
of atoms and molecules near a material surfdde-13, and  beyond the critical angle of total internal reflectipi®,11].
also of applications such as atom manipulafibé—16. Fur-  This should result in a variation of the atomic radiative life-
ther interest in the near-field regime lies in the photon emistime as a cavity-QED effect in the broad sense; the lifetime
sion characteristics of mesoscopic electronic systems, suaxhibits an exponential dependence on the atom-surface dis-
as quantum dots and wires, fabricated on a substrate, artdnce. Therefore, field quantization including evanescent
also in their observation by optical near-field microscopy andvaves has been extensively studied as the basis of general
spectroscopy. One might expect several interesting effects toptical near-field problems. It is essential to study planar
arise in the near-field regime which reflect the properties oboundary problems since, as is shown in classical electro-
the optical near field as an effective field or a coupled modenagnetic treatments, the scattered electromagnetic field from
of the electromagnetic field with matter. That is, the disper-dielectrics of arbitrary shape can be described in terms of a
sion relations and polarization properties of optical nearset of homogeneous and evanescent waves by using the an-
fields deviate from those of photons in vacuum. Althoughgular spectrum representatif20—22. That is, if we under-
optical near-field interactions, in general, have a relativelystand the nature of atomic radiation near a planar dielectric
short period compared with those of higheavities they still  surface, we can extend the results to cases of arbitrary-
exert a considerable effect because of the high field intensitghaped dielectric boundaries by means of the angular spec-
of the spatially localized fields. For further study in this di- trum representation of the scattered fig22].
rection, it is important to develop a quantum-mechanical The spontaneous decay rate of atomic excitation and the
treatment of the optical near field. related angular distribution of radiation have been studied
So far, theoretical studies have been reported of the phdsoth experimentally and theoretically for atomic and molecu-
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lar dipoles put near a planar dielectric surf§8e23—-25. In under consideration. The triplet mode involving a single in-
our previous work, we extended the theoretical study to theident wave serves as a convenient basis for the theoretical
interaction of atomic multipoles with evanescent waves intreatment of photon absorption processes near a dielectric
the semiclassical regime based on analytical expressions feurface, where a single light source placed in far field may be
the radiation field using the angular spectrum representatioassumed in a practical setup. On the other hand, when we
of vector spherical wavef22]. Our numerical results for study photon emission processes near a dielectric surface, we
electric-dipole radiation with arbitrary orientation are in usually consider a practical setup with a photon-counting
good agreement both with the numerical results reported bgcheme by using an independent photodetector placed in
Lukosz[25] and with the experimental results reported by useach of the half spaces separated by the boundary, so that we
obtained from the high-resolution laser spectroscopy of Csnay consider a single outgoing wave as the final state of the
atomic vapor near a dielectric surface at g resonance radiation process. This process is interpreted, in terms of the
line [12,13. Besides atomic and molecular cases, the similatriplet-mode description, as a result of interference between
effects might also be expected for quantum dots and wirethe right and left triplet modes involving the outgoing wave
lying on a substrate and also for their radiation measureunder consideration. This situation, in some sense, is similar
ments via optical near-field microscopy, although they haveo beam-splitter problems. In this case, a much more conve-
not yet been studied systematicalBg]. nient basis for the theoretical analysis is provided by the
According to Fermi's golden rule the probability of a so-called detector-mode function including a single outgoing
guantum-mechanical transition depends on both the transwave, especially when considering the radiative lifetime of
tion matrix element and the density of final states. Theatoms and molecules. Indeed, completeness of basis func-
source of our interest in cavity-QED problems lies in thetions assures equivalence between various descriptions, but
possibility of controlling the final-state density, especially the practical treatment of photon absorption or emission ex-
for electromagnetic modes involved in the radiative transi-periments is simplified by choosing either of those expres-
tion under consideration. That is, the electromagnetic finasions according to the experimental setup under consider-
state depends strongly on the scheme of our experimendtion: either a single source or a single detector is assumed in
Therefore, in a practical analysis of experimental cavity-the far-field region. The detector mode was introduced by
QED results, we should consider sources and sinks of phd¢Yigoureux and Payen in their theoretical study of the Raman
tons as reservoirs being implemented outside the photonidiffusion due to atoms near a planar dielectric boundlagy.
system(i.e., far-field observation each of which couples to In their work, the detector mode was defined in terms of a
one of the incident and outgoing wave components belonglinear combination of the triplet-mode functions but was not
ing to the photonic mode under consideration. In fact, we camxplicitly quantized.
consider several different situations of measurements in a In the present work, we study the field quantization based
guantum treatment, which determine the method of evaluaten the detector modes as the basis for a theoretical analysis
ing the final state of the corresponding transition event. Irof photon emission process in the optical near field. This
our context of a radiation study, these are classified roughlpaper corresponds to the first part of a quantum-mechanical
into two categories: single-photon-counting measurementstudy of the radiation properties and radiative lifetime of
and photon-correlation measurements. In the former onlyscillating electric and magnetic multipoles of arbitrary order
one of the photodetectors detects single photons, but in theear a planar dielectric surface based on a second-
latter signals from several pairs of photodetectors exhibijuantization formalism developed on the basis of the detec-
correlation features reflecting the coherence of the radiatiortor modes. In contrast to the study reported by Vigoureux
In any case, the quantum electrodynamic processes aend Payerj19], we introduce the detector modes in terms of
evaluated in terms of external sources coupling to incidentime-reversal and spatial-rotation transforms of the triplet
waves and external detectors coupling to outgoing wavesnodes. This enables us to make a straightforward evaluation
both being placed outside the isolated quantum system undef the radiative decay rate in terms of the final-state density
consideration. Therefore, a careful consideration is also resf photonic modes and provides a clear understanding of the
quired of the role of sources and detectors for practical neameaning of detector modes as well as of the correspondence
field optical measurements concerned with both excitatiorbetween classical and quantum descriptions of electric- and
and interactions of the local mode or its observation in facmagnetic-multipole radiation of two-level systems in the
field, so that the entire process considered here exhibits theear-field regime. In related work, a classical treatment of
nature of an open system. Depending on our experimentahis problem for magnetic and electric dipoles in a half space
scheme, we can select a convenient set of basis functions t@as been reported by Lukosz and K{§i#3—25, in which the
describe the electromagnetic mode. Here, it is noted that, fdsoundary-value problem is solved using a combination of
a study of the level shift of a radiative system, the importantsingle-component magnetic and electric Hertz vectors to pro-
process lies rather in the closed system of multiple interacvide the total light emission intensity per unit time using
tions between the radiative system and the electromagnetieoynting’s theorem. A semiclassical evaluation has been
field. given by Wylie and Sipe for electric-dipole radiation near a
For the basis of field quantization including evanescenplanar boundary based on general quantum-electrodynamic
waves, Carniglia and Mandel introduced the so-called tripletinear-response theor,27]. A full quantum treatment of
modes[18]: the set of incident, reflected, and transmittedelectric-quadrupole radiation for a spherical dielectric bound-
waves connected via Fresnel relations at the planar boundagyy has been reported by Klimov and LetokH@8]. How-
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ever, to the authors’ knowledge, no systematic study has observation hemisphere

photonic system

been reported so far of the quantum-mechanical treatment of
the radiation from higher-order multipoles near a material
surface.

