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Comprehensive theory of the relative phase in atom-field interactions
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We explore the role played by the quantum relative phase in a well-known model of atom-field interaction,
namely, the Dicke model. We introduce an appropriate polar decomposition of the atom-field relative ampli-
tudes that leads to a truly Hermitian relative-phase operator, whose eigenstates correctly describe the phase
properties, as we demonstrate by studying the positive operator-valued measure derived from it. We find the
probability distribution for this relative phase and, by resorting to a numerical procedure, we study its time
evolution.
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I. INTRODUCTION

The problem of the interaction of an atomic system with
radiation field is a keystone of quantum optics. Needles
say, it is impossible to obtain exact solutions to this probl
and some approximations must be used; the most com
being that the radiation field is quasimonochromatic and
frequency coincides almost exactly with one of the transit
frequencies of the atoms~supposedly identical and with n
direct interaction between them!.

The two-level atom is the natural consequence of this
pothesis@1#. Such an object is an important tool because
allows us to describe the matter-field interaction in a v
simple way, and the results constitute a first step to dea
with more realistic situations that could include loss
broadening of the atomic lines, etc. To put it bluntly, we c
replace the whole atomic system by an effective two-le
system that accounts for all the relevant details of the in
action. The Dicke model@2,3#, describing the interaction o
A identical two-level atoms with a single-mode field in
perfect cavity, is perhaps the archetype of this situation.

In the semiclassical version of this Dicke model, corre
tions are safely ignored and the field is interpreted to b
purely classical electric field@4–6#. Such an approximation
has proven to be very successful and has the virtue of re
ing the problem to the exclusive knowledge of the atom
dynamics, which is studied in terms of the inversion and
components of the atomic dipole in phase and in quadra
with the field ~i.e., the Bloch vector!. These quadratures ar
the dispersive and absorptive components of the dipole
ment effective in coupling to the field.

For some phenomena, such as spontaneous emission
fully excited atomic system, the quantization of the field
required. Then, one must take care also of the evolution
the field amplitudes, but the atomic dynamics is still e
plained in terms of inversion and dipole quadratures.

Classically, the interaction of matter with light is usual
treated within the framework of the Lorentz model@7#,
which assumes that each electron-ion pair behaves a
single harmonic oscillator that couples to the field through
electric dipole moment. In spite of its simplicity, it is ex
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traordinarily helpful in developing an intuitive feeling for th
physical mechanisms involved. Although the dynamics
this model is sometimes expressed in quadrature compon
@1#, the natural way of understanding its resonant behavio
in terms of the relative phase between the field and
atomic dipole@8#.

While the quantum quadratures are well known, as are
associated eigenstates, the operator for this relative phas
resisted a quantum description. In this respect, we think t
in spite of its maturity and success, the Dicke model is
parently incomplete since it lacks a satisfactory descript
in terms of this relative phase, indispensable to compare w
the classical world. The main goal of this paper is precis
the general description of that variable.

When focusing on the relative phase between two s
systems, we think the best way to proceed, much in the s
of our previous work in the subject@9#, is to try a polar
decomposition of the quantum amplitudes, which paralle
as much as possible, the corresponding classical facto
tion. For the relative phase between two harmonic osci
tors, this is quite straightforward procedure and leads t
unitary solution@10#.

For the Dicke model, this polar decomposition seems
be more involved, mainly because, unlike for the case of t
harmonic oscillators, the Hamiltonian cannot be cast in ter
of su~2! operators, but rather in terms of some polynom
deformation of su~2!. These nonlinear algebras have be
examined very recently in quite a different physical conte
@11#, and, by exploiting these results, it is possible to perfo
such a decomposition in an elegant way, obtaining a b
fide Hermitian operator representing the relative phase
wish to examine.

In this paper we use this operator to introduce the ass
ated probability distribution and, then, the most relevant
namical features of the Dicke model can be easily explai
using this relevant variable.

II. QUANTUM DYNAMICS OF THE DICKE MODEL

The Dicke model describes the interaction of a collect
of A identical two-level atoms with a quantum single-mo
©2001 The American Physical Society01-1
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field in a lossless cavity. The spatial dimensions of
atomic system are smaller than the wavelength of the fi
so all the atoms feel the same field. However, the mo
neglects the dipole-dipole interaction between atoms~i.e.,
their wave functions do not overlap in the evolution!.

