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Optical dipole traps and atomic waveguides based on Bessel light beams

Jochen Arlt and Kishan Dholakia
School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS Scotland, United Kingdom

Josh Soneson and Ewan M. Wright
Optical Sciences Center and Program for Applied Mathematics, University of Arizona, Tucson, Arizona 85721
(Received 15 January 2001; published 7 May 2001

We theoretically investigate the use of Bessel light beams generated using axicons for creating optical dipole
traps for cold atoms and atomic waveguiding. Zeroth-order Bessel beams can be used to produce highly
elongated dipole traps, allowing for the study of one-dimensional trapped gases and realization of a Tonks gas
of impenetrable bosons. First-order Bessel beams are shown to be able to produce tight confined atomic
waveguides over centimeter distances.
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I. INTRODUCTION sible to realize, as they would have an infinite extent and
carry infinite power[15]. However, finite approximations of

The experimental realization of Bose-Einstein condensathese beams can be realized that propagate over extended
tion (BEC) in dilute alkali vaporg1,2] has generated sub- distances in a diffraction-free manner. Holographic methods
stantial theoretical and experimental research actif®y  offer an efficient generation of Bessel beaf29,21. An-
BEC provides an important quantum system where one casther very efficient method to generate an approximation to a
observe various phenomena such as superflujdityvorti-  Bessel beam is by use of a conically shaped element termed
ces[5,6], spin domaing7], or solitonlike behaviof8-10.  an “axicon,” and it is this form of Bessel beam generation
Central to future advances with these quantum-degeneraifat we concentrate upon in this work. This generation
systems is their manipulation by external potentials. The USg,ethod was discussed in detail elsewhi2@,23, but we

of light fields offers an exciting avenue in this respect, aSgyjeyy it here for completeness and clarity in notation. Our

optical potentials can be state independent, can offer an argy.in interest is using zeroth-order Bessel beams for optical
of spatial forms, and can be rapidly switched. They oﬁerdipole traps and first-order Bessel beams for atomic

very good prospects for dipole traps and matter-wave guide%\.’ S
. - ‘ aveguiding, and we shall concentrate on these cases.
Previous work has been reported for optical dipole traps Begsel bgeams are solutions of the free-space wave equa-

based on standard Gaussian light befbis-13. Free-space . , ) . ;
propagating light beams sucr? as Laguer:rae-Gauss?an Iigﬁ n which propagate with an unchanging beam profile along

beams 14] and Bessel light beanfd5] are excellent candi- 1€ Propagation axis which we take 28 cylindrical coor-
dates for advanced all-optical manipulation of quantumdinates ¢,6,z). The electric field of a monochromatic, lin-
gases. Laguerre-Gaussian light beams offer a dark hollogarly polarized ideal Bessel beam of ordeand frequency
central region for guiding and focusing atofd$,17. Their ~ @ is[15,20-23

annular form can also be used to realize toroidal optical di-
pole traps for BE(Q 18], enabling studies of persistent cur-
rents. Bessel light beams are solutions of the scalar Helm-
holtz equation that are propagation invariant. This immunity
to diffraction, coupled with the small size of their central whereE, is a scale electric-field value}, is the Ith order
region, means they offer unique characteristics in the opticaBessel function] >0 is the azimuthal mode number, which
domain. In this work we discuss the use of Bessel lightwe take as positive for simplicity in notation; akd andk,
beams for trapping and guiding cold atoms at or close tgyre the radial and longitudinal wave vectors such tkat
guantum degeneracy. Specifically we study the Bessel light k,2+ kﬁ, with k=w_/c=2m/\_. The zeroth-order solu-
beam optical dipole trap, with the aim of generating oné+jon 3. ‘has a central maximum surrounded by concentric

dimensional quantum gases. In particular we look at a pOSjngs of roughly equal power, while the higher-order solu-
sible realization of a Tonks gas of impenetrable bosongjong 3 have a zero on-axis intensity with concentric rings.

