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Collisionless collective modes of fermions in magnetic traps
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We present a random-phase-approximation formalism for the collective spectrum of two hyperfine species of
dilute “°K atoms, magnetically trapped at zero temperature and subjected to a repubsave interaction
between atoms with different spin projections. We examine the density and the spin oscillation spectra, as well
as the transition density profiles created by external multipolar fields. The zero sound spectrum is always
fragmented and the density and spin channels become clearly distinguishable if the trapping potentials acting
on the species are identical. Although this distinction is lost when these confining fields are different, at
selected excitation frequencies the transition densities may display the signature of the channel.
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[. INTRODUCTION experimentally producef®25].
Since the two hyperfine species of trapped fermionic at-

The realization of Bose-Einstein condensation of alkali-oms are very dilute, it is not clear that when the system is
metal atoms in magnetic traps triggered substantial experexcited by a low-frequency external field, thewave
mental efforts, aimed at cooling fermion isotopes below theifinteraction—which is supposed to play a relevant role in
Fermi temperatures. In particular, lithium and potassiunthermalization during the evaporative cooling process—may
have been trapped and cooldd-3], and a recent experiment permit the trapped gas to equilibrate locally and develop hy-
displays unambiguous evidence of quantum degeneracy efirodynamic oscillation modes. In particular, it has been
fects at temperatures around half the Fermi temperature &hown that for*X, at least 18 atoms should be cooled in
40K atoms[4] in a harmonic trap. On the other hand, variouseéach hyperfine state in order to reach the hydrodynamic re-
theoretical descriptions of thermodynamical properties ofime in the degenerate quantum phg2#. It is then impor-
confined, cool free fermions have been presented, either itgnt to focus upon the study of collisionless excitation spec-
the semiclassical limif5] or with explicit consideration of tra of these systems, seeking to improve the understanding of
quantum shell effect§6]. In Ref.[7], a Hartree-FockHF)  their low-temperature behavior, as well as the evolution be-
calculation of the mean-field spectrum of two hyperfine fer-tween the collisionless and the hydrodynamic regimes, as
mionic species subjected swave attraction has been for- increasing temperature suppresses Pauli blocking effects and
warded. Moreover, in view of the presence of both fermionenhances the collision rate. For this sake, in this work we
and boson isotopes in natural alkali-metal samples, the corflerive a random-phase-approximatidRPA) description of
sequences of their coexistence and mutual coupling at zeiide collective modes of two species of fermions in a har-
temperature in the magnetic trap are a topic of current intermonic well with mutual-wave coupling at zero temperature,
est[8-13), as well as the possible occurrence of BCS-likeand we apply the formalism to the computation of density
superfluid states driven by attractive interactiphd—19. and spin fluctuations. This viewpoint is similar to the one

An important step towards a full understanding of theadopted by Bruui26] in a study of collective oscillations of
behavior of coexisting hyperfine species is the knowledge ofrapped fermions subjected to attractive interactions, i.e.,
their collective excitation spectrum. In this context, the col- °Li. The paper is organized as follows. The specific RPA
lisionless modes of an extended system with various hypeframe and the extraction of the elementary excitation spec-
fine levels have been examined in the frame of Landau’érum of quasiparticles in a mean-field approach are discussed
theory of Fermi liquids[20], and the zero-sound collective in Sec. Il. Typical calculations of collective spectra for the
spectra of two species of confined fermions have been confowest multipolarities are presented and discussed in Sec. lll,
puted resorting to sum rulg®1]. Assuming local equilib- while Sec. IV summarizes our main conclusions.
rium of a Fermi gas, described by a Thomas-Fefffit)
approximation, the linearized hydrodynamic equations can II. THE RANDOM-PHASE APPROXIMATION
be analytically solved both in the degenerate and in the clas- FOR A TRAPPED FERMION SYSTEM
sical limits[22]. A related hydrodynamic approach based on .
the equations of motion for the first and second moments of \We assume that the trapped atom system consists of non-
the fermionic Wigner distribution allowed us to compute theiNteracting quasiparticle®P’s) in a mean field. Throughout
oscillation modes of an isotope with on3] and two-spin this paper, this is referred to as the free system, which can be
component$24]. More recently, an interacting, quantum de- excited by an external field so that particle-h¢eh) pairs

generate Fermi gas ¢PK atoms in two-spin states has been involving, in principle, both hyperfine species{,o) are
created with energy). The spectral properties of this non-

