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Oscillations of rotating trapped Bose-Einstein condensates
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The tensor-virial method is applied for a study of oscillation modes of uniformly rotating Bose-Einstein
condensed gases, whose rigid-body rotation is supported by an vortex array. The second-order virial equations
are derived in the hydrodynamic regime for an arbitrary external harmonic trapping potential assuming that the
condensate is a superfluid at zero temperature. The axisymmetric equilibrium shape of the condensate is
determined as a function of the deformation of the trap; its domain of stability is bounded by the constraint
Q<1 on the rotation ratémeasured in units of the trap frequeney). The oscillations of the axisymmetric
condensate are stable with respect to the transverse-shear and toroidal modes of oscillations, corresponding to
thel=2, |m|=1,2 surface deformations. The eigenfrequencies of the modes are real and represent undamped
oscillations. The condensate is also stable against quasiradial pulsation med@&s{=0), and its oscilla-
tions are undamped, if the superflow is assumed incompressible. In the compressible case we find that for a
polytropic equation of state, the quasiradial oscillations are unstable w(8en?)<1—30Q2, and are stable
otherwise. Thus, a dilute Bose gas, whose equation of state is polytropicywizhto leading order in the
diluteness parameter, is stable irrespective of the rotation rate. In nonaxisymmetric traps, the equilibrium
constrains thédimensionlessdeformation in the plane orthogonal to the rotation to the domain Q2 with
(<1. The second-harmonic-oscillation modes in nonaxisymmetric traps separate into two classes that have
even or odd parity with respect to the direction of the rotation axis. Numerical solutions show that these modes
are stable in the parameter domain where equilibrium figures exist.
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I. INTRODUCTION ignored compared with the interaction terms. Another is that
the Thomas-Fermi approximatid®] is valid and the equi-

After the experimental realization of Bose-Einstein con-librium kinetic-energy density is negligible compared to the
densation in vapors of alkali atorfis—3], the understanding Potential-energy density. This approximation also ensures
of their behavior under rotation became the main focus ofhat the thermodynamic quantities like the pressure or the
theoretical and experimental work. Experimental observatiofge€mical potential of the gas are well defined at any local
of the vortex states in a two-component sysfeth and the point of the gas cloud. Fllnally, the coherence Iength' of the
realization of the vortex states in a stirred one-componengondensaté=1/y8mna, with n being the number density of
Bose-Einstein condensdig] confirmed the expectations that condensate particles, becomes sufficiently small in this limit

sufficiently large condensates exhibit bulk superfluid proper:[0 ilrl]ow for aﬂd(_edschrip()jtiog ofa vortex corehar? a iingularityd .
ties by supporting their rotation above the critical angularh € super fUIh y rl? ynamic approac far? een used in
frequency by the Feynman-Onsager vortex sii10]. the studies of the collective excitations of the condensate

The theoretical approaches to the Bose-Einstein con(-:IOUdS[M’la’ the scissors mode oscillatioptt], the mo-

T “ment of inertia of a rotating condensdtE7], mainly in the
densed gases commonly distinguish between the two regimes iational regime; see however R&L8]. The critical an-

of the strong and the v_v_eak interparticle interactions, WhiChgular velocity of condensat@.,, at which the creation of a
correspond to the conditioéa/d>1 andNa/d<1, respec- yortex is energetically favorable, scales, in units of the trap

tively, whereN is the number of particles in the gasis the frequency, ad);(d?/R?)In(R/€), whereR is the size of
scattering length, and= yA/mw, is the oscillator length the cloud; the numerical coefficient depends on the details of
defined in terms of the oscillator frequeney and the boson  the geometry of the traf8]. For a sufficiently large conden-
massm (for a review see, e.g., Reff3,11].) In the weak- sate the ground state would correspond to coarse-grained
coupling regime, where the scale of the variation of the conrigid-body rotation supported by a vortex lattice. In this case,
densate wave function is of the same order as the size of thte irrotational constraint on the average superfluid velocity
cloud, quantum effects play an essential role and the systeMixv=0 is replaced by the rigid-body rotation condition
behaves much like an atomic nucldsse, e.g., Ref12]). In  Vxv=2Q. The purpose of this paper is the study of the
the strong-coupling regime and for sufficiently large conden-oscillations of the trapped Bose condensates under rigid-
sate, the condensate is well described in terms of hydrodybody rotation. We shall not discuss the modes related to the
namics. Under these conditions the time-dependent Grossortex structure itself(e.g., Tkachenko modgsWe shall
Pitaevskii (GP) equation[13] for the (compleX condensate confine ourselves to the zero-temperature limit, in which
wave function reduces to tweal hydrodynamic equations case the effects of mutual friction due to the interaction of
for the density and velocity of the condensate at zero temthe thermal excitations with the vortex state, and dissipation
perature. One consequence of the assumption that the systeiwe to the viscosity of the thermal component both can be
is sufficiently large is that the quantum pressure term can baeglected.
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Below, we shall apply the tensor-virial method originally 3
developed for the study of equilibrium and stability of rotat- bu(X)= w5 >, AXZ, 2
ing liquid masses bound by self-gravitatif8]. The tensor- =1

