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Oscillations of rotating trapped Bose-Einstein condensates
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The tensor-virial method is applied for a study of oscillation modes of uniformly rotating Bose-Einstein
condensed gases, whose rigid-body rotation is supported by an vortex array. The second-order virial equations
are derived in the hydrodynamic regime for an arbitrary external harmonic trapping potential assuming that the
condensate is a superfluid at zero temperature. The axisymmetric equilibrium shape of the condensate is
determined as a function of the deformation of the trap; its domain of stability is bounded by the constraint
V,1 on the rotation rate~measured in units of the trap frequencyv0). The oscillations of the axisymmetric
condensate are stable with respect to the transverse-shear and toroidal modes of oscillations, corresponding to
the l 52, umu51,2 surface deformations. The eigenfrequencies of the modes are real and represent undamped
oscillations. The condensate is also stable against quasiradial pulsation modes (l 52, m50), and its oscilla-
tions are undamped, if the superflow is assumed incompressible. In the compressible case we find that for a
polytropic equation of state, the quasiradial oscillations are unstable wheng(32V2),123V2, and are stable
otherwise. Thus, a dilute Bose gas, whose equation of state is polytropic withg52 to leading order in the
diluteness parameter, is stable irrespective of the rotation rate. In nonaxisymmetric traps, the equilibrium
constrains the~dimensionless! deformation in the plane orthogonal to the rotation to the domainA2.V2 with
V,1. The second-harmonic-oscillation modes in nonaxisymmetric traps separate into two classes that have
even or odd parity with respect to the direction of the rotation axis. Numerical solutions show that these modes
are stable in the parameter domain where equilibrium figures exist.
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I. INTRODUCTION

After the experimental realization of Bose-Einstein co
densation in vapors of alkali atoms@1–3#, the understanding
of their behavior under rotation became the main focus
theoretical and experimental work. Experimental observa
of the vortex states in a two-component system@4#, and the
realization of the vortex states in a stirred one-compon
Bose-Einstein condensate@5# confirmed the expectations tha
sufficiently large condensates exhibit bulk superfluid prop
ties by supporting their rotation above the critical angu
frequency by the Feynman-Onsager vortex state@6–10#.

The theoretical approaches to the Bose-Einstein c
densed gases commonly distinguish between the two reg
of the strong and the weak interparticle interactions, wh
correspond to the conditionsNa/d@1 andNa/d!1, respec-
tively, whereN is the number of particles in the gas,a is the
scattering length, andd5A\/mv0 is the oscillator length
defined in terms of the oscillator frequencyv0 and the boson
massm ~for a review see, e.g., Refs.@8,11#.! In the weak-
coupling regime, where the scale of the variation of the c
densate wave function is of the same order as the size o
cloud, quantum effects play an essential role and the sys
behaves much like an atomic nucleus~see, e.g., Ref.@12#!. In
the strong-coupling regime and for sufficiently large cond
sate, the condensate is well described in terms of hydro
namics. Under these conditions the time-dependent Gr
Pitaevskii ~GP! equation@13# for the ~complex! condensate
wave function reduces to two~real! hydrodynamic equations
for the density and velocity of the condensate at zero te
perature. One consequence of the assumption that the sy
is sufficiently large is that the quantum pressure term can
1050-2947/2001/63~6!/063605~9!/$20.00 63 0636
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ignored compared with the interaction terms. Another is t
the Thomas-Fermi approximation@6# is valid and the equi-
librium kinetic-energy density is negligible compared to t
potential-energy density. This approximation also ensu
that the thermodynamic quantities like the pressure or
chemical potential of the gas are well defined at any lo
point of the gas cloud. Finally, the coherence length of
condensatej51/A8pna, with n being the number density o
condensate particles, becomes sufficiently small in this li
to allow for a description of a vortex core as a singularity

