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Comprehensive theory of the relative phase in atom-field interactions
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We explore the role played by the quantum relative phase in a well-known model of atom-field interaction,
namely, the Dicke model. We introduce an appropriate polar decomposition of the atom-field relative ampli-
tudes that leads to a truly Hermitian relative-phase operator, whose eigenstates correctly describe the phase
properties, as we demonstrate by studying the positive operator-valued measure derived from it. We find the
probability distribution for this relative phase and, by resorting to a numerical procedure, we study its time
evolution.
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[. INTRODUCTION traordinarily helpful in developing an intuitive feeling for the
physical mechanisms involved. Although the dynamics of

The problem of the interaction of an atomic system with athis model is sometimes expressed in quadrature components
radiation field is a keystone of quantum optics. Needless td1], the natural way of understanding its resonant behavior is
say, it is impossible to obtain exact solutions to this problenin terms of the relative phase between the field and the
and some approximations must be used; the most commgiomic dipole[8].
being that the radiation field is quasimonochromatic and its VWhile the quantum quadratures are well known, as are the
frequency coincides almost exactly with one of the transitior@SSociated eigenstates, the operator for this relative phase has
frequencies of the atomsupposedly identical and with no _re3|st_ed a quantum _descrlptlon. In this respect, we th|n_k that,
direct interaction between thém in spite of its maturity and success, the Dicke model is ap-

The two-level atom is the natural consequence of this hyparently mco.mplete. since it Ia_ck; a satisfactory descnpnqn
pothesis[1]. Such an object is an important tool because itin terms of this relative phase, indispensable to compare with
allows us to describe the matter-field interaction in a verythe classical world. The main goal of this paper is precisely
simple way, and the results constitute a first step to dealinéﬁe general descrlptlon of that yanable.
with more realistic situations that could include losses, 'hen focusing on the relative phase between two sub-
broadening of the atomic lines, etc. To put it bluntly, we canSystems, we think the best way to proceed, much in the spirit
replace the whole atomic system by an effective two-levePf our previous work in the subje¢®], is to try a polar
system that accounts for all the relevant details of the interdecomposition of the quantum amplitudes, which parallels,
action. The Dicke modd]2,3], describing the interaction of &S much as possible, the corresponding classical factoriza-
A identical two-level atoms with a single-mode field in a tion. qu t_he re_latlve phase between two harmonic oscilla-
perfect cavity, is perhaps the archetype of this situation.  Ors, this is quite straightforward procedure and leads to a

In the semiclassical version of this Dicke model, correla-unitary solution[10]. _ »
tions are safely ignored and the field is interpreted to be a For the Dicke model, this polar decomposition seems to
purely classical electric fielfd—6]. Such an approximation D€ more involved, mainly because, unlike for the case of two
has proven to be very successful and has the virtue of redufarmonic oscillators, the Ham|l_ton|an cannot be cast in terms
ing the problem to the exclusive knowledge of the atomicof SU2) operators, but rather in terms of some polynomial
dynamics, which is studied in terms of the inversion and th&leformation of s(2). These nonlinear algebras have been
components of the atomic dipole in phase and in quadratur@xamined very recently in quite a different physical contexts
with the field (i.e., the Bloch vector These quadratures are [11], and, by exploiting these resuilts, it is possible to perform
the dispersive and absorptive components of the dipole mgiuch a decomposition in an elegant way, obtaining a bona
ment effective in coupling to the field. f|qle Hermltlar_l operator representing the relative phase we

For some phenomena, such as spontaneous emission byvish t0 examine. . _ _
fully excited atomic system, the quantization of the field is N this paper we use this operator to introduce the associ-
required. Then, one must take care also of the evolution ofted probability distribution and, then, the most relevant dy-
the field amplitudes, but the atomic dynamics is still eX_na_mlcal _features of the_ Dicke model can be easily explained
plained in terms of inversion and dipole quadratures. using this relevant variable.