virial method transforms the local hydrodynamical equations hereA. are the dimensionless deformation parameters. and
into global virial equations that contain the full information w : ! ! ion p '

on the structure and stability of a system as a whole. ThﬁO s _the fre_quency o_f the harmonic .OSCi""."tor in the trap.
method is especially useful for studying perturbations of in- qyatlon(l) IS written in a.fra”?e rotatln_g with angular ve-
compressible uniform ellipsoids from equilibrium, in which locity Q2 fe'?‘“"? to some inertial coor@mate reference sys-
case the each perturbed virial equation yididshe absence tem. Its der|vat!on from f[he GP equathn for the condensate
of viscous dissipationa different set of normal modes. The wave funct|o_n is given in the Appendix. Our funda_m_ental
extension to compressible flows is straightforward in thedSsumption s that the condensate undergoes a rigid-body

case of adiabatic perturbations. Moreover, when the equilithtat'on' wh|c|h_ IS jl.’prt’ﬁrtid by E(T a:Lay of v?_ruoes.fln trt1_|s
rium is sustained by an external confining potential, quidcasef’ as eli(p%'net. ml i ethppen f'x’ %.equa lons o mc_)bllon
perturbations do not backreachange the confining poten- are tormally laentical to those of a ordinary compressiole

tial itself, and the tensor virial method can be extended ténogtsugerfl;ucillqéﬂd.l truct t of virial
nonuniform compressible flows. The description is particu- arting from Eq(1) we can construct a set of virial equa-

larly useful for gases with polytropic equations of state t|ons| of v\a/rlgui_ordtir. Sup;iﬁse that tpechon;jensate tOCtCUP'eS
xp?, wherep is the pressurep is the density, and is the a volumeV. Taking the zeroth moment of E¢l) amounts to

adiabatic index. In that case, we shall see that all of théntegratmg ovew; doing so, we obtain

modes of the gas can be found from the tensor-virial equa-

tions.(We illustrate this only for the second-harmonic modes —< f d3x Pui) = ZEiIQOf d3x pu,

of oscillation in this paper, but the extension to higher-order v v

modes is straightforward, and will be discussed elsewhere.

For an interacting Bose gas the pressure is a nonanalytic +(925ij—Qin)f d3x PX;
function of the diluteness parametea®. However the equa- v

tion of state to the leading order in the small parameter P

na*<1 can be written in a polytropic fornp=Kp?, with _f FENaa Y

K =2mh2a/m?. Since the zero-temperature equations of mo- v 20X
tion of a trapped rotating condensate turn out formally iden- ) o ) ]
tical to the corresponding equations of motion of a ordinaryThe, first-order virial equation de_scnpe§ the center—of—mass
(nonsuperfluidlliquid, our results might be of significance in motion of the condensate, and is trivial as these motions
a broader context. On the other hand, present results Caﬁprrespond to aumform translation of the system as a whole.
serve as a starting point for an extension to finite tempera- 12King the first moment of Eq1) results in the second-
tures where, in addition to the superfluid, the fluid of normalCrder virial equation

guasiparticle excitations plays a role. d

~ The paper is organized as follows. In Sec. Il we derive the _( f d3x px-ui> :ZEiIQO< f d3x pX'U|>

first- and second-order virial equations for trapped Bose con- dtl Jv ) v :

densed gases in the hydrodynamic regime. The equilibrium 5 2
shape of rotating condensates and the second harmonic +(Q7= wpA) i = Qi
modes of oscillations in axisymmetric traps are discussed in 12T+ S5.10 (4)
Sec. llI. In Sec. IV the second harmonic modes of oscilla- we e

tions in nonaxisymmetric traps are discussed. Our results akgnere

summarized in Sec. V. The Appendix gives a brief derivation
of the hydrodynamic equations from the GP equation.