The contents of this paper are as follows. According to
the investigation of the meaning and importance of detector
modes in relation to the roles of sources and sinks in optical
near-field problems, we present the schemes of half-space
problems to be considerd&ec. 1) and a brief review of the
triplet-mode formalism(Appendix A). The definition of
detector-mode functions and the second-quantization formu-
lation including evanescent waves are presented in Secs.
[lI-V. As an application and verification, several numerical
results are presented for electric-dipole radiation near a di-
electric surface in Secs. VI and VII. To account for the
electric-dipole radiation, we have reported experimental re-
sults of the angular intensity distribution of radiation from
excited Cs atoms near a planar dielectric surface by means of
high-resolution laser spectroscopy at the line [12]. The
results obtained in the present wdikl]| are in good agree-
ment with those experiments. In a subsequent paper we will
extend this work and report the numerical results for the
angular distribution of radiation and associated spontaneous
lifetime for higher-order electric and magnetic multipoles
near a planar dielectric surfa¢29], in which the detector-
mode functions are expanded in terms of vector spherical
waves. This is reported briefly in this paper.

Il. HALF-SPACE PROBLEM

We consider a space half of which is filled with a non-
magnetic, transparent, homogeneous, and isotropic dielect
medium of refractive indexr (the left half spacez<0), and
the other half is vacuunithe right half spacez=0) (see
Fig. 1. We will consider the electric fieldE(r,t) and
its (positive-frequency Fourier component E¢(r,t)
=E(r)exp(-iKt). Here, K is the optical frequency under
consideration with the light velocity taken as unity=1.
The complex amplitudé(r) satisfies the Helmholtz equa-
tion

V2E(r)+K?n?(r)E(r)=0, (1)
with the refractive-index function defined as

n for z<O0

source\O 7

k
0
z
,4 K®
dielectric vacuum

q source

R
observation hemisphere

(b) R-triplet mode

FIG. 1. ThelL and R triplet-mode configurations defined by
Carniglia and Mande[18]. The left half spacd.(z<0) is filled
rY&ith an isotropic medium of refractive indaxand the right half
spacd.(z=0) is vacuum(a) L triplet-mode function. The incident-
wave component is assumed to couple to a single source placed on
the hemisphere4, in far field. (b) R triplet mode with a single
source placed on the hemisphetg .

K,= = V(K=K —KJ), (6)
k= + (K= K2—KD), Y

whereK, is negative in sign an#t, positive.k is always a
real vector, buk (®) becomes complex whelZ +K7>K?.

We also denote the wave vectors of incoming fields from the
right of the boundary ak = (KK,
going fields to the left of the boundary &™) = (k,,k,,

,K;) and those of out-

n(r)= 1 for

—k,). In addition, let the projection ok and K onto the
plane z=0 be k;=(ky,k,,0) andK;=(K,,K,,0), respec-

wheren is assumed to be real. For later convenience, we wiltively. Here, k=K, =k{?)=K (P due to phase continuity or
denote the wave vectors of incoming fields from the left ofthe symmetry under parallel displacement with respect to the
the boundary ak= (k,,ky k), and those of outgoing fields planar boundary. The triplet-mode description with these no-

to the right of the boundary &) = (K, ,K,,—K,), which

satisfy the relations

k=nK,
Kyx=Ky,
K,=k

tations is presented in Appendix A.

Sources and sinks of light are introduced on the Jft
and the right4Agz hemispheres of radius: lying in the far-
field region, kr, Krg>1, respectively. Each photonic
source or detector interacts with the photonic system through
coupling to one of the incoming and outgoing components of
the triplet mode as shown in Figs(al and Xb). When the
absorption properties of atoms put into the photonic system
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are considered in terms of one of the triplet modes, a single
incident-wave component is coupled with a single source
placed at far field, a point outside the photonic system under
consideration. This corresponds to the illumination of atoms
by a single photonic source. On the other hand, when the
radiation properties of atoms are considered in terms of the
triplet modes, we should take account of the phase relation
between the right and left triplet modes of the corresponding
wave vector in order to evaluate the correlation photon

counts between two photodetectors, each of which is coupled
with one of the outgoing-wave components of the triplet

modes.

In contrast to the above, we can introduce the detector
modes involving a single outgoing and two incident plane sink (@
waves connected via the Fresnel relation at the boundary
surface. In this scheme, when accounting for the absorption
properties of atoms, two incident waves are considered to be
coupled with a pair of correlated photonic sources. Onthe T ..o ’
other hand, for radiation properties of atoms, the single
outgoing-wave component of the detector mode is coupled (a) L-detector mode
with a single photonic detector. Therefore, the detector-mode
description of photon emission processes can be related to ¢ L N
simple photon-counting measurement on either of the hemi- / A
spheresA4, and Ag. 3 R

IIl. DETECTOR-MODE FUNCTION k

When we consider the far-field observation of spontane- K
ous emission of atoms near a dielectric surfasee Figs. :
2(a) and 2b)], it is convenient to introduce the detector-
mode functions coupled to a single light sink placed on ei- '
ther of the hemisphered, or Ag. Here, we will define the K@
detector-mode functions as the time reversal and spatial ro- .
tation of the triplet-mode functions. We will see that this
provides us with a clear interpretation of the detector-mode

description. It is noted that these transforms preserve the & sink
momentum parallel to the boundary surface as well as the

angular momentum normal to the boundary surface, which _/

represent the conserved quantities in the interacting atom 77"

plus photonic system under consideration. In the sense of (b) R-detector mode

restricted conservation laws, we refer to these quantities as

pseudomomentum and pseudo-angular-momentum, respec-gig 2. The L and R detector-mode configurationga) L

tively. detector-mode function. The outgoing-wave component is assumed
to couple to a single sink placed on the hemisphéyen far field.

(b) R detector mode with a single sink placed on the hemisphere

A. TC, transformation
Ar.

Using the time reversal and spatial rotatiorC, (see
Appendix B, we can obtain the mode functions involving a {4 the triplet-mode vectov=(v,,vy,0,). The subscript de-

single outgoing wave in either of the left and right half tes the positive-frequency component of the fiskee Ap-
spaces with pseudomomentuiR, for the TC, transform as pendix B.

follows. The transforms for wave vectors bfandR triplet mode
E(+)(r,t)—>—[EEE))(—r(D),—t)]*, ®) functions(see Appendix A lare given, respectively, by

k—k® kP Lk, KO K*,

(D) _ (D) _ty7*
B(+)(r,t)—>[B(+)( r',—nJr. 9 KoK®, K@K, k@ _k.