The superfluid hydrodynamic approach has been use
the studies of the collective excitations of the condens
clouds@14,15#, the scissors mode oscillations@16#, the mo-
ment of inertia of a rotating condensate@17#, mainly in the
irrotational regime; see however Ref.@18#. The critical an-
gular velocity of condensateVc1, at which the creation of a
vortex is energetically favorable, scales, in units of the t
frequency, asVc1}(d2/R2)ln(R/j), whereR is the size of
the cloud; the numerical coefficient depends on the detail
the geometry of the trap@8#. For a sufficiently large conden
sate the ground state would correspond to coarse-gra
rigid-body rotation supported by a vortex lattice. In this ca
the irrotational constraint on the average superfluid veloc
“3v50 is replaced by the rigid-body rotation conditio
“3v52V. The purpose of this paper is the study of t
oscillations of the trapped Bose condensates under ri
body rotation. We shall not discuss the modes related to
vortex structure itself~e.g., Tkachenko modes!. We shall
confine ourselves to the zero-temperature limit, in wh
case the effects of mutual friction due to the interaction
the thermal excitations with the vortex state, and dissipat
due to the viscosity of the thermal component both can
neglected.
©2001 The American Physical Society05-1
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A. SEDRAKIAN AND I. WASSERMAN PHYSICAL REVIEW A 63 063605
Below, we shall apply the tensor-virial method original
developed for the study of equilibrium and stability of rota
ing liquid masses bound by self-gravitation@19#. The tensor-
virial method transforms the local hydrodynamical equatio
into global virial equations that contain the full informatio
on the structure and stability of a system as a whole. T
method is especially useful for studying perturbations of
compressible uniform ellipsoids from equilibrium, in whic
case the each perturbed virial equation yields~in the absence
of viscous dissipation! a different set of normal modes. Th
extension to compressible flows is straightforward in
case of adiabatic perturbations. Moreover, when the equ
rium is sustained by an external confining potential, flu
perturbations do not backreact~change! the confining poten-
tial itself, and the tensor virial method can be extended
nonuniform compressible flows. The description is partic
larly useful for gases with polytropic equations of statep
}rg, wherep is the pressure,r is the density, andg is the
adiabatic index. In that case, we shall see that all of
modes of the gas can be found from the tensor-virial eq
tions.~We illustrate this only for the second-harmonic mod
of oscillation in this paper, but the extension to higher-ord
modes is straightforward, and will be discussed elsewhe!
For an interacting Bose gas the pressure is a nonana
function of the diluteness parameterna3. However the equa-
tion of state to the leading order in the small parame
na3!1 can be written in a polytropic form:p5Kr2, with
K52p\2a/m2. Since the zero-temperature equations of m
tion of a trapped rotating condensate turn out formally id
tical to the corresponding equations of motion of a ordin
~nonsuperfluid! liquid, our results might be of significance i
a broader context. On the other hand, present results
serve as a starting point for an extension to finite tempe
tures where, in addition to the superfluid, the fluid of norm
quasiparticle excitations plays a role.

The paper is organized as follows. In Sec. II we derive
first- and second-order virial equations for trapped Bose c
densed gases in the hydrodynamic regime. The equilibr
shape of rotating condensates and the second harm
modes of oscillations in axisymmetric traps are discusse
Sec. III. In Sec. IV the second harmonic modes of osci
tions in nonaxisymmetric traps are discussed. Our results
summarized in Sec. V. The Appendix gives a brief derivat
of the hydrodynamic equations from the GP equation.

II. VIRIAL EQUATIONS FOR A TRAPPED CONDENSATE

The Euler equation for a condensate in a harmonic, a
trary deformed trap, can be written as

rS ]

]t
1uj

]

]xj
Dui52

]p

]xi
2

r

2

]f tr

]xi
1

r

2

]uV3xu2

]xi

12re i lmulVm , ~1!

where the Latin subscripts denote coordinate directions;r, p,
and u are the density, pressure, and velocity of condens
~summation over repeated indexes is assumed!. The external
harmonic trapping potential is
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2(

i 51

3

Aixi
2 , ~2!

whereAi are the dimensionless deformation parameters,
v0 is the frequency of the harmonic oscillator in the tra
Equation~1! is written in a frame rotating with angular ve
locity V relative to some inertial coordinate reference s
tem. Its derivation from the GP equation for the condens
wave function is given in the Appendix. Our fundamen
assumption is that the condensate undergoes a rigid-b
rotation, which is supported by an array of vortices. In th
case, as explained in the Appendix, the equations of mo
are formally identical to those of a ordinary compressib
~nonsuperfluid! liquid.

Starting from Eq.~1! we can construct a set of virial equa
tions of various order. Suppose that the condensate occu
a volumeV. Taking the zeroth moment of Eq.~1! amounts to
integrating overV; doing so, we obtain

d

dt S EV
d3x rui D 52e i lmVmE

V
d3x rul

1~V2d i j 2V iV j !E
V
d3x rxj

2E
V
d3x

r

2

]f tr

]xi
. ~3!