which exhibit fermioniclike excitation$19]. Furthermore, The method of generating a Bessel beam by use of an

we analyze in detail the waveguiding of a matter-wave beam,icon, js based on the observation that the Fourier transform
along a higher-order Bessel light beam. This method couldy¢ the Bessel beam solutiofEq. (1)] over the transverse
provide an important route to realizing all-optical atom i”ter'plane ¢,6) is an infinitely high ring in the spatial frequency
ferometers and furthering the loading of magneticyomnain peaked a =k, , where the phase varies from zero
waveguides. to 2771 around the peak: the Bessel beams may therefore be
viewed as a superposition of plane waves with transverse
wave vectors lying on a ring of magnitudte. A finite real-

In this section we review the basics of the generation ofzation of such a beam may be produced by passing a
Bessel light beams. Ideal forms of such beams are impod-aguerre-GaussiafLG) beam of ordet through an axicon,

X '
E(r,0.2.0) = 5[Eodi(kr)e' 17" ce], (D)

Il. BESSEL LIGHT BEAMS

1050-2947/2001/68)/0636028)/$20.00 63 063602-1 ©2001 The American Physical Society



ARLT, DHOLAKIA, SONESON, AND WRIGHT PHYSICAL REVIEW A63 063602

; High-order
Bessel beam

Laguertr:3 aGn?USSian }h‘——)

Aperture

A

FIG. 1. llluminating an axicon with a LG mode of ordepro-
duces a Bessel beam of the same order within the shaded region.

Radius (microns)

as illustrated in Fig. 1. The axicon is a conically shaped
optical element which imparts a phase shift,(r, 0) =K,,r

to an incident field wherd,,=k(n—1)y, n being the re-
fractive index of the axicon material, andthe internal angle

0 1 2 3 4 5 6
of the element. By choosing,,=k, for a specific Bessel Distance (cm)

beam, the axicon imposes a ring of transverse wave vectors . ) 3 )
characteristic of the Bessel beams on the incident beam, and_ /G- 2. Gray-scale plot of the intensityx,y=0.2) for an input

these plane waves come together past the axicon to produl:((-.:’t bdean;,v‘;'thl =1 sgct)xvmg Bessel ?eam forma_t'ggoover an)\elon'
a Bessel beam. Single-ringed LG beafis., with a radial  9%€ Istance. Er  paramelers — ango= pm, Ay

. . . =780 nm, n=1.5, and y=1°, giving Zm»=3.4 cm andz,e
mode indexp=0), which may be produced using holo- —2095 em P
graphic elements, have electric-field envelogaisne-wave ' '

factor exii(kz-ew 1)] removed at a focus of the fornj14] Bessel beam propagation. As expected fod,abeam the

intensity profile has a dark fringe at the center of width of

2P, (2r2\'"? - aboutwg= 1/k,=14.7 um.
&(r,0,z=0)= W2 w2 exp(—r?lwy)e''’, The evolution of the field past the axicon may also be

Wo approximated using the method of a stationary phase applied
@ {0 the Fresnel integrd23], which yields the following ex-
pression for the field intensity;(r,z) for an Ith-order LG
whereP, is the power az=0 incident on the axiconyy is input mode:
the Gaussian spot size, ahis the azimuthal mode number.

Then a LG mode of orddrincident on an axicon withk,, o+l p 2 \2+1
. . i 0
=k, has the appropriate azimuthal phase variation to pro- ||(r,z)~|—|(krwo) — ( K)
duce anth-order Bessel beam past the axicon. In particular, : TWg/2) | Zma
from geometrical considerations and for a LG mode of size X expl — 222172) (ki 1), 4)

Wy, we expect the ring of plane waves imposed by the axicon
to overlap spatially over a longitudinal rangg,,,sin(9)

~wq, with sin(®)=k /k. This gives the estimate23] with z,,.x given by Eq.(3). Figure 3 shows the on-axis in-

0.07

kwg
Zmax— k_r 3

for the range over which the plane waves overlap, and pro-
duce a finite realization of the Bessel beam prodilgk,r)
past the axicon: The larger the input spot sizg the larger
the center portion of the transverse plane over which the
actual field approaches the ideal Bessel beam.

