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Collisionless collective modes of fermions in magnetic traps
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We present a random-phase-approximation formalism for the collective spectrum of two hyperfine species of
dilute 40K atoms, magnetically trapped at zero temperature and subjected to a repulsives-wave interaction
between atoms with different spin projections. We examine the density and the spin oscillation spectra, as well
as the transition density profiles created by external multipolar fields. The zero sound spectrum is always
fragmented and the density and spin channels become clearly distinguishable if the trapping potentials acting
on the species are identical. Although this distinction is lost when these confining fields are different, at
selected excitation frequencies the transition densities may display the signature of the channel.
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I. INTRODUCTION

The realization of Bose-Einstein condensation of alka
metal atoms in magnetic traps triggered substantial exp
mental efforts, aimed at cooling fermion isotopes below th
Fermi temperatures. In particular, lithium and potassi
have been trapped and cooled@1–3#, and a recent experimen
displays unambiguous evidence of quantum degeneracy
fects at temperatures around half the Fermi temperatur
40K atoms@4# in a harmonic trap. On the other hand, vario
theoretical descriptions of thermodynamical properties
confined, cool free fermions have been presented, eithe
the semiclassical limit@5# or with explicit consideration of
quantum shell effects@6#. In Ref. @7#, a Hartree-Fock~HF!
calculation of the mean-field spectrum of two hyperfine f
mionic species subjected tos-wave attraction has been fo
warded. Moreover, in view of the presence of both ferm
and boson isotopes in natural alkali-metal samples, the c
sequences of their coexistence and mutual coupling at
temperature in the magnetic trap are a topic of current in
est @8–13#, as well as the possible occurrence of BCS-li
superfluid states driven by attractive interactions@14–19#.

An important step towards a full understanding of t
behavior of coexisting hyperfine species is the knowledge
their collective excitation spectrum. In this context, the c
lisionless modes of an extended system with various hy
fine levels have been examined in the frame of Landa
theory of Fermi liquids@20#, and the zero-sound collectiv
spectra of two species of confined fermions have been c
puted resorting to sum rules@21#. Assuming local equilib-
rium of a Fermi gas, described by a Thomas-Fermi~TF!
approximation, the linearized hydrodynamic equations
be analytically solved both in the degenerate and in the c
sical limits @22#. A related hydrodynamic approach based
the equations of motion for the first and second moment
the fermionic Wigner distribution allowed us to compute t
oscillation modes of an isotope with one-@23# and two-spin
components@24#. More recently, an interacting, quantum d
generate Fermi gas of40K atoms in two-spin states has bee
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experimentally produced@25#.
Since the two hyperfine species of trapped fermionic

oms are very dilute, it is not clear that when the system
excited by a low-frequency external field, thes-wave
interaction—which is supposed to play a relevant role
thermalization during the evaporative cooling process—m
permit the trapped gas to equilibrate locally and develop
drodynamic oscillation modes. In particular, it has be
shown that for40K, at least 108 atoms should be cooled in
each hyperfine state in order to reach the hydrodynamic
gime in the degenerate quantum phase@22#. It is then impor-
tant to focus upon the study of collisionless excitation sp
tra of these systems, seeking to improve the understandin
their low-temperature behavior, as well as the evolution
tween the collisionless and the hydrodynamic regimes,
increasing temperature suppresses Pauli blocking effects
enhances the collision rate. For this sake, in this work
derive a random-phase-approximation~RPA! description of
the collective modes of two species of fermions in a h
monic well with mutuals-wave coupling at zero temperatur
and we apply the formalism to the computation of dens
and spin fluctuations. This viewpoint is similar to the o
adopted by Bruun@26# in a study of collective oscillations o
trapped fermions subjected to attractive interactions,
6Li. The paper is organized as follows. The specific RP
frame and the extraction of the elementary excitation sp
trum of quasiparticles in a mean-field approach are discus
in Sec. II. Typical calculations of collective spectra for th
lowest multipolarities are presented and discussed in Sec
while Sec. IV summarizes our main conclusions.

