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Coherent control using adaptive learning algorithms
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We have constructed an automated learning apparatus to control quantum systems. By directing intense
shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback
signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is
the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic
modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of
previous pulses in achieving a predetermined goal.
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I. INTRODUCTION IIl. EXPERIMENTAL SETUP

An original impetus for coherent control was mode- The control light field is made with a Kerr lens mode-

. . : - locked (KLM) titanium sapphire laser that produces 100 fs
selective laser photochemistry. This dream of exciting a spe- .
cific bond with a laser has dimmed for various reasons. Con'—Dljlses with ab_out 5 nJ of energy at a central W{ivelength of
trol is hampered by fast relaxation, complicated mode790 nm(see Fig. . The pulses are temporally dispersed to

structure, imperfect knowledge of the inter-nuclear potentials150 ps N a_smgle 9?"’.‘“”9 expander and amplified to 2 mJ N
f reggneratwe amplifier at 10 Hz. The ou_tput of the amplifier

the strong external light fields. Recent theoretif] and 'S SPlit to form two beams. One beam is sent to the pulse
experimental advances have led to successful control of mghaper, and the other is used as an unshaped reference for
lecular ionization and dissociatid@,3], atomic and molecu- SPectral interferometry measurements of the shaped pulses
lar fluorescenc&4—6], and excitations or electrical currents [11]. The pulse shaper consists of a zero dispersion stretcher
in semiconductord7—9]. Control has been predicted and With an acousto-optic modulat6AOM) in the Fourier plane,
demonstrated in several systems that have only two interfeivhere different colors in the light pulse map to different
ing pathwayg2,8,9]. positions on the modulatdd2]. The AOM carries a shaped

Strongly coupled systems such as large molecules in corgcoustic traveling wave, which diffracts different colors with
densed phase are so complicated that it is nearly impossibifferent phases and amplitudes. These colors are reas-
to calculate optimal pulse shapes in advance. Recent efforgembled at the output of the pulse shaper, yielding a tempo-
have used experimental feedback as suggested by Judson dally shaped laser pulse. In order to compensate for the low
Rabitz[1] to determine the optimal optical pulse shape toefficiency of the pulse shaper (¥15%), we reamplify the
achieve a particular control gog8,5]. In the absence of de- shaped pulses in a low-gain multipass amplifier. The pulses
tailed knowledge of the system Hamiltonian, an algorithmare then compressed in a single grating compressor. The re-
must be used for selecting new pulse shapes inside the feesulting shaped laser pulses are then directed into the molecu-
back loop.

This paper presents a detailed investigation of a learning

strategy incorporating a modified genetic algoriti®BA) GA Specified m )

[10] in order to discover control pathways in complicated Pulse Shape ?:g‘;sé‘l’;;‘:f

physical systems. Experiments have been carried out in BB

variety of molecular systems whose common feature is the

existence of observable physical properties that depended o

the incident(shapedl light. Several systems are described. In L50:ts

the gas phase, we explore nonlinear control of ionization pulses

channels in diatomic sodium. Several liquid phase experii KLM oscillator | 9,7

ments are also described, including control of self-phasg o energy

modulation in CCJ and excitation of vibrational modes in | grating stretcher

methanol and benzene. regen;aﬂve Molecular
In addition to traditional GA search strategies, we incor- amplifier g A Sampls

porate other search methods that all run concurrently. The Feedback

algorithm adapts itself during a run in order to search the

phase space most efficiently. Because of this, it is possible tc

obtain physical insight into the problem under investigation,

not only through the pulse-shape solutions, but also by how F|G. 1. Diagram of the experimental setup. The shaped laser
the algorithm arrived at those solutions. We demonstrate thgfulses interact with a molecular sample, and a single-valued feed-
our adaptive evolutionary algorithm is capable of controllingback function is returned to the computer. The algorithm uses these
a diverse array of systems. values to determine the mating procedure.
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lar sample to be studied, and a predetermined feedback sic 7] Initialize