Here, the detector-mode vectors are labeled by the supetnder these transforms a single light source placed on the
script (D), such aS/(D)Z(vX,vy,—vz), which corresponds hemisphere4, (Ag) at a direction—k (—K) from the origin
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is transferred into a single light sink placed g (Ag) at 1 _
the c_iirectionk(D)_ (K®)) (see Fig. 2 In addition, we will £0) (K®) 17)= ‘/ESGXD(”((D)'T) for z<0 a7
rewrite the Fourier components of the fields & (r,t) bL "
and 7B,(r,t) with »==*1 for later convenience, accord- 0 for z=0,
ing to the fact that electromagnetic fields in source-free space
remain unchanged under such a replacement. Then we obtain 1 K4K*
the mode functions involving a single outgoing wave with — ¢  explik-r) for z<0
. . . (R) _ k.—K*
pseudomomentuniik, in either left or right half space for Ep/(k,1r)=9 v2n K;=K; (18)
the transformT C, 7 as 0 for z=0,
Eq)(r,)——n[ER)(—r®,—1)]*, (10
(D) (D) ! 2k; K*.r) f 0
* =
B (r,)—7[B)(—r'®,—0)]*. (11 ED(K* 15)= an £k -KE expiik*-r) for z
. 0 for z<O0,
B. Detector-mode function (19

We will consider the behavior of the triplet-mode func-
tions under the transformC, ». For example, the wave vec- ) (k) 21)
tors and polarization vectors of each wave component of the DL
L triplet modes are transformed as 1
—— (KPx e)exp(ik®.r) for z<0

(k,&£)— (kP — ng), = v2n (20)

(k®) &) (k,— ne), 0 for z=0,

(KP) )= (K*, = pe), ERV(k,2r)

for TE (w=1), and as 1 k,+n?K?*
o (16X 8)) (D) — (O£ _ —ﬁ(:cx €) k,—n?K> expik-r) for z<0
0 for z=0,
(K, — (DX £)) (k,— n(sX £)), o o
(K, —(cP)x g))— (K*,— n(c* X&),
DU(K*.21)

for TM (n=2). Then, choosing the facton= 7, as 7,

=—1, »,=+1, the detector-mode functions with a single 1 2nk,

outgoing wave are derived by the transfofi@, 7, from the ——(c*Xeg) Wexp(i K*.r) for z=0
triplet-mode functions as follows: = v2n LI

0 for z<O.
EpL (kP u,n) ==, [EP (ku,—rPH]*, (12 @2

Epr(K™,u,1)=—7,[EF) (K p,—1PH]*, (13
PR TR The magnetic field associated with the electric field
Bou (K, 1,1)= 7, [BP (K, —rP)]*,  (14) EpL(k®,u,r) is obtained immediately from Maxwell's
equation as
Bor(K'® 1) =0, [ B (K,p,—r®)]*. (15 . .
Here, the suffiXDL indicates that the mode involves outgo-

ing waves into the mediurtieft to the boundarywith wave +B(T)( M), (23
vectork®), and the suffixDR indicates those into vacuum
(right to the boundanywith wave vectork (®). Substituting In a similar way, substituting EqA8) into Eq. (13) with

Eqg. (A1) into Eq.(12) and using EqsiA2)—(A7), the explicit  the help of Eqs(A9)—(A14), the explicit form of theR de-
form of theL detector-mode functions can be obtaiiede  tector mode functions is obtained as follojgge Fig. 2b)]:
Fig. 2(@)]. We can write down the results as

Eot(k®, 1) = EGL (K, 1) + EGY (K, i) Eor(K®, 1) = EQRK®), pa,1) + EGK, p.1)
+EGV(K* 1), (16) + EQR(K, 1), (24)
where where
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1
—eexpiK®).r)

for z=0
ELLKD® 1r)=1 v2
0 for z<O,
1 K,+Kk, KT f 0
—e exp(iK-r or z=
ERKIN=1v2 K=k
0 for z<O,
(26)
1, 2K pik-r) for z<0
explik-r or z
ENk1)=1{ v2 “K—k,
0 for z=0,
27
—i(c(mx(e)exp(iK(D)-r) for z=0
EQRKD) 21y = V2
0 for z<O,
(29)
EGR(K,2r)
1 n’K,+k,
—E(CXS)mGXQIK-r) for z=0
— z Z
0 for z<0,
(29

Epa(k,2r)

1 2nkK, ‘. ¢ 0
—5(K><8)ﬂexp(| ry for z<

0 for z=0.
(30)

The magnetic field associated with the electric field

Epr(K®) u,1) is given by Maxwell’s equation as

Bor(K®, 1,1 =BERK®, u,r) + BER(K, 1)
+BHR(K, ,1). (31)

PHYSICAL REVIEW A 63 063805

From the orthogonality relations for the triplet mode, Egs.
(A17)—(A19) in Appendix A with Egs.(12) and (13), the
orthogonality relations for the detector-mode functions are
obtained as

f[8DL(k(D)-Mvr)]*'8DL(kI(D)a/~L’vr)n2(r)d3X

(2m)368,, 3 (kP)—k’®)), (34)

I\)IH

f[5DR(K(D)-M:|')]*'5DR(K'(D),M',r)n2(r)d3X

1
= E(277)35W,53(K<D>—K'<D>), (35)

f [Epr(K®),u,r)]* - Ep (K" P u’ ,r)n?(r)d*x=0.
(36)

Here, the superscrigD) is put into thes function because
O(X)=o6(—Xx).

IV. TRANSFORMS BETWEEN TRIPLET MODES
AND DETECTOR MODES

Since theTC, 7 transform of the triplet-mode functions
can be described in terms of the superposition of the triplet-
mode functionsEp (k®,u,r) and Epr(K®), u,r) can be
described as the superposition o€ (k,u,r) and
SR(K,,LL,T'),

Epu (k1) =(CL )" EL(k, 1) +CT L ORER(K, 1),

(37

eDR<K<D>,u.r)=c;,M®H£L<k,M,r>+CE,F®H£R<K.M,{>.)
38

Here® is the projection function onto homogeneous modes
defined by

0=0(k?)—0(ki—K?), (39

where@(kf) is the step function with respect to the argu-
ment kP =kZ+kZ, so that®@,=1 represents homogeneous
waves and®,=0 evanescent waves. Equatio(®&/) and

(38) show that only theé. detector modes involve evanescent

In a pracncal Setupk(D) and K(D) the outgo|ng wave waves, SO |Ong as the OuthIng waves are propagatlng The

vectors of the detector modes, correspond to the angular dgxpansion Coeff'C'enté’R CL CL
rections of the light sinks placed o#, and. Ay, respective-