homogeneous free system are contained in the free p-h

*Also at Consejo Nacional de Investigaciones Ciaits y Te- prOpagatorGg"’(Q), where the labelgr and o’ stand for
nicas, Argentina. either oy or o,. Throughout this paper, the superscripts
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(o107) indicate a particle stater;) and a hole statgo,). GZ7(r,r',Q)
We also suppose that a p-h effective interach l_‘L' act-
ing between the QP’s gives rise to the dressed propagator for = (D[ b (D) [7(r)T* 6% (r )X (Q),

p-h pairs according to the RPA integral equati@],

(2.9

G7'(0)=G§ “(Q)+ >, G§ (Q)VIG™ (Q).
()= "(4) ; o ()Vph (1) where ¢9(r) is a single-particle wave function for energy
2.1 eigenvalues) , andy? , is the generalized susceptibilities in

It is worth noticing that the system under consideration is ferms of the Fermi-Dirac occupation numbe),

both nonhomogeneo(i2g8-30 and polarized31,32, so that o o
the present development merges the corresponding formal- X7, = n(e,)—nle,) _ 2.7)
isms as shown below. Hereafter, we consider longitudinal vy O— (&), —&l)+in

excitations involving propagation of p-h pairs of the same

spin kind, created by spin-symmetri¢s) and spin- Here the labely stands for the spherical quantum numbers

antisymmetric(a) multipolar operators of the form (nlm). The expressions for the multipole components
N N Ggl(r,r',Q) are given in Appendix A.
of _El OT+22 of 22 Since Eq.(2.4) is a matrix equation calling for discretiza-
sa &y i T v 22 fion in radial coordinates, it is convenient to map it onto a
vector system for the transition densities defined as
with
Sply 7 (r,Q zf dr'G” o(r,r’,Q)r' Y ('
, r:YLM(ei,QSi)y L+0 pLw ( ) ( ) tm(r’)
o= 2 L=0 (2.3 _
| =570l Cn Y, (28

whereN; (N,) is the number of trapped atoms of speaigs

(o5), andL is the multipolarity of the perturbation. Notice where
that a particle-particle interactiow(r—r'), with r,r’, re-
spectively, denoting particles with spin projectianando’,

gives rise to a p-h interaction that scatters a p-h pair)( at

positionr into a p-h pair ¢'¢’) atr’, and that only colli-

sions among different species are allowed. The free p-A’he multipolar susceptibility can then be computed as
propagators involved in longitudinal density fluctuations are

diagonal in spin space and thus EQ.1) splits into two L o oo

equivalent systems of two equations each, intrinsic to polar- X0 ()= f dr Y Sphi (1. 2)

ized systemg31,32, which in a coordinate representation

read f drr2+Lsp? o(r,Q)

Bpf,;,,"(r,Q)zf dr'r’2*LG(rr' Q). (2.9

T 2L+1
G""(r,r’)=GS"(r,r’)+f d®ryd®r,Gg7 (r,ry) =X 7(Q). (2.10

For dilute trapped systems at low temperature, we can
reasonably represent the interaction potential by a contact
interaction of the forng&(r—r'), whereg= 4% 2a/m with
m the mass an@ the s-wave scattering length of the inter-
acting atoms. Thus, we obtain from Hg.4)

X 8.‘?1'(r1,rz)G”/"(rz.r’),
GO'/O'(r,r/)

:f 1,6 7 (1, 1)V (11,12 G (12,17).

(2.9

SpT7(r, Q)= 8p%7(r,Q)

47Tg ’
11200 ! [
In spatially inhomogeneous systems, it is convenient to ex- + 2|_+1J drir“Gor (r.r".Q)dpi” “(r'. ),

pand both free and dressed propagators in multipolar decom-
positions[28,29,
6 (T (r r Q

120’ o’ oo !
2L+1f dr'r'°Gg.7 (r,r',Q)ép’(r",Q).
G o(r,r’ Q)= G %(r,r' Q)P (r-r') (2.5 (2.11)

L

Moreover, in view of Eq.(2.2), we shall consider the
with the Legendre polynomialB (x). The free p-h propa- symmetric and antisymmetric density fluctuations for each
gator reads atom species,
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SpTo+ 5pao' ping frequenciesv,, for species 1 and 2, the latter case de-
5p£f’a)=f. (2.12  vised to take into account the corresponding magnetic
projections of the trapped atoms, i.eq(w,)’=0,/0,

This representation enables us to distinguish what w34
hereafter call the densitfsymmetrig and spin(antisymmet-
ric) fluctuationg[33] as they usually appear in Fermi liquids. lll. CALCULATIONS AND RESULTS