nal is monitored. 3 population

lll. THE LEARNING ALGORITHM \

A. Constructing the algorithm
A Evgll]‘ate
In previous work, we demonstrated control of simple — Individuals =7
. . A 7 —_—

guantum systems using feedbddi8]. Now we wish to con- i ﬁ
trol more complex systems where the optimal pulse shape it @ b

not knowna priori. The pulse shaper has 8 bit control over Select Operator

the amplitude and phase of 100 different frequency compo- & Perform Mating

nents, so there are'?° different pulse shapes. The physical 4" Rarkby

system couples different frequencies, so they cannot each b "ﬁ:(w) Tnoreasing

optimized independently. This presents a vast phase spac Ao Fitness

for the search algorithm. The search must also be robust in

the face of experimental noise, and capable of escaping local FIG. 2. The adaptive algorithm begins by initializing a random

maxima in a rough potential energy landscape. population of pulse shapes. These pulse shapes interact with the
These requirements led us to consider a genetic algorithnmolecular system and are ranked according to fitness. These fit-

which fulfills all of these conditions: It does not rely on any nesses, as well as the fitnesses of the various operators, are used to

local information about the search space, such as derivativesglect the individuals and operators to be used in the mating. After

and it is capable of handling a multidimensional phase spacée new generation of pulse shapes is created, the cycle repeats.

in the presence of noise. Previous work with adaptive feed-

baf:k found genetic algqrithn_(s_r similar evolutionary strat- specifying the phase and amplitude at the various frequency
eg|e§[14]) adept at solving similar problenﬁﬂ;.,S,.lﬂ.-A GA _components of the laser pulse. The algorithm typically con-
provides a general, robust approach to optimization, requirgq'the phases for 20 to 60 colors, linearly interpolating the

ing little prior information about the problem to be solved. ases for colors between the specified frequencies. Unlike
(I;_l;frtherrgprel,l trf'e GAhcan g(_eneratelnewhpulse shape_sklth e phases, which vary continuously, the amplitudes are set
ier radically from t € previous pulse shapes, to QuICKLY ot discrete levelgbetween 3 and 40 The actual number of
samplg d|ffferent sections of the phase space. Our. GA ImIOIeélmplitude genes was usually less than the number of phase
mﬁnmtgtlgr;tgngs:gfri;;? cggétir?gdszct))?gtg Genetic Algo- gene_s(betwee_n 10 and 20For some of the experiments, the
' ._learning algorithm is only allowed to vary the phases of the
ﬂequency components. This fixes the energy in each pulse

algorithms in_spire_d by bio_logical evolution. In evolution, shape, and the algorithm simply determines how to best dis-
natural selection links a string of genes to the structures thzﬂibute’this energy in time

it represents. The gene string carries all of the information, Our population normally consists of 60 individual pulse

while a structure’s success determines its chance of reF)r%’hapes. The first generation is composed of random individu-

dulcmg: Naturet !mows no;hlng about ;hf [t:)rol?[lem to be Is. Each pulse shape in the population interacts with the
solved, gene strings encoding successiul structures mere ysical system under investigation and is evaluated for fit-

reproduce more often. During reproduction, the algor'thmness. Our learning algorithm implements a process known as

Offspring h i i q "Bulette wheel selection, in which an individual's chances of
Spring have new gene strings representing new, an po‘?"eproduction are proportional to its fithess, so that more fit

sibly more successful, structures. By incorporating thes<?ndividuals reproduce more often. In addition, a given num-

|deas_b|a GAl\ <t:_ar;(stolvet sgrprli;wngly d'ﬁ'ﬁu“ probl_ems_. EaChber of the most fit parents are passed on to the next genera-
POSSIDIE SOIULIONSIUCIUTG 1N the Search Space IS given a 4, - g technique, known as elitism, ensures that good