The Hamiltonian for this model in the electric dipole an
rotating-wave approximations reads as~in units \51)

H5H01H int , ~2.1!

with

H05v fN,

H int5DS31g~a†S21aS1!. ~2.2!

Here,

N5a†a1S3 , ~2.3!

is the excitation number operator,g is the coupling constan
~which, in this approximation, is the same for all the ato
and can be chosen as real!, andD5v f2va is the detuning
between the atomic and field frequencies. The field mod
described by the annihilation and creation operatorsa and
a†, while the collective atomic operators are defined by

S6,35(
j 51

A

s6,3
j , ~2.4!

and obey the commutation relations

@S3 ,S6#56S6 , @S1 ,S2#52S3 . ~2.5!

Since all the atoms have the same coupling constant
need to consider only symmetrical atomic states. Then, le
introduce the atomic Dicke states as@2#

uM &a5AM ! ~A2M !!

A! (
p

u1& j 1
. . . u1& j M

3u2& j M11
. . . u2& j A

, ~2.6!

whereu6& j are the eigenstates of thej th atom and the sum
runs over all possible manners of choosingM indistinguish-
able atoms from the group ofA atoms. In the space spanne
by these Dicke states, the action of the collective atom
operators is

S1uM &a5A~M11!~A2M !uM11&a,

S2uM &a5AM ~A2M11!uM21&a, ~2.7!

S3uM &a5~M2A/2!uM &a,

where the labelM (0<M<A) denotes the number of ex
cited atoms and2A/2 represents the bottom energy level
the atomic system. Therefore, the collective atomic opera
form a (A11)-dimensional representation of the algeb
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su~2! corresponding to a spinA/2. The case of a single reso
nant atom (A51) corresponds to the well-known Jayne
Cummings model.

For simplicity, we shall restrict henceforth our attention
the case of exact resonance between the atomic and the
frequencyva5v f[v. Since the field mode is described
the usual Fock spaceun& f , the natural bare basis for the tot
system isun,M &[un& f ^ uM &a. However, it is straightfor-
ward to check that

@H0 ,H int#50, ~2.8!

so both are constants of motion. The HamiltonianH0 ~or,
equivalently, the excitation numberN) determines the tota
energy stored by the radiation field and the atomic syst
which is conserved by the interaction. This means that
appearance ofM excited atoms requires the annihilation ofM
photons. This allows us to factor out exp(2iH0t) from the
evolution operator and drop it altogether. Hence, we can
label the total basis as

uN2M ,M &[uN2M & f ^ uM &a. ~2.9!

In such a basis, the interaction Hamiltonian, for a fix
value ofN, is represented by the tridiagonal matrix

H int
(N)5gS 0 h0 0 . . . .

h0 0 h1 0 . . .

0 h1 0 h2 . . .

A A A � A
D , ~2.10!

with

hM5A~M11!~N2M !~A2M !. ~2.11!

The dimension of this matrix depends on whetherA.N or
A,N, which are situations essentially different and must
handled separately.

Let us assume thatA.N and initially all the atoms are
unexcited. Then,M50 and the conservation of the numb
of excitations implies that only the states~2.9! with 0<M
<N take part in the dynamics. Thus, the dimension of
subspace isN11.

On the contrary, whenA,N, the number of initial pho-
tons is greater than the number of atoms and only the st
~2.9! with 0<M<A are involved in the evolution. The di
mension is nowA11

It is easy to check that, due to the properties of the tri
agonal matrices, the eigenvalues are distributed symm
cally with respect to zero, with one eigenvalue equal to z
if there are an odd number of them@12#.

To find the state evolution, we shall need the followin
matrix elements of the evolution operator

CM8M
N

~ t !5^N2M 8,M 8uexp@2 iH int
(N)t#uN2M ,M &,

~2.12!

which can be written as
1-2
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CM8M
N

~ t !5 (
J50

D
UMJUM8J

† exp@2 i«J
(N)t#, ~2.13!

whereU is the unitary matrix that diagonalizes the Ham
tonian and« I

(N) are the corresponding eigenvalues. In wh
follows, we shall use the convention of denoting the dime
sion of the Hamiltonian matrixH int

(N) by D11, that is,

D5min~N,A!. ~2.14!

Now, let us assume that the initial field is taken to be in
coherent stateua& f and that the atomic state is initially pre
pared in an atomic coherent stateuz&a @13,14#; i.e.,

uC~0!&5ua& f ^ uz&a, ~2.15!

where

ua& f5(
n

Qnun& f , ~2.16!