The first-order virial equation describes the center-of-m
motion of the condensate, and is trivial as these moti
correspond to a uniform translation of the system as a wh

Taking the first moment of Eq.~1! results in the second
order virial equation

d

dt S EV
d3x rxjui D 52e i lmVmS E

V
d3x rxjul D

1~V22v0
2Ai !I i j 2V iVkI k j

12Ti j 1d i j P, ~4!

where

I i j [E
V
d3x rxixj , P[E

V
d3x p, Ti j [

1

2EV
d3x ruiuj .

~5!

Consider the variation of the second-order virial equat
under the influence of perturbations. The Eulerian variatio
of various terms in Eq.~4! are straightforward@20# and we
find

d
d

dtEV
d3x ruixj5~V22v0

2Ai !Vi j 2V iVkVk j

12e i lmVmdE
V
d3x rulxj12dTi j

1d i j dP, ~6!
5-2
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OSCILLATIONS OF ROTATING TRAPPED BOSE- . . . PHYSICAL REVIEW A 63 063605
where for a Lagrangian displacementj:

Vi j [dI i j 5E
V
d3x r~j ixj1j j xi !. ~7!

The tensorsVi j are manifestly symmetric in their indexes,
is evident from their definition. It is useful to define als
their nonsymmetric parts as

Vi ; j5E
V
d3x rj ixj , ~8!

such thatVi j 5Vi ; j1Vj ; i . When there are no condensate m
tions in the unperturbed state in the rotating frame (u50),
the second-order virial equation becomes

d2Vi ; j

dt2
52e i lmVm

dVl ; j

dt
1~V22v0

2Ai !Vi j 2V iVkVk j

1d i j dP. ~9!

The tensor virial@Eq. ~9!# can be used for the study of sma
amplitude oscillations of a trapped condensate. For tim
dependent Lagrangian displacements of the form

j~xi ,t !5j~xi !e
lt, ~10!

Eq. ~9! becomes

l2Vi ; j22Ve i lmVmlVl ; j5~V22v0
2Ai !Vi j 2V iVkVk j

1d i j dP. ~11!

Equation~11! contains all the second-harmonic modes of
rotating condensate in an arbitrary harmonic trap.

III. EQUILIBRIUM AND OSCILLATIONS
IN AXISYMMETRIC TRAPS

A. Equilibrium shape

Next, we specialize Eq.~4! to the case of axisymmetri
traps,A15A2ÞA3 and assume, without loss of generalit
A151. The assumption of the axisymmetry is, in practice,
approximation as a perfectly axisymmetric trap will not ex
a torque on the condensate. Our assumption is that the
viations from the axisymmetry, which drive the rotation
the condensate, are small compared with the deformatio
the trapuA12A2u/A1!1. In principle, once the condensate
brought to rotation the axisymmetry can be restored.

Consider a equilibrium state in which the condensate
tates uniformly with the rotation vector along thex3 axis of
Cartesian system of coordinates. Then Eq.~4! reduces to

V2~ I i j 2d i3I 3 j !2v0
2AiI i j 52d i j P. ~12!

In axisymmetric traps witha3 denoting the ellipsoida
semiaxis along the rotation, the two remaining semiaxis
the ellipsoid,a1 anda2, are equal. The diagonal compone
of Eq. ~12! provides the relation between the rotatio
frequency, the deformation parameters along thex3 direc-
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tion ~both are fixed in an experiment! and the ratio of the
semiaxis of the resulting spheroidal figure:

a3
2

a1
2

5
1

A3
S 12

V2

v0
2 D . ~13!

Depending on whethera3<a1 or a3>a1 the condensate
shape is either oblate or prolate. Note that the rotation
quency is bounded from above,V/v0,1, and forA3.1 the
equilibrium figures are always oblate. A striking cons
quence of Eq.~13!, whenA3512V2/v0

2, is an equilibrium
figure that is a rotating sphere@21#. Although we had to
assume small deviations from axisymmetry to make the c
densate rotate, this assumption is a prerequisite for produ
rotation, but not an intrinsic property of the rotating conde
sate.