rep_re_sentatiorﬁgene string _Th_is_ repres_entation is called an genetic material is not lost if by chance one of the best indi-
|nd|V|dua_I, and a group of 'nd,'v'.duals IS callgd a pOpU|at'o.n'viduaIs is not chosen for reproduction or does not reproduce
A basic example of a GA’s implementation is shown in fruitfull
Fig. 2. Each individual in the population is evaluated on a
given molecular sample. The individuals are ranked from
most to least fit based on a predetermined single-valued feed-
back function(the fitness These individualgparent$ then The protocol for the production of new children is carried
reproduce according to some protocol, called mating. Theut by mathematically defineaperatorsthat act on the gene
most fit individuals reproduce more than the least fit onesstrings of the pulse shapes. A traditional GA uses a mixture
The offspring(children form a new populatiorithe second of crossoverand mutationoperators, both of which are de-
generation This reproduction and evaluation process re-scribed below. We have incorporated new operators to in-
peats itself until terminated. The fittest current members otlude many different methods for searching the available
the population survive until the end. phase space. The algorithm then combines the entire set of
In our experiments, each individual corresponds to a pulsenating operators into a pool, and the various operators are
shape, which is encoded as a string of floating point numberallowed to compete against each other for the chance to pro-

B. Operators
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duce new pulse shapes. This learning strategy determingke time domain is to shorten the pulse and reduce structure
which combination of methods is best for solving the par-at long time.
ticular problem. Time-domain crossover is a variation of two-point cross-
We can categorize our operators as traditional GA operaever that first transforms the gene string into a time domain
tors (crossovers and mutation®r nontraditional operators. representation of the pulse by performing an inverse fast
Traditional operators generate new pulse shapes from olBourier transform(IFFT). It then performs a standard two-
ones on a strictly statistical basis. Traditional operators thapoint crossover on the time domain pulse representation and
we use includdwo-point crossoveraverage crossovemu-  transforms the pulse back to the frequency domain via a
tation, and creep Nontraditional operators generally search FFT. This operator is useful for problems that involve time
the phase space by modifying the pulse shapes in a way thdbmain correlations in the pulse. High-order processes that
is guided by the physics of the system. Examples of thes@lepend sensitively oh(t) are examples of such problems,
operators that we use inclugenoothingtime-domain cross- and we have shown that the time domain crossover operator
over, and polynomial phase mutatiorA well-chosen set of performs well in these situations.
operators can greatly enhance the performance of the learn- Polynomial-phase mutation produces children by replac-
@ng algorithm. Our Iearn_ing algorithm is general and not Iim-ing| a portion of a gene string with a polynomial phase func-
ited to the operators listed above. As has been discussgf, with a small degree of random variation. The resulting
elsewhere, it is possible to add other operators to the poohpase profile resembles a polynomial curve over a section of
even including entirely new search algorithms, such as sim he spectrum. This operator and smoothing work well in con-

lated annealing[lG]._ If simulated z_;mnealing happens to b_e junction to produce pulses with smooth polynomial phase
the method best suited to the particular problem, the learnin hich have simpler interpretations in a time-frequefioy '
algorithm will discover this, and allow simulated annealingWigner or Husimj representatiofil7] h

to control the reproduction process.

Appendix A gives the mathematical form of each of the
operators that we use. A basic operator employed in most
traditional GA’s is known as-point crossover. This operator ~ The adaptive algorithm determines how to best solve a
selects a portion of the gene string from each of two  problem by evaluating “operator fithesses.” Like the indi-
more parent pulse shapes, and then exchanges this sectioidual pulse shapes, each of the operators in the pool is
of the gene string between the two parents. The resulting pa@valuated to form a basis for operator selection; each opera-
of gene strings are the two new children pulse shapes. Wtr is chosen to produce new pulse shapes with a probability
use a two-point crossover, which snips the gene string at twproportional to its own fithness. The operator fitnesses are
random locations and exchanges the genetic information afontrolled by compiling an operator geneology to keep track
the two parents between these two locations in order to prosf the operators responsible for creating each individual, and
duce two children. Average crossover also selects two paremtssigning a “credit” anytime an operator produces a very fit
gene strings, but rather than exchange genetic informationew pulse shape. Thus, operators that produce good pulses
between them, it averages the values of all the genes fromre given the opportunity to produce more children. Specifi-
the two parents to produce a single child. One importantally, credit is assigned when eithét) an individual pulse
difference between average crossover and two-point crosshape in the current generation is more fit than the best pulse
over is that average crossover can introduce new gene valusbape of the previous generation,(8) an individual was an
that were not present in either parent, while two-point crossancestor of a pulse shape that is more fit than the best pulse
over simply exchanges values between the two parents. shape of the previous generation. Passing credit back more