Qn being the Poissonian weighting factor of the coher
state~with zero phase! with mean number of photonsn̄

Qn5Ae2n̄
n̄n

n!
; ~2.17!

and

uz&a5
1

~11uzu2!A/2 (
M50

A A A!

M ! ~A2M !!
zMuM &a

[ (
M50

A

AMuM &a, ~2.18!

where the parameterz is normally rewritten in terms of the
spherical angles as

z52tan~q/2!e2 iw. ~2.19!

In other words, the initial state can be rewritten, taking in
account Eq.~2.9!, as

uC~0!&5 (
N,M

QN2MAMuN2M ,M &. ~2.20!

With this initial condition, the resulting state can be recast

uC~ t !&5 exp~2 iH intt !uC~0!&

5 (
N50

`

(
M8,M50

D
QN2MAMCM8M

N
~ t !uN2M 8,M 8&.

~2.21!

If the initial state is not of the same form, but has a deco
position with different amplitudesAM or Qn , Eq. ~2.21! is
still valid when the appropriate coefficients are taken.
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III. RELATIVE-PHASE OPERATOR FOR THE DICKE
MODEL

In the spirit of our previous work on the relative phase f
the Jaynes-Cummings model@15#, we shall describe the
atom-field relative phase in terms of a polar decomposit
of the complex amplitudes. To this end, let us introduce
operators

X15aS1 , X25a†S2 ,

X35S3 . ~3.1!

These operators maintain the first commutation relation
su~2! in Eq. ~2.5!, @X3 ,X6#56X6 , but the second one is
modified in the following way:

@X2 ,X1#5P~X3!, ~3.2!

whereP(X3) represents a second-order polynomial functi
of the operatorX3. This is a typical example of the so-calle
polynomial deformations of the algebra su~2!. Without em-
barking us in mathematical subtleties, the essential point
our purposes here is that one can develop a theory in a
close analogy with the standard su~2! algebra. In particular, it
is clear that the stateuN,0& plays the role of avacuum state,
since

X2uN,0&50. ~3.3!

Then, we can construct invariant subspaces, as in the u
theory of angular momentum, by

uN2M ,M &5
1

NX1
MuN,0&, ~3.4!

whereN is a normalization constant. One can check that

X1
D11uN,0&50, ~3.5!

confirming that the number of accessible states isD11.
In consequence, the whole space of the system can

split as the direct sumH5 % N50
` HN of subspaces invarian

under the action of the operators (X1 ,X2 ,X3) and each one
of them having a fixed number of excitations. These ind
pendent subspaces do not overlap in the evolution, in su
way that if the initial state belongs to one of them, it w
remain in that subspace for all the evolution.

In each one of these invariant subspaces the operatorX3 is
diagonal, whileX1 andX2 are ladder operators represent
by finite-dimensional matrices. This suggests to introduc
polar decomposition in the form

X15AX1X2E,

X25E†AX1X2, ~3.6!

where theradial operatorAX1X2 is diagonal in the basis
uN2M ,M &:
1-3
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AX1X2uN2M ,M &

5AM ~N2M11!~A2M11!uN2M ,M &,

~3.7!

and

@X3 ,E#5E. ~3.8!

We can guarantee now that the operatorE5 exp(iF), rep-
resenting the exponential of the relative phase, is unitary
commutes with the excitation number

EE†5E†E5I ,

@E,N#50. ~3.9!

Thus, we may rather study its restriction to each invari
subspaceHN , we shall denote byE(N). It is easy to check
that the action of the operatorE(N) in each subspace is give
by

E(N)uN2M ,M &5uN2~M11!,M11&,

E(N)†uN2M ,M &5uN2~M21!,M21&. ~3.10!

Obviously, the action ofE(N) and E(N)† becomes unde
fined on the marginal statesuN2D,D& anduN,0&. Therefore,
it is necessary to add some conventions for closing the
tions of these operators on the subspaceHN . By analogy
once again with the usual su~2! algebra, we shall use stan
dard cyclic conditions and impose~up to global phase fac
tors!

E(N)uN2D,D&5uN,0&,

E(N)†uN,0&5uN2D,D&. ~3.11!