II. THE RANDOM-PHASE APPROXIMATION
FOR A TRAPPED FERMION SYSTEM

We assume that the trapped atom system consists of
interacting quasiparticles~QP’s! in a mean field. Throughou
this paper, this is referred to as the free system, which ca
excited by an external field so that particle-hole~p-h! pairs
involving, in principle, both hyperfine species (s1 ,s2) are
created with energyV. The spectral properties of this non
homogeneous free system are contained in the free

propagatorG0
s8s(V), where the labelss and s8 stand for

either s1 or s2. Throughout this paper, the superscrip
©2001 The American Physical Society06-1
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(s1s2) indicate a particle stateus1& and a hole stateus2&.
We also suppose that a p-h effective interactionVp-h

ss8 act-
ing between the QP’s gives rise to the dressed propagato
p-h pairs according to the RPA integral equation@27#,

Gs8s~V!5G0
s8s~V!1(

tt8
G0

s8t~V!Vp-h
tt8Gt8s~V!.

~2.1!

It is worth noticing that the system under consideration
both nonhomogeneous@28–30# and polarized@31,32#, so that
the present development merges the corresponding for
isms as shown below. Hereafter, we consider longitud
excitations involving propagation of p-h pairs of the sam
spin kind, created by spin-symmetric~s! and spin-
antisymmetric~a! multipolar operators of the form

Os,a
† 5(

i 51

N1

Oi
†6(

i 51

N2

Oi
† ~2.2!

with

Oi
†5H r i

lYLM~u i ,f i !, LÞ0

r i
2 , L50,

~2.3!

whereN1 (N2) is the number of trapped atoms of speciess1
(s2), andL is the multipolarity of the perturbation. Notic
that a particle-particle interactionV(r2r 8), with r ,r 8, re-
spectively, denoting particles with spin projectionss ands8,
gives rise to a p-h interaction that scatters a p-h pair (ss) at
position r into a p-h pair (s8s8) at r 8, and that only colli-
sions among different species are allowed. The free
propagators involved in longitudinal density fluctuations a
diagonal in spin space and thus Eq.~2.1! splits into two
equivalent systems of two equations each, intrinsic to po
ized systems@31,32#, which in a coordinate representatio
read

Gss~r ,r 8!5G0
ss~r ,r 8!1E d3r 1d3r 2G0

ss8~r ,r1!

3Vp-h
ss8~r 1,r2!Gs8s~r2 ,r 8!,

Gs8s~r ,r 8!

5E d3r 1d3r 2G0
s8s8~r ,r1!Vp-h

s8s~r1 ,r2!Gss~r2 ,r 8!.

~2.4!

In spatially inhomogeneous systems, it is convenient to
pand both free and dressed propagators in multipolar dec
positions@28,29#,

Gs8s~r ,r 8,V!5(
L

GL
s8s~r ,r 8,V!PL~ r̂• r̂ 8! ~2.5!

with the Legendre polynomialsPL(x). The free p-h propa-
gator reads
06360
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ss~r ,r 8,V!

5(
nn8

fn
s~r !@fn8

s
~r !#* @fn

s~r 8!#* fn8
s

~r 8!xnn8
s

~V!,

~2.6!

where fn
s(r ) is a single-particle wave function for energ

eigenvalue«n
s , andxnn8

s is the generalized susceptibilities i
terms of the Fermi-Dirac occupation numbersn(«),

xnn8
s

5
n~«n

s!2n~«n8
s

!

V2~«n8
s

2«n
s!1 ih

. ~2.7!

Here the labeln stands for the spherical quantum numbe
(nlm). The expressions for the multipole componen
G0L

ss(r ,r 8,V) are given in Appendix A.
Since Eq.~2.4! is a matrix equation calling for discretiza

tion in radial coordinates, it is convenient to map it onto
vector system for the transition densities defined as

drLM
s8s~r ,V!5E dr 8Gs8s~r ,r 8,V!r 8LYLM~ r̂ 8!