Classically, the interaction of matter with light is usually
treated within the framework of the Lorentz modgf],
which assumes that each electron-ion pair behaves as a
single harmonic oscillator that couples to the field through its The Dicke model describes the interaction of a collection
electric dipole moment. In spite of its simplicity, it is ex- of A identical two-level atoms with a quantum single-mode

II. QUANTUM DYNAMICS OF THE DICKE MODEL
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field in a lossless cavity. The spatial dimensions of thesu2) corresponding to a spiA/2. The case of a single reso-
atomic system are smaller than the wavelength of the fieldpant atom A=1) corresponds to the well-known Jaynes-
so all the atoms feel the same field. However, the modeCummings model.

neglects the dipole-dipole interaction between atdives, For simplicity, we shall restrict henceforth our attention to
their wave functions do not overlap in the evolution the case of exact resonance between the atomic and the field
The Hamiltonian for this model in the electric dipole and frequencyw,= w;=w. Since the field mode is described in
rotating-wave approximations reads @s units 4 =1) the usual Fock spade);, the natural bare basis for the total
system is|n,M)=|n)®|M),. However, it is straightfor-
H=Ho+Hint, (2.1 ward to check that
with [Ho.Hin =0, (2.8
Ho=wiN, so both are constants of motion. The Hamiltontdp (or,
equivalently, the excitation numbé&t) determines the total
Hin=AS;+g(a's_+as,). (2.2 energy stored by the radiation field and the atomic system,
Here which is conserved by the interaction. This means that the

appearance dfl excited atoms requires the annihilation\éf
photons. This allows us to factor out exiqt) from the
evolution operator and drop it altogether. Hence, we can re-

is the excitation number operatay,is the coupling constant label the total basis as

(which, in this approximation, is the same for all the atoms
and can be chosen as reand A= w;— w, is the detuning

between the atomic and field frequencies. The field mode is
described by the annihilation and creation operat@nd
a', while the collective atomic operators are defined by

N=a'a+S;, (2.3

IN=M,M)=|N—M)®|M),. (2.9

In such a basis, the interaction Hamiltonian, for a fixed
value ofN, is represented by the tridiagonal matrix

A 0 hg O
S:9=2, ks, (2.4 O T R
o Hn'=8l o n, 0 n, ...|° (@10
and obey the commutation relations : :
[S;,S:]=%S., [S:,S.]=2S;. (2.5 with
Since all the atoms have the same coupling constant, we hy=V(M+1)(N—M)(A—M). 2.11)

need to consider only symmetrical atomic states. Then, let us

introduce the atomic Dicke states [ The dimension of this matrix depends on whetAer N or

| | A<N, which are situations essentially different and must be
IM)= 3 /M'(A_M)'E |+), |+); handled separately.
a Al D limrrh o m Let us assume thaa>N and initially all the atoms are

unexcited. ThenM =0 and the conservation of the number
_>jM+1 " '|_>JA’ (2.8 of excitations implies that only the stat€®.9) with O<M

<N take part in the dynamics. Thus, the dimension of the
where|+); are the eigenstates of tligh atom and the sum subspace i+ 1.
runs over all possible manners of choosMgndistinguish- On the contrary, wheA<N, the number of initial pho-

able atoms from the group @ atoms. In the space spanned tons is greater than the number of atoms and only the states
by these Dicke states, the action of the collective atomig2 9) with 0<M <A are involved in the evolution. The di-

x|

operators Is mension is NnowA+ 1
It is easy to check that, due to the properties of the tridi-
SiIM)a=V(M+1)(A=M)[M+1),, agonal matrices, the eigenvalues are distributed symmetri-
cally with respect to zero, with one eigenvalue equal to zero
S [M);=VM(A—M+1)|M—1),, (2.7 if there are an odd number of therh?].
To find the state evolution, we shall need the following
S3|M) = (M —A/2)|M),, matrix elements of the evolution operator
where the labeM (0<M=<A) denotes the number of ex- Chn(D=(N=M",M’|exd —iHNt]|N-M,M),
cited atoms and- A/2 represents the bottom energy level of (2.12

the atomic system. Therefore, the collective atomic operators
form a (A+1)-dimensional representation of the algebrawhich can be written as
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D Ill. RELATIVE-PHASE OPERATOR FOR THE DICKE
CL“A,M(t)=J20 UwaUlexd —ieft], (213 MODEL