With these conditions, the operatorE(N) can be expressed a

E(N)5 (
M50

D
uN2~M11!,M11&

3^N2M ,M u1ei (D11)f(N)
uN,0&^N2D,Du,

~3.12!

f (N) being an arbitrary phase. Note that the crucial ex
term in this equation, which establishes the unitarity ofE(N),
is precisely based on the finite number of states. Theref
in each invariant subspaceHN there areD11 orthonormal
states satisfying

E(N)uf r
(N)&5eifr

(N)
uf r

(N)&, ~3.13!

with r 50, . . . ,D. These states can be expressed as

uf r
(N)&5

1

AD11
(

M50

D
eiM fr

(N)
uN2M ,M &, ~3.14!

and, by taking the same 2p window in each subspace, w
have
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(N)5f01

2pr

D11
, ~3.15!

and f0 is a fiducial or reference phase shift that can
arbitrarily chosen. The expression forE on the whole space
is

E5 (
N50

`

E(N)5 (
N50

`

(
r 50

D
uf r

(N)&eifr
(N)

^f r
(N)u, ~3.16!

and, sinceE is unitary, it defines a Hermitian relative-phas
operator

F5 (
N50

`

F (N)5 (
N50

`

(
r 50

D
uf r

(N)&f r
(N)^f r

(N)u, ~3.17!

that, obviously, has discrete eigenvalues. In the limitD@1,
this spectrum becomes dense, as it might be expected.
on the opposite limit, one may be surprised to find that
state u0,0& is a relative-phase eigenstate~with arbitrary ei-
genvaluef0). While this may provide a convincing argu
ment that the theory is unreasonable, we think that is not
case. The value off0 will not lead to any contradictions
because any choice will lead to a consistent theory. O
choice of this parameter says nothing about nature, it o
makes a statement about our individual preference@16#.

Note as well, that the relative-phase eigenstates are m
mally entangled states. This has the consequence tha
relative-phase operator has no classical correspondenc
the general case, not even for highly excited states.

IV. ATOM-FIELD RELATIVE PHASE IN TERMS OF
ABSOLUTE PHASES

In the previous section, we have shown a clear way
obtainingab initio the atom-field relative phase. In spite o
this, one could still insist in describing this variable in term
of the absolute phases of each subsystem. One must
then from previous descriptions of the field and atom
phases and manage them until getting the probability dis
bution for their difference. The goal of this section is to sho
that this way of proceeding leads naturally to a posit
operator-valued measure~POVM! @17,18#, and how such a
POVM is precisely generated by the eigenstates of
relative-phase operator.

To this end, we shall adopt the elegant axiomatic a
proach developed by Leonhardtet al. @19# to describe the
phase properties of both subsystems we are dealing with
make the discussion as self contained as possible, we
briefly recall the essential ingredients of the general form
ism.

When dealing with generic angle-action variables, o
imposes that the complex exponential of the angle~denoted
by E) and the action variable~denoted byLz) satisfy @com-
pare with Eq.~3.8!#

@Lz ,E#5E. ~4.1!
1-4
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If E were unitary, its action on the basis of eigenstates oLz
~denoted byum&) will be as a ladder operator

Eum&5um11&. ~4.2!

The eigenstates ofE ~denoted byuu&) provide then an ad-
equate description of the quantum angle@20#. However, re-
alistic measurements always involve extra noise beyond
due to the intrinsic quantum fluctuations described by
nonical conjugation and it is essential to extend the canon
formalism by including fuzzy or unsharp generalizations
the ideal description provided byE @21#. To this end we shall
use POVM’s, that are a set of linear operatorsD(u) furnish-
ing the correct probabilities in any measurement proc
through the fundamental postulate that

P~u!5Tr@rD~u!#. ~4.3!

The reality, positiveness, and normalization ofP(u) impose

D†~u!5D~u!, D~u!>0, E
2p

duD~u!5I , ~4.4!

but, in general,D(u) are not orthogonal projectors like in th
standard measurements described by self-adjoint operat

In addition to these basic statistical conditions, some ot
requirements must be imposed to ensure thatD(u) provides
a meaningful description of the angle as a canonically c
jugate variable with respect toLz ~even in the sense of
weak Weyl relation@22#!. Then, we require

eiu8LzD~u!e2 iu8Lz5D~u1u8!, ~4.5!

which reflects nothing but the basic feature that an an
shifter is an angle-distribution shifter. This condition restric
the form of the POVM to

D~u!5
1

2p (
n,m50

`

bn,mei (m2n)uum&^nu. ~4.6!