, and CL are de-
rived using Eq.(Al) with the help of Eqs(AZ) (A7) and

ly. L andR detector modes correspond to the eigenstates dq. (A8) with Egs.(A9)—(A14), with the mode functions in

the pseudomomentum operatei2V, as

(—ihV ) EpL (K, w,r)=(fik) EpL (K, m,1), (32

(_iﬁVH)gDR(K(D)uu'!r):(ﬁkH)gDR(K(D)wuﬂr)i (33)

where—i#V, operates on each component&f

Eqgs.(16)—(22) and Eqs(24)—(30), as

L[kt K, k,+n2K, 5 40
i O i om0

R 1) 2k, 5 +l 2nk, 5 A1
Lenlk,—K,) “#t" nlk,—n?K,) “#2 (41)
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= nngL o (42
C CL g (43

where the complex coefficieritis defined by

K,
E=— ra (44
The following relations are also available:

(CL)*C ,+n%ect O L0u=1, (45)
(CL ¥ CE = CLuCE 0= (CE )* (1-0y).  (46)

Also, from Eqgs.(37) and (38) with Eq. (45), we get the
representations of the triplet-mode functions in terms of the

detector-mode functions as follows:

E (k1) =Cr ,Epi (kP 1) +CF L, OERRK D) ,1),
(47)
ER(KyMar):CIF},M@H‘QDL(k(D),M,r)

+CR L OuEpr(KP) 1), (48)

V. FIELD QUANTIZATION BASED ON
THE DETECTOR MODES

PHYSICAL REVIEW A 63 063805

hilation and creation operators of photons labeled by the po-
larization u and the wave vectots® andK (®) of outgoing
waves to be coupled with photodetectors on either hemi-
sphereA, or Ag in the far field.

Here, we will investigate the commutation relations for
the detector-mode operators. Sinc&,, (k(®,x) and
apr(K®), 1) can be described in terms & (k,x) and
ar(K,u), we can utilize the commutation relations given for
a,(k,u) and ag(K,u) by Egs.(A21)—(A24). Substituting
Egs.(47) and(48) into Eq. (A20) with the help of Eqs(45)
and (46), and using the relations

In the same manner as for the second-quantization formal-

ism with the triplet modes, we can introduce the quantized

electric-field operator based on the detector modes as

2 pK\ L2

(I’ t)= 2732 d3k®) 2 ( )

( ) (—ky<0 =

X[ap (kP 1) Ep (K, u,r)e ™+ H.c]

2
hK 1/2
+—,—32f d3K<D)E (
(2m)% ) (k>0
X [apr(K®), 1) Epr(K®), u,r)e K+ H.c],
(49)
where

[’ o 0
f(k)<od3k<D>=me ﬂcdkxdkyd(—kz)
=f d3k,
k,>0
f d3K<D>=f f f dK,dK,d(—K,)
(—=K»>0 —»J-oJ0

:f d3K.
K,<0

The operators ap (kP ), k(®) ) and also

aDL

apr(K®, 1), aLx(K®), 1) indicate, respectively, the anni-

f d3k ®H=f d®K n?¢0, (50
k>0 K,<0
J d®K ®H:f d3k(n2¢)" 1Oy (51)
K,<0 k,>0
with d%k= —n2¢d°K, we can obtain
apu (kP w)=Cp & (k,u)+CF ,Onar(K 1), (52
éDR(K(D)vﬂ):Clﬁ,#HaL(kvﬂ)—i_Cs,#@HéR(Kyﬂ)-
(53
The following relations hold for real variables:
O o(K—K')=n?¢0,8(k—k’), (54)
0,8k—k')=(n%&) 1O 8(K—K"). (55)

For example, using Eq$45) and (54), we obtain

[apL (kP m), &b (k" ®),u")]

=38, wl(CR 2O a(K—K")+(Cp )*Cr ,8(k—k')]

=68, [N%&(CE )20y +(Cr )" Cr ,18(k—k)
5ML/5(k—k’)

=8, (kP —k’ Py,

Similarly, we have the whole set of commutation relations

[é'DL(k(D)u/-L)!é-DL(k,(D)!IU’I)]:5,41,,,11,’5(k(D)_k,(D))!
(56)
[apr(K®), 1), 80K ®) u')]= 8w O(KPI—K" (D)),
(57)
with the trivial ones
[éDL(k(D)vﬂ)vaDR(K,(D)!M,)]:Ov (58)
[ap (K, 1), 80R(K'®),u")]=0. (59)

From Egs.(52) and(53) with Eq. (45), the reversals of the
relations in Eqs(52) and(53) are given, respectively, by
a(k,m)=(Ct,

WAL (K®), w)+CR L 04apR(K®) ),

(60)
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ar(K,u) :C:i,,,,@HéDL(k(D),M) +CS,M®Hé—DR(K(D)1M()- )
61

Finally, we consider the Hamiltonigh, number operator

N, and pseudomomentum opera@[ of the quantized elec-
tromagnetic fields. Substituting Eq€0) and(61) into Egs.
(A25)—(A27) and using Eqs(45) and (46), we obtain

2
fm | @S KA (K 0, (KO )

2
+f d*K® D> AKAL(K®), w)apr(K®),u),
(—K»>0 n=1

(62

2

> ab (k®

[ e
(—kp)<0 n=1
2

+f d*K® > alR(K®), w)ape(K®), 1),
(-K)>0 =1

(63)

,,U«)éDL(k(D),M)

2
P KOS kPl (K (k)
(—ky)<0 e

2
+f daK(D)E ﬁk(D)aDR(K )aDR(K(D)aM)-
(—Kp>0 =1

(64)

Here, we have used the relatikﬁP)=kH. Our definition of

detector modes as tHeC, n transform of the triplet modes,
including both homogeneous and evanescent waves, pro-
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7
(a) 7 (b)
k K
dil) AW g da(w)
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FIG. 3. The interaction of an atom with the detector mode.
The interaction between the atom agigf; component is equivalent
to the radiation from an image dipo™(x) placed atR® in
completely free space.

be described in terms of those created by the triplet-mode
operatorsé[(k(D),,u,),éR(K(D),,u),

1D, 1k, w)y=(Cr )* T 1K, m))+CF L Ou| T, 1K, ),
(70)
|D,1(K<D>,m>=CE,M®H|T,1<k,u>>+CS,M®H|T,1<K,M(>7>i)

The reversals of these expressions are given by

| T2k, ) =C D, UK ™), 1)) +CT L, OuID 1K™, ),
(72
T UK. 1)) =Cr ,Ok[D UKD, 1))
+CR,OulD, UKD, ). (73

VI. RADIATION FROM AN ATOM NEAR
A PLANAR DIELECTRIC BOUNDARY

vides a general and clear representation compared with those

given by Vigoureux and Payen. The elgenstateﬁof/\/
and P, are produced by operating), (k®®, ) and
al-(K® ) on the vacuum staté0). For example, the
single-photon eigenstates with the energy eigenvakiere
given by

|D,1(k¢

D) )y =ah (k®),u)|0), (65)