Numerical simulations and accompanying experiments
have verified this physical picture for Bessel beam genera-
tion using an axicofi22,23. The numerical simulations used
the Fresnel diffraction integral to propagate the input LG
field [Eq. (2)] times the phase aberration €xf,,(r,6)] due

Intensity

to the axicon, to distances beyond the axicon. Figure 2 shows % 1 2 D_:% n 5 6 7
a gray-scale plot of the field intensityx,y=0,z) as an ex- ‘stance (cm)
ample of this numerical propagation fot=1, wq FIG. 3. On-axis intensity variation for an inpli=0 LG beam

=0.29 mm, A =780 nm, n=1.5, andy=1°, giving Kk, using both the exact Fresnel integral approgaid line) and ex-
=6.8x10" m L. For this examplez;,,,=3.4 cm, and the pression(4) based on the stationary phase approximatiteshed
simulation shows that this indeed estimates the scale of thighe). All other parameters are the same as in Fig. 2.
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tensity|(0,z) versus the propagation distarceast the axi- A. Gross-Pitaevskii equation

con obtained using both the Fresnel integral apprdaohd The Gross-Pitaevskii equati@@GPE) describing the mac-
line) and the approximate solutigiqg. (4)] (dashed lingfor  roscopic wave functionj(r,t) of an N-atom Bose-Einstein
the same parameters as Fig. 2, exdepD, with excellent condensate in an optical dipole trap can be writteh2$
agreement(for |=0 the intensity has a peak on-axisn

particular, by differentiating Eq4), we find that the peak oY h?

oy 2
intensity evaluated over the whole transverse plane occurs at % ot 2M VEg+V(r.2) g+ UoN[Yl*y, @)

whereV2=V?+ #?/97? is a Laplacian, which is the sum of
va2l+1 the radial and longitudinal Laplaciarigt is the atomic mass;
Zpeak™ 5 Zmax: ) andU,=4m%2%al/M is the effective three-dimensional short-
range interaction strength, withbeing thes-wave scattering
length. The potential term on the right-hand side,
which givesz,e,=1.7 cm, in excellent agreement with the
results in Fig. 3. The approximate expressi@y. (4)] is
applicable over the center region of the Bessel beam if
>k/k? [23]. Using Eq.(3), this condition can be written as _ _ _ _ _
Z>sza>!(kWS)Z Recognizing thatkWSZZZR is twice the describes the optlcal dipole poten_tlal WheXe_c_w,_—cuA is
Rayleigh rangezg of the input LG beam[14], and wg the Iasgr detuning fr.om jche optical trfansmon frgquency
=1/, is a measure of the width of the central lobe of flge ~ @a» I i the natural linewidth of the optical transitiohs,

Bessel beam or the central dark fringe fal;abeam, we see 'S | the resgnant saturation intensity, and(r,t)
that, if =3€9C|E(r,2)|%. For a red-detuned laser the potential is

negative, and the atoms are attracted to the regions of high
intensity, whereas for a blue-detuned laser the atoms are re-

Zmax 2Wg pelled into the low-field regions.
= <1, (6)

V(r,z)= E

ﬁl“z(l(r,z) ®

| sat

ZR Wo
B. Optical dipole potential

) ) Here we investigate the properties of an optical dipole
then Eq.(4) should be valid over most of the propagation 5 formed using a red-detundg beam, so that the atoms

range of the Bessel beam around the position of the peake atracted to the intense central maximum of the intensity
Zpear- That is, under conditions where the central spot Orfyistribution given by Eq(4) with | =0:

dark fringe of the Bessel beam is narrow compared to the

input LG spot size, which is what we want, the stationary Po
phase approximation should be valid. For the above ex-l o(r,z)~27-rkrwo(—2)<
ampleswg/wy=1/19.7, and this is typical of parameters we TW/2
consider. We shall assume that this condition is satisfied ©)
hereafter, and use the approximate expregdtan(4)] in the
remainder of this paper.

Finally, we point out one further feature of Bessel beam
that highlights their utility, namely, that their radial width
wg=1/k,=1[k(n—1)vy] is determined solely by the laser —7 )
wavelength and the axicon parameters, whereas their longi- “P¢a¥’
tudinal extentz,,=kwg/k,=kwywg is also dependent on _ 1 220 \2(5_ 2
the incident LG spot sizev,. This means that the longitudi- V(1:2) = V(0Zpead = 2 M Qo 7+ A (2 Zpead ™), (10)
nal extent and radial confinement can be varied indepeng;in
dently. This is in contrast to a Gaussian beam of equal spot

z
K) exp(— 22%122,,,) Ja(k,T).