We must take also into account that a shift inLz should not
change the angle distribution. A shift inLz is expressed by
the operatorE, since it shifts the distribution ofLz by one
step. Therefore, we require as well

ED~u!E†5D~u!, ~4.7!

which, loosely speaking, is the physical translation of
fact that the angle should be complementary to the ac
variable. This implies the invariance

bn,m5bn2m , ~4.8!

that allows us to recast Eq.~4.6! as

D~u!5
1

2p (
n

`

b2ne2 inuEn, ~4.9!

while conditions~4.4! read now as

ubnu<1, bn* 5bn . ~4.10!
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ExpressingE in terms of its eigenvectorsuu&, we finally
arrive at the general form of a POVM describing the an
variable and fulfilling the natural requirements~4.5! and
~4.7!:

D~u!5E
2p

du8B~u8!uu1u8&^u1u8u, ~4.11!

where

B~u!5
1

2p (
n50

`

bneinu. ~4.12!

This convolution shows that this effectively represents
noisy measurement, the functionB(u) giving the resolution
provided by this POVM@20#.

Let us now focus on the phase properties of our two s
systems. Concerning the field phase, the question has
tracted the attention of physicists for almost as long as qu
tum mechanics has existed as a physical theory~for recent
reviews, see Ref.@23#!. Nowadays, it seems indisputable th
an operator representing the phase of a single-mode field
infinite-dimensional Hilbert space cannot exist@24# and the
proper way to face upto the problem involves the use o
relative-state formalism. In spite of this serious drawback
variety of solutions have been proposed to circumvent
difficulties. Virtually all of them can be formulated within
the POVM formalism discussed before, but with the role
Lz being played by the number operatora†a. Then, a number
shifter is expressed by the Susskind-Glogower phase op
tor @25# ~note that we are not concerned about the proble
of E as a phase operator here, we only use the number-sh
property! and the phase states are

uu f&5
1

A2p
(
n50

`

einu fun& f . ~4.13!

On the other hand, the difficulties with hermiticity tha
phase operators encounter in the case of a single-mode
disappear for a two-level system. In general, for the gro
SU~2! it is possible, by working in the standar
(A11)-dimensional Hilbert space associated with the us
angular-momentum operators, to find a true phase oper
from a polar decomposition of the amplitudesS6 @26,27#.
The procedure is quite similar to that followed in Sec. III f
the relative phase and, perhaps, the most striking co
quence of this approach is that the atomic-dipole phase
take onlyA11 different values, due to the dimension of th
atomic-state space.

Because of this particular behavior, one may think it
rather preferable to describe the dipole phase by a PO
taking continuous values in a 2p interval, even though this
cannot lead to a standard operator description. To this en
suffices to note that the general properties~4.5! and~4.7! still
hold, but the role ofLz is played now byS3, and the
‘‘Susskind-Glogower’’ eigenstates of the shifter are now
1-5
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uua&5
1

A2p
(

M50

A

eiM uauM &a. ~4.14!

The joint probability distribution for atomic and fiel
phases can be defined in a very natural way as

P~ua,u f!5Tr@rD~ua,u f!#, ~4.15!

with

D~ua,u f!5Da~ua! ^ D f~u f!. ~4.16!

Our remaining task is to consistently derive a POVM for t
relative phasef5ua2u f from these expressions. This go
can be achieved in many ways@28#: for example, one can
perform a change of variables to expressD(ua,u f) in terms
of the phase sum and phase difference and then remov
phase-sum dependence by simple integration@20#. Another
possibility is to directly define the probability distribution fo
the relative phase as

P~f!5E
2p

duP~u,u1f!5Tr@rD~f!#, ~4.17!

where

D~f!5E
2p

duD~u,u1f!. ~4.18!

For our purposes here, it is sufficient to note that we m
get the same values for any periodic function of the relat
phase whether we use the variablef or (ua,u f). In conse-
quence, we can impose that

E
2p

dfP~f!einf5E
2p

duadu fP~ua,u f!e
in(ua2u f).

~4.19!

To proceed with this, we need to take a definite choice
the corresponding POVM’s. Concerning the field phase,
recall that the Pegg-Barnett formalism and many others
bodying the concept of phase as an observable canoni
conjugate to photon number, lead to the POVM induced
the Susskind-Glogower phase states, namely@15#

D f~u f!5uu f&^u fu. ~4.20!

Motivated by this choice, we can use, for the atomic pha
the finite-dimensional translation of this POVM; i.e.,

Da~ua!5uua&^uau, ~4.21!

with uua& given in Eq. ~4.14!. A simple calculation shows
then that

D~f!5 (
N50

`

uf (N)&^f (N)u, ~4.22!

where
06380
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uf (N)&5
1

2p (
M50

D
eiM fuN2M ,M &. ~4.23!