In the spirit of our previous work on the relative phase for
where U is the unitary matrix that diagonalizes the Hamil- the Jaynes-Cummings modgl5], we shall describe the
tonian ande™) are the corresponding eigenvalues. In whatatom-field relative phase in terms of a polar decomposition
follows, we shall use the convention of denoting the dimen-0f the complex amplitudes. To this end, let us introduce the

sion of the Hamiltonian matrisd{\) by D+ 1, that is, operators
D=min(N,A). (2.14 X,=aS,, X_=a's_,
Now, let us assume that the initial field is taken to be in a X3=S;3. (3.2
coherent statéa); and that the atomic state is initially pre-
pared in an atomic coherent state, [13,14); i.e., These operators maintain the first commutation relation of
su2) in Eq. (2.5, [ X3,X.-]==xX., but the second one is
=la) ar . modified in the following way:
|W(0))=[a)@|{) (2.19 dified in the followi
where [X- X ]=P(Xs), (32
_ Yy, 21 whereP(X3) representg a secgnd-order polynomial function
s zn: Qnlms (2.18 of the operatoiXs. This is a typical example of the so-called

polynomial deformations of the algebra(8u Without em-
Q, being the Poissonian weighting factor of the coherentbarking us in mathematical subtleties, the essential point for

state(with zero phasewith mean number of photons our purposes here is that one can develop a theory in a very
close analogy with the standard(8ualgebra. In particular, it
" is clear that the statiN,0) plays the role of a¥acuum state
Q=y\e " (217 since
and X_|N,0)=0. (3.3
1 A Al Then, we can construct invariant subspaces, as in the usual
|) = E A /—'§M|M>a theory of angular momentum, by
(1+]¢[HM2 40 N MIA=M)!
1
A IN—M,M)=—X"|N,0), (3.9
=2 AulM)a, (2.18 N

where N is a normalization constant. One can check that
where the parametef is normally rewritten in terms of the
spherical angles as xP*1N,0)=0, (3.5

{=—tan(8/2)e”'¢. (219 confirming that the number of accessible stateBis1.

o ) o In consequence, the whole space of the system can be
In other words, the initial state can be rewritten, taking iNtogpjit as the direct surfi(= ®%_ Hy of subspaces invariant

account Eq(2.9), as under the action of the operators ( ,X_ ,X3) and each one
of them having a fixed number of excitations. These inde-
|W(0))= >, Qn_mAu/N—M,M). (2.20  Pendent subspaces do not overlap in the evolution, in such a
N,M way that if the initial state belongs to one of them, it will

remain in that subspace for all the evolution.
With this initial condition, the resulting state can be recast as |n each one of these invariant subspaces the opeXatisr
. diagonal, whileX, andX_ are ladder operators represented
| W (1)) = exp(—iHiyt)[¥(0)) by finite-dimensional matrices. This suggests to introduce a

o D polar decomposition in the form
- Qn-mAMCH y(DIN=M",M").
& M’,EMZO Ay (1) ) X, =X, X_E,
(2.21
X_=ETJyX,X_, (3.6

If the initial state is not of the same form, but has a decom-
position with different amplitude#,, or Q,, Eq.(2.2)) is  where theradial operator\/ X, X_ is diagonal in the basis
still valid when the appropriate coefficients are taken. IN—M,M):
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VX X_|N—M,M) 27t

BMN= ot (3.19
=yM(N=-M+1)(A—M+1)[N=M,M), D+1’

(3.7 and ¢ is a fiducial or reference phase shift that can be

and arbitrarily chosen. The expression fgron the whole space

[X3,E]=E. (3.9

0 % D
(N)
We can guarantee now that the operd&er exp(®), rep- E= 2 EN = 2 Z |<Z5(N)>e"ZS <¢(N)| (3.19
resenting the exponential of the relative phase, is unitary and N

commutes with the excitation number . . . . ) . .
and, sincekE is unitary, it defines a Hermitian relative-phase

EE'=E'E=1I, operator

D

[E,N]=0. (3.9 - >
<I>=N20 PN = NZ 2 |pMypM(pM],  (3.17)

Thus, we may rather study its restriction to each invariant
subspaceH,, we shall denote bg™. It is easy to check
that the action of the operat&™) in each subspace is given that, obviously, has discrete eigenvalues. In the lifnit 1,
by this spectrum becomes dense, as it might be expected. But,
on the opposite limit, one may be surprised to find that the
EMIN-M,M)=|N=(M+1),M+1), state|0,0) is a relative-phase eigenstat&ith arbitrary ei-
Y B genvaluegg). While this may provide a convincing argu-
EVIN-M,M)=IN-(M-1),M-1). (3.10 ment that the theory is unreasonable, we think that is not the
case. The value o, will not lead to any contradictions,
because any choice will lead to a consistent theory. Our
choice of this parameter says nothing about nature, it only
makes a statement about our individual prefereriés.