Zma

We are primarily interested in tight bound optical dipole
traps, so we shall approximate the optical dipole potential
S[Eq. (8)] using the parabolic approximation to the full inten-
sity Iq(r,z) around the intensity maximum atr €0,z

wy, for which the longitudinal extent of the focus is the 5 aT? Py k 5
Rayleigh rangezg=kw/2. Qrozexp(—1/2)4|A| MISat%(kr ’
2.2 Wg
Ill. BESSEL OPTICAL DIPOLE TRAPS AN=—=283—. (11
kWO Zmax

In this section we examine the use of zeroth-ordedgpr
Bessel beams for creating elongated optical dipole traps fof red-detuned 4 <0) J, optical dipole potential therefore
Bose-Einstein condensates, and assess their utility for realiprovides confinement in both radial and longitudinal direc-
ing one-dimensional trapped gases and a Tonkg b@sof  tions. Here(), is the radial oscillation frequency, with a
impenetrable bosonf24,25. Here we concentrate on the corresponding  ground-state  oscillator — widthw,
case of bosonic atoms, but similar considerations apply te=\VA/M(},, and\ is the ratio between the longitudinal and
degenerate fermionic atom26] in Bessel beam traps. radial trap frequencieQ o/, o=\ [28—30, which also de-
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termines the aspect ratio between the radial and longitudinand combining Eqgs(7), (10), (12), and(13), we obtain the
ground-state widthsv,o/W,o=\/\ (in the absence of many- one-dimensional Gross-Pitaevskii equation for the reduced
body repulsiop We remark that even for tight transverse system[29,30,

confinement, anharmonic corrections beyond the parabolic

approximation for the longitudindk) variation of the optical . d¢ h? ¢ 1 92 ) )
dipole potential[Eq. (10)] are generally required. This is " 5 =~ oM P +5 M 010(2~ Zpear ¢+gN[#|“ ¢,
evident from Fig. 3, where the on-axis intensity variation for (14)

the J, Bessel beam is not symmetric around the peak. For

this work we shall restrict ourselves to the parabolic approxiwhere
mation. However, we remark that anharmonic corrections to

the parabolic approximation can have pronounced effects on 2

trap properties such as the condensate fraction and the fre- gzuof 2mrdrlug(r)|*= —— =21Q0a (15
guencies of the collective excitations that can be supported Mwio

by Bessel atomic waveguides, especially for shallow trap?S

[31]. . .
. . : interaction strengthi25]. In the steady state we séi(z,t)
So far we have ignored the effects of gravity, which We:)((z)exp(—iut/ﬁ) in Eq. (14), with 4 the chemical poten-

assume acts in the radial direction so the longitudinal axis o{ial of the one-dimensional svstem. Then. using the Thomas-
the trap is horizontal. For tight radial confinement, the grav- y ' y 9

. ) . . - . Fermi approximation[25] for high density in which the

ity will serve simply to displace the origin of the radial mo- , .~ . . .

tion, and this applies under conditions such that(l;wg}é?ﬁgﬁg?gngr:jne:]ssﬁegIectéﬁS], Eq. (14) yields for the

MQOZW2,/2>Mgw,, with g=9.81 mst. Using wio y

=\hIMQ,(, this leads to the condition on the confinement
3 _ 2_ M

of the ground statew,,<3%42/(2M?g). For example, for p(2)=|x(2)|°== > ) |z— Zpead <Zm.

8Rb the radial confinement has to be less than Q.81 9 Zn

whereas for®Na a confinement ofv,,<0.74.m would be (16)

sufficient. We assume that this condition is satisfied, anquth

hereafter neglect the effects of gravity.
3gN| 23 MQZ 2| 13 3NwZa| ™
m= y  Zm .