Another traditional operator that we employ is mutation.than one generation is important, since some operators tend
This creates a single child from a single parent by randomlyto act in concert. For example, mutation may change genes
reassigning the values of a group of randomly selectedh ways that are not beneficial until combined with certain
genes. Creep, an operator similar to mutation, reassigns vadther genes in the gene string. By combining the changes
ues for selected genes incrementally, adjusting the previoumade by mutation, two-point crossover may be able to pro-
values by a small but random amount. Like average crossduce fitter children. Passing the credit back a generation or
over, both creep and mutation can introduce new gene valudwo insures that the mutation operator is also rewarded for its
into the population. contribution.

Our nontraditional operators only act on the phase genes We begin our algorithm by assigning each operator an
of the pulses, leaving the amplitudes fixed. One of the noninitial normalized fitness, or weighting. The initial weight-
traditional operators we use is smoothing. The smoothingngs are determined by various methods, including empiri-
operator creates a new pulse from a single parent by pegally (from both experiments and simulationsr through
forming a three-point windowed average over the phase valprior knowledge of typical algorithm performances. After the
ues in the gene string. This operator works very well forfirst three generations, the operator fitnesses are allowed to
problems that require smooth phase profiles across the banevolve. At this point, the weight for each operator has two
width, and it also aids in the interpretation of the resultsparts: a base weigtithe value of the operator’s fithess dur-
because it produces pulses that are not plagued as much g the previous generatipand an adaptive weiglithe op-
the entropically driven variations in gene values that someerator’s fraction of the total credit assigned to all individuals
times arise from the GA. The action of smoothing as seen iduring the previous three generatipné\fter each subse-

C. Adaptive operators
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guent generation, each operator’s new fithess is a weighted

sum of its current base weigt85%) and its current adaptive Fsignalzf thgw(t)MJ dtES(t). 2
weight (15%). Adaptive weighting allows the operators that

prOduce better children to increase their Operator fitness. This If the input field Strength is not too |arge' this description
serves two functions. First, this process speeds up the cogf the interaction gives accurate predictions for the second-
vergence of the algorithm, since the operators that are n®{armonic generation without including other nonlinear ef-
producing better children, and therefore not helping the evofects. For all of the frequency doubling experiments and
lution, are prevented from dominating the reproduction prosimulations, the amplitude of each frequency component in
cess. Second, the fitnesses of the different Operators can yleﬂﬁe pu|se is kept fixed. On|y the phases may vary. The laser
insight into the dynamics of the learning algorithm and alsopy|se energy is therefore constant, and the algorithm deter-
into the physical system itself by monitoring each operator'smines how to distribute this energy in time.

fitness as a function of the generation. Possible control The optimal pulse shapes are best viewed as Husimi dis-
mechanisms can be tested by introducing new physicallyriputions. The Husimi distributionQ(t,w) is calculated

motivated operators and evaluating their success. Howevefiom the measured fielfi(w) in the frequency domain:
the reproductive process is not required to “know” about the

particular goal for the problem. The success of the algorithm B ot e (1= 22— (t—t")2
relies on the fact that the adaptive pool of operators searches ~ Q(L¥)= dt'dv’S(t’,v")e )
vast regions of phase space efficiently, finding successful
individuals without any prior knowledge.