()

3 3 1 3
IijE Vd XpXin, II= Vd XP, ']i’jzz Vd XPUin-

II. VIRIAL EQUATIONS FOR A TRAPPED CONDENSATE (5)
The Euler equation for a condensate in a harmonic, arbi-  consider the variation of the second-order virial equation
trary deformed trap, can be written as under the influence of perturbations. The Eulerian variations
5 of various terms in Eq(4) are straightforward20] and we
J J ap  pddy p QXX find
pl = +Uj——|u=————3 + -
at IX; X, 29 2 X g
+2p€1mUi Q. (1) 5afvdax pUX; = (7= w5A) Vi — Qi Vg,
where the Latin subscripts denote coordinate directipng; 3
andu are the density, pressure, and velocity of condensate +2€mnd Vd X puiXj+257;;
(summation over repeated indexes is assymEde external
harmonic trapping potential is + & oll, (6)
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where for a Lagrangian displacemefit tion (both are fixed in an experimenand the ratio of the
semiaxis of the resulting spheroidal figure:
VijE5lij:f A p(&x;+ €X)). (7)
v a; 1 0?
The tensord/;; are manifestly symmetric in their indexes, as al As )

is evident from their definition. It is useful to define also

their nonsymmetric parts as Depending on whetheaz=<a,; or az=a; the condensate

shape is either oblate or prolate. Note that the rotation fre-
Vi;jzf d3x p&X;, (8) quency is bounded from abov@/wy<1, and forA;>1 the
v equilibrium figures are always oblate. A striking conse-
guence of Eq(13), whenA;= 1—92/w§, is an equilibrium
figure that is a rotating sphef®1]. Although we had to
assume small deviations from axisymmetry to make the con-
densate rotate, this assumption is a prerequisite for producing
rotation, but not an intrinsic property of the rotating conden-

such thawj; =V;.;+V;.;. When there are no condensate mo-
tions in the unperturbed state in the rotating frame=0),
the second-order virial equation becomes

2\ )
d°Vij Vi L g2 2
= =2€1mQAm— T (27— wgA) Vi — Qi Vy sate. . . .
dt? dt The equilibrium density profile of the condensate, for a
polytropic equation of state, can be obtained by a direct in-
+ g;j oll. (9)  tegration of the unperturbed limit of E¢l):

The tensor viria[Eq. (9)] can be used for the study of small

amplitude oscillations of a trapped condensate. For time- _ vl 22 P
dependent Lagrangian displacements of the form p(X)=po) 1 2K,ypg*l[(1 Q)X+ (A= 09)x;
&xi b =&x)eM, (10 1y-1
+Agx3] o), (14)
Eg. (9) becomes

2
N2V = 20 €1m QA Vi = (Q = @A) Vi — Qi Vg wherepg is the central density of the cloud; the dots in the
+ 8, 611 (11)  argument of thef function (which insures that the conden-
sate density is positiyestand for the expression in the curly
Equation(11) contains all the second-harmonic modes of thebrackets. Here we have retained the paramétet A; to

rotating condensate in an arbitrary harmonic trap. incorporate the case of nonaxisymmetric traps, which is
treated in Sec. Il B. The effect of the rotation is the stretch-
ll. EQUILIBRIUM AND OSCILLATIONS ing of the profile of the condensate in the equatorial plane
IN AXISYMMETRIC TRAPS due to the centrifugal potential. According to H44), the
density is constant on concentric ellipsoids in the unper-
A. Equilibrium shape turbed rotating background. Note that the normalization of

Next, we specialize Eq4) to the case of axisymmetric the wave function of the condensate implies
traps, A;=A,# Az and assume, without loss of generality,
A,;=1. The assumption of the axisymmetry is, in practice, an 5
approximation as a perfectly axisymmetric trap will not exert Jvd Xp(X)=M, (15
a torque on the condensate. Our assumption is that the de-
viations from the axisymmetry, which drive the rotation of
the condensate, are small compared with the deformation a¥hereM is the total mass in the cloud.
the trap|A; — A,|/A;<1. In principle, once the condensate is
brought to rotation the axisymmetry can be restored.
Consider a equilibrium state in which the condensate ro-