the effective one-dimensional short-range

1— (Z_Zpealﬂ)z

C. One-dimensional trapped gases 4 2 \2

From Eg.(11), a parametei is seen to determine the (17)
anisotropy of thel, optical dipole trap. It is well known that
in the limit A<1 highly asymmetric cigar-shaped traps are This density solution has a peak one-dimensional density
formed which are elongated along the longitudinal direction?pea= 1.5(N/L,)«N?? with a longitudinal lengtH. ,= 2z,,.
[28—30. Bessel beams are exceptional in this regard, as they The Gross-Pitaevskii equatidfi4) was previously inves-
can produce extreme asymmetries. To illustrate this, recafigated as a model for a one-dimensional Bose-Einstein con-
thatw, is the input LG spot sizéeforethe axicon, for ex- densate in a number of situations, including the ground state
amplewy=1 mm, so that\ =4.8x 1074 for A\, =1064 nm. [32] and dynamicg33] of cigar-shaped trapis34—36, dark
We stress that one obtains such large asymmetries usirflitons[30,9,37,38 bright solitons for negative scattering
Bessel beams without sacrificing the radial confinement, al¢ngths[29,30,39, gap solitons in optical latticel8], atom
the radial (vg=1/k,) and longitudinal ) extents of the ~Waveguided40-42, and as a model Luttinger liquit#3].
Bessel beam are independently variable. In contrast, for here our goal is to highlight the utility od, optical dipole
Gaussian optical dipole trap, changing the focused spot siZ&aps for experimental studies of one-dimensional trapped
Wo also Changes the |ongitudina| extension of the d|p0|e tra@ases. To illustrate the basic scales involved in these.elon-
set by the Rayleigh rangzhzkwglz [14]. gated traps, we consider the case of Xhe=780 nm transi-

The limit A<1 corresponds to the regime of one- tion of Rb with Is,=16 W/nf and'=27X6.1 MHz. A
dimensional trapped gasé25,29,3Q, in which the radial far red-detuned laser at a wavelength Xqf=1064 nm is
variation of the macroscopic wave function is effectively fro- Used to generate a Bessel beam with a longitudinal extent
zen as the normalized ground-state magér) of the radial ~ Zmax=10 cm and a central spot of full-width radius &m

optical dipole potential: (corresponding towg=1.25um, and consequentlyw,
=13.6 mm). If a laser power d?;=5 W is used, this re-

h? ) 1 2 2 sults in a trap potential of about 49K depth with radial
Egqug=— mvrug‘LEMQror Ug - 12 rap frequency(), =27 8.8 kHz, a radial confinement of

W,o=282 nm, and an aspect ratio hf=3.5x 10" 4. Then for
N=10* atoms and a scattering lengik-5 nm, for example,
we find L,=2z,=1.9 mm, and a peak densify,c,= 6.4
x10* ecm™ . For comparison, a focused Gaussian with the
. same radial confinemefeand trap depthgives a trap with an
P(r,z,H)=uy(r)(z,t)e "Ea?, (13)  aspect ratio of only & 10 2. We remark, however, that the

Writing the macroscopic wave function in a form reflecting
the single-radial mode nature of the solution,
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power required to obtain the same radial confinement for thérapping. Here we examine the utility df optical dipole
Gaussian beam is much less, typically on the order of m\Wraps for realizing a Tonks gas.
[11]. This arises because for the Bessel beam the trapped The highly elongated Bessel beam discussed in Sec. Il
atoms only experience the intensity in the central peak of thé\, =1064 nm, Py=5W, Zz,,=10cm, wg=1.25um)
beam, and the concentric rings surrounding the peak, thoughould be an ideal candidate for the experimental realization
key in realizing the long extent of the Bessel optical dipoleof a Tonks gas. The low aspect ratie=3.5x 10”4 and tight
trap, do not directly affect the atomic confinement. radial confinemeniv,,=82 nm result in a high upper bound-
Bessel beam traps will suffer from the same loss mechaary N, for the particle number of the Tonks gas. For the
nisms as other shallow far-off-resonance dipole traps. Apatommonly used®Rb isotope with a scattering length
from heating due to diffractive collisions with background =5 nm one findsN, =420. Although this is still a fairly
gases/44], the trap lifetime will be limited by laser-noise- low value it should be possible to experimentally realize a
induced heating45]. The expected loss rates due to intensitysmall 8’Rb Tonks gas. However, more promising would be
fluctuations and the pointing instability of the laser beam forthe use of thé®®Rb isotope, where a Feshbach resonance can
a Bessel beam trap should be comparable to those in Gausse used to tune the normally negative scattering length to
ian beam traps with identical radial confinement and trapositive values of several hundred nanometers magnitude
depth. [51]. As N, is proportional to the square of the scattering
Finally, we note that thé, optical dipole trap provides a |ength, even a moderate increasete’50 nm would make it
means to accelerate an atomic trapped one-dimensional gaessible to create a larger Tonks gas, with Bay2000 at-
Consider a one-dimensional gas in the ground state Jf a oms, which should be easily detectable.
trap peaked around=zpeq=kwy/2k, . If we now start to The Bessel beam trap offers some advantages compared
slowly increase the LG spot sixey(t), then the longitudinal to alternative suggested approaches using magnetic
position of the peak density of the trapped gas should vary ilvaveguide$40-42 and a hybrid magnetic-optical trdf6].
time according t@,e.(t) =kwg(t)/2k, . Such a scheme pro- First, it involves only a very simplall-optical system for
vides a means to impart a longitudinal velocity to an initially which the aspect ratio of the trap may be controlled simply