Note as well, that the relative-phase eigenstates are maxi-
mally entangled states. This has the consequence that the
relative-phase operator has no classical correspondence in
the general case, not even for highly excited states.

Obviously, the action oE™) and E™MT becomes unde-
fined on the marginal statéd—D,D) and|N,0). Therefore,
it is necessary to add some conventions for closing the ac
tions of these operators on the subspéatg. By analogy
once again with the usual &) algebra, we shall use stan-
dard cyclic conditions and impodep to global phase fac-
tors)

EMN|N-D,D)=|N,0),

- IV. ATOM-FIELD RELATIVE PHASE IN TERMS OF
E™T'IN,0)=|N—-D,D). (3.11 ABSOLUTE PHASES

With these conditions, the operatgf™) can be expressed as  In the previous section, we have shown a clear way of
obtainingab initio the atom-field relative phase. In spite of
this, one could still insist in describing this variable in terms
of the absolute phases of each subsystem. One must start
then from previous descriptions of the field and atomic
X(N=M,M| +ei(D+1)¢(N)|N,o><N—D,D|, phases and manage them until getting the probability distri-
bution for their difference. The goal of this section is to show
(3.12 that this way of proceeding leads naturally to a positive

#™ being an arbitrary phase. Note that the crucial extrePerator-valued measuf®@OVM) [17,18, and how such a

D
EN=2> IN—-(M+1),M+1)
M=0

term in this equation, which establishes the unitaritgff), =~ POVM s precisely generated by the eigenstates of the

is precisely based on the finite number of states. Thereforéfehat've phase operator.

in each invariant subspadéy there areD+1 orthonormal To this end, we shall adopt the elegant axiomatic ap-

states satisfying proach developed by Leonhardt al. [19] to describe the
phase properties of both subsystems we are dealing with. To

E(N)|¢§N)>:ei¢EN)|¢EN)>’ (3.13 ~ make the discussion as self contained as possible, we first

briefly recall the essential ingredients of the general formal-

with r=0, ... ,D. These states can be expressed as ism.

When dealing with generic angle-action variables, one
) imposes that the complex exponential of the ar(denoted
|ptV)=—= i1 Z e IN=M,M), (314  pyE) and the action variablaenoted byL,) satisfy[com-
pare with Eq.(3.9)]
and, by taking the same®window in each subspace, we
have [L,,E]=E. (4.1
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If E were unitary, its action on the basis of eigenstatek,of ExpressingE in terms of its eigenvector®), we finally

(denoted bym)) will be as a ladder operator arrive at the general form of a POVM describing the angle
variable and fulfilling the natural requiremen(4.5 and
Elm)=|m-+1). 42 (47

The eigenstates d (denoted by #)) provide then an ad-
equate description of the quantum anf2€]. However, re- A(G)ZJ do'B(6")|6+0')(6+0'], (4.11)
alistic measurements always involve extra noise beyond that 27

due to the intrinsic quantum fluctuations described by ca-
nonical conjugation and it is essential to extend the canonicgjnere
formalism by including fuzzy or unsharp generalizations of

the ideal description provided ky[21]. To this end we shall

: i ish- 1 .
use POVM's, that are a.s_gt of_lmear operatd(®) furnish B(6)= — 2 belv. 4.12
ing the correct probabilities in any measurement process 27 =0
through the fundamental postulate that
P(8)=TrpA(8)]. 4.3 This convolution shows that this effectively represents a

noisy measurement, the functi@{ ) giving the resolution
The reality, positiveness, and normalizationR{f¢) impose  provided by this POVM20].