The full power of the learning algorithm is best put to use
in problems where the experimental knobs are all coupled—
when the different degrees of freedom are not independent &¥(t,») is the Wigner function whose marginals represent the
each other. In our experiments, the phases and amplitudes pewer spectrunP(v) and the temporal intensity(t) of the
the individual colors are coupled by the system Hamiltonianlaser pulse:

In a completely decoupled basis, the problem is reduced to a

series of simple one-dimensional searches for each of the f dv'S(t, v’ )=1(t), (5)
genes. However, one does not know what this basis is in

general. In a coupled basis, crossover has been demonstrated

to be a very valuable operator in selecting new pulse shapes f dt’S(t’,v)=P(v). (6)
that out perform their parents.

S(t,v)zf E(v+ v )E*(v—v")ed " tdy’. 4

Husimi distributions are generated using the values of the

IV. EXPERIMENTS phase and amplitude that the pulse shaper programs onto
A. Preliminary test of learning feedback: Second harmonic ~ €ach individual pulse shape. We use spectral interferometry
generation in BBO on a limited number of pulse shapes to verify the correspon-

L i ) dence between the phase and amplitude profile of the pulse
Many of the characteristics of adaptive learning are demy, jts representation on our pulse shaper. Since each con-

onstrated by the simple control experiment of secondyergence run of the algorithm has the potential to provide a

harmonic generationSHG). Feedback experiments using yaqt amount of information regarding the problem under
SHG have previously been carried out with the goal of tary,qy we monitor not only the optimal pulse shape solution,
geted pulse compression or shapifig,19. Our primary .+ ais0 compare this solution to other competing solutions
goal was to investigate the dynamics of our algorithm a”‘fom individual generations throughout the run.

the learning process in a_vvel!-characterized and Wel_l-studie Figure 3 shows the Husimi distributions for pulses opti-
system. Frequ%ncy doubling in a noncentrosymmetric crystglizeq to either maximize or minimize frequency doubling in
with a large x') provided us with this opportunity. Even B-barium boratgBBO). The results of both simulations and
though the interaction of the light field with this system Cangyneriments are shown for comparison. Comparison of pan-
be described classically, this experiment illustrates featureg;s 5 andc reveals that experiment and simulation arrive at
that are relevant to all the experiments described in this pane same result for maximizing SHG, except for a small

per. In add_ition we are able to simulate the expgrimenta mount of quadratic dispersidohirp) evident in the experi-
feedback signal, which allows us to compare learning algomenta| result that is within our measurement resolution of
rithms on the model with experiment. the laser pulse.

In the low-intensity regime, the interaction of the laser  \yhen the algorithm minimizes the SHG, solutions from
pulses with the crystal can be described by a nonlinear pd;,ih the simulation and experiment contain structurk( .
larization that is proportional to the square of the input lightyyq initially expected the solutions for the spectral phase

field: #(w) would contain only the lowest nontrivial order
PuL(20) = xPE(w)?. (1) [ ¢(w)=kw?]. Given the AOM’s con_straint of a max_imu_m
allowed phase change between adjacent frequencies in the
This nonlinear polarization acts as a source or driving ternlight pulse, quadratic phase is the most efficient single-order
in the wave equation for a field ate? The experimental phase variation, since it allows for the greatest amount of
feedback signal is the integrated second-harmonic intensitytotal phase variation across the spectrum. However, the al-
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l FIG. 4. The fitness of the best individual is plotted as a function
" | ‘ u ' l) of generation for a simulation of SHG maximization. The upper two
‘ ‘ curves, the dashed and plus lines, compare two runs of the learning
' | “ algorithm using all the same operatdiscluding smoothing, but
starting with different random initial populations. The solid line is a
third run without thesmoothingoperator.

371 phase modulatiofSPM), whereas in the low-intensity limit

10 0 10 -10 0 10 there is no evidence of SPM. Simulations are also consistent
with SPM in the crystal, which contributes to variations in
the solutions as the intensity is increaged]. At higher
pulse energies, SPM is no longer negligible. Evidently, SPM
SHG in BBO. Panelsa andb are experimental results for maximi- transform limited input pulse is no longer optimal for maxi-
zation and minimization of SHG, respectively. Panelandd are mum SHG.
the optimal pulse shapes generated using a simulation modeling the The interplay of multiple operators during the algorithm

SHG process. The va_lue of the Husimi function is indicated by theCan yield further insight into the learning process. Figure 6
darkness of the shading.