In fa(?t, a muItlpoIar operat.oiDl will ilkely Sgener.ate a total We have solved the HF problem for variable numbers of
density fluctuation proportional tép, + 6p,, while out-of-  4g¢ atomsN; ,N, corresponding to different spin projections
phase perturbations produced @y, will induce a spin fluc-  in an isotropic harmonic trap, with a mutumivave scatter-
tuation proportional tasp3+ 5pi, . In addition, this distinc- ing lengtha=8.31 nm[3]. As in Ref.[7], we start an itera-
tion enables one to analyze the influence of a givertive procedure from oscillator wave functions;{(r), and
fluctuation on its own propagation, as well as on the oscillaconvergence is rapidly achieved. The self-consistent states
tions in the other spin species. are labeled by the same quantum numbdrand the wave
The numerical procedure consists of solving the disfunctions differ only slightly from the original ones. The
cretized equation®.11) by matrix inversion, computing the low-energy states are the most sensitive to the size of the
susceptibilities(2.10, and constructing the total dynamic interaction strength, reaching deviations with respect to bare
structure factorsS®® = —Imy(S3/ 7 in both spin channels oscillator energies as large as 15%. The combinations of p-h

[31,32, where states entering the free p-h propagafsee Eq.(A3)] are
1 selected by angular momentum conservation, and we find
(sa)_—(,004 ooy oo 4 ooy 21 that the elementary excitation energies in the denominators

XU =g AL X=X 213 of the generalized susceptibilitifsee Eq(2.7)] are weakly

) ) ) spread around the noninteracting oscillator values.
The collective spectrum of density and spin modes for a

given multipolarityL is indicated by the poles of the real part
of these responses, or corresponding peaks in the dynamical
structure factors. As a first step, we examine a trapped two-component

It is important to remark that this is a very general RPAFermi gas with equal trapping potentialETP), i.e., w;
description of collective excitations, valid for any system = w,, and the same number of atoms in each hyperfine level.
identified by its elementary excitations with single-particle Under these conditions, the RPA equati¢@s} can be de-
spectrume,, and statesp,, and by an effective p-h interac- coupled forsp(® and 6p'®, giving rise to
tion V.. In most applications to quantum liquidsee, for (s.2)
example, Refs[29-32 and thereil, one starts from a HF Sp A (r)=8p5(r)
eigenspectrum and chooses the p-h coupling as the double 4

. . . . a
functional derivative of the total energy with respect to the + gJ' r'2Gq (r,r',Q)8p3(r"),
single-particle density. The HF spectrum of two hyperfine 2L+1
species of trapped fermions has been previously investigated (3.
in Ref.[7] for the case of an attractive coupling between the
species, and in the present work we adopt the same philosgrhere we identifysp(S® = 5,)578’3) andGy  =Gg for either
phy for a repulsive interaction of strength The HF spec-  spin projectiono. Equations(3.1) are identical to the RPA
_trum arisfes from the solution of the Coupled nonlinear SyStenéquationS for asinglecomponent gas interacting through a
in spherical coordinates, repulsive (attractivé contact interaction, giving rise to the
symmetric(antisymmetrig¢ fluctuation.

In Fig. 1, we show the strengtt&>? of the monopolar
(L=0) fluctuations fomN, ,=10%. It should be kept in mind
that the spread of the peaks & () is an artifact of the
=eqUn(r) (214  calculation, due to the introduction of the small numerical
parametern [cf. Eq. (2.7)]. The large-scale behavior of
S(Q2) shows multiple excitations at energies close(lq

0 ()| =&n, 17 &n, 12N ;. These peaks decrease their amplitude
po(1)=2 (214 1) ————n(sg) (2.15  (notice the logarithmic scaleas we increase the transferred
ni 412 energy. Although thes anda channels are different, we are

A. Equal trapping potentials and populations

72 2 K21(1+1) me3r?
- —+ + +gp, o
2m (9['2 2mr2 2 gpcr (r) unl(r)

for speciess# o', with partial densities

not able to visualize them in the current scale. A narrow
and trapping potentialgiw’r /2. region around the oscillator excitation energy is displayed in
For vanishing temperature, the Fermi-Dirac occupationthe lower plot of Fig. 1. In fact, a careful analysis of the
numbers are step functions limiting the summation to statepeaks indicates that they are grouped into two main sets.
below the respective Fermi seg that fulfills the number Only the strongly fragmented one arouf=2w, can be
equationN,=X,0(ef—¢?). In the forthcoming calcula- viewed in this figure; the intensities in the second group
tions, we shall consider both equal as well as different traplying at higher energies are too small in the current scale.
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1t ‘ " M b ] FIG. 3. Monopolar density fluctuations for equal trapping poten-
1.97 2 2.03 tials and populationgin arbitrary unitg with N, ,= 10%. Solid and
Q/“)1 dashed lines correspond to density and spin excitations, respec-