D,UK®), w))=abR(K™),w)|0), (66)

whereD indicates the states of the detector modes. The no

malization relations are given by

(DK, 1)[D.2K ®, ") = 5, 6(KO — k'),
(67)

<D’1(K(D),/-L)|D,1(K'(D),,u/)>= 5#]M,5(K(D)_K/(D)),
(68)
<D,1(K(D),Iu,)|D,l(k’(D)”u/»:o, (69)

Let us consider a photon emission process from an ex-
cited atom placed in the vacuum-side half space near a planar
dielectric surface, as shown in Fig(a@ The interaction
Hamiltonian is given by

V(t)=—%A(rO+R,t)~p, (74)

where R=(X,Y,Z) is the position vector of the atomic

nucleus £>0), ro=(Xg,Yo,20) the relative position vector

rof the atomic electron with respect to the nucleus, gnah,

and p the electron charge, mass, and momentum, respec-

tively. A is the vector potential in the Coulomb gauge ob-
tained from Eq.49) by using the relation

E(r,t)=—(alat)A(r,t). (75)

A. Radiation into the vacuum side

We will consider a photon emission process of a two-
level atom with au-polarized outgoing wave in the vacuum-

with (0]|0)= 1. From Eqs(52) and(53), the states created by side half space with wave vectorK®=(K, K,,

the detector-mode operataas, (k(®,u),al5(K®),u) can

—K,)(—K,>0). Here it is stressed that a single detector
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mode is specified by its outgoing wave vecko®) and po-

larization u. For photon emission into the detector mode

specified byK(®) and u, the final state of the atom plus
photon system is described by |f)
=|D,1(K®), u))|@s(ro,t)), where|e;) corresponds to the

atomic ground state. The initial state of the system is de-

scribed byli)=1|0)|¢;i(ro,t)), with |¢;) the atomic excited

state under consideration. By separating the temporal evolu—

tion of the wave functions, the matrix element of the inter-
action Hamiltonian in Eq(74) can be represented in terms of
the time-independent matrix elemewy; as

V()= Ve (@0 L

(76)
wherewy is the atomic transition frequency. The probability
dI' of thei—f transition resulting in a single-photon emis-
sion is given by

2 )
dF:F|Vfi| (wo—K)dp(K), (77)

wheredp(K) is the final-state mode density of the electro-
magnetic field.

When we consider single-photon emission into the

vacuum side, the state of the photon is described byRhe
detector mode alone. From Eq49) and(74), we can find
the time-independent transition matrix element as

% 1/2

(21T)§K€

e
Vfi(K(D):M):_lﬁ[

K(D)!M!rO+R)]* : p|(PI>
(78)

X (@] [ Eprl(

The atom in the vacuum sid€ & 0) interacts with two com-
ponents€l), and EX) of the R detector mode given in Egs.
(24)—(30). A single smk or photodetector is coupled with the
outgoing wave of thé&k mode with the complex electric-field
amplitude described by

EV(K(D)!:U/’r)
Eo
—eexp(—iK®.r) for u=1
7 p( M

Eo

5(—C(D)><s)exp(—iK(D)-r) for u=2,
(79
where
hK 1/2
Eo=| Zmies (80)

Using the long-wavelength approximation and the relation

(@¢|pl @iy = —imwo{ p;|rol@i), the matrix element can be
written in the following form corresponding to the dipole
approximation:

PHYSICAL REVIEW A 63 063805

Vii(K®), m) == (0o /K)[dg () - EV(K®, 1,R)

+dif () E(K® w, R (8
We consider the near-resonance condition and, hereafter,
omit the factor (y/K). The first term of Eq(81) is attrib-

uted to radiation from a real electric dipolds;(w)
=(¢s¢lergl¢;) placed atR=(X,Y,Z) with the electric field
amplitudeE,, entirely in free spacésee Fig. &)]. The sec-

ond term can be interpreted as the radiation from an image
dipole dP(u) placed atR(®=(X,Y,—Z) entirely in free
space, so thmi§$)(y) can be rewritten using the refractive
index n of the medium as

K,+k,
K. — <<Pf|ero|<P|> for u=1
aPw=1 )5
fi n?K,+k, R
W (eler®le)  for p=2,
(82)
wherer?'=(—xo,~Y0.20).

The first term in the right-hand side of E@1) represents
the interaction of the atom witl€S), so that&() corre-
sponds to the radiation field from the real dlpcmlg The
second term of E(81) represents the interaction wi R)
and S(R) can be considered as the radiation field from the
imaglnary dipole which is often used in semiclassical treat-
ments. The radiation field involves only one outgoing wave
with wave vectorK (°) and polarizationu, so that the mode
densitydp(K) for the final state of the photon for eaghis
given simply by

dp(K)=d3KP)=K?dK dQ(c'?), (83
with the infinitesimal solid angldQ(c{®) in the direction of
the unit propagation vecta‘®. Here, it is stressed that the
detector mode provides a clear understanding of the radiation
process from the viewpoints of the classical-quantum corre-
spondence and the straightforward evaluation of the final-
state mode density discussed above. Such a straightforward
interpretation is not available in the usual triplet-mode-based
field quantization.

Substituting Eqs(81) and(83) into Eq.(77) and integrat-
ing overdK, the differential radiation probabilitg” for pho-
ton emission into the mode involving the outgoing wave with
K(®) lying in the solid angledQ(c®) is given by

2

dr (™, w)={ —7||dni(w) - E(K®, 1,R)

+dP(u) - Ey(K®), 1, RP)[2dQ (D)),
(84)

whereK=wy.

B. Radiation into the medium side

Next, we will consider emission of a-polarized photon
resulting in an outgoing wave in the medium side wktR’
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FIG. 4. The interaction of an atom with the detector mode.
The interaction between the atom afiffy component is equivalent
to the radiation from a dipolel{”(x) placed atR(™ in a space
entirely filled with dielectric medium.

= (ky,ky,—k;)(—k,<0). The final state corresponds to

[f)=]D,1(k®), u))|@s). From Egs.(49) and(74), the time-

independent matrix element of the interaction Hamiltonian is

given by

i 1/2

e
Vfi(k(D),M)Z—im{m

X{@el[EpL(K®),u,ro+R)T* - plei).
(85

According to Eqs(16)—(22), the atom interacts with the field
only via the £J) component of theL detector mode. The
transition matrix element can be written as

Vii(K®), 1) =~ (wo/K)di () - Em(K®), 1, RT),
(86)
with the electric-field amplitude of the outgoing wave

En(k®, 1)

EO
— e exp —ik®).y
v2n )

Eo
— (—Pxe)exp —ik®).r) for u=2.
fzn( yexp( ) “

for u=1

87

This shows that the radiation process, viewed from th
medium-side half space, is equivalent to that from an electr

dipole df (1) = (@4 dM(u)| ;) placed atR™=(X,Y,£2)
in the entirely filled mediuntsee Fig. 4. Here the equivalent
dipole moment operatm‘g)(u) is described in terms of the
transmission coefficient