Let us now focus on the phase properties of our two sub-
systems. Concerning the field phase, the question has at-
tracted the attention of physicists for almost as long as quan-
tum mechanics has existed as a physical théfoy recent
but, in generalA(#) are not orthogonal projectors like in the reviews, see Ref23]). Nowadays, it seems indisputable that
standard measurements described by self-adjoint operatorsan operator representing the phase of a single-mode field in a

In addition to these basic statistical conditions, some otheinfinite-dimensional Hilbert space cannot exi&4] and the
requirements must be imposed to ensure @) provides proper way to face upto the problem involves the use of a
a meaningful description of the angle as a canonically conrelative-state formalism. In spite of this serious drawback, a
jugate variable with respect tb, (even in the sense of a variety of solutions have been proposed to circumvent the

AT(9)=A(0), A(6)=0, L doA(O)=1, (4.9

weak Weyl relatior{22]). Then, we require difficulties. Virtually all of them can be formulated within
o o the POVM formalism discussed before, but with the role of
el A (g e = A(0+0'), (4.5 L, being played by the number operasdi. Then, a number

_ ) _ shifter is expressed by the Susskind-Glogower phase opera-

the form of the POVM to property and the phase states are
1 < .
AO)=5— > by ™V m)nl. (4.6 1< g
27 nm=o 0= —— e n); . (4.13
6)=—= 3, &Iy

We must take also into account that a shiftLinshould not
cr?ange the angle d|s.tr|b#t|on.hA shift In, is expressed by 5, the other hand, the difficulties with hermiticity that
the opehrato;E, since it s _|fts the dlllstrlbutlon of , by one phase operators encounter in the case of a single-mode field
step. Therefore, we require as we disappear for a two-level system. In general, for the group
_ SU(2) it is possible, by working in the standard
EA(O)ET=A(0), 4. . ) : , .

(9) (9) .0 (A+1)-dimensional Hilbert space associated with the usual
which, loosely speaking, is the physical translation of theanhgular-momentum operators, to find a true phase operator
fact that the angle should be complementary to the actioffom & polar decomposition of the amplitud8s [26,27].

variable. This implies the invariance The procedure is quite similar to that followed in Sec. IlI for
the relative phase and, perhaps, the most striking conse-
Prm=bn-m, (4.9 quence of this approach is that the atomic-dipole phase can
take onlyA+ 1 different values, due to the dimension of the
that allows us to recast E¢4.6) as atomic-state space.
;e Because of this particular behavior, one may think it is
_ N rather preferable to describe the dipole phase by a POVM
Al6)= 2 ZV b_,e " ", (4.9 taking continuous values in am2interval, even though this
cannot lead to a standard operator description. To this end, it
while conditions(4.4) read now as suffices to note that the general propertig$) and(4.7) still
hold, but the role ofL, is played now byS;, and the
lb,|<1, b}=b,. (410  “susskind-Glogower” eigenstates of the shifter are now
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A D
1 . 1 .
O =—= eMidM),. 4.1 (N)y=— eMN—M,M). 4.2
103 = 5= &, €M) (419 |6™) =5 2 &Ml ) (423
The joint probability distribution for atomic and field Therefore, we conclude that the POVM generated by the
phases can be defined in a very natural way as eigenstates of our relative phase operator is just the same
induced by other absolute-phase approaclissch as
P(64,60;)=Tr[pA(6,,6:)], (4.15 Susskind-Glogower or Pegg-Barnetivhen cast to the ap-
. propriate 27 range. This is, in our view, another confirma-
with tion that the theory proposed works correctly.
A(8a,600) =AY @ A'(6y). (4.16

V. RELATIVE-PHASE DISTRIBUTION FUNCTION

Our remaining task is to consistently derive a POVM for the  pqr any state, the information one can reap using a mea-
relative phasep= 6,— 6; from these expressions. This goal syrement of some observable is given by the statistical dis-
can be achieved in many way28]: for example, one can tripytion of the measurement outcomes. For the relative
perform a change of variables to expreés,, 6y) in terms  phase, it seems natural to define the probability distribution

of the phase sum and phase difference and then remove thgnction of a state described by the density magrias
phase-sum dependence by simple integraf0]. Another

possibilit_y is to directly define the probability distribution for P(N, &, ,t) :<¢§N)|p(t)| ¢§N)>_ (5.2
the relative phase as
However, forphysical state§29] (i.e., states for which finite
_ _ moments of the number operator are boundbd expres-
P(¢)= fzwdep(9’0+ ¢)=TrlpA(¢)], (417 sion will converge to a simpler form involving a continuous
probability density that we shall write as