stationary trapped gas. by varying the Gaussian spot size incident on the axicon.
More specifically, being an all-optical system, it does not
D. Realization of a Tonks gas involve material surfaces as in magnetic waveguides, which

. . . can cause matter-wave decoheref&®53. Furthermore, it
n tfhe Iabove d|?cussmn we tacitly assumed that the SySyqys for the possibility of trapping multiple magnetic sub-
tem of cold atoms formed a Bose-Einstein condensate. HoWg, |5 and the investigation of multicomponent Tonks gases,

ever, Petrowet al. [25] theoretically studied the diagram of \hich would not be possible in the hyrbrid magnetic-optical
state for a one-dimensional gas of trapped bosons, assUMIRQ. o Bongset al. [36].

A<1, and found that a true Bose-Einstein condensate, or at
least a quasicondensate, with concomitant macroscopic oc-
cupation of a single state, is only attained for high enough

particle numberdN>N, with

MngO) 2_{

IV. BESSEL BEAM ATOMIC WAVEGUIDES

Higher-order Bessel beands with |>0 have a zero on-
2 axis intensity surrounded by intense concentric rings, and a
W_rO ' (18) blue-detuned beam can therefore trap atoms radially in the
dark hollow core of the beam. In addition, since the intensity
vanishes on-axis, the higher-order beams produce a negli-
uIgible longitudinal confinemen(see Fig. 2 for thel; Bessel

*

hZ

For N<N, and temperature§ <N#A(),;, one obtains a

Tonks gas of impenetrable bosons for which hard-core rep : . .
sion between the bosonic atoms prevents them from perP—eam in comparison to thel, Bessel beam. The higher-

etrating through each other in the one-dimensional systen?;dertBessel beams_dtherefct)kr]etprﬁtsen(tj_thle opgprtunltytto real-
and the system acquires properties reminiscent of a ong:€ atomic waveguides with ight radial coninement over

dimensional system of fermionic atoms. This remarkabled'St"’“”'C‘E’S comparable to the propagation rangg, of the

property of the Tonks gas is related to a breakdown of th(.BeSS.E| beams. Fur'thermore, T.hp'beam IS spemal in that it
spin-statistics theorem in one dimension, and is reflected i rovides a parabolic radla_l trapping potent|_al to Iowe_st order
the Fermi-Bose mapping for this system first elucidated b se%below, whergas the higher-order trapping potential vary
Girardeal{46], and applied to atomic waveguides by Olsha-asr” near the axis. We shall therefore concentrate onlthe
nii [24]. Recent theoretical investigations of Tonks gased{Omic waveguid¢s4].

showed that they can support dark soliton struct{4&s48,

and also that their coherence properties are significantly dif-
ferent from the corresponding Bose-Einstein condensate
[49,50. Furthermore, recent experimental developments Here we investigate the properties of an atomic wave-
suggested that Tonks gases should be realizable in magnetioide formed using a blue-detuned ¥ 0) J; beam, so that
atom waveguidep40—42, and Bongset al. [36] proposed a the atoms are repelled into the zero intensity central mini-
hybrid trap composed of an optical dipole trap formed with amum of the intensity distribution given by E@4) with |
first-order LG beam combined with magnetic longitudinal =1:

A. Atomic waveguide potential
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P z\* a2 p2 #2 [ d? 1d ,
I41(r,2)~47k,wq WS/Z)(KJ e max]7(K,r). “oM|®” oM ﬁﬁﬁ e+ Voli(kin)e
(19
+Uolel%e, (24)