1/ 2K,
K, —k, (eileroler) for u=1
d(T)( ): 4 z
fi (M 1 20K, .
2K, =K, (gilerg @) for u=2,
z z
(88)

PHYSICAL REVIEW A 63 063805

wherer{"=n(éxq,£y0.20). It is noted that, since Eq86)
represents the radiation vi€l), the electric dipole
d{D () and its positiorR™ become complex vectors when
the atom interacts with the evanescent wave inLtlietector
mode. As the final-state mode function is labeledkBy and
win Ep (kP u,r), the differential mode densitgp(K) is
given simply by

dp(K)=d%kP)=n3K2dK dQ (&), (89
with the infinitestimal solid angléQ («®’) in the direction
of the unit propagation vecto(®). Substituting Eqs(86)
and(89) into Eq.(77) and integrating ovedK, the differen-
tial transition probabilitydI” is given by

dr (&™), )=

2mn3K?
hZ

XA () En(k®), 1, RT)2d (D).
(90

VIl. NUMERICAL EVALUATION OF
THE ANGULAR DISTRIBUTION OF RADIATION
INTO THE MEDIUM SIDE

As an example of numerical evaluation, we will consider
the electric-dipole radiation near a planar dielectric surface.
The atomic initial state is assumed to be an excited state
without spin and described in terms of the superposition of
states with orbital angular momentuie=1 oriented in the
direction anglg®, ®) by

[@)=2 (=1"C_nl@uam), (91)
where
Cii=— isine“",
V2
Co=co0s0, (92

1 _
C_,=+—sin@e '®.
V2

i?fhe ground state, or the final state of the atomic transition, is

<Pf>=|<PV'.,o,o>- o .
Let us introduce the electric-dipole operators defined by

43 =— = (xo+iyo),
V2

diM=ez, (93

A=+ = (xo—iyo)
-1 7 o Yo)-
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According to the Wigner-Eckart theorem, the matrix element As in our previous work[21], we introduce spherical
of the electric-dipole operators is written by anglesa,, a,, andB as shown in Fig. 5 for thé detector
| (1)” mode function. The vector&®) and & are represented by
' dld )
1 o ayi-m (@, d @1
<¢y’,0,0|dm |<PV,1,m’> ( 1) 5mr,—m 1/3 ’ K(D):(Sinaz COS,B,Sina2 Sinﬁ,—COSaz),
(94)

e=(—sinB,co0sp,0),
where(e, J|dV) ¢, 1) is the reduced matrix element. Thus

we have the matrix elements of the electric dipd{®(u); D)X g= (CoSa, COSB,COSar, Sin B, Sinary)

1/ 2K olld® :

diP(1)=— _( z )“D” ol .0 andK,=—K cosa; andk,=nK cosa,. Here, «, is real (0

§\Kz—k, V3 <a;<ml2) for O<a,<a.=arcsin(lh). a; is complex

. . . for a,c<a,<m/2 and is described ag,=(m/2)—ivy,; (O

X (sin® cos®,sin® sin®,cos0), (99 _ 2% " \lith sin(m2)— i yio]=n. ay is the critical

1/ 2nK , g aqgle of the total internal .reﬂectlona-r(Z)—lylc is another

d<ﬂT>(2)=__< > z )“D” ol critical angle corresponding tav,=(7/2), above which
£1n°K—k; V3 waves in the dielectric side also become evanescent waves,

so that the field forms a kind of localized mode on the
boundary surfac¢21]. The differential transition probabili-
(96) ties in EQ.(90) are evaluated as

Xn(&sin® cosd,£sin® sind,cosO).

iKZ cosay

CoSsa, Sin® sin(B—®)
e
cosa;+ N cosa,

3n3 2
dF(K(D),l)Z( )ro dQ(x'P)), (97

2m

dF(:c(D),Z)=(3—ng)l"o cosa,[ cos® sina;+sin® cog B—P)cosa, | K2 cosay ZdQ(K(D)), ©8
2 N COSa 4+ COSa,
|
with the coefficientl” defined by spectrum representation of electromagnetic fields, for which
a comparison with experimental results2] has also been
1 (4K Kew dldPle, 0 g9 reported. As the experimental results given in Ré®] are
O 4men\ 3 3 ' (99) for the optical transition between the hyperfine states of Cs

atoms at theD, line (6 >P3,—6 S;),), the excited state is
This corresponds to the spontaneous emission rate in fre@ymposed of the hyperfine states. Therefore, the polarization
space (—1). In practice, integration of the differential ra- state is mixed even for a well-defined TE or TM excitation.
diation probability over the left half space for—1 gives Based on the agreement between our quantum and classical

Lo/2: treatments, it is straightforward to evaluate experimental re-
sults by taking all the hyperfine components into account and
[o/2= lim 2, dl' (&2, n) [(®,d)—(0,0]. averaging over the atomic distanZefrom the surface, ac-
ne1 2 JA counting for the Cs vapor experimgid2]. As shown already

(100 in our previous work with the semiclassical evaluation, the

) ) theoretical results reproduce the experimental results very
Figure 6 shows one of the numerical results of well.

dl(KP)/T o=, dI (&P, w)IT, (101) VIil. CONCLUSION
o

We have developed a second-quantization formalism of
calculated forn=v2[ay.=(w/4)], p=1, and B1=0 (zXx  electromagnetic fields including evanescent waves based on
plang. Since the angular intensity distributiahl (<™, 1)  the detector-mode functions defined as the time reversal and
into the solid angledQ(«®) is given by dI(«®), 1)  spatial rotation of the triplet-mode functions. This provides a
=hKdI'(«P), 1), the normalized probability of photon convenient basis for the evaluation of atomic and molecular
emission dI'(«{®), 1)/T', equals the normalized intensity radiation near a dielectric boundary surface, especially for a
dI(&®, u)/1,, with total radiation intensity,. Our present practical setup, in which a single photodetector is assumed in
results are in agreement with those obtained by a classic#éihe far-field region. The detector-mode formalism provides
treatment in our previous work21] based on the angular us with a clear understanding of quantum radiation processes
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""""" medium, into a single photodetector placed in the medium-
side far field. Such a direct comparison of quantum radiation
processes with semiclassical ones makes it easy to evaluate
the electromagnetic final-state density. This point is essential
for studies of the atomic radiative lifetime and its modulation
due to variations in the electromagnetic environment. A
study of the interaction of atoms with tHe detector mode
.y would be one of the most interesting issues with respect to
-/ optical near-field phenomena and cavity-quantum-
T — Qg 3 electrodynamics problems, since thedetector mode in-

cludes evanescent waves. With respect to coherent interac-

incident plane'_." tion processes such as multiple scattering of radiation and
associated level shifts, both the detector-mode and triplet-
(8) mode formalisms provide us with a convenient basis for the-

oretical consideration. As an extension of the present work,

_______ we have derived a general analytic expression for the angular
o o distribution of radiation from electric and magnetic multi-