Therefore, we conclude that the POVM generated by
eigenstates of our relative phase operator is just the s
induced by other absolute-phase approaches~such as
Susskind-Glogower or Pegg-Barnett!, when cast to the ap
propriate 2p range. This is, in our view, another confirma
tion that the theory proposed works correctly.

V. RELATIVE-PHASE DISTRIBUTION FUNCTION

For any state, the information one can reap using a m
surement of some observable is given by the statistical
tribution of the measurement outcomes. For the relat
phase, it seems natural to define the probability distribut
function of a state described by the density matrixr as

P~N,f r ,t !5^f r
(N)ur~ t !uf r

(N)&. ~5.1!

However, forphysical states@29# ~i.e., states for which finite
moments of the number operator are bounded! this expres-
sion will converge to a simpler form involving a continuou
probability density that we shall write as

P~N,f,t !5^f (N)ur~ t !uf (N)&, ~5.2!

where the vectorsuf (N)& defined in Eq.~4.23! lie in the
subspaceHN with total number of excitationsN. In fact, this
expression can be interpreted as a joint probability distri
tion for the relative phase and the total number of exc
tions. From it, we can derive the distribution for the relati
phase as

P~f,t !5 (
N50

`

P~N,f,t !, ~5.3!

while

P~N,t !5E
2p

dfP~N,f,t !, ~5.4!

can be viewed as the probability distribution of havingN
excitations in the system. These factorizations are an obv
consequence of the fact that the relative phase and the e
tation number are compatible.

For the general initial state of Eq.~2.20! and the evolution
given by Eq.~2.21! we have

P~N,f,t !5u^f (N)uC~ t !&u2, ~5.5!

which, through direct calculation, gives

P~N,f,t !5
1

2p U (
M8,M50

D
QN2MAMCM8M

N
~ t !eiM 8fU2

,

~5.6!

and then we arrive at the total relative-phase probability d
tribution:
1-6
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P~f,t !5
1

2p (
N50

` U (
M8,M50

D
QN2MAMCM8M

N
~ t !eiM 8fU2

.

~5.7!

This is our basic and compact result that we use to ana
the evolution of the phase properties of the Dicke model

In Fig. 1 we have numerically evaluated this distributi
P(f,t) as a function off and the rescaled a dimension
time gt, for the case when all the atoms are initially une
cited and the field is in a coherent state with various val
of the mean number of photonsn̄. In all the cases, whent
50, we have thatCM8M

N (0)5dM8M and therefore

FIG. 1. Gray-level contour plot of the probability distributio
P(f,t) as a function off and the rescaled timegt for the case of
A55 atoms initially unexcited and the field in a coherent state w

the following values of the mean number of photons:~a! n̄51

~weak field!, ~b! n̄550 ~strong field!, andn̄55 ~intermediate field!.
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P~f,t50!5
1

2p (
N50

` U (
M50

D
QN2MAMeiM fU2

. ~5.8!

In particular, when all the atoms are initially unexcited on
the coefficientA0 survives and the previous expression r
duces to

P~f,t50!5
1

2p
. ~5.9!

This flat distribution reflects the fact that the random pha
of the dipole in such states induces a uniform distribut
centered atf0. In this respect, it is interesting to notice th
classically, the Lorentz model at resonance predicts for
relative phase values of6p/2. It turns out that this is also a
possible choice to fix the reference phasef0 in the quantum
description. For simplicity, in all the graphics we have ch
senf0 as the origin 0.

Two quite different behaviors are evident from the
graphics. The first occurs in the weak-field region@30–32#,
when the number of excitations in the system is mu
smaller than the number of the atoms,N!A. If, for simplic-
ity, we assume that all the atoms are unexcited and the
erage number of photons in the initially coherent field
small, sayn̄;1, then we can retain only the dominant term
in Eq. ~5.7!, getting

P~f,t !.
1

2p
$11n̄@ uC00

1 u21uC01
1 u2

12 Re~C00
1 C01

1 * eif!#%e2n̄. ~5.10!

We see that, due to the periodic temporal dependence o
termsCM8M

N (t), this distribution is oscillatory for all times
which is corroborated numerically in Fig. 1~a!.