FIG. 1. Monopolar dynamic structure factén arbitrary units tively, at the poles of each channel: ! is the distance unit for the
o trapping potential of species &, '=\mw,/A~0.53 um™1.
in the ETP case foN;=10* andw;=27x70 s 1. The upper plot Pping p P “1 H
is depicted in a logarithmic scale and the lower one is a zoom of th o .
main peak in a linear scale. The thin line corresponds to the HF p_ﬁa:jcé(_)_r for Nl; Np= 104daton;s. We car:j aIS(I) obsferve trlllat n
excitations, and thick and dashed lines indicate the RPA structur@ ition to these mo _es’ ragmente_ poles o a_co ective
factor in the symmetric and antisymmetric channels, respectively. Nature show up as indicated by the simple model in Appen-

Moreover, the spectra in both channels are clearly different; In additipn, we have numerically verified that the positign
while thes channel is shifted upwards in energy, th@ne of the main peaks can be accounted for by the analytical

lies at lower energies, in qualitative agreement with a simplqsr?mr;;urlfcuflg:mlifr ﬁler'\iefmbyw\e/'CZ'th?nd tﬁtermgﬁfslr]ﬁle
. H H H H ) 1,2_ ) -
model estimate sketched in Appendix B. It is important toenergiesQSRm2.004 .0.984Gs,, and 1.9914, for L

mention that the QP’s energies coming out from the HF cal-" ) .
culation are such that the p-h excitation frequencies are |0W__—0(s),1(a), and 2§), respectively, while the correspond-

ered with respect to the oscillator ones by the mean-fiel ng RPA results are{dgpa=2.005ko;, 0.9848;, and

interaction, while the p-h coupling introduced in the RPA 992Q,.

formalism shifts the collective spectrum to higher energies.ﬂ Ltet tL_‘S nolvv e>.<a”_“|”e the spa'?idal profiltetsF] c;f_ftthhe dentsity
The behavior of the dipolar fluctuatioh. €1) is slightly | uctuations. inprinciple, one would expect that It the system

different. Although both the anda spectra are weakly frag- is_ ?X.C“ed with a given operataror a [cf. Eq. (2.2] .in the
mented, the amplitude of the oscillator mode(at w, is vicinity of a peak in one of these channels, a density fluctua-
large It,is well knowr{35] that for equal trapping potentials tion will develop that reflects both the character of the exter-

: . . TR | field and the nature of the intrinsic excitation of the free
and populations, there is a dipolar excitation in the s mmet"& . . o
bop P y ystem. As an illustration, in Fig. 3 we show the real parts of

ric channel, associated to the center-of-mass oscillation g ; o e
the gas and occurring at the oscillator frequency. However '€ r_nonopolar density osqlla’uqns for the same conditions as
h Fig. 1 at the frequencies given by the poles of the re-

in the spin channel, this excitation appears at a slightly lowel"! . S
energy. These facts are verified in the present RPA calculgzPonse. We_ o_bserve that when the symmetric quctua'non IS
tion as shown in Fig. 2, where we see the dipolar structurémpo.rtant within the'bulk of the trappeq s;ystem, ”“? antisym-
metric counterpart is completely negligible and vice versa.
However, at the energy of the pole in the symmetric channel
(Q°~2.03), surface oscillations develop both &p° and
Sp?; this behavior can be attributed to the proximity of a
weak peak in the antisymmetric structure factoot visible

in the scale of Fig. 1

B. Unequal potential wells and populations

In the recent experimental achievement of DeMarco and
Jin [4], K atoms in two magnetic sublevel§ =3, m
0.95 1 105 =1) (type 1 atompand|F=3,m:=3) (type 2 atomswere

Yo confined and cooled. Although the ratiow,/w,

=(0o,/07)Y?~1.13 is very close to unity, we take it into

FIG. 2. Dipolar dynamic structure factéin logarithmic scale ~account as an explicit feature of the real nonsymmetric con-
and arbitrary unitsfor the same conditions as in Fig. 1. Thin, thick, figuration. We also consider unequal populations ranging
and dashed lines correspond to the HF system, symmetric, and affom A=N,/N;~0.3 toA~3, which can be built during the
tisymmetric channels, respectively. evaporative cooling process.
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Qlw Qe Yo, Qo