FIG. 5._ The incident and refracted angles and polarization VeCpoles near a planar dielectric surface by using the transfor-
tors. The incident plane makes an anglesdb the zx plane. mations of detector-mode functions into vector spherical-
_ ) _ mode functions reported in our previous paft]. Further,
in ter_ms of their clqs§|cal correspondence. In fact, we havgssed on the formalisms provided in the present work, we
considered the radiation from an atom placed near a plang{aye evaluated modulations of the radiative lifetimes of elec-
dielectric surface and found that the two compon tric and magnetic multipoles of arbitrary order due to near-
and Y of the R detector mode&pg can be related, respec- field interactions at a boundary surface. These results will be
tively, to the radiation fields from a real dipole and an imagepublished elsewhere. These results should be useful not only
dipole in entirely free space, involving an outgoing wave toin basic cavity-QED studies but also in theoretical studies of
be coupled with a single photodetector placed in the vacuumeptical near-field diagnosis and control of quantum elec-
side far field. On the other hand, the compor@ﬂ@ of theL tronic systems in a wide variety of mesoscopic devices, such
detector mode&€p, represents the radiation field involving an as quantum dots and wires. It is especially important to give
outgoing wave from an electric dipole in an entirely filled careful consideration of observation processes and associated
signal transport properties in systems showing quantum-
mechanical properties. The detector modes, coupled with

1.2 multipole expansions and mode transforms by means of the
) “ , angular spectrum representation, would serve as a conve-
(0,0) nient basis for these theoretical studies.
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APPENDIX A: TRIPLET-MODE FUNCTIONS

Here, in order to make notations of triplet modes clear

0 20 40 %2 60 80 and being coincident with the detector-mode formalisms in
the present work, we will define the wave components-of
agldeg | and R-triplet-mode functions.

FIG. 6. The numerical results for the normalized differential
emission rate, which is equivalent to the angular intensity distribu-
tion from an electric dipole oriented t&(,P) = (0,0), (7/2, 0), and
(w/2, 7/2). The light emission is observed at a point on the inter-  Following Carniglia and Mand€l18], theL triplet mode
section of the hemispherd, and thezx plane.a,, is the critical ~ functions[see Fig. 1a)] are defined with respect to the elec-
angle of total internal reflection. Numerical results are givennfor tric field as a composition of incident, reflected, and trans-
=V2 (ay=l4), p=1. mitted fields by

1. Triplet-mode functions

063805-12



QUANTIZATION OF EVANESCENT ELECTROMAGNETC . ..

E (K, =ED (K, u,r) + ER (P, 1)

+EN(K®, ). (A1)
Here, the subscript indicates light incident from the me-
dium side(left to the planar boundayyThe components df
triplet-mode functions for TE and TM polarizations are writ-

ten explicitly, using our definition of incoming wave vectors

k andK and outgoing wave vectoks®) andK(®) (see Sec.
II), as follows:

1
0 ——eexpik-r) for z<O
ENk,1n=1{ v2n (A2)
0 for z=0,
1 kZ+K
ex ik®.ry for z<0
ER(K®,10)={ van KK 8 :
0 for z=0,
(A3)
is 2 _exp(ik®®).r) for z=0
ENKD® 1r)=1 v2n k=K,
0 for z<O0,
(A4)
! (rex e)explik-r) f <0
—— (kX g)explik-r or z
EVk2r)={ v2n (A5)
0 for z=0,
ENKP 2r)
1 k,+n2K
—— (kP xg) = Zexp(k® .
van Ul SR
= (AB)
for z<O0
0 for z=0,
EN(K® 2r)
1 2nk
——(cPlxe ~ _expik®).r
van' i SR
= (A7)
for z=0
0 for z<O0,

wheree=g(k;) is a real unit vector orthogonal to the wave
vectors lying on the boundary plage- 0, so thate indicates
the polarization vector of TE waves, ), andc® are
unit vectors directing, respectivelg, k®, andK®). Since
a light source is assumed to be placed.4nas shown in
Fig. 1(a), we considere(,_')(k,ﬂ,r) as homogeneous waves,
so thatk is a real vector with components

— <K<+,

—o<k, <+, 0<k, <+,

PHYSICAL REVIEW A 63 063805

The corresponding wave-vector compon&nton the other
side of the boundary is a real number forR;+kj<K?,
but a complex number fdk?<k?+k2<n?K2. Therefore «
and«{P) always form real vectors, bat® possibly involves
a complex component.

The R triplet-mode functiongsee Fig. 1b)] are also de-
fined by

Er(K,u,1)=ER (K, u,r)+ ER(KP), 1)

+ED KD u,r). (A8)
Here, the suffixR indicates light incident from the vacuum
side (right to the boundary The three components of tlie
triplet-mode functions for TE and TM polarizations are writ-
ten explicitly as follows:

1
0 —eexpiK-r) for z=0
EVKAr=1v2 (A9)
0 for z<O,
1 K+k HiKO.1) for 220
exp(i ry for z=
£%R)(K(D),l,l’)= ‘f K k,
0 for z<O,
(A10)
i *_exp(ik®).r) for z<0
EDKD 1r)=1 v2 Kz—k
0 for z=0,
(A11)
1( xXe)exp(iK-r) f 0
— —(cxeg)expiK-r) for z=
EQ(K2n={ V2 (A12)
0 for z<O0,
EF(KDP 2r)
1 n’K,+k
—‘72(C<D)><e)ﬁexmK(D)~r)
z z
= (A13)
for z=0
0 for z<O,
£Q(k™®,2r)
nkK,
——(K(D) X €) 2K kexp(lk“)) r)
= (A14)
for z<O0
0 for z=0,

where ¢ is the unit vector directin. Since the incident
wave EQ(K,u,r) is assumed to be coupled with a light
source placed in the far-field region as shown in Figp),1
we consider€Q)(K,u,r) as homogeneous waves with real
wave vectorK with components
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—o<K < H+w, —w<K<+w, —w<K,<O0. Here we have replaced(k,u) and 0(K,u) in Ref. [11],
respectively, by a,(k,u)=0(k,u)/[(27)°4]Y? and
The corresponding wave-vector compon&nton the other ar(K,u)=0(K,u)/[(2m)3%]Y2 The quantization of elec-
side of the boundary is a real number s|nee|(i+k —K2 tric fieJd is achievgd by considering the expansion coeffi-
+KJ<K2 Therefore,c®), c, and «P) always form real  cientsa, (k,u) andag(K, ) as quantum-mechanical opera-
vectors tors and replacing the complex conjugate by the Hermitian
According to the translational symmetry of the sys-Cconjugate. Hered, (k,u) and ag(K,u) correspond to the
tem along thex andy directions,L and R triplet modes annihilation operators foL and R triplet modes, respec-
Correspond to eigenstates of the Operate-rihV”: tively, which satisfy the following commutation relations:
—ifi(dlox,dldy,0): R At ,
[aL(k,,U/),aL(k s )]:5M,M’6(k_k )! (A21)
(=i V)EL(K,u,r)= (k) EL(K, 1,1, (A15) . .
[ar(K,u), 8K, u)]=6, . 8(K=K"), (A22)
(_|hV”)gR(K,M,r):(ﬁk”)gR(K,M,r) (A16) R "
[aR(K,M),aL(k,,M’)]:O, (A23)
The orthogonality relations fok and R triplet mode func- . ”
tions[18] are given by [ar(K,p),a[(k",u")]=0. (A24)