The second~and perhaps more interesting! case corre-
sponds to the strong-field region@33–35#, when the initial
number of photons is much larger than the number of ato
A!N. Then, following the ideas of Ref.@33# one can show
that the coefficientsCM8M

N (t) can be approximated, up t

orderA/An̄, by

CM8M
N

~ t !.dM8M
A

~2VNt !, ~5.11!

where

VN52gAN2A/211/2, ~5.12!

anddM8M
A are Wignerd functions@36#, which are defined as

the matrix elements for finite rotations by operators fro
SU~2! group representations

dM8M
A

~q!5dMM8
A

~q!5^M 8ueiqSxuM &, ~5.13!

whereM ,M 850,1, . . . ,A. The point now is that essentiall
only one subspace of dimensionA11 dominates the dynam
ics. Moreover, a simple calculation using the explicit form
thesed functions, gives

h

1-7
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P~f,t !5
1

2p (
N50

`

QN
2

3U (
M50

A A A!

~A2M !! M !
tanM~VNt/2!eiM (f2p/2)U2

3cos2A~VNt/2!, ~5.14!

where we have assumed that all the atoms are initially un
cited. WhenA@1 and when oscillations are well resolve
one can perform an expansion of the square root getting

P~f,t !5A A

2p (
N

FN~ t !expF2
A

2
~f2p/21dN!2G ,

~5.15!

whereFN(t) is a function of time of complicated structur
that accounts for the collapses and revivals and that is
little interest for our purposes here, anddN
5arg@ tan(VNt/2)#. Now, it is clear that, sincedN takes only
the values 0 andp, the previous Gaussian distributions te
to have two peaks atf56p/2, in agreement with the clas
sical expectations. The presence of collapses and revival
evident in Fig. 1~b!, which confirms previous numerical an
analytical evidence. The well-known nearly tim
independent behavior in the time windows between colla
and revival is also clear. As we can see, the distribution te
to be randomized in the evolution, although keeping th
two peaks at6p/2.

In the intermediate region, whenN;A, the behavior is
more complex, as shown in Fig. 1~c!, and no analytical ap-
proximations are available.

For the particular case of the Jaynes-Cummings mo
one can diagonalize exactly the Hamiltonian in each s
spaceHN , obtaining the well-known dressed states@37#, that
turn to be trapping states@38#; i.e., the atomic population
^S3(t)& remains constant in spite of the existence of both
radiation field and atomic transitions@39#. These states play
a fundamental role in that model, so it seems interesting
analyze the corresponding problem for the case of the D
model. In the strong-field limit one can make the repla

ment a→a5An̄eiu and the interaction Dicke Hamiltonia
becomes proportional to the operator

Hcl5~eiuS11e2 iuS2!, ~5.16!

where the phase of the classical field has been chose
coincide with the phase of the initial coherent state of
field. The semiclassical atomic states are defined now
eigenstates ofHcl taking this phase as zero:

2SxuP&a5LPuP&a, ~5.17!

with LP5A22P andP50,1, . . . ,A.
Following Ref.@33#, we shall callfactorized statesthose

states for which the initial field is taken to be in a stro
coherent stateua& f and the atomic system is initially prepare
in a semiclassical atomic stateuP&a. For such states, the tota
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wave function of the system can be approximately written
a product of its field and atomic parts

uC~ t !&.uP~ t !&a^ ua~ t !& f , ~5.18!

with

uP~ t !&a5 expF2 i
LP~S31A/2!

2An̄2A/211/2
gtG uP&a,

ua~ t !& f5 exp@2 iLPAa†a2A/211/2gt#ua& f , ~5.19!

and one can verify that they are also~approximately! trap-
ping states. For these states, one can find after a simple
culation,

P~f,t !5
1

A11 U(M â M uP&ae
iM fU2

. ~5.20!

The probability distribution is time independent due to t
factorization~5.18!. From the arguments in Ref.@33#, one

infers that this factorization holds up to timesgt;An̄
~which can be very long times, in this limit! and with an

accuracy in the coefficients of the order ofA/An̄.
Moreover, using the properties of the semiclassical ato

states and assumingA@1, one can replace the sum by a
integral, obtaining finally

P~f,t !.A A

2p
e2Af2/2; ~5.21!

i.e., a Gaussian independent of time. In Fig. 2 we have p
ted the probability distribution obtained from a numeric
computation of Eq.~5.7!, showing this quite remarkable be
havior, except for the presence of very small~almost inap-
preciable! oscillations superimposed.

To gain more physical insight into these behaviors, in F
3 we have plotted the evolution of the mean value of^sinF&
for various values ofN, confirming the previous physica
discussion.