B. Second-harmonic modes of oscillation

tates uniformly with the rotation vector along tkg axis of Next consider perturbations from the equilibrium state of
Cartesian system of coordinates. Then Eu.reduces to uniform rOtatlon, with the spin vector along thg axis. Sur-
face deformations related to various modes can be classified
Q21 ij— Oialsj) — wéAilij =— ;1. (12 by corresponding terms of the expansion in surface harmon-

ics labeled by indexekand m. Second-order harmonic de-
In axisymmetric traps withas denoting the ellipsoidal formations correspond tio=2 with five distinct values ofn,
semiaxis along the rotation, the two remaining semiaxis of—~2<ms=2. The 18 equations represented by Ed) sepa-
the ellipsoid,a,; anda,, are equal. The diagonal component rate into two independent subsets that are odd and even with
of Eq. (12) provides the relation between the rotation respect to the index 3. The corresponding oscillation modes
frequency, the deformation parameters along xthadirec-  can be treated separately.
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1. Transverse-shear modes i T

These modes correspond to the surface deformations witt
m|=1 and represent relative shearing of the northern and
southern hemispheres of the spheroid. The components ¢
Eqg. (11), which are odd in index 3, are

20 -

A?V3.1=—AgVa, (16) .
BE
ANV3.= —A3Vay, (17) % o
)\2V1;3—ZQ)\V2;3= _V13+ QZV].?H (18)
)\2V2;3+ ZQ)\V1;3: _V23+ QZV23. (19)

We sum Eqs(16), (18) and(17), (19), respectively, and use 00 % m 2 ™ 20
the symmetry properties af;; combined with Eqs(17) and ’ ' A, ’ '
(19). This results in the relations

FIG. 1. The three real frequencies of the transverse-shear modes
in axisymmetric traps as a function of deformation paramatefior
three values of) =0.1 (solid line), 0.5 (dashed ling, 0.9 (dashed-

dotted ling; here the spin frequency is measured in unitsvgf

A2+ A;+1-Q)V 53— 20(N2+A3)V,5=0, (20

N2+ A3+ 1—Q%)Vo3— 20(N2+Ag)V,5=0.  (21)
L . . N 2. Toroidal modes
The characteristic equation can be factorized by substituting

A=io and we find These modes correspond jm|=2 and the motions in

this case are confined to the planes parallel to the equatorial

¥— 2002~ (1+Az— 0o+ 20A;=0. (22) plane. The components of E(.1), which are even in index

3, are
The roots are given by N2V3.5= ST — AgVas, (26)
20 2 1 2 _ _ 2_
0'1=?+(S++S_), 02,3=?—§(s++s_) AV1.1— 20NV, =611+ (Q°—1)Vyy, (27)
3 N2Vy.0+ 20NV o= 81+ (Q2—1)V,,, (28)
i
T (8ems), (23 NV 0— 20NV,.= (02— 1)V, (29)
where )\2V2;1+ Zval;l:(Qz— 1)V21. (30)
Q 02\ 1 2\3 We add Eqs(29) and(30), and subtract Eq$27) and(28) to
s3 =§( 1-2A;— ?) 15 1+As+ 3 find the following coupled equations:

2\ 27102 [AN2+2(1-0%)](V11— V) —40AV,=0, (31

—QZ< 1-2A;— —) (24
9 [N24+2(1—02)Vio+ ON(Vy— V) =0. (32

Three complementary modes follow from E¢@3) and(24)

The characteristic equation for the toroidal modes is

via the replacemerft — — (). It can be verified that the con-
dition [\2=2(Q%-1)]*+42%0?=0, (33

2

Q 0212 1 02\13 which is factorized by writing.=i¢. Two solutions are then
5( 1-2A3— ?” —{g( 1+As+ ?” <0 (25

01,=0+2-0% (34)

is satisfied for anyA; and( <1, therefore all three roots are There are two complementary modes that are found by sub-
real. The real frequencies of the transverse-shear modes asttuting — (2 for (). Since the rotation frequency is bounded
shown in Fig. 1 as a function of3. Note that in the zero- ({2<1) the toroidal modes are stable independent of the
temperature limit, to which present analysis is restrictedmagnitude of the deformation in the equatorial plane. For the
these modes are purely real, i.e., represent undamped oscilame reason these modes are undamped in the zero-
lations. temperature limit considered here.
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3. Pulsation modes