5
4p

2L11
drL

s8s~r ,V!YLM~ r̂ !, ~2.8!

where

drLM
s8s~r ,V!5E dr8r 821LGL

s8s~r ,r 8,V!. ~2.9!

The multipolar susceptibility can then be computed as

xLM
s8s~V!5E dr r LYLM* ~ r̂ !drLM

s8s~r ,V!

5
4p

2L11E dr r 21LdrL
s8s~r ,V!

[xL
s8s~V!. ~2.10!

For dilute trapped systems at low temperature, we
reasonably represent the interaction potential by a con
interaction of the formgd(r2r 8), whereg54p\2a/m with
m the mass anda the s-wave scattering length of the inter
acting atoms. Thus, we obtain from Eq.~2.4!

drL
ss~r ,V!5dr0L

ss~r ,V!

1
4p g

2L11E dr8r 82G0L
ss~r ,r 8,V!drL

s8s~r 8,V!,

drL
s8s~r ,V!5

4p g

2L11E dr8 r 82G0L
s8s8~r ,r 8,V!drL

ss~r 8,V!.

~2.11!

Moreover, in view of Eq.~2.2!, we shall consider the
symmetric and antisymmetric density fluctuations for ea
atom species,
6-2
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drs
(s,a)5

drss6drss8

2
. ~2.12!

This representation enables us to distinguish what
hereafter call the density~symmetric! and spin~antisymmet-
ric! fluctuations@33# as they usually appear in Fermi liquid
In fact, a multipolar operatorOs

† will likely generate a total
density fluctuation proportional todrs

s 1drs8
s while out-of-

phase perturbations produced byOa
† will induce a spin fluc-

tuation proportional todrs
a1drs8

a . In addition, this distinc-
tion enables one to analyze the influence of a giv
fluctuation on its own propagation, as well as on the osci
tions in the other spin species.

The numerical procedure consists of solving the d
cretized equations~2.11! by matrix inversion, computing the
susceptibilities~2.10!, and constructing the total dynam
structure factorsS(s,a)52Imx (s,a)/p in both spin channels
@31,32#, where

xL
(s,a)5

1

4
~xL

ss1xL
s8s86xL

ss86xL
s8s!. ~2.13!

The collective spectrum of density and spin modes fo
given multipolarityL is indicated by the poles of the real pa
of these responses, or corresponding peaks in the dynam
structure factors.

It is important to remark that this is a very general RP
description of collective excitations, valid for any syste
identified by its elementary excitations with single-partic
spectrum«n and statesfn , and by an effective p-h interac
tion Vp-h. In most applications to quantum liquids~see, for
example, Refs.@29–32# and therein!, one starts from a HF
eigenspectrum and chooses the p-h coupling as the do
functional derivative of the total energy with respect to t
single-particle density. The HF spectrum of two hyperfi
species of trapped fermions has been previously investig
in Ref. @7# for the case of an attractive coupling between
species, and in the present work we adopt the same phil
phy for a repulsive interaction of strengthg. The HF spec-
trum arises from the solution of the coupled nonlinear sys
in spherical coordinates,

H 2
\2

2m

]2

]r 2
1

\2 l ~ l 11!

2mr2
1

mvs
2 r 2

2
1grs8~r !J unl

s ~r !

5«nl
s unl

s ~r ! ~2.14!

for speciessÞs8, with partial densities

rs~r !5(
nl

~2l 11!
uunl

s ~r !u2

4pr 2
n~«nl

s ! ~2.15!

and trapping potentialsmvs
2r 2/2.

For vanishing temperature, the Fermi-Dirac occupat
numbers are step functions limiting the summation to sta
below the respective Fermi sea«F

s that fulfills the number
equation Ns5(nQ(«F

s2«n
s). In the forthcoming calcula-

tions, we shall consider both equal as well as different tr
06360
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ping frequenciesvs for species 1 and 2, the latter case d
vised to take into account the corresponding magn
projections of the trapped atoms, i.e., (v1 /v2)25s1 /s2
@34#.