FIG. 2. Probability distribution functionP(f,t) as a function of
f and the rescaled timegt for the case of a factorized state wit
A53. The atomic coherent state hasq5p/2 andw50 and the field

state hasn̄520.
1-8
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To conclude, let us consider the Dicke model in the lar
detuning limit; which is usually known as the dispersi
limit. More specifically, we are in the case when

D@gAn̄11A. ~5.22!

Then, following the procedure developed in Ref.@40#, the
interaction Hamiltonian in Eq.~2.2! can be replaced by th
effective Hamiltonian

Heff5DS31l~2a†a11!S31l~C2S3
2!, ~5.23!

where

C5
A

2 S A

2
11D , l5

g2

D
. ~5.24!

The obvious advantage of this Hamiltonian is that it is dia
onal and allows for a compact analytical expression for
coefficientsCM8M

N (t) as

CM8M
N

~ t !5dM8M exp~2 i t $D~M2A/2!1l@2~N2M !11#

3~M2A/2!1l@C2~M2A/2!2#%!. ~5.25!

When the atoms are initially unexcited or excited~or, more
generally, whenAM5dMK) and for any initial state of field,
we have

P~f,t !5
1

2p
, ~5.26!

for all the times.
For an arbitrary initial state of the atomic system and

field, we get

P~f,t !5
1

2p (
N50

` U (
M50

A

QN2MAMe2 i f M
N teiM fU2

,

~5.27!

with

FIG. 3. Plots of̂ sinf& versusgt for the same values ofn̄ as in
Fig. 1 ~from top to bottom!.
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N 52NMl1@D1l~2A11!#M23lM2. ~5.28!

Since Eq.~5.23! is quadratic in the population inversion op
erator S3 and is, therefore, analogous to the Hamiltoni
quadratic in the number operator of a single-mode fi
propagating through a Kerr medium, one could expect
@41# that the evolution of coherent atomic states in the d
persive limit of the Dicke model leads to the generation
Schrödinger cat states. This superposition reaches the m
pure form for initial number field states~in particular, the
vacuum state minimizes the atomic entropy@42#!.

The situation with the relative-phase distribution is qu
different. It is easy to see, for example, that if the field
prepared initially in a number stateuk& thenQn5dkn and the
relative phase distribution is flat. Nevertheless, for init
atomic and field coherent states the relative-phase distr
tion splits for some special times into several humps. Th
catlike states, according to Eq.~5.28!, appear at timest
5lt5p/6 (mod2p). To confirm this behavior analytically
we expand Eq.~5.27! when initially we have strong coheren
states for both field and atoms, withn̄@A@1. By replacing
once again the sum by integrals, one easily gets

P~f,t5p/6l!5A A

8p
$e2[f2pf n̄ /(3l)] 2A/2

1e2[f1p2pf n̄ /(3l)] 2A/2%, ~5.29!

where

f n̄52n̄l1A1l~2A11!, ~5.30!

and all the phases must be understood mod(2p). The two
separated Gaussians indicates the presence of two hu
and, therefore, the presence of catlike states. To further c
firm this, in Fig. 4 we have computed numerically the dist
bution functionP(f,t5p/6l) at the times predicted by th
theory. The graphic clearly demonstrates the presence o
two-component state, according to our previous consid
ations.

FIG. 4. Probability distribution functionP(f,t) as a function of
f for the time lt5p/6 for the case of an atomic coherent sta

(A55) with q5p/2 andw50 and a field coherent state withn̄
510. The presence of the two humps corroborate the presence
catlike state.
1-9
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VI. CONCLUSION

In this paper, we have investigated an appropriate op
tor for the quantum description of the relative phase in
Dicke model. We have used a proper polar decompositio
the corresponding field amplitudes, much in the spirit of o
previous work on the subject. This polar decomposition
been justified on physical grounds, as well as using
theory of polynomial deformations of su~2!.

The eigenvalue spectrum of this operator is discrete, a
el

s

.

.

ys

a-

ry

.
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happens, for the polar decomposition corresponding to
field modes. From these eigenstates we have obtained
probability distribution for the relative phase and we ha
studied its time evolution. For the weak-field region, the b
havior is essentially oscillatory, while for the strong-fie
region, the relative phase tends to be randomized in the e
lution, although showing collapses and revivals. For b
limiting regions, we have developed analytical approxim
tions that have allowed us an easy physical interpretation
some remarkable phenomena.
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