We can construct the Hamiltoniah, number operatoN,
and pseudomomentum operatﬁﬂ, according to the ortho-
1 dox procedure of second quantization as follows:

= E(277)35M,M,53(|<—k'), (A17) 5

H=| a2 AKal(kp)ay (ko)
k,>0 pn=1

f [ER(K,,1)]* - Er(K”, u,r)n?(r)d% 2
+f d3K2 AKAL(K, u)aR(K, 1), (A25)

K,<0

n=1

f[8L(k,w)]*~£L(k’,u’,r)n2(r)d3x

1 3 3 ’
=5(2m)%5, . *(K-K"), (A18) 2
N= fk >Od3k2 al (k,pw)a (k,um)
f [EL(K,u,D)]* - Ex(K', ', r)N%(r)d3x=0. (A19) : a i

+ j I°K X aR(K,m)ar(K,p),  (A26)
K,<0

2. Field quantization based on triplet-mode functions =1
As a preparation, we will briefly review the field quanti- R 2
zation based on the triplet modgkl] according to our de- P= d kE k& (k,pw)é (k,p)
scription of theL and R modes. For planar boundary prob- k=0 p=1
lems, an arbitrary electric field is expanded in terms of the 2
triplet-mode functions as +J d3KE Ak ALK, w)ag(K,u). (A27)
K,<0 =
. 1 2 [hK\ Y2 .
E(r,t)= (27)3/7] d3k2 (T) The number eigenstates can be produced by operating
k20 w=l a/ (k,u) or a4(K,u) on the vacuum stat®) with the nor-
><[éL(k,M)EL(k,M,r)e“K‘+c.c.] malization(0|0)= 1. For example, the single-photon states
5 (N=1) with energyiK, pseudomomenturfik,, and polar-
K 12 ization u are given by
T o 2
(2m) KZ<O p=1\ &g At
X[ag(K,p)Er(K, u,r)e” K +c.c], (A20)
T 4K, ) =akL(K,u)|0), (A29)
with
with the normalization relations
d3k=fmfojwdkdkdk, ' N=8, , 8(k—k’
sz>0 —w) w0 X Yy Z <T,1(k,,LL)|T,l(k 1M )> Blu.,,u, 5(k k )1 (A30)
. e o (TUK, )| T UK, 1" ))y=3, ., 8(K=K"), (A31)
J d3K=f J f dK,dK,dK,.
K,<0 —o)—w)-w (T,2(k, )| T, (K", "))=0, (A32)
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where the labeT indicates photonic states corresponding toboundary. For imaginary values &f,, the sign in thez
the triplet modes. It is n_oted again that the wave veckors components oK (®) remains unchanged, and the transmitted
andK are used to specify those of theand R modes, re-  component of the triplet presents a damped wave along the

spectively. direction.
Similarly, under the time-reversal operation, the wave
APPENDIX B:  TIME REVERSAL vectors of incident, reflected, and transmitted components of
AND SPATIAL ROTATION the R triplet-mode functions are transformed as
Here we study the behavior of the triplet-mode functions Ko—K. K®__K® Kb_,_kD)
under the time-reversal transform and spatial rotation with ’ '
angle 7 around thez axis. Thus the single light source assumed is transformed into a
single light sink. Since the sign of ttecomponent of each
1. Time-reversal (T) transform wave vector is changed, the time-reversal operation trans-

forms theR triplet-mode functions into mode functions in-

The electromagnetic fields satisfy Maxwell's equations volving a single outgoing wave into the right-hand side half

V XE(r.t)=— (alat)B(r,t), B1 space(vacuun) of the boundary.
(r.t) ( JB(r.1) BD In addition, under the time-reversal operation, the sign of
V XB(r,t)=n2(r)(al ) E(r,t). (B2) X andy components of every wave vector changesilig
— ﬁk” .
According to Eqs(B1) and(B2), the Fourier components of
the electromagnetic field& . (r,t)=E(r)exp(-iKt) and 2. Spatial rotation (C,) transformation
B(+)(r,t) =B(r)exp(-iK) for the light frequencyK satisfy We consider next the behavior of electric and magnetic
the equations fields under the spatial rotatia®, with angles around thez
VXE, (r.t)=iKB, .\ (r.t), B3 axis (a two-dimensional inversion with respect to the inci-
(n(rh) (n(r1) B3 dent plang As we user(®)=(x,y,—z) for the transformed
VXB,(r,t)= —in2(r)KE(+)(r,t). (B4) position vector corresponding to=(x,y,z), the spatial ro-

tation C, is given by the transformi— —r(®). Under the
Under the time-reversal operatidn transform), the Fourier transformC,, the refractive-index function is unchanged as
components of the electric and magnetic fields are transa(r)—n(—r(®))=n(r). Therefore, the Fourier components

formed as of electric and magnetic fields are transformed as
Eqo)(r,)—[Ec(r,—t)]*, (BS) Eco(r,)——ER)(=r®p), (B7)
B (r)——[B(r,=t]*, (B6) B(sy(r,)— =B (—rPp), (B8)

where the asterisk denotes the complex conjugate. We willyhere E(y=(Ex.Ey.E). B()=(By.,By,B)), EEE))
consider the behavior af triplet-mode functions under the  _ (E,,E,,—E,), and B(D) — (B,,B,,—B,), according to
transform, which is straightforward for the wave vectors of _ » 2 Y 2" S A

S ) our usage of the labgD).
incident, reflected, and transmitted components: g ¢D)

Under C,, the incident, reflected, and transmitted wave

ks —k. k@ _ —k® KO _, _KgD* vectors inL andR triplet-mode functions are transformed as
_ k(D) (D)_, (D)_,

When we consider an observation scheme to be coupled with k—=—k™, kK7->-k, KT--K,

the phqtonic system .under .consi(_jeratic.)n, a single Iight Kos—K® KO K kP k.

source is transformed into a single light sink. Since the sign

in the z component of each wave vector is changed for reaWhen we consider an observation process, the position of the

values ofK,, the time-reversal operator transforms the light source is rotated by the angte around thez axis. In

triplet-mode functions into mode functions involving an out- addition, C, transforms the pseudomomentum #&k,—

going wave to the left-hand side half spgoeedium of the  —7ik;.
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