1 1

FIG. 6. Same as Fig. 4 for the quadrupolar dynamic structure

FIG. 4. Dynamic structure factor far=0 (in arbitrary unitg for factor

the symmetric channel of the interacting and free system ith

=10* and several concentrations, in thick and thin lines, respec-

tively. Each column display a different range in the energy scale. 9er. In particular, in the equal population cage<(1) there
exist well-resolved fragmented peaks as intense as the origi-

As in the ETP case, we analyze the dynamic structuréal HF ones.
factors and the fluctuations created by multipolar external The real parts of the monopolar transition densities are
fields. In Fig. 4, we show the symmetric dynamic structuredisplayed in Fig. 7. Thes and a density profiles for each
factor for several values of the population rafio N;=10*  component have been scaled to a common value at a given
and a monopolar excitation. The structure of spin fluctuafrequency. This is a convenient criterion, since if one depicts
tions cannot be distinguished from the density ones withirfhe four profiles in the same scale, near the intrinsic p-h
the scale of this plot. The essential features of the respondéequencies of each component the complementary density
can be summarized as follow§) In either channel, the fluctuation appears largely depleted. Before analyzing the
strength of each p-h transition is redistributed so that thdluctuation profiles, we want to call attention to the shape of
structure factor is fragmented around the noninteractinghe HF equilibrium density profiles. In Table I, we quote, as
peaks with some intensity appearing at higher energigs. @ function ofA, some shape parameters related to the spheri-
For low or high values of\, the structure of the most popu-
lated species essentially reproduces the pattern of the nonin-

. Toc . 0
teracting quasiparticles, while the spectrum of the other spe-
cies is highly fragmented with a largely suppressed
amplitude.(iii) Given either species, as the number of atoms " "
in the other spin projection increases, the complementary 0*"/\/\\’\" ~ o, =199 {,\/XW’“«X,\—
excitation appears displaying considerable fragmentation. (@

We have also made calculations for multipolar excitations
with L=1,2; in Figs. 5 and 6, we show the corresponding
results for the structure factor. In general, the description of
the monopolar excitation applies as well to higher multipo-
larities, however we can mention some differences: the dipo-
lar peaks are narrower and fragmentation seems to be stron-

A=03
. bia Al FIG. 7. Monopolar density fluctuation@ arbitrary unitg for
0.99 1.01 1.13 1.15 N,=10*. The upper, middle, and lower plots correspond Ao
Qo Yo, =3,1,0.3, respectively, foo; =% (left column and o,=3 (right

column). Solid and dashed lines indicasp® and 6p® , respec-
FIG. 5. Same as Fig. 4 for the dipolar dynamic structure factortively.
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. TABI_.E I. Shape parameters related to the HF probability den-A =3, the fluctuations occupy a broader region, roughly
sity profiles P,(r) (see text for Ny=10" and several concentra- from ar =4 to ar = 10, which can be attributed to a wides
tions. All distances are given in harmonic-oscillator units?® density
_ 12 . L .
= (AlMw,)*~1.9 um. In addition to the vanishing at the origin of tHe#0
fluctuation, the main difference between the spatial profiles

A=0.3 A=1 A=3 L . .. . .
Parameter o, . oy ) o o of distinct multipolarities Ilgs in an enhanced symmetry of
the channels fot. =2. In this case, we have observed that
P max 0.017 0.022 0.017 0.018 0.017 0.015 the cross fluctuation of a given component is non-negligible
aRpmax 5.64  4.28 5.64 5.24 5.64 6.28 onlynear the free p-h transition of its counterpart, suggesting
aRegge 871 659 875 817 879 9.86 a weaker p-h effective interaction for higher multipolarities
FWHM 504 392 504 472 496 568 [cf. Eq.(2.1D].
Another feature to mention is the difference from the ETP
case. In that situation, we have the same spatial fluctuations
cal probability density distributio®(r) defined as for either spin projection and well-defined channeknda;
however, in this more general problem, we observe different
rpy(r) ial files for each component and mixed behaviors
P (r)=—br) 3.y  Seatal profi ach comp . .
7 N, within the channels, i.e., given a pole in the symmetric sus-

ceptibility, fluctuations may exhibit similar amplitudes in

both channels.
Particularly, we list the maximum probabili§y,,,, (Which is

attained aR,5y, the location of the density edd®.yq., and

the f_uII \_/vidth at half maximun(FWHM) of the probability IV. DISCUSSION AND SUMMARY
distribution. These parameters will help us to understand the
main aspects of the excitation profiles. In this work, we have developed a RPA formalism for a