III. CALCULATIONS AND RESULTS

We have solved the HF problem for variable numbers
40K atomsN1 ,N2 corresponding to different spin projection
in an isotropic harmonic trap, with a mutuals-wave scatter-
ing lengtha58.31 nm@3#. As in Ref.@7#, we start an itera-
tive procedure from oscillator wave functionsunl

osc(r ), and
convergence is rapidly achieved. The self-consistent st
are labeled by the same quantum numbersnl and the wave
functions differ only slightly from the original ones. Th
low-energy states are the most sensitive to the size of
interaction strength, reaching deviations with respect to b
oscillator energies as large as 15%. The combinations of
states entering the free p-h propagator@see Eq.~A3!# are
selected by angular momentum conservation, and we
that the elementary excitation energies in the denomina
of the generalized susceptibilities@see Eq.~2.7!# are weakly
spread around the noninteracting oscillator values.

A. Equal trapping potentials and populations

As a first step, we examine a trapped two-compon
Fermi gas with equal trapping potentials~ETP!, i.e., v1
5v2, and the same number of atoms in each hyperfine le
Under these conditions, the RPA equations~2.4! can be de-
coupled fordrs

(s) anddrs
(a) , giving rise to

dr (s,a)~r !5dr0
(s,a)~r !

6
4p

2L11
gE r 82G0 L~r ,r 8,V!dr (s,a)~r 8!,

~3.1!

where we identifydr (s,a)[drs
(s,a) andG0 L[G0 L

s s for either
spin projections. Equations~3.1! are identical to the RPA
equations for asingle-component gas interacting through
repulsive ~attractive! contact interaction, giving rise to th
symmetric~antisymmetric! fluctuation.

In Fig. 1, we show the strengthsS(s,a) of the monopolar
(L50) fluctuations forN1,25104. It should be kept in mind
that the spread of the peaks inS(s,a)(V) is an artifact of the
calculation, due to the introduction of the small numeric
parameterh @cf. Eq. ~2.7!#. The large-scale behavior o
S(V) shows multiple excitations at energies close toVn
5«n1 l2«n2 l'2 n v1. These peaks decrease their amplitu
~notice the logarithmic scale! as we increase the transferre
energy. Although thes anda channels are different, we ar
not able to visualize them in the current scale. A narr
region around the oscillator excitation energy is displayed
the lower plot of Fig. 1. In fact, a careful analysis of th
peaks indicates that they are grouped into two main s
Only the strongly fragmented one aroundV52v1 can be
viewed in this figure; the intensities in the second gro
lying at higher energies are too small in the current sca
6-3
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Moreover, the spectra in both channels are clearly differe
while thes channel is shifted upwards in energy, thea one
lies at lower energies, in qualitative agreement with a sim
model estimate sketched in Appendix B. It is important
mention that the QP’s energies coming out from the HF c
culation are such that the p-h excitation frequencies are l
ered with respect to the oscillator ones by the mean-fi
interaction, while the p-h coupling introduced in the RP
formalism shifts the collective spectrum to higher energie

The behavior of the dipolar fluctuation (L51) is slightly
different. Although both thes anda spectra are weakly frag
mented, the amplitude of the oscillator mode atV5v1 is
large. It is well known@35# that for equal trapping potential
and populations, there is a dipolar excitation in the symm
ric channel, associated to the center-of-mass oscillation
the gas and occurring at the oscillator frequency. Howe
in the spin channel, this excitation appears at a slightly low
energy. These facts are verified in the present RPA calc
tion as shown in Fig. 2, where we see the dipolar struct

FIG. 1. Monopolar dynamic structure factor~in arbitrary units!
in the ETP case forN15104 andv152p370 s21. The upper plot
is depicted in a logarithmic scale and the lower one is a zoom of
main peak in a linear scale. The thin line corresponds to the HF
excitations, and thick and dashed lines indicate the RPA struc
factor in the symmetric and antisymmetric channels, respective

FIG. 2. Dipolar dynamic structure factor~in logarithmic scale
and arbitrary units! for the same conditions as in Fig. 1. Thin, thic
and dashed lines correspond to the HF system, symmetric, an
tisymmetric channels, respectively.
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factor for N15N25104 atoms. We can also observe that
addition to these modes, fragmented poles of a collec
nature show up as indicated by the simple model in App
dix B.