To find the pulsation modes, which correspondiie0,
we first add the Eq927) and(28), and then use Eq26) to
eliminate 811 in the result. In this manner we find that

(N212— Q2+ 1)(V11+ Vo) + 2ON (V10— Va.)
—(N2+2A3)Va3=0. (35

Subtracting Eqs(30) and (29) (and discarding the\=0
root) one finds

N(V1.5—V3.1) —Q(V1+ V) =0. (36)
Equations(35) and(36) can be further combined to a single . ////
equation: 00 27 ‘ . .
0.0 1.0 20 3.0 4.0
(N%2+202+2)(Vi1+ V) —2(N2+2A3)V35=0. (37) A,

It is instructive first to consider the case where the superfluid FIG. 2. The square of the pulsation modes in axisymmetric traps
is incompressible. Then E¢37) should be supplemented by for y=2. Conventions are the same as in Fig. 1.

the divergence free condition ] ) o
where the enthalpy is defined bydh=dp/p and is simply

Vit Vo,  Vag h=yKp? Y (y—1) for p=Kp”. Substituting the explicit
———+—=0. (38  expression for the trapping potential, we find that the gradi-
ay a3 ent of the enthalpy is a linear function of the coordinates and,

hence, the variation of the pressure tensor can be expressed
in terms of virialsV;; :

__7D
. (39) ol= 2

Again, writing A =i o, we find for the square of frequency of
the pulsation mode in the incompressible limit

1 ag) o
_+_
2 ai

2
a
1+QZ+2—§A3
a
1

o2 [(Vi1+ Vo) (1- Q%) +AzVas]. (42
2

Any of the equations, which are even in the index 3, now can
As o} is always positive, these modes correspond to unbe used to close the system of equations \figg and the
damped stable oscillations. virial combinationV;+V,,. Substituting Eq.(42) for 11
For compressible fluids we need the variation of the presin, e.g, Eq.(26), one finds
sure tensor, which for adiabatic perturbations can be written
as [N>+(y+1)A3]Vagt (y— 1)(1_92)(V11+V22):0(-43)

oll=(y— 1)[ d®x&Vip, (400 Equations(37) and (43) completely determine the unknown
virials; the characteristic equation for the pulsation modes,
where we assumed a polytropic equation of stteKp?;  which is quadratic i\, is
the polytropic index for a Bose gas to leading order in the , ) ) )
parameterpa® is equal 2. To evaluate the gradient of the M TATY(As+2-207)+As+407]+2A4[y(3-Q7)
pressure we turn to the Euler E4) in the unperturbed limit, +302-1]=0. (44)
ﬂz E &_p: _ l Iy l M (41) On substituting, =i o, the solution of the resulting quadratic
X p Ix 29x 2 0% equation becomes

02 =L y(Az+2-20%) + A+ 402+ 1 [v(Az+2—20%) + A3+ 40%1°—8A[ v(3—0?) +30%—1]. (45)

It is easy to see that there are only unstable modes ithe incompressible case; E@9) can be recovered from Eq.
y<(1-30%)/(3—-0?%)<1/3; otherwise all modes are (45) by taking the y—o limit of o®>. The origin of the
stable. In particular, all modes are stable fgr2. Note, additional roots> , may be traced to the? dependence of
too, that there are twice as many solutions as were found i&q. (43), which only reduces to the incompressibility condi-
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tion, Eq.(38), in the y—oe limit if it is assumed thai\?| 40 ; -
=|a’2|< Y.