Time [ps]

gorithm finds that a single order of phase is not the most 382 4
efficient way to minimizd (t) [20]. We evaluated pulses that
were simply chirped in time by programming them with the \
maximum amount of quadratic-only phase allowed by the

resolution of our pulse shaper, and found that they did not Z
perform as well as the solutions found by the learning algo- _, 5
rithm (see Fig. 3. N 382 s
Simulations provide rapid testing of the performance of = \ 5
. . . P <
many possible operators. For instance, Fig. 4 shows the best 2 =
fitness as a function of generation for three different runs of % g
the SHG simulation, both with and without the smoothing 2 37 g
operator. The addition of the smoothing operator allows the = 387 g
algorithm to achieve higher fitness more rapidly and con- .
verge sooner. In the absence of noise, the best fithess in- \

creases monotonically as a function of generation, as guar-
anteed by elitism.

When the intensity of the light increases, our simple 3
model is no longer adequate to describe the doubling pro-
cess. Figure 5 shows the changing optimal pulse shape for
maximization of SHG as the energy of the input pulse is F|G. 5. Husimi plots of the optimal pulse shapes for SHG maxi-
increased. The optimal pulse in the high-energy solutionsnization as the laser energy is increased. At higher input energies
acquires large third- and fourth-order dispersion. The shape@ipper panels the incident pulse contains higher orders of disper-
pulse spectrum at high intensities shows significant selfsion that broaden the pulse in time.

-5 0 5
Time [ps]
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1 ' ' - — each individual was simply the integrated blue light intensity
@ Two-Point Crossover db h diode i . h h
ool & Random Gene Mutation U as measured by a photodiode in a regime where the response
— Polynomial Phase Mutation of the diode was linear. The frequency doubling experiment,
0.8f o Q;i?g;g’:::%’;‘;p i therefore, provides a clear testing ground for the learning
o7l -4 Smoothing 1 algorit_hm. In_other experime_znts, _it is not_ always so clear how
2 to assign a fitness to each individual, given the nature of the
soama 1 measurement to evaluate the success of each pulse.
i
5057 a
g
§.0-4' B. Controlling dissociative ionization in diatomic sodium
0.3F We next explore nonlinear control mechanisms for ioniza-
02 tion of diatomic sodium. This experiment provides further
| opportunities to understand the learning algorithm. However,