The equilibrium density profile of the condensate, for
polytropic equation of state, can be obtained by a direct
tegration of the unperturbed limit of Eq.~1!:

r~x!5r0H 12
g21

2Kgr0
g21 @~12V2!x1

21~A22V2!x2
2

1A3x3
2#J 1/g21

u~••• !, ~14!

wherer0 is the central density of the cloud; the dots in t
argument of theu function ~which insures that the conden
sate density is positive! stand for the expression in the cur
brackets. Here we have retained the parameterA2ÞA1 to
incorporate the case of nonaxisymmetric traps, which
treated in Sec. III B. The effect of the rotation is the stretc
ing of the profile of the condensate in the equatorial pla
due to the centrifugal potential. According to Eq.~14!, the
density is constant on concentric ellipsoids in the unp
turbed rotating background. Note that the normalization
the wave function of the condensate implies

E
V
d3xr~x!5M , ~15!

whereM is the total mass in the cloud.

B. Second-harmonic modes of oscillation

Next consider perturbations from the equilibrium state
uniform rotation, with the spin vector along thex3 axis. Sur-
face deformations related to various modes can be class
by corresponding terms of the expansion in surface harm
ics labeled by indexesl and m. Second-order harmonic de
formations correspond tol 52 with five distinct values ofm,
22<m<2. The 18 equations represented by Eq.~11! sepa-
rate into two independent subsets that are odd and even
respect to the index 3. The corresponding oscillation mo
can be treated separately.
5-3
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A. SEDRAKIAN AND I. WASSERMAN PHYSICAL REVIEW A 63 063605
1. Transverse-shear modes

These modes correspond to the surface deformations
umu51 and represent relative shearing of the northern
southern hemispheres of the spheroid. The component
Eq. ~11!, which are odd in index 3, are

l2V3;152A3V31, ~16!

l2V3;252A3V32, ~17!

l2V1;322VlV2;352V131V2V13, ~18!

l2V2;312VlV1;352V231V2V23. ~19!

We sum Eqs.~16!, ~18! and~17!, ~19!, respectively, and use
the symmetry properties ofVi j combined with Eqs.~17! and
~19!. This results in the relations

l~l21A3112V2!V1322V~l21A3!V2350, ~20!

l~l21A3112V2!V2322V~l21A3!V2350. ~21!

The characteristic equation can be factorized by substitu
l5 is and we find

s322Vs22~11A32V2!s12VA350. ~22!

The roots are given by

s15
2V

3
1~s11s2!, s2,35

2V

3
2

1

2
~s11s2!

6
iA3

2
~s12s2!, ~23!

where

s6
3 5

V

3 S 122A32
V2

9 D7
1

9 F S 11A31
V2

3 D 3

2V2S 122A32
V2

9 D 2G1/2

. ~24!

Three complementary modes follow from Eqs.~23! and~24!
via the replacementV→2V. It can be verified that the con
dition

FV3 S 122A32
V2

9 D G2

2F1

3 S 11A31
V2

3 D G3

<0 ~25!

is satisfied for anyA3 andV,1, therefore all three roots ar
real. The real frequencies of the transverse-shear mode
shown in Fig. 1 as a function ofA3. Note that in the zero-
temperature limit, to which present analysis is restrict
these modes are purely real, i.e., represent undamped o
lations.
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2. Toroidal modes

These modes correspond toumu52 and the motions in
this case are confined to the planes parallel to the equat
plane. The components of Eq.~11!, which are even in index
3, are

l2V3;35dP2A3V33, ~26!

l2V1;122VlV2;15dP1~V221!V11, ~27!

l2V2;212VlV1;25dP1~V221!V22, ~28!

l2V1;222VlV2;25~V221!V12, ~29!

l2V2;112VlV1;15~V221!V21. ~30!

We add Eqs.~29! and~30!, and subtract Eqs.~27! and~28! to
find the following coupled equations:

@l212~12V2!#~V112V22!24VlV1250, ~31!

@l212~12V2!#V121Vl~V112V22!50. ~32!

The characteristic equation for the toroidal modes is

@l222~V221!#214l2V250, ~33!

which is factorized by writingl5 is. Two solutions are then

s1,25V6A22V2. ~34!

There are two complementary modes that are found by s
stituting2V for V. Since the rotation frequency is bounde
(V,1) the toroidal modes are stable independent of
magnitude of the deformation in the equatorial plane. For
same reason these modes are undamped in the z
temperature limit considered here.