The square of the pulsation modes as a function ofithe
is plotted in Fig. 2 fory=2, the polytropic index of a dilute

Bose gas. 30

IV. EQUILIBRIUM AND OSCILLATIONS IN
NONAXISYMMETRIC TRAPS 020
L
-4

A. Equilibrium shape

When the symmetry with respect to the rotation axis is
broken, the equilibrium constraifEq. (13)] needs to be 10
supplemented by a relation fixing the semiaxis ratios in the
plane orthogonal to the spin axis. The diagonal components
of EqQ. (12) provide the triangle relations that determine the
nonaxisymmetric equilibrium figure 0.0 &

ai(Q%— wiA)) =a5(0%— wiA,) = —azwiAs. (46)

) . ) . ) FIG. 3. The real parts of the odd-parity modes in nonaxisym-
These simultaneous constraints can be written in an equivanetric traps for the fixed ratié\,/Q?=0.1. Conventions are the

lent form same as in Fig. 1.
az 1 QZ> az 1 A 0?2 - N1+ A+ 2(Ag+ Q) INAH[ A+ Ag+ AyAs+ A2
2oa T 2 2T A e )
ai Asl wg) a3 As g — (14 A,—6A5) Q%+ Q4\2+4A202=0.  (51)

Note that in addition to the upper bound on the rotation'rhe Corresponding modes appear as Conjugate pairs, i.e.,
frequency set by the first relatidas in the case of the axi- there are only 3 distinct modes. The real parts of these modes
symmetric trapk the second relations places a lower bound(the modes are purely réare show in Fig. 3 as a function

on the deformation in the plane orthogonal to the spin axispf A; for several values of) and fixed ratio)?/A,=0.1.
A,=0% w?. Given the experimentally controlled values of

Q, A; andA,, relation(47) determine, in a unique manner, 2. Even modes

the semiaxis ratios of the resulting figure. The even-parity components of E@.1) which are given

_ - by the Egs.(26), (27), and (29), remain unchanged when
B. Second-harmonic modes of oscillation axisymmetry is relaxed; the remainder equations read

The nonaxisymmetric modes can be found from @d)
in a manner similar to the axisymmetric modes; however,
now the degeneracy in indexes 1 and 2 should be relaxed.
The oscillation modes separate into two noncombining
groups, which have even or odd parity with respect to th
index 3. Below, we shall treat these modes separately.

N2V, 0F 200V o= 81+ (Q2— Ay)Vyy, (52
N2V, + 20NV 1 =(Q% = Ap) V. (53
8n the incompressible limit these equations should be supple-

mented by conditior(38) (with an obvious modification of
the second terin In the compressible case the variations of

1. Odd modes
the pressure become
Among the four components of E(L1), which are odd in
index 3, three are identical to Eq4.6), (17), and(18) under (y—1) 5 5
nonaxisymmetric conditions; the component which is mod- == 5 [A=0)Vu+ (A= Q) Vit AgVgg].
ifed reads
(54)
AN3V5 53+ 20NV 3= — ApVogt+ Q%Vys. (48)  Using this relation in Eq(26) we find

Summing Eqs(16), (18), and(17), (48), we arrive at [N2+(y+ 1) A3]Vast (Y= D[(1- 0%V + (A= Q%) Vo,

N2+ Ag+ 1— 02V g 20(A\2+Ag)Vp3=0, (49) =0. (59

Equations(26), (27), (29) and(52) and(53) can be manipu-
NN+ Ag+ A~ Q)Vo5— 20N +Ag)Vp3=0. (50)  |ated to the following set:

The sixth order characteristic equation derived from this al-[ A%+ 2(1—Q?)]V1;— A2+ 2(A,— Q?)V,,— 4ANQV,=0,
gebraic system is (56)
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cillations (all eigenfrequencies are reah the absence of
50 Lo m eI T T dissipation, i.e., they are dynamically stable. A dynamical
instability against the quasiradial pulsation mode can arise
wheny=<(1-302)/(3— Q?)=<1/3. Otherwise the system is
stable, including the limit of the incompressible superfluid
(y—), independent of the shape of equilibria. For a Bose
gas with y=2, the above stability condition is satisfied,;
hence, these modes represent stable oscillations independent
of the rotation rate and deformation. Numerical results for
the oscillations in nonaxisymmetrical traps show that, both,
the even and odd partity second-harmonic modes of oscilla-
tions of triaxial clouds are stable for the adiabatic index
=2 relevant to the interacting dilute Bose gas.
Our results for axisymmetric trags which case analyti-

cal results are availableeduce to those of Ref15] when
0, - S v o the rotation frequency is set to zero ane 2. In_dee_d, from

’ ’ Aa ’ ‘ Egs.(22), (34), and(45), which describe the oscillations with

m=*+1, m==*2, andm=0, respectively, fot=2, we find
FIG. 4. The real parts of the even-parity modes in nonaxisym-

metric traps for the fixed ratié\, /(2?=0.1 andy=2. Conventions o(l=2m=x1)==1+A;, (60)
are the same as in Fig. 1.