¢ o
Bx bia A XX r unlike second-harmonic generation, which can be described
'°'°‘§'j*“*‘"?""""";"""‘“‘ o classically, this is strictlyg quantum system. Here, the adap-
5 10 15 20 25 tive algorithm and pulse shaper must control higher-order
Generation nonlinearities. The multiphoton ionization of this system was
FIG. 6. The fitness for multiple operators plotted as a functionPreviously studied using low-energy laser pulses with a
of generation for a single run of the learning algorithm while maxi- single photon resonance enhancenj@gi. Our experiments
mizing SHG. use lower-energy laser photons that are below this resonance.
The shaped pulses were focused into a molecular beam of
shows the operator fitness as a function of generation fosodium, causing the molecules to undergo multiphoton ion-
several of our common operators during the frequency douization. A time-of-flight mass spectrometer allowed identifi-
bling experiment. The operators are initialized in a tradi-cation of molecules that dissociatively ionized and those that
tional GA configuration, with two-point crossover dominant. did not. The fitness function was a normalized ratio of the
For the first few generations, the operators create children iion yield for the two channels. The learning algorithm then
proportion to their initially assigned fithesses, but after theworked to optimize either dissociative or nondissociative
third generation, their fitnesses are allowed to freely chang#nization. As in the doubling experiment, we restricted the
in accordance with the procedure described earlier. As Fig. @lgorithm to control only the phases of the colors, with the
demonstrates, the algorithm finds that two-point crossoveamplitudes fixed. The algorithm was able to find pulse
and simple mutation are not always the best operators, and shapes that could maximize either channel. In the case of
different points during the evolution, different combinations maximizing the nondissociative channel, the optimal pulse
of operators become optimal for producing the best childrenyielded 88% nondissociative ionization. When we optimized
Polynomial phase mutation, smoothing, and average crosshe other channel, we found 73% dissociative ionization.
over each produce very fit children at different stages of the Figure 7 shows the Husimi distributions for pulses opti-
run. mized to either nondissociatively or dissociatively ionize the
This example shows that operators cannot be evaluated sodium molecules. In addition, the ion yield as a function of
isolation, because they affect each other. For examplahe laser energy for an unshaped laser pulse is plotted for
smoothing is more important when other operators tend t@oth of the channels. The solutions resemble the optimal
introduce unnecessary phase variations across the pulgsulse shapes for the second-harmonic generation experiment
Also, the performance of the operators cannot be evaluate@ee Fig. 3. For the dissociative channel, the pulse shape is
instantaneously, but must be evaluated over the course &imilar to the short-pulse, high-intensity solution of SHG
several generations. An operator that is not performing wellnaximization, while for the nondissociative channel, the
at one point during the run may become more useful later orpulse shape is similar to the long-pulse, low-intensity solu-
Since some operators that perform poorly at the beginning aion of SHG minimization. These results are consistent with
the algorithm often perform very well toward the e(elg., the fact that the two channels in log-log plot have different
average crossovertheir fitness is not allowed to fall below slopes, and that the branching ratio is a function of intensity.
some minimum valué5%). This lower bound ensures that  The sodium experiment demonstrates the importance of
every operator always has some chance of being used durinlge choice of basis for encoding pulse shapes. The learning
reproduction. Finally, the performance of each operator dealgorithm incorporates the time-domain crossover operator,
pends on the problem. Performance of a given operator cawhich allows it to choose the basis best suited to the prob-
help determine whether its action on an individual is physi-lem. Figure 8 shows the operator fithesses as a function of
cally relevant. generation when optimizing the nondissociative channel.
The fitness function assigns each individual pulse shape &here are five operators—four in the usual frequency basis,
single-valued number, reflecting that individual’s ability to and the time-domain crossover operator in the time basis. As
achieve the goal. Since an individual’s fitness is used in parFig. 8 shows, the time-domain crossover operator increases
ent selection(see Appendix B for detailsits determination its fitness at the expense of the operators working in the
is an important step in the performance of the algorithm. Fofrequency basis. Correlations in the time domain are an im-
the frequency doubling experiment, the fitness assigned tportant control parameter for this problem, as expected.
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i 1 T T T T T T
Time [ps] @ Two—-Point Crossover
-15 0 15 09k = Time-Domain Crossover |
385 & Random Gene Mutation
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0.8+ @ Average Crossover
4+ Random Gene Creep

[zH 1] Asuanbaig

Operator Fitness

377

o
o

o
s

Generation

+ Non-Dissociated Ions

o Disissidied Ioiis FIG. 8. Operator fitness as a function of generation for multiple

operators for optimizing the nondissociative ionization channel of
sodium.

log lon Yield (arb.)

-2.0+

25 26 27 28 29 30 31 32 ing. Impulsive scattering occurs when the laser pulse is
log Energy () shorter than the vibrational period of the molecule. In the
frequency domain, this means that the bandwidth of the laser
385 is broad compared to the vibrational energy spacing of the
mode in question. The result is that a stimulated Stokes wave
can be seeded with light that is already present in the laser
and does not have to build up from noise, thereby making the
process much more efficient than the nonimpulsive case.
Shaped laser pulses should allow selective control over ex-
citation of Raman modes since the pulse shaper can modu-
late the spectrum oE?(w), the driving term in Raman ex-
377 citation [23]. In the time domain, this corresponds to

-5 ) 0 5 resonantly driving some modes but not others.
Time [ps]