FIG. 1. The three real frequencies of the transverse-shear m
in axisymmetric traps as a function of deformation parameterA3 for
three values ofV50.1 ~solid line!, 0.5 ~dashed line!, 0.9 ~dashed-
dotted line!; here the spin frequency is measured in units ofv0.
5-4
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OSCILLATIONS OF ROTATING TRAPPED BOSE- . . . PHYSICAL REVIEW A 63 063605
3. Pulsation modes

To find the pulsation modes, which correspond tom50,
we first add the Eqs.~27! and~28!, and then use Eq.~26! to
eliminatedP in the result. In this manner we find that

~l2/22V211!~V111V22!12Vl~V1;22V2;1!

2~l212A3!V3350. ~35!

Subtracting Eqs.~30! and ~29! ~and discarding thel50
root! one finds

l~V1;22V2;1!2V~V111V22!50. ~36!

Equations~35! and~36! can be further combined to a sing
equation:

~l212V212!~V111V22!22~l212A3!V3350. ~37!

It is instructive first to consider the case where the superfl
is incompressible. Then Eq.~37! should be supplemented b
the divergence free condition

V111V22

a1
2

1
V33

a3
2

50. ~38!

Again, writingl5 is, we find for the square of frequency o
the pulsation mode in the incompressible limit

s0
25S 1

2
1

a3
2

a1
2D 21S 11V212

a3
2

a1
2

A3D . ~39!

As s0
2 is always positive, these modes correspond to

damped stable oscillations.
For compressible fluids we need the variation of the pr

sure tensor, which for adiabatic perturbations can be wri
as

dP5~g21!E d3xj i“ i p, ~40!

where we assumed a polytropic equation of statep5Krg;
the polytropic index for a Bose gas to leading order in
parameterra3 is equal 2. To evaluate the gradient of th
pressure we turn to the Euler Eq.~1! in the unperturbed limit,

]h

]xi
[

1

r

]p

]xi
52

1

2

]f tr

]xi
1

1

2

]uV3xu2

]xi
, ~41!
s
e

d

06360
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where the enthalpyh is defined bydh5dp/r and is simply
h5gKrg21/(g21) for p5Krg. Substituting the explicit
expression for the trapping potential, we find that the gra
ent of the enthalpy is a linear function of the coordinates a
hence, the variation of the pressure tensor can be expre
in terms of virialsVii :

dP52
~g21!

2
@~V111V22!~12V2!1A3V33#. ~42!

Any of the equations, which are even in the index 3, now c
be used to close the system of equations forV33 and the
virial combinationV111V22. Substituting Eq.~42! for dP
in, e.g, Eq.~26!, one finds

@l21~g11!A3#V331~g21!~12V2!~V111V22!50.
~43!

Equations~37! and ~43! completely determine the unknow
virials; the characteristic equation for the pulsation mod
which is quadratic inl2, is

l41l2@g~A31222V2!1A314V2#12A3@g~32V2!

13V221#50. ~44!

On substitutingl5 is, the solution of the resulting quadrati
equation becomes

FIG. 2. The square of the pulsation modes in axisymmetric tr
for g52. Conventions are the same as in Fig. 1.
s6
2 5 1

2 @g~A31222V2!1A314V2#6 1
2 A@g~A31222V2!1A314V2#228A3@g~32V2!13V221#. ~45!
.

i-
It is easy to see that there are only unstable mode
g,(123V2)/(32V2)<1/3; otherwise all modes ar
stable. In particular, all modes are stable forg52. Note,
too, that there are twice as many solutions as were foun
if

in

the incompressible case; Eq.~39! can be recovered from Eq
~45! by taking theg→` limit of s2

2 . The origin of the
additional roots1

2 , may be traced to thel2 dependence of
Eq. ~43!, which only reduces to the incompressibility cond
5-5
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A. SEDRAKIAN AND I. WASSERMAN PHYSICAL REVIEW A 63 063605
tion, Eq. ~38!, in the g→` limit if it is assumed thatul2u
5us2u!g.

The square of the pulsation modes as a function of theA3
is plotted in Fig. 2 forg52, the polytropic index of a dilute
Bose gas.

IV. EQUILIBRIUM AND OSCILLATIONS IN
NONAXISYMMETRIC TRAPS

A. Equilibrium shape

When the symmetry with respect to the rotation axis
broken, the equilibrium constraint@Eq. ~13!# needs to be
supplemented by a relation fixing the semiaxis ratios in
plane orthogonal to the spin axis. The diagonal compone
of Eq. ~12! provide the triangle relations that determine t
nonaxisymmetric equilibrium figure

a1
2~V22v0

2A1!5a2
2~V22v0

2A2!52a3v0
2A3 . ~46!