In addition, we have numerically verified that the positio
of the main peaks can be accounted for by the analyt
sum-rule formula derived by Vichi and Stringari@21#.
In particular, for N1,25104, we obtain the sum-rule
energiesVSR'2.0043v1 ,0.9840v1, and 1.9914v1 for L
50(s),1(a), and 2(s), respectively, while the correspond
ing RPA results areVRPA52.0051v1 , 0.9848v1, and
1.9920v1.

Let us now examine the spatial profiles of the dens
fluctuations. In principle, one would expect that if the syste
is excited with a given operators or a @cf. Eq. ~2.2!# in the
vicinity of a peak in one of these channels, a density fluct
tion will develop that reflects both the character of the ext
nal field and the nature of the intrinsic excitation of the fr
system. As an illustration, in Fig. 3 we show the real parts
the monopolar density oscillations for the same conditions
in Fig. 1 at the frequencies given by the poles of the
sponse. We observe that when the symmetric fluctuatio
important within the bulk of the trapped system, the antisy
metric counterpart is completely negligible and vice ver
However, at the energy of the pole in the symmetric chan
(Vs'2.03), surface oscillations develop both indrs and
dra; this behavior can be attributed to the proximity of
weak peak in the antisymmetric structure factor~not visible
in the scale of Fig. 1!.

B. Unequal potential wells and populations

In the recent experimental achievement of DeMarco a
Jin @4#, 40K atoms in two magnetic sublevelsuF5 9

2 ,mF
5 7

2 & ~type 1 atoms! anduF5 9
2 ,mF5 9

2 & ~type 2 atoms! were
confined and cooled. Although the ratiov2 /v1
5(s2 /s1)1/2'1.13 is very close to unity, we take it int
account as an explicit feature of the real nonsymmetric c
figuration. We also consider unequal populations rang
from D5N2 /N1'0.3 toD'3, which can be built during the
evaporative cooling process.

e
-h
re
.

an-

FIG. 3. Monopolar density fluctuations for equal trapping pote
tials and populations~in arbitrary units! with N1,25104. Solid and
dashed lines correspond to density and spin excitations, res
tively, at the poles of each channel.a21 is the distance unit for the
trapping potential of species 1,a215Amv1 /\'0.53 mm21.
6-4
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As in the ETP case, we analyze the dynamic struct
factors and the fluctuations created by multipolar exter
fields. In Fig. 4, we show the symmetric dynamic structu
factor for several values of the population ratioD, N15104

and a monopolar excitation. The structure of spin fluct
tions cannot be distinguished from the density ones wit
the scale of this plot. The essential features of the respo
can be summarized as follows.~i! In either channel, the
strength of each p-h transition is redistributed so that
structure factor is fragmented around the noninterac
peaks with some intensity appearing at higher energies.~ii !
For low or high values ofD, the structure of the most popu
lated species essentially reproduces the pattern of the no
teracting quasiparticles, while the spectrum of the other s
cies is highly fragmented with a largely suppress
amplitude.~iii ! Given either species, as the number of ato
in the other spin projection increases, the complemen
excitation appears displaying considerable fragmentation

We have also made calculations for multipolar excitatio
with L51,2; in Figs. 5 and 6, we show the correspondi
results for the structure factor. In general, the description
the monopolar excitation applies as well to higher multip
larities, however we can mention some differences: the d
lar peaks are narrower and fragmentation seems to be s

FIG. 4. Dynamic structure factor forL50 ~in arbitrary units! for
the symmetric channel of the interacting and free system withN1

5104 and several concentrations, in thick and thin lines, resp
tively. Each column display a different range in the energy sca

FIG. 5. Same as Fig. 4 for the dipolar dynamic structure fac
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ger. In particular, in the equal population case (D51) there
exist well-resolved fragmented peaks as intense as the o
nal HF ones.