P(N,,t)=(sM|p(t)| ™), (5.2

A(p)= f dOA(6,0+ ¢). (4.18  where the vectorgpV) defined in Eq.(4.23 lie in the

2m subspacé+y with total number of excitationBl. In fact, this
Xpression can be interpreted as a joint probability distribu-
on for the relative phase and the total number of excita-
ons. From it, we can derive the distribution for the relative

where

For our purposes here, it is sufficient to note that we musﬁ
get the same values for any periodic function of the relativeti
phase whether we use the varialkleor (6,,65). In conse-

guence, we can impose that phase as
f d(]ﬁp(qﬁ)ei”d’:f do.do:P(6,,0;) e %) P(¢,t):NZO P(N,¢,t), (5.3
2 2
419 While
To proceed with this, we need to take a definite choice for
the corresponding POVM's. Concerning the field phase, we p(N,t):j dpP(N, 1), (5.4)
recall that the Pegg-Barnett formalism and many others em- 2

bodying the concept of phase as an observable canonically ) o ]

the Susskind-Glogower phase states, narfiehy excitations in the system. These factorizations are an obvious
consequence of the fact that the relative phase and the exci-
Af(6)=]6:)( 6. (4.20  tation number are compatible.

For the general initial state of ER.20 and the evolution
Motivated by this choice, we can use, for the atomic phasegiven by Eq.(2.21) we have
the finite-dimensional translation of this POVM,; i.e.,

P(N,¢,t)=[(¢™ W (t))|%, (5.9
AN 0,)=|60.)(64, (4.21 , , . .
which, through direct calculation, gives
with |6y given in Eq.(4.14). A simple calculation shows D 5
then that 1 N M
r PIN.g.O=5_| 2 Qu-whuChy(e™) .
A(g)= 2 [¢M) (M), (4.22 5.6
N=0
and then we arrive at the total relative-phase probability dis-
where tribution:
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D
2 QN—MAMeiM¢
M=0

T 2

(5.9

L -
P(d),t:O):ZNZO

In particular, when all the atoms are initially unexcited only
the coefficientA, survives and the previous expression re-
duces to

1

This flat distribution reflects the fact that the random phase
of the dipole in such states induces a uniform distribution
centered atp. In this respect, it is interesting to notice that
classically, the Lorentz model at resonance predicts for the
relative phase values of 7/2. It turns out that this is also a
possible choice to fix the reference phakgin the quantum
description. For simplicity, in all the graphics we have cho-
sen g, as the origin 0.

Two quite different behaviors are evident from these
graphics. The first occurs in the weak-field reg{@d—32,
when the number of excitations in the system is much
smaller than the number of the atom&gA. If, for simplic-
ity, we assume that all the atoms are unexcited and the av-
erage number of photons in the initially coherent field is

small, sayﬁ~1, then we can retain only the dominant terms
in Eq. (5.7), getting

1
P(o,t)= Z{1+ﬁ[|céo|2+ |Cél|2
+2 RgCyCo e ) 1e . (5.10

We see that, due to the periodic temporal dependence of the
termka‘A,M(t), this distribution is oscillatory for all times,
which is corroborated numerically in Fig(a).

The second(and perhaps more interestingase corre-
sponds to the strong-field regid83—35, when the initial
number of photons is much larger than the number of atoms

FIG. 1. Gray-level contour plot of the probability distribution A<N. Then, following the ideas of Ref33] one can show
P(¢,t) as a function ofp and the rescaled timgt for the case of  that the Coefficients'i',:',l,M(t) can be approximated, up to
A=5 atoms initially unexcited and the field in a coherent state W'thorderA/\/ﬁ, by
the following values of the mean number of photof@):. n=1

(weak field, (b) n=50 (strong field, andn=5 (intermediate fielsl Cn,M(t):dQ,M(—QNt), (5.12)
1" D 2 where
P(t)=— _wAMCY, L (HeM |
(o)=or NZO M,%:OQN Ay (1) Qn=2gN—-A2+1/2, (5.12
(5.7

anddy,,,, are Wignerd functions[36], which are defined as

o . the matrix elements for finite rotations by operators from
This is our basic and compact result that we use to analyzgu(z) group representations

the evolution of the phase properties of the Dicke model.