These simultaneous constraints can be written in an equ
lent form

a3
2

a1
2

5
1

A3
S 12

V2

v0
2 D ,

a3
2

a2
2

5
1

A3
S A22

V2

v0
2 D . ~47!

Note that in addition to the upper bound on the rotat
frequency set by the first relation~as in the case of the axi
symmetric traps!, the second relations places a lower bou
on the deformation in the plane orthogonal to the spin a
A2>V2/v0

2. Given the experimentally controlled values
V, A3 andA2, relation~47! determine, in a unique manne
the semiaxis ratios of the resulting figure.

B. Second-harmonic modes of oscillation

The nonaxisymmetric modes can be found from Eq.~11!
in a manner similar to the axisymmetric modes; howev
now the degeneracy in indexes 1 and 2 should be rela
The oscillation modes separate into two noncombin
groups, which have even or odd parity with respect to
index 3. Below, we shall treat these modes separately.

1. Odd modes

Among the four components of Eq.~11!, which are odd in
index 3, three are identical to Eqs.~16!, ~17!, and~18! under
nonaxisymmetric conditions; the component which is mo
ifed reads

l2V2;312VlV1;352A2V231V2V23. ~48!

Summing Eqs.~16!, ~18!, and~17!, ~48!, we arrive at

l~l21A3112V2!V1322V~l21A3!V2350, ~49!

l~l21A31A22V2!V2322V~l21A3!V2350. ~50!

The sixth order characteristic equation derived from this
gebraic system is
06360
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l61@11A212~A31V2!#l41@A21A31A2A31A3
2

2~11A226A3!V21V4#l214A3
2V250. ~51!

The corresponding modes appear as conjugate pairs,
there are only 3 distinct modes. The real parts of these mo
~the modes are purely real! are show in Fig. 3 as a function
of A3 for several values ofV and fixed ratioV2/A250.1.

2. Even modes

The even-parity components of Eq.~11! which are given
by the Eqs.~26!, ~27!, and ~29!, remain unchanged whe
axisymmetry is relaxed; the remainder equations read

l2V2;212VlV1;25dP1~V22A2!V22, ~52!

l2V2;112VlV1;15~V22A2!V21. ~53!

In the incompressible limit these equations should be sup
mented by condition~38! ~with an obvious modification of
the second term!. In the compressible case the variations
the pressure become

dP52
~g21!

2
@~12V2!V111~A22V2!V221A3V33#.

~54!

Using this relation in Eq.~26! we find

@l21~g11!A3#V331~g21!@~12V2!V111~A22V2!V22#

50. ~55!

Equations~26!, ~27!, ~29! and~52! and~53! can be manipu-
lated to the following set:

@l212~12V2!#V112@l212~A22V2!#V2224lVV1250,
~56!

FIG. 3. The real parts of the odd-parity modes in nonaxisy
metric traps for the fixed ratioA2 /V250.1. Conventions are the
same as in Fig. 1.
5-6
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@l212~12V2!#V111@l212~A22V2!#V22

22~l212A3!V3314lV~V1;22V2;1!50,
~57!

~l2111A222V2!V121Vl~V112V22!50, ~58!

l2~V1;22V2;1!2Vl~V111V22!1~12A2!V1250,
~59!

which should be supplemented with Eq.~55!. The corre-
sponding characteristic equation is of order 8 and has b
solved numerically. The results for the real parts of t
modes~which are purely real! are shown in Fig. 4 as a func
tion of A3 for several values ofV for fixed ratio V2/A2
50.1.

V. CONCLUSIONS

We have analyized the hydrodynamic oscillations
Bose-condensed atomic clouds at zero temperature in
Thomas-Fermi approximation. The equilibrium shape of
cloud in an axisymmetric trap representing either a prolate
oblate spheroid of revolution, which, for a particular choi
of the rotation rate and trap potential, degenerates int
rotating sphere. The rotation frequency of the condensa
bounded from above by the characteristic frequency of
harmonic oscillator in a given trap (V2/v0

2<1). We have
also analyized nonaxisymmetric, triaxial ellipsoidal figure
which admit equilibrium solutions under additional co
straints on the deformation in the plane orthogonal to
rotation axisA2>V2/v0

2.
Small amplitude oscillations have been derived for line

perturbations from the rigidly rotating equilibrium bac
ground state. The oscillations in axisymmetric traps, wh
are related to the transverse-shear and toroidal modes
found to be stable for all values of the trap deformation a
its rotation frequency. These modes represent undampe