The real parts of the monopolar transition densities
displayed in Fig. 7. Thes and a density profiles for each
component have been scaled to a common value at a g
frequency. This is a convenient criterion, since if one dep
the four profiles in the same scale, near the intrinsic
frequencies of each component the complementary den
fluctuation appears largely depleted. Before analyzing
fluctuation profiles, we want to call attention to the shape
the HF equilibrium density profiles. In Table I, we quote,
a function ofD, some shape parameters related to the sph

c-
.

r.

FIG. 6. Same as Fig. 4 for the quadrupolar dynamic struct
factor.

FIG. 7. Monopolar density fluctuations~in arbitrary units! for
N15104. The upper, middle, and lower plots correspond toD
53,1,0.3, respectively, fors15

7
2 ~left column! and s25

9
2 ~right

column!. Solid and dashed lines indicatedrs
(s) and drs

(a) , respec-
tively.
6-5
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cal probability density distributionPs(r ) defined as

Ps~r !5
r 2 rs~r !

Ns
. ~3.2!

Particularly, we list the maximum probabilityPmax ~which is
attained atRmax), the location of the density edgeRedge, and
the full width at half maximum~FWHM! of the probability
distribution. These parameters will help us to understand
main aspects of the excitation profiles.

In Fig. 7, we show some typical monopolar density flu
tuations for each spin component at the lowest-lying coll
tive peaks and several concentrations. We observe that a
increaseD ~from bottom to top in Fig. 7!, both fluctuations
dr2

(s,a) for a given frequency extend beyond ther2 edge. As
an illustration, let us consider in detail the caseD50.3. For
the excitation withV'2 v1 , dr2

(s,a) is bounded to roughly
the size of the density ofs2 atoms (ar &7, a25mv1 /\)
while dr1

(s,a) extends far beyond this cutoff, within ther1

range. For smallD, the correctionsdr1 2 are unimportant, in
general, due to the relatively weak coupling of thes1 species
to the fews2 atoms. However, in the same limitdr2 2 ac-
quires important correctionsdr2 1, essentially driven by the
large number ofs1 atoms. We also see two different beha
iors related to theV dependence: for frequencies close
2v1 , dr2

(s) and dr2
(a) present opposite signs, revealing th

the induced contributiondr2 1 is larger than the intrinsic one
dr2 2. In fact, if the system is excited with frequencies clo
to 2 v1, largedr1 fluctuations should be expected, which
turn introduce, through theVp-h interaction, sizeabledr2 1

contributions todr2
(s,a) . In turn, exciting atV'2 v2 creates

dr2 2, thus the correction todr2 1 is second order in the
interaction and thes anda fluctuations are the same. On th
other hand, asr1 extends beyondr2, a stimulus acting at
V52 v2 induces a cross fluctuationdr12 inside the bulk of
the type 1 system, i.e., at smaller radii~cf. Fig. 7!.

As one increases the number of particles in specie
their density profiles extend farther~see Table I! and there
are few noticeable changes in the spatial localization of
excitation. However, in general, close to 2v2 we find a
strong induced fluctuationdr12 in the spatial region where
P2(r ) is larger thanP1(r ) and correspondingly fordr21 near
2 v1. If one keeps increasingD, the perturbative interpreta
tion is no longer valid for every multipole and species. F

TABLE I. Shape parameters related to the HF probability d
sity profiles Ps(r ) ~see text! for N15104 and several concentra
tions. All distances are given in harmonic-oscillator unitsa21

5(\/mv1)1/2'1.9 mm.