o(l=2m=+2)=+./2, (61)
[N24+2(1—Q2) Vi H [ N2+ 2(A,— QF) ]V,
3A; 1 ,
_2()\2+2A3)V33+4)\Q(V132_V2?1)TSO’ O'(|=2,m=0)=2+Ti‘ax/lﬁ—lﬁA:ﬁ—gA, (62

5 ) which coincide with Egs(22), (23), and(24) of Ref.[15] on
N+ 1+A=20°)Vip+ ON(V11— V) =0, (58 making the appropriate changes in the parameters describing
N2V Vot)— MV et Vo) (1— AW O the trapping potential.
(V12— V21) (V11+Vao) +( 2)V12=0, It is instructive also to compare the results above to the
(59) classical analysis of the equilibrium and stability of the self-

which should be supplemented with E€5). The corre- gravitating fluids[19] in view of speculation{zz] th_at in-
sponding characteristic equation is of order 8 and has bed§nSe off-resonant laser beams can give rise to a
solved numerically. The results for the real parts of thedravitational-type potential between the condensate particles
modes(which are purely realare shown in Fig. 4 as a func- leading to self-bound configurations. Self-gravitating sys-

tion of A for several values of) for fixed ratio Q%/A, tems, in particular the axisymmetric figures,_ are s_table
—0.1. against transverse-shear and pulsation modes in the incom-

pressible limit; the same is found in the above model of
trapped rotating condensates. However, in the compressible
case, the self-gravitating fluids are unstable against the pul-
We have analyized the hydrodynamic oscillations ofsation modes whenever the adiabatic index4/3 (the pre-
Bose-condensed atomic clouds at zero temperature in thase value of the criticaly depends on the rotation ratend
Thomas-Fermi approximation. The equilibrium shape of theare stable otherwise. In the present case, the system is un-
cloud in an axisymmetric trap representing either a prolate ostable wheny<(1—3Q2)/(3—Q?), where the rotation fre-
oblate spheroid of revolution, which, for a particular choicequency covers the rande.;<Q=<1. Another major differ-
of the rotation rate and trap potential, degenerates into ance between the two systems is their stability against the
rotating sphere. The rotation frequency of the condensate i®roidal modes. The axisymmetric self-gravitating fluids are
bounded from above by the characteristic frequency of theinstable dynamicallyi.e., in the absence of dissipatjobe-
harmonic oscillator in a given trapQ(Z/wgs 1). We have yond the pointa%/ai=0.05, as the deformation is increased.
also analyized nonaxisymmetric, triaxial ellipsoidal figures,At a smaller deformatiom3/a=0.19, these oscillations be-
which admit equilibrium solutions under additional con- come neutral, which is a prerequisite of the onset of secular
straints on the deformation in the plane orthogonal to thei.e., driven by the viscosijyinstability. In contrast, the tor-
rotation axisA2>Qzlw§. oidal modes of the trapped condensates are always dynami-
Small amplitude oscillations have been derived for linearcally stable and there are no neutral points within the al-
perturbations from the rigidly rotating equilibrium back- lowed parameter space where equilibrium figures exist.
ground state. The oscillations in axisymmetric traps, which The present model can be extended for a study of the
are related to the transverse-shear and toroidal modes anggher-order (>2) harmonic oscillations by constructing
found to be stable for all values of the trap deformation anchigher-order virial equations as well as to finite temperatures,
its rotation frequency. These modes represent undamped as- which case the viscosity of thermal excitations, hence

V. CONCLUSIONS
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secular instabilities, and mutual friction between the vortexOn writing ¢(x,t) = 7(x,t)e'**  the superfluid density and

lattice state and the excitations play a rble. velocity can be expressed as
h
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which is the Euler equation for the condensate in the zero-

temperature, inviscid limit. It differs from the analogous

equation for the ordinary fluids by the “quantum pressure”

term = A 5/ 5. Note that any constant term can be added to
As is well-known, dilute Bose gases can be described irihe second bracket, for example, the chemical potential in the

the mean-field approximation in terms of the GP theory. Theground state.