FIG. 4. The real parts of the even-parity modes in nonaxisy
metric traps for the fixed ratioA2 /V250.1 andg52. Conventions
are the same as in Fig. 1.
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cillations ~all eigenfrequencies are real! in the absence of
dissipation, i.e., they are dynamically stable. A dynami
instability against the quasiradial pulsation mode can a
wheng<(123V2)/(32V2)<1/3. Otherwise the system i
stable, including the limit of the incompressible superflu
(g→`), independent of the shape of equilibria. For a Bo
gas with g52, the above stability condition is satisfied
hence, these modes represent stable oscillations indepen
of the rotation rate and deformation. Numerical results
the oscillations in nonaxisymmetrical traps show that, bo
the even and odd partity second-harmonic modes of osc
tions of triaxial clouds are stable for the adiabatic indexg
52 relevant to the interacting dilute Bose gas.

Our results for axisymmetric traps~in which case analyti-
cal results are available! reduce to those of Ref.@15# when
the rotation frequency is set to zero andg52. Indeed, from
Eqs.~22!, ~34!, and~45!, which describe the oscillations with
m561, m562, andm50, respectively, forl 52, we find

s~ l 52,m561!56A11A3, ~60!

s~ l 52,m562!56A2, ~61!

s~ l 52,m50!521
3A3

2
6

1

2
A16216A319A3

2, ~62!

which coincide with Eqs.~22!, ~23!, and~24! of Ref. @15# on
making the appropriate changes in the parameters descr
the trapping potential.

It is instructive also to compare the results above to
classical analysis of the equilibrium and stability of the se
gravitating fluids@19# in view of speculations@22# that in-
tense off-resonant laser beams can give rise to
gravitational-type potential between the condensate parti
leading to self-bound configurations. Self-gravitating sy
tems, in particular the axisymmetric figures, are sta
against transverse-shear and pulsation modes in the inc
pressible limit; the same is found in the above model
trapped rotating condensates. However, in the compress
case, the self-gravitating fluids are unstable against the
sation modes whenever the adiabatic indexg<4/3 ~the pre-
cise value of the criticalg depends on the rotation rate! and
are stable otherwise. In the present case, the system is
stable wheng,(123V2)/(32V2), where the rotation fre-
quency covers the rangeVc1<V<1. Another major differ-
ence between the two systems is their stability against
toroidal modes. The axisymmetric self-gravitating fluids a
unstable dynamically~i.e., in the absence of dissipation! be-
yond the pointa3

2/a1
250.05, as the deformation is increase

At a smaller deformationa3
2/a1

250.19, these oscillations be
come neutral, which is a prerequisite of the onset of sec
~i.e., driven by the viscosity! instability. In contrast, the tor-
oidal modes of the trapped condensates are always dyn
cally stable and there are no neutral points within the
lowed parameter space where equilibrium figures exist.

The present model can be extended for a study of
higher-order (l .2) harmonic oscillations by constructin
higher-order virial equations as well as to finite temperatur
in which case the viscosity of thermal excitations, hen

-
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secular instabilities, and mutual friction between the vor
lattice state and the excitations play a role.1
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APPENDIX: HYDRODYNAMIC EQUATIONS OF MOTION
FOR ROTATING CONDENSATE

As is well-known, dilute Bose gases can be described
the mean-field approximation in terms of the GP theory. T
latter theory~in analogy to the phenomenological theories
superconductivity and of superfluid He4 near thel point!, is
based on a Ginzburg-Landau type functional for the wa
function c of the coherent state, whose variation provid
the equation of motion forc. In the stationary case this func
tional for a dilute Bose gas has the well-known form

E~c!5E F \2

2m
u“c~x!u21

m

2
f tr~x!uc~x!u2

1
1

2
U0uc~x!u4Gd3x, ~A1!

whereU0[4p\2a/m. The GP equation is obtained by ta
ing the functional derivative with respect toc* , subject to
the constraint that the particle numberN is constant. The
extremum conditiond(E2mN)/dc* 50 gives

2
\2

2m
Dc~x!1

1

2
@mf tr~x!1U0uc~x!u2#c~x!5mc~x!,

~A2!

where the Lagrangian multiplierm has the meaning of the
chemical potential of particles. The time-dependent gene
zation of Eq.~A2! follows on the assumption that the tem
poral variations ofc should be described by a first-ord
equation which, by analogy with the quantum mechanics
written as

i\
]c~x,t !