D50.3 D51 D53
Parameter s1 s2 s1 s2 s1 s2

Pmax 0.017 0.022 0.017 0.018 0.017 0.015
aRmax 5.64 4.28 5.64 5.24 5.64 6.28
aRedge 8.71 6.59 8.75 8.17 8.79 9.86
FWHM 5.04 3.92 5.04 4.72 4.96 5.68
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D53, the fluctuations occupy a broader region, roug
from ar 54 to ar 510, which can be attributed to a widerr2

density.
In addition to the vanishing at the origin of theLÞ0

fluctuation, the main difference between the spatial profi
of distinct multipolarities lies in an enhanced symmetry
the channels forL52. In this case, we have observed th
the cross fluctuation of a given component is non-negligi
only near the free p-h transition of its counterpart, suggest
a weaker p-h effective interaction for higher multipolariti
@cf. Eq. ~2.11!#.

Another feature to mention is the difference from the E
case. In that situation, we have the same spatial fluctuat
for either spin projection and well-defined channelss anda;
however, in this more general problem, we observe differ
spatial profiles for each component and mixed behav
within the channels, i.e., given a pole in the symmetric s
ceptibility, fluctuations may exhibit similar amplitudes i
both channels.

IV. DISCUSSION AND SUMMARY

In this work, we have developed a RPA formalism for
two-species, trapped Fermi gas at vanishing temperat
which may provide guidelines to current experimental
search. We have shown that the interspecies interaction g
rise to a fragmented zero sound spectrum. We analyzed
the equal trapping potential and populations, as well a
general case with unequal potentials and populations
tended to mimic an experimental situation. The main diff
ences arise in the spectra; while in the ETP case the p
associated to density and spin fluctuations were clearly
tinct, in the general case these fluctuations cannot be di
tangled. The density and spin responses of the system s
the same energy spectrum, however with unequal am
tudes. For the excitation withL51, we have found in the
density channel and for the ETP case a pole at the b
oscillator frequency corresponding to rigid oscillation of t
system; however, this is no longer true for a more realis
configuration with unequal trapping frequencies. Althou
we checked that the eigensolutions of Eq.~2.14! differ only
by a few percent from the bare oscillator basis functions,
cannot prevent propagation of small errors in the respo
calculation, which ought to be safely computed out of t
true HF wave functions at the expense of an increase
computing time. Finally, we should mention that this tw
component RPA formalism may be straightforwardly gen
alized to nonzero temperatures by taking into account
finite temperature Fermi-Dirac occupation numbers.
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APPENDIX A:

To evaluate the free p-h propagator, we use the
harmonic-oscillator basis for each spin projection:

fnlm
s ~r !5Anl

s exp~2as
2r 2/2!r lLn

l 11/2~as
2r 2!Ylm~ r̂ !

[Rnl~r !Ylm~ r̂ !, ~A1!

where as
25mvs /\, Ylm are the spherical harmonic func

tions,Ln
l 11/2 are the generalized Laguerre functions, andAnl

s

a normalization constant. The multipolar componentG0L
ss

reads

G0L
ss~r ,r 8,V!5

1

~4p!2 (
nl,n8 l 8

~2l 11!~2l 811!

3~RnlRn8 l 8!~r !~RnlRn8 l 8!~r 8!

3 z^ l0l 80uL0& z2xnl,n8 l 8~V!. ~A2!

In order to compute the elementary susceptibilitiesxnl,n8 l 8 in
Eq. ~A2!, we have used the HF energies extracted from
~2.14! instead of the bare harmonic-oscillator ones. Furt
simplifications arise from the properties of the Clebsc
Gordan coefficients and HO wave functionsRnl(r ); in par-
ticular, explicit expressions for monopolar, dipolar, and qu
dropolar excitations (L50,1,2) can be written. The
monopolar free p-h propagator reads

G00
ss~r ,r 8,V!5

1

~4p!2 (
nln8

~2l 11!Rnl~r !Rn8 l~r !

3Rnl~r 8!Rn8 l~r !xnl,n8 l~V!. ~A3!

In this case, we use the excitation operatorOi
†5r i

2 ; this
yields the following noninteracting susceptibility:

x00
ss5

1

as
2 (

nl
~2l 11!@xnl,n21ln~n1 l 11/2!