Substituting this expression into the optical dipole potential . i )
[Eq. (8)], we write the atomic waveguiding potential in the Where w is  the —chemical potential, ~and Vq

form =2MQ7Z (Zpead/k? characterizes the strength of thh
waveguide. The wave function over the atomic waveguide
1 ) Ji(krr) 1 , effective lengthL = z,,,,, is normalized to the number of par-
V(r.2)=35M07(2)| 4 % ~§MQr1(z)r2, ticles:
r
(20) ”
zmaxfo 27rdr|e(r)|2=N. (25)

where in the last form of the potential we used the approxi-
mation J(x)~x/2, which is applicable for tight radial con-
finement. Here the-dependent radial oscillation frequency
Q,1(2) is given by

To facilitate a numerical solution of the GPE, we introduce
scaled variablef55]

z |32 —K _JE 26
0= 0 zanl| | X -078 21250 1) (=lar o= g et 29
peal
(1) in terms of which the GPE fog({) becomes
With Zea= \3Zad2 the position of the peak intensity for £ 14
the J,; Bessel beam, anf,,(z,e4) is the peak radial oscil- B el VRS 7 +clol? 2
lation frequency given by “e dez2 {d¢g et pIDetclele. (2D
02 _ ’ 3/ al2 Py Kk 2 Here E,=#%k’/2M sets the energy scalea=(u
r1(Zpead =| 57| eXA(— )4|A| Ml sa Zmax | —p2/2M)/E, is the scaled energy eigenvalyé=V,/E,,

(22 andc=*1 sets the sign of the many-body interactions. The

_ . o wave functione(¢) is now normalized as
In comparison to the radial oscillation frequency of the

Bessel beam trap we find, 1(zpea) ~ 0.5 (. * )
The J; Bessel beam therefore defines an atomic wave- 0 {ddle(9)|*=nN=n, (28)
guide whose radial confinement peakgatz,., and varies

with the longitudinal coordinate. If we take the effective \yhere the dimensionless variabte= (k?|Uo|/L)/(27E,)
lengthL of the waveguide to be the full width at half maxi- =4]al/L. '

mum of €,(z) versusz, then by inspection of Eq21) we Strictly speaking thel; atomic waveguide potential in
find L~z as may have been anticipated physically basepg (27) does not have bound-state solutions, since any ini-
on the properties of the Bessel beams. tial wave function localized in the central minimum of the
potential will ultimately tunnel out over the finite potential
B. Gross-Pitaevskii equation barrier due to the first peak of the Bessel beam. However, for

To examine the properties of a Bose-Einstein condensafddht confined atoms the tunneling time can be made arbi-

propagating in aJ; atom waveguide, we shall approximate trgrily long, and here we ignore tunneling to _Iowest o_rder.
the waveguide as invariant along thaxis over the length Figures 4 and 5 show the results of the numerical solution of

L=z, and calculate the ground-state radial mode of thi>PE(27) for 8= 10° andc=1, that is repulsive many-body
system. In general we should solve the propagation problerdfitéractions. These numbers would describe, for example, a
of the matter wave field through the varying atomic wave-9uide for rubidium with a radius of um (corresponding to
guide potential, and show how the atoms are funneled int§/s=2-784m) and a lengti. =5 cm using 40 mW of light
the waveguide, but these shall be the subjects of a futur@t AL=1064 nm. The numerical method used to solve Eq.
paper. (27} was the same as that in R@ES]. Figure 4 shows the

To proceed, we consider the GRB for a Bose-Einstein variation of the §caled energy elgenvamgersus the scaled
condensate of momentum, per atom moving along the ~ number of particlesi=7N; we see that as increases, so
axis in a cylindrically symmetrid, Bessel atom waveguide does the energy due to the repulsive many-body interactions.
which is invariant along the axis. Then, writing the macro- For n—0 the scaled energy reduces to that of the atomic

scopic wave function as waveguide potentialsee below. Figure 5 shows the scaled
wave functione({) versus the scaled radial coordindtéor
INY(r,z,t) = o(r)e'(Pz=rt)/h (233 n=0.88 (@=50) (solid line, n=13.4 («=150) (dotted
line), andn=43 (a=250) (dashed ling Here we see that
the GPE becomes as the scaled number of atoms increases, so does the width of
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250