In Fig. 1 we haye numerically evaluated th|s'd|str|b'ut|on df,,,M(ﬂ)=df,|M,(19)=(M r|eiﬁSX|M>’ (5.13
P(¢,t) as a function of¢p and the rescaled a dimensional
time gt, for the case when all the atoms are initially unex-\ynereM M’'=0.1. . .. A. The point now is that essentially
cited and the field is in a coherent state with various value%my one,subspa,lc1e of dimensidr- 1 dominates the dynam-
of the mean number of photoms In all the cases, whem ics. Moreover, a simple calculation using the explicit form of
=0, we have thaCR',l,M(O)z ow'm and therefore thesed functions, gives
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_ 1 . 2 P
P(o,t)= 7 NZO QN 0.6

=

il
X EA Ltari“(QNt/Z)e‘M(¢—7r/2>2 o4 \ \\\\\\\\\\\\\
X c'\:s;’:((\)/NW (5.14 0; \\\\\\\\\k\\\\\\\\\\\\\\\k\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\

I

where we have assumed that all the atoms are initially unex- . Lt
cited. WhenA>1 and when oscillations are well resolved, 0 AW
one can perform an expansion of the square root getting

40

10 gt

A A ) FIG. 2. Probability distribution functiof(¢,t) as a function of
P(o,t)= Py EN: Dy (t)exg — E(‘f’_ w2+ on)° |, ¢ and the rescaled timet for the case of a factorized state with
(5.15 A=3. The atomic coherent state has /2 ande=0 and the field

state has1= 20.
where®(t) is a function of time of complicated structure i i )
that accounts for the collapses and revivals and that is of/@ve function of the system can be approximately written as
litle interest for our purposes here, ands, & Productofits field and atomic parts
=ard tan(Q\t/2)]. Now, it is clear that, sincéy takes only _
the values 0 andr, the previous Gaussian distributions tend |q’(t)>_|5(t)>a®|a(t)>f’ (5.18
to have two peaks ab= * /2, in agreement with the clas- .
sical expectations. The presence of collapses and revivals apdth
evident in Fig. 1b), which confirms previous numerical and
analytical evidence. The well-known nearly time- IP(1)).= exd —i Ap(S3+AI2) (
independent behavior in the time windows between collapse e 2/n—A2+ 1/29
and revival is also clear. As we can see, the distribution tends
:\(/)VObger;iESd(;nélee/g in the evolution, although keeping these |la(t))= exf —i ApvaTa— A2+ 12gt]|a);, (5.19
In the intermediate region, whel~ A, the behavior is

P)as

and one can verify that they are al&pproximately trap-

more complex, as shown in Fig(c), and no analytical ap-  ning states. For these states, one can find after a simple cal-
proximations are available. culation

For the particular case of the Jaynes-Cummings model,

one can diagonalize exactly the Hamiltonian in each sub- 1 2
spaceH,, obtaining the well-known dressed stafdg], that P(¢,t)= m’E LM[P) M9 (5.20
turn to be trapping statels8]; i.e., the atomic population M -

(S5(t)) remains constant in spite of the existence of both th e .
radiation field and atomic transitiof89]. These states play el'he probability distribution is ime independent due to the

a fundamental role in that model, so it seems interesting t(_gactorlzatlon(S_.l&. Fro_m t_he arguments in Reﬁ33], one
analyze the corresponding problem for the case of the Dick#fers that this factorization holds up to timegt~ v
model. In the strong-field limit one can make the replace{Which can be very long times, in this limiand with an

menta— a=ne'? and the interaction Dicke Hamiltonian accuracy in the coefficients of the order &f/n.

becomes proportional to the operator Moreover, using the properties of the semiclassical atomic
states and assuming>1, one can replace the sum by an
Hy=(€e'’S, +e7'7s_), (5.16 integral, obtaining finally
where the phase of the classical field has been chosen to A — A2,
coincide with the phase of the initial coherent state of the P(¢.t)= 2—e ' (5.2
field. The semiclassical atomic states are defined now as
eigenstates ofl taking this phase as zero: i.e., a Gaussian independent of time. In Fig. 2 we have plot-
ted the probability distribution obtained from a numerical
28,|P)o=Ap|P)a, (5.17  computation of Eq(5.7), showing this quite remarkable be-
B B havior, except for the presence of very smalmost inap-
with Ap=A—-2P andP=0,1, ... A. preciable oscillations superimposed.
Following Ref.[33], we shall callfactorized stateshose To gain more physical insight into these behaviors, in Fig.