1xnl,n11l~n11!~n1 l 13/2!#, ~A4!

which in the case of a large enough number of particles, z
temperature, and HO energies can be simplified to yield

S00
s ~V!52

1

p
Im@x0

ss#'
1

as
2

3Ns

4
~6Ns!1/3d~V22vs!.

~A5!

Similarly, the dipolar propagator can be written as

G01
ss~V!5

3

~4p!2 (
nln8

@~ l 11!Rnl~r !Rn8 l 11~r !Rnl~r 8!

3Rnl11~r 8!xnl,n8 l 11~V!

1 lRnl~r !Rnl21~r !Rnl~r 8!

3Rnl21~r 8!xnl,n8 l 21~V!# ~A6!

yielding a temperature-independent free response
06360
D

.
r
-

-

ro

x01
ss5

1

as
2

3Ns

8p S 1

V2vs1 ih
2

1

V1vs1 ih D ~A7!

with a T50 structure factor

S01
s 5

1

as
2

3Ns

8p
d~V2vs!. ~A8!

APPENDIX B: A SIMPLIFIED MODEL FOR ZERO
SOUND MODES

In order to get a basic understanding of the different
citations of the two-component gas, we propose a v
simple model for the noninteracting propagator that allo
for illustrative analytical results. Let us assume that each
the coexisting species possesses only one elementary ex
tion with energyvs (vs8). The corresponding free propaga
tor reads

G0
ss~r ,r 8!5Fs~r !@Fs~r 8!#* S 1

v2vs1 ih
2

1

v1vs1 ih D ,

~B1!

whereFs(r ) is the wave function of the excited p-h pair
the given position. Replacement of Eq.~B1! into the RPA
system of equations~2.4! brings into evidence that thes
propagators are of the form

Gss~r ,r 8!5Fs~r !x0
s@Gss~r 8!#* ,

~B2!
Gs8s~r ,r 8!5gFs8~r !x0

s8@Gs8s~r 8!#* ,

where in turn

Gss5Fss1g̃* x0
s8Gs8s,

~B3!
Gs8s5g̃* x0

sGss

represent dressed p-h wave functions, which depend on
p-h interaction strength

g̃5gE dx@Fs~x!#* Fs8~x![^ssuVp-hus8s8&. ~B4!

The system~B3! possesses a simple algebraic solutio
from which we can write the dynamical susceptibilities

xss5
x0

suusu2

D
,

~B5!

xs8s5g̃
x0

sx0
s8@us#* us8

D
,

where

D~v!512ug̃u2x0
s~v!x0

s8~v! ~B6!

and us5*dr iOi
†Fs(r i) is the matrix element of the trans

tion operator.
6-7
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The appearance of the common denominatorD(v) in
Eqs.~B5! reflects the fact that the RPA describes collect
fluctuations of the system as a whole. The zeros ofD in Eq.
~B6! can be easily found to be

v0
25

vs
21vs8

2

2
6Uvs

22vs8
2

2
UF11

16ug̃u2vsvs8

~vs
22vs8

2
!2 G 1/2

.

~B7!

The evolution of the collective modes with interactio
strength is encompassed in Eq.~B7!; for vs5vs8 and as-
suming a small relative strengthug̃u/vs , the dispersion rela-
tion of the modes illustrates the fragmentation of the elem
tary excitation into two collective states with energies

v05vs6ug̃u. ~B8!
,

-

.

a,

.S

.

B

.

et,

r,

06360
-

The corresponding form of the total spin symmetric and
tisymmetric responses can be shown to be@cf. Eq. ~2.13!#

x (s,a)5
1

4 (
s5s1 ,s2

x0
suusu2

2~16g̃x0
s!

~B9!

~for real g̃!. It is important to remark that although bot
frequencies~B8! correspond to poles of Eq.each term in
~B9!, explicit computation shows thatvs1ug̃u has zero am-
plitude in the antisymmetric response whilevs2ug̃u has zero
amplitude in the symmetric one. The higher and lower f
quencies in Eq.~B8! can then be attributed to the symmetr
and antisymmetric fluctuations, respectively.
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