]t
52

\2

2m
Dc~x,t !1Fm

2
f tr~x!

1U0uc~x,t !u2Gc~x,t !. ~A3!

1Such a program for self-gravitating superfluids has been car
out recently in Ref.@23#.
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On writing c(x,t)5h(x,t)eiw(x,t), the superfluid density and
velocity can be expressed as

r~x,t !5muc~x,t !u25mh~x,t !2, v~x,t !5
\

m
“w~x,t !.

~A4!

The real part of Eq.~A3! after deviding bymh, applying a
gradient, and multiplying the result byr becomes

rS ]

]t
1v•“ D v1r“S 2

\2

2m2

Dh

h
1

1

2
f tr1

1

m
U0h2D 50,

~A5!

which is the Euler equation for the condensate in the ze
temperature, inviscid limit. It differs from the analogou
equation for the ordinary fluids by the ‘‘quantum pressur
term }Dh/h. Note that any constant term can be added
the second bracket, for example, the chemical potential in
ground state.

The imaginary part of Eq.~A3!, on multiplying by
2mh/\, leads to the mass conservation equation

]

]t
r1“•rv50. ~A6!

When gradients of thec are small, the quantum pressu
term in Eq.~A5! can be dropped and it reduces to

rS ]

]t
1v•“ D v52“p2

r

2
“f tr , ~A7!

where p[(U0/2m)r25(2p\2a/m2)r2. Note thatformally
Eq. ~A7! is identical to the Euler equation in the ordina
hydrodynamics; the distinctive feature of the superfluid
that the superflow is irrotational“3v50 in general~the
special case of the rotating superfluid, when the analogy
comes perfect, is discussed below!.

Equation ~A7! can be derived also starting from th
momentum-conservation equation:

i\

2

]

]t
@c~x,t !“c* ~x,t !2c* ~x,t !“c~x,t !#

1
]

]xk
P ik5r

1

2
“f tr , ~A8!

where

P ik5
\2

4m2 F ]c

]xi

]c*

]xk
2c

]2c*

]xi]xk
1c.c.G1pd ik , ~A9!

wherep is the pressure, and c.c. stands for complex con
gate. The right-hand side of Eq.~A8! is the external force pe
unit volume. On writingc(x,t)5h(x,t)eiw(x,t), and using
the relations~A4!, Eq. ~A8! becomes

]

]t
rv i1

]

]xk
~rv ivk1pd ik!5r

1

2
“ if tr . ~A10!d
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The time derivative ofr can be eliminated in terms of Eq
~A6!. If we use for the pressure of the dilute Bose gas
relation

p5
2p\2ar2

m2 F11
64

5 S ra3

pmD 1/2G ~A11!

and keep the leading order term in the diluteness param
we arrive again at Eq.~A7!.

If the condensate is rotating at a angular velocity, which
larger than the critical oneVc1, its energy is minimized via a
creation of vortices; then the curl of the last relation in E
~A4! is nonzero, rather the phase of the superfluid order
rameter changes by 2p around a path that encircles vorte
lines

“3v5
\

m
“3“w~x!5

2p\

m
n(

j
d (2)~x2xj !,

~A12!
an

et

n,
tt.

C.

d,

es

ett
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wheren is a unit vector along a vortex line,xj is the radius
vector of a vortex line in the plane orthogonal to the vec
n, andd (2) is a two-dimensional delta function in this plan
If V@Vc1 the macroscopic hydrodynamic equations invol
only course-grainedquantities, which are averages over
large number of vortices~i.e., over scales much larger tha
the size of a single vortex!. The right-hand side of Eq.~A12!
then becomes proportional to the density of the vortex lin
nv , since the continuum limit of vortex distribution implie
( jd

(2)(x2xj )5nv . The left-hand side of Eq.~A12! in the
course-grained limit gives 2V, since the energy is minimized
by a superflow that mimics a rigid-body rotation~this mini-
mization is carried out, e.g., in Ref.@24#!. Writing Eq. ~A7!
in the frame rotating uniformly with the angular velocityV
amounts to adding to the right-hand side of this equation
centrifugal potentialuV3xu2/2 and the Coriolis acceleratio
2u3V ~here u is the superfluid velocity in the rotating
frame!. With this substitution we recover Eq.~1!. Note that
the analogy to the Euler equation for a uniformly rotati
ordinary fluid now is complete.
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