latter theory(in analogy to the phenomenological theories of ~The imaginary part of Eq.(A3), on multiplying by

superconductivity and of superfluid Maear thex point), is  2mw/%, leads to the mass conservation equation

based on a Ginzburg-Landau type functional for the wave

function ¢ of the coherent state, whose variation provides 9 +V.ov=0 (A6)

the equation of motion fog. In the stationary case this func- at? P '

tional for a dilute Bose gas has the well-known form

APPENDIX: HYDRODYNAMIC EQUATIONS OF MOTION
FOR ROTATING CONDENSATE

When gradients of they are small, the quantum pressure
term in Eqg.(A5) can be dropped and it reduces to

h? m
)= [ | gl U001+ 3 ol ,; ,,
—+v-V)v=—Vp—§V¢tr, (A7)

Pl ot

+ 3 Uol 00|, (AD

where p=(Uy/2m) p?=(27h%a/m?)p?. Note thatformally
) o ) Eq. (A7) is identical to the Euler equation in the ordinary
whereUo=4m7%“a/m. The GP equation is obtained by tak- pyqrodynamics; the distinctive feature of the superfluid is
ing the functional derivative with respect ", subject to  nat the superflow is irrotationa¥ X v=0 in general (the

the constraint that the particle numbiris constant. The  gpacial case of the rotating superfluid, when the analogy be-
extremum conditionS(E— uN)/S¢* =0 gives comes perfect, is discussed bejow
p2 L Equation (A7) can be derived also starting from the
_ ﬁAlﬂ(XH §[m¢n(x)+Uo|¢(X)|2]¢(X)=M¢(X), momentum-conservation equation:
(A2) h o N R
> POV X = (XD VX, D)]

where the Lagrangian multipliex has the meaning of the P 1
chemical potential of particles. The time-dependent generali- +—1Il=p=Vy, (A8)
zation of Eq.(A2) follows on the assumption that the tem- IXy 2
poral variations ofy should be described by a first-order
equation which, by analogy with the quantum mechanics, i&vhere

written as
i K >y + +ps (A9)
K= — - c.c. i s
IP(x,1) 72 m " am2 | ax; axi IX; X POk
h == 5 AY(X ) +| 5 du(X)
ot 2m 2 . .
wherep is the pressure, and c.c. stands for complex conju-
) gate. The right-hand side of EGA8) is the external force per
+Uol (X, D] [¢h(X,1). (A3)  unit volume. On writingy(x,t) = n(x,t)e'**Y and using
the relationgA4), Eq. (A8) becomes
Such a program for self-gravitating superfluids has been carried J J 1
—pvi+— (pviv+pPoi)=p=Vidy.
out recently in Ref[23]. gt PUi axk(pv.vk Pdik) pZV'(ﬁtr (A10)
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The time derivative ofp can be eliminated in terms of Eq. wherew is a unit vector along a vortex ling; is the radius
(A6). If we use for the pressure of the dilute Bose gas thevector of a vortex line in the plane orthogonal to the vector
relation v, and 5?) is a two-dimensional delta function in this plane.
If Q> the macroscopic hydrodynamic equations involve
only course-grainedquantities, which are averages over a
(All)  large number of vortice§.e., over scales much larger than
the size of a single vortexThe right-hand side of EqA12)
t]hen becomes proportional to the density of the vortex lines

and keep the leading order term in the diluteness parameten, since the continuum limit of vortex distribution implies
we arrive again at EqA7). v p

If the condensate is rotating at a angular velocity, which isEjé(Z)(X_Xi):nU‘ The left-hand side of EqAL2) in the
" 9 gular velocity, wr course-grained limit gives@, since the energy is minimized
larger than the critical on8 4, its energy is minimized via a

. ) Co by a superflow that mimics a rigid-body rotati¢his mini-

creation of vortices; then the curl of the last relation in Eq'mization is carried out, e.g., in RgR4]). Writing Eq. (A7)
(Ad) is nonzero, rather the phase of the superfluid order pap, the frame rotating uniformly with the angular veloci€y
rameter changes bym2around a path that encircles vortex gmounts to adding to the right-hand side of this equation the
lines centrifugal potential Q2 x x|2/2 and the Coriolis acceleration

2uxQ (hereu is the superfluid velocity in the rotating

frame. With this substitution we recover EqL). Note that

the analogy to the Euler equation for a uniformly rotating
(A12) ordinary fluid now is complete.

3\ 1/2
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