In Fig. 7, we show some typical monopolar density fluc-two-species, trapped Fermi gas at vanishing temperature,
tuations for each spin component at the lowest-lying collecwhich may provide guidelines to current experimental re-
tive peaks and several concentrations. We observe that as wearch. We have shown that the interspecies interaction gives
increaseA (from bottom to top in Fig. ¥, both fluctuations rise to a fragmented zero sound spectrum. We analyzed both
5p(23'a) for a given frequency extend beyond theedge. As  the equal trapping potential and populations, as well as a
an illustration, let us consider in detail the case0.3. For ~ general case with unequal potentials and populations in-
the excitation withQ~2 w, 5p(28,a) is bounded to roughly tended to mimic an expenmentgl situation. The main differ-
the size of the density of, atoms @r=<7, a?=mae,/#)  €Nces arise in the spectra; while in the ETP case the poles
while 5p(13,a) extends far beyond this cutoff, within the, a}ssoqlated to density and spin quctuatl_ons were clearly_d|s-
range. For smal), the correctionssp® 2 are unimportant, in tinct, in the genera_ll case these fluctuations cannot be disen-
general, due to the relatively weak coupling of thespecies tangled. The density and spin responses _of the system sha_\re
to the fewo, atoms. However, in the same limp? 2 ac- the same energy spectrum, however with unequal ampli-

quires important correctionép2 1 essentially driven by the tudes. For the excitation with=1, we have found in the

large number ofr; atoms. We also see two different behav- den_S|ty channel and for the E.TP case a po!e at the bare
iors related to the) dependence: for frequencies close tooscnlator frequency corresponding to rigid oscillation of the

201, 5p% and 5p present opposite signs, revealing thatsyst(.am; however, this is no longer true for a more realistic
theli,nduéed contriéutioﬁ 21lis larger than thé intrinsic one configuration with une.qual trapping frequenmgs. Although
S022. I fact. if th tp . ed with f ) lose"V€ checked that the elgensolutlon§ of EZ;.14)Id|ffer iny

p” ~. In 1act, i the system IS excited with frequencies ¢ O.Seby a few percent from the bare oscillator basis functions, we
to 2 w4, large 8p, fluctuations should be expected, which in

) . ; ; 51 cannot prevent propagation of small errors in the response
turn introduce, th(rg;gh th¥/,,, interaction, sizeablesp calculation, which ought to be safely computed out of the

cor;tzributions to5p3™ . In turn, gxlci'ting atl~2 w, creates ;6 HF wave functions at the expense of an increase in
dp~ <, thus the correction ta5p” " is second order in the .o nnyting time. Finally, we should mention that this two-

interaction and the anda fluctuations are the same. On the component RPA formalism may be straightforwardly gener-
other hand, ap; extends beyong,, a stimulus acting at  gjized to nonzero temperatures by taking into account the

Q=2 w, induces a cross fluctuatiodp'? inside the bulk of  finjte temperature Fermi-Dirac occupation numbers.
the type 1 system, i.e., at smaller ragif. Fig. 7).

As one increases the number of particles in species 2,
their density profiles extend farthésee Table )l and there
are few noticeable changes in the spatial localization of the
excitation. However, in general, close tow2 we find a This paper was supported by Grant No. PICT 1706 from
strong induced fluctuatio@p'? in the spatial region where Agencia Nacional de Promocigara la Ciencia y la Tecno-
P,(r) is larger tharP,(r) and correspondingly fofp?' near  logia of Argentina and Grant No. TW81 from the Univer-
2 wq. If one keeps increasing, the perturbative interpreta- sidad of Buenos AireUBA). One of us(P.C) is grateful to
tion is no longer valid for every multipole and species. Forthe Universidad de Buenos Aires for financial support.
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APPENDIX A:

1 3N, 1
To evaluate the free p-h propagator, we use the 3D XOl:? 87 | Q—w,+ip Q+w,+in (A7)
harmonic-oscillator basis for each spin projection: 7
2o 1412 2. . with a T=0 structure factor
¢‘n’|m(r):AZ,exp(—a(,r 2Ly " (agro)Yim(r)
. 1 3N,
=Rn(N)Ym(r), (A1) So1="—7 g, Q). (A8)
a, O
where a§= Mo, /h, Y, are the spherical harmonic func-
tions, L|n+1/2 are the generalized Laguerre functions, #fd APPENDIX B: A SIMPLIFIED MODEL FOR ZERO
a normalization constant. The multipolar compon&f SOUND MODES
reads
In order to get a basic understanding of the different ex-
1 citations of the two-component gas, we propose a very
Gol(r,r',Q)= > > (21+1)(21'+1) simple model for the noninteracting propagator that allows
(4m)% a0t for illustrative analytical results. Let us assume that each of
X (R Ry ) (D) (Ry Ry (1) the co'eX|st|ng species possesses only one elementary excita-
tion with energyw,, (w,). The corresponding free propaga-
X (101" 0[LOY P xpy i (). (A2)  tor reads
In order to compute the elementary susceptibilifgg,- in vor " O 1 1
Eq. (A2), we have used the HF energies extracted from EqCo” (1) =F(NIFY(r)I*| T = = 2=
(2.14 instead of the bare harmonic-oscillator ones. Further (B1)

simplifications arise from the properties of the Clebsch-

Gordan coefficients and HO wave functioRs,(r); in par-  whereF“(r) is the wave function of the excited p-h pair at
ticular, explicit expressions for monopolar, dipolar, and quathe given position. Replacement of E@1) into the RPA
dropolar excitations 1(=0,1,2) can be written. The sSystem of equation$2.4) brings into evidence that these

monopolar free p-h propagator reads propagators are of the form
" 1 Go(r,r) =F(nxg[T " (r")]*,
GEa(r,r' Q)= —— > (21+1)Ry (1) Ry (1) (B2)
(47)° nin’

G (r,r")=gF’ (Nxg [T 7(r'")]*,

><Rnl(r,)Rn’l(r))(nl,n’l(ﬂ)- (A3) .
where in turn

In this case, we use the excitation opera@t=r?; this

yields the following noninteracting susceptibility: [I9=Fo7+g* x5 777,
L (B3)
1 reo=g*vore°
X38="5 3 (214 )lxnn-un(n+1+172) 9 Xo
g " represent dressed p-h wave functions, which depend on the

+ Xntnsn(N+1)(N+143/2)], (A4)  Pp-hinteraction strength

which in the case of a large enough number of particles, zero

P o *xco’ — o
temperature, and HO energies can be simplified to yield g—gf xR0 1" F (X)_<U‘T|Vp‘h|g o'). (B4

1 1 3N, The system(B3) possesses a simple algebraic solution,
Soo( ) == — Imlxo"]~— — (6N,)P8(Q—2w,). from which we can write the dynamical susceptibilities
aO’
(A5) M:X(ﬂ 6°|?
Similarly, the dipolar propagator can be written as D’
, , (85)
oo . /. ~XoXxo [0717 67
Gy (Q)=—— 2 [+ DRy(NRyr 41 (NRy(r") X T=g e~
(47)° nin' D
XRai+1(r") Xni,nri+1(Q) where
IR Rn-2(ORair) D(@)=1-[3x§(w)x§ (@) (B6)
X ! ’
Rat=2(F)Xot,-1(ED)] (A6) and 9= [dr,O/F’(r;) is the matrix element of the transi-
yielding a temperature-independent free response tion operator.
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The appearance of the common denomindidw) in  The corresponding form of the total spin symmetric and an-
Egs. (B5) reflects the fact that the RPA describes collectivetisymmetric responses can be shown td ¢fe Eq. (2.13]
fluctuations of the system as a whole. The zeroB af Eq.

(B6) can be easily found to be
xgl 071
o=01,0p 2(1i§)(g

2_ 2
[Op wa,

2 |

1
~ 12
1602w, || Xe=7 (B9)

2
(w? a)a,)2

(o8

2 2
) wa+wo,+
wo= =+
0 2

(B7)
The evolution of the collective modes with interaction (for real g). It is important to remark that although both
strength is encompassed in B&7); for w,=w, and as- frequencies(B8) correspond to poles of Eeachterm in

suming a small relative strength|/w,,, the dispersion rela- (39)’ e>.<plicit CO”_"pUtaﬂO”.ShOWS that, + |.9| has zero am-
tion of the modes illustrates the fragmentation of the elemenplitude in the antisymmetric response whilg — |g| has zero

tary excitation into two collective states with energies amplitude in the symmetric one. The higher and lower fre-
~ guencies in Eq(B8) can then be attributed to the symmetric
wo=w,*|g|. (B8) and antisymmetric fluctuations, respectively.