states for which the initial field is taken to be in a strong3 we have plotted the evolution of the mean valugn )
coherent statfr); and the atomic system is initially prepared for various values o, confirming the previous physical
in a semiclassical atomic stgte),. For such states, the total discussion.
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FIG. 4. Probability distribution functio(¢,t) as a function of
¢ for the time Nt= /6 for the case of an atomic coherent state

0 1'0 2'0 3'0 40 (A=5) with 9=m/2 and¢=0 and a field coherent state with
=10. The presence of the two humps corroborate the presence of a
8t catlike state.
FIG. 3. Plots of(sin ¢) versusgt for the same values of as in N 2
Fig. 1 (from top to botton. fu=2NMA+[A+N(2A+1)]M-3\M~.  (5.28

To conclude, let us consider the Dicke model in the large-Since Eq.(5.23 is quadratic in the population inversion op-
detuning limit; which is usually known as the dispersive erator S, and is, therefore, analogous to the Hamiltonian

limit. More specifically, we are in the case when quadratic in the number operator of a single-mode field
propagating through a Kerr medium, one could expect Eq.
A>gvVn+1A. (5.22  [41] that the evolution of coherent atomic states in the dis-

) _ persive limit of the Dicke model leads to the generation of
Then, following the procedure developed in RB40], the  gchrgiinger cat states. This superposition reaches the most
interaction Hamiltonian in Eq(2.2) can be replaced by the ,,,re form for initial number field stateén particular, the
effective Hamiltonian vacuum state minimizes the atomic entrdg@g]).
The situation with the relative-phase distribution is quite
Her=ASytA(2a'a+ 1)S;+M(C-S)),  (6.23 different. It is easy to see, for efample, that if the fie?d is
prepared initially in a number statk) thenQ,= 8, and the

where relative phase distribution is flat. Nevertheless, for initial
AlA 92 atomic and field coherent states the relative-phase distribu-
C= §(§+1 , A= A (5.24  tion splits for some special times into several humps. These

catlike states, according to E@5.28, appear at times
_=A\t=/6 (mod2r). To confirm this behavior analytically,
dve expand Eq(5.27) when initially we have strong coherent
states for both field and atoms, witts>A>1. By replacing
once again the sum by integrals, one easily gets

The obvious advantage of this Hamiltonian is that it is diag
onal and allows for a compact analytical expression for th

coefficientsC,':',I w(t) as

Chy (1) =8y X —it{A(M—A/2)+ \[2(N= M) +1]

A _
X(M—=A/2)+X\[C—(M—A/2)?]}). (5.29 P(¢,t=m/6\)= \/B—{e—[¢—”¢n’<3mzA’2

o
When the atoms are initially unexcited or excitga, more bt = (3N)] 2A
generally, wherAy, = dyx) and for any initial state of field, te ! il (5.29
we have

where
1
P(¢t)=5—, (5.26 _
dn=2n\+A+N(2A+1), (5.30

for all the times.
For an arbitrary initial state of the atomic system and theand all the phases must be understood mad(ZThe two
field, we get separated Gaussians indicates the presence of two humps
. and, therefore, the presence of catlike states. To further con-
1 N firm this, in Fig. 4 we have computed numerically the distri-
P(é.0)= 27 Nzo MEZO Qu-mAye e, bution functionP(¢,t=7/6\) at the times predicted by the
(5.27) theory. The graphic clearly demonstrates the presence of the
two-component state, according to our previous consider-
with ations.

A 2
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VI. CONCLUSION happens, for the polar decomposition corresponding to two
field modes. From these eigenstates we have obtained the

In this paper, we have investigated an appropriate 0peras,onapility distribution for the relative phase and we have

tor for the quantum description of the relative phase in thesdied its time evolution. For the weak-field region, the be-

Dicke model. We have used a proper polar decomposition ofavior is essentially oscillatory, while for the strong-field

the corresponding field amplitudes, much in the spirit of ourregion, the relative phase tends to be randomized in the evo-

previous work on the subject. This polar decomposition hasution, although showing collapses and revivals. For both

been justified on physical grounds, as well as using thdimiting regions, we have developed analytical approxima-

theory of polynomial deformations of ). tions that have allowed us an easy physical interpretation of
The eigenvalue spectrum of this operator is discrete, as gome remarkable phenomena.
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