For this to be valid the macroscopic wave function should
not extend beyond the first peak of the Bessel function at
{.=1.8. Then, in the limit of a small number of atoryi
—0, the GPE has the Gaussian ground-state solutions

e()xexp(—2128), a=4B,

with Zo=28"Y4 this is only valid if {,<{., or 8>1. For
B=10° this givesa=31.6, in agreement with Fig. 4 agN
—0. In the limit of largeyN we can use the Thomas-Fermi
solution[28] in which the kinetic-energy term is neglected.
This yields the solutions

2001

(30

Scaled energy o

50,

B 77N 1/4
§< gm_z B ’
(31

le(O)[2=VnNB(1—2%155),

0 10 20 30 40 50
Scaled particle number n=n N

FIG. 4. Scaled energy eigenvalaevs scaled particle number . ) ) o
n= 7N for 8=1C°. Physically,« is the chemical potential minus and ate=V7NgB. Th|5 solution is only valid if {n<{
the longitudinal kinetic energy per particle scaled to the engigy = 1.8, which for a given value g8 places an upper bound on
and 8=V, /E, measures the depth of the Bessel optical potentiathe scaled number of atonms
scaled toE, .

n=yN<g. (32
the wave function, as expected physically. Clearly there is a
limit to the allowable width of the wave function, and hence |n Figs. 4 and 5 we have restricter< 950, in accordance
the number of atoms, as the tunneling out of the atomiGyith the above upper bound, and the wave functions in Fig.
waveguide alluded to above will become more relevant ag are all vanishingly small in the regiaft>¢,=1.8. As an
the wave function width approaches that of the central miniexample, fom=43 andB=10? the Thomas-Fermi solution
mum of theJ; Bessel beam. predicts{,= 0.9, which is smaller than the spatial extent of
the wave functiondashed lingin Fig. 5, anda1g=207 in
comparison tax= 250 from the exact solution in Fig. 4. This

In this section we discuss approximate solutions to GPEliscrepancy between the exact and approximate solutions is
(27) to provide a framework for the numerical solutions. not surprising, as we used a parabolic approximation of the

First for tight confinement, so that tunneling out of the trap isoptical potential in the Thomas-Fermi solution. However, the
negligible, we approximaté, ()~ ¢{/2, giving Thomas-Fermi theory captures the trends of the solution.

BE
<P+T‘P+|<P|2<P-

C. Thomas-Fermi approximation

d> 1d

V. SUMMARY AND CONCLUSIONS
aQp~ — —2+—d—
dg? ¢dd

(29

Bessel light beams have unusual properties in the optical
domain. They have an immunity to diffraction over extended

16 —— T T T T T T T T . .
distances, and offer an elongated and narrow central region.
141 T These features give them significant advantages over stan-
dard Gaussian light beams for the studies presented in this
12 ) work. We have shown that zeroth-order Bessel light beams
N generated by the use of an axicon offer an excellent method
10t ™ by which to generate optical dipole traps for one-
8l dimensional quantum gases. Typically, the ratidbetween

Scaled wave function ¢(&)

0 1

0 0.2

04

06

08

10 12

14

longitudinal and transverse trap frequencies for such a trap,
realized with a Bessel beam, is nearly two orders of magni-
tude smaller than that which can be achieved with a Gauss-
ian beam. Furthermore, we have shown that the Bessel beam
offers a potential route for an experimental realization of a
Tonks gas of inpenetrable bosons. Additionally we have
studied the waveguiding properties of a quantum gas along a
J; (hollow) Bessel light beam. The nondiffracting nature and
small central minimum size here make it an excellent all-

Scaled coordinate
I S optical waveguide. Such waveguiding could be used to real-

ize the velocity filtering of cold atoms and all-optical atom
interferometers, and also offer a route to load magnetic
waveguides with quantum degenerate samples.

FIG. 5. Scaled transverse eigenmagl@) vs scaled radial co-
ordinate ¢ for B=10° and n=0.88 («=50) (solid line), n
=13.4 (¢=150) (dotted ling, andn=43 (a=250) (dashed ling
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