[1] F.S. Cataliotti, E.A. Cornell, C. Fort, M. Inguscio, F. Marin, [17] G. Bruun, Y. Castin, R. Dum, and K. Burnett, Eur. Phys. J. D
M. Predevelli, L. Ricci, and G.M. Tino, Phys. Rev.5Y, 1136 7, 433(1999.

(1998; M. Prevedelli, F.S. Cataliotti, E.A. Cornell, J.R. En- [18] M.A. Baranov, JETP Lett70, 396 (1999.
sher, C. Fort, L. Ricci, G.M. Tino, and M. Ingusciijd. 59,  [19] W. Zhang, C.A. Sackett, and R.G. Hulet, Phys. Re\i0A504

886 (1999. (1999. ,
[2] W.I. McAlexander, E.R.l. Abraham, N.W.M. Ritchie, C.J. [20] S.K. Yip and Tin-Lun Ho, Phys. Rev. &9, 4653(1999.
Williams, H.T.C. Stoof, and R.G. Hulet, Phys. Rev. 31 [21] L. Vichi and S. Stringari, Phys. Rev. 80, 4734(1999.
S ! A ’ ’ Cu [22] G.M. Bruun and C.W. Clark, Phys. Rev. Le88, 5415(1999.
R871(1995; M.O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, [23] M. Amoruso, J. Meccoli, A. Minguzzi, and M.P. Tosi, Eur.

and Ch. Salomonbld 61, 011403(2000 Phys J. D7, 441 (1999
[3] B. DeMarco, J.L. Bohn, J.P. Burke, Jr., M. Holland, and D.S.[24] M. Amoruso, J. Meccoli, A. Minguzzi, and M.P. Tosi, Eur.
Jin, Phys. Rev. Leti32, 4208(1999. Phys. J. D8, 361 (2000.
[4] B. DeMarco and D.S. Jin, Scien@85, 1703(1999. [25] B. DeMarco, S.B. Papp, and D.S. Jin, e-print
[5] D.A. Butts and A.S. Rokhsar, Phys. Rev.55, 4346(1997. cond-mat/010144%52000).
[6] J. Schneider and H. Wallis, Phys. Rev.5&, 1253(1998. [26] G.M. Bruun, e-print cond-mat/0012364.
[7] G.M. Bruun and K. Burnett, Phys. Rev. 38, 2427 (1998. [27] A. Fetter and D. WaleckeQuantum Theory of Many Particle
[8] K. MdImer, Phys. Rev. Leti80, 1804(1998. SystemsMcGraw-Hill, New York, 1973.

. . : . . [28] G. Bertsch and S.F. Tsai, Phys. Rég, 125(1975.
[9] M. Amoruso, A. Minguzzi, S. Stringari, M.P. Tosi, and L. [29] M. Casas and S. Stringari, J. Low Temp. PHig.135(1990.

Vichi, Eur. Phys. J. D3, 261 (1998, _ [30] M. M. Calbi and E. S. Hernadez, J. Low Temp. Phy420, 1
[10] L. Vichi, M. Inguscio, S. Stringari, and G.M. Tino, J. Phys. B (2000.

31, L899 (1998. [31] E.S. Hernadez, J. Navarro, and A. Polls, Phys. Lett4B3 1
[11] L. Vichi, M. Amoruso, A. Minguzzi, S. Stringari, and M.P. (1997; Nucl. Phys. A627, 460 (1997).

Tosi, Eur. Phys. J. 11, 335(2000. [32] S.M. Gatica, E.S. Hermalez, and J. Navarro, Phys. Rev6B
[12] L. Viverit, C.J. Pethick, and H. Smith, Phys. Rev. &, 15 302(1999.

053605(2000. [33] D. Pines and P. Nozes, The Theory of Quantum Liquids
[13] A. Minguzzi and M. P. Tosi, Phys. Lett. 268 142 (2000. (Addison-Wesley, Redwood City, CA, 1990/0l. Il.
[14] H.T.C. Stoof, M. Houbiers, C.A. Sackett, and R.G. Hulet, [34] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn,Bose-

Phys. Rev. Lett76, 10 (1996. Einstein Condensation of Atomic Gaseslited by M. Ingus-
[15] M. Houbiers, R. Ferwerda, H.T.C. Stoof, W.I. McAlexander, cio, S. Stringari, and C. E. WiemaihOS Press, Amsterdam,

C.A. Sackett, and R.G. Hulet, Phys. Rev58, 4864 (1997. 1999.

[16] M.A. Baranov and D.S. Petrov, Phys. Rev58 R801(1998. [35] W. Kohn, Phys. Rev123 1242(196)).

063606-8