[zH 1] Asuanbaig

1. Controlling SPM in liquids

Impulsive scattering in a multimode molecular liquid was
studied in CCJ) because it has several low frequency modes
yield. In between is a log-log, plot of the ion yield into each of with .relallt'veriy hlgf? Cross Slecltlor;)S'I.. We d(ljsck?verfd’ howeverf’
the two channels as a function of the energy of an unshaped Iasfa:gat _'t also has a large polarizability, and there ore, mo_st 0

the light that was scattered near the laser bandwidth in the

Ise. . .
puise forward direction was a result of SPM. We found that we had

Another possible control mechanism involves the parity@ Significant degree of control over the spectrum of the for-
of the phase profile of the pulse: Is the phase as a function d¥ard scattered light, and so as an initial demonstration of the
frequency an even function, an odd function, or neither abou?apab'“t'ehs.’ﬂOf fthet appalr_athuts, we Stut(.j'ed. theCnEonIImear fre-
the central frequency? Parity control in nonlinear atomic abguEncyf ‘cj[h'. orin (ta_nS(ta_ 'ght propagating Im G bl'afrwy re-
sorption was previously demonstrated by Meshulach and gjpults of his investigation were previously publis E2#].
berberg[4]. The amount and sign of chirp on the pulse is Here,_we descnbe.the learning process and analyze the solu-
another possible way to control the population dynarffids t|or|1:s mdénorf det?'l'f SPM based Il feat
We investigated both possibilities using our pulse shaper ang1 eedback goals for aré based upon small features

feedback, but saw no conclusive dependence on the dissoci at are barely visible in the spegtra qf the forward scattered
tion fraction with either method. The adaptive pool of Opera_radlatlon after unshaped pulses illuminate the sample. These

; dulations are typical spectral features for pulses that have
tors performs a more effective search of the phase space. M° . . .
P P P undergone SPNI25]. The learning algorithm is able to con-

C. Controlling molecular liquids trol their frequency and phase by altering the shape of the

' driving pulse. Only phase modulation is used, so that the

Molecular liquids pose a greater challenge for learningpulse energy is fixed. Figure 9 shows the spectra of four
control, because of rapid relaxation and inhomogeneoudifferent pulses after propagating through the £&mple.

broadening. Our initial goal was to control molecular vibra- The first panel shows the spectrum for an unshaped pulse,

tions in liquids through impulsive stimulated Raman scatter-and the following three panels show spectra for pulses that

FIG. 7. Husimi distributions of the optimal pulse shape for con-
trolling sodium ionization. The upper plot is for maximizing the
nondissociative yield, while the lower plot is for the dissociative
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FIG. 10. Control of Raman scattering in methanol. Paael
FIG. 9. Power spectra for pulses propagating through 1 cm ofhows the forward scattered spectrum for an incident unshaped la-
CCl,. The top panel shows the power spectrum for an unshapeger pulse. Pandd shows the spectrum after the learning algorithm
laser pulse. The following three panels show spectra for pulse§ptimized excitation of both modes while minimizing peak broad-

shaped to controland enhandethe spectral modulationgFrom ening due to other nonlinear effects. Pawgeshows spectra for

Ref.[24], reprinted by permission. optimization of each mode independently. Pashehows the spec-
trum for a pulse that minimized Raman scattering from both modes.
are shaped to control the spectral modulations. (From Ref.[24], reprinted by permission.

Model calculations can determine whether SPM is re-

sponsible for the observed spectra. The simplest descriptiag broken for a short pump pulse because the backward trav-
of SPM, which doesn't include spatial effects such as selgjing Stokes wave passes through the pump wave before any
focusing, characterizes the nonlinear interaction between thgypreciable buildup26].

laser and the medium through a intensity-dependent index of The time scales for the interaction between the molecules

refraction: and the laser pulse are set by the vibrational period of the
active modes and their coherence time. Stimulated scattering
with pulses that are longer than the coherence time reaches a
. . . ) . steady state and exhibits a strong dependence on pulse dura-
wheren, is the field free index, | is the instantaneous IasertiOn because it is a stimulated process: The more photons

intensity, andn, is an empirically determined coefficient. .t interact with the molecules within the coherence time,
The calculated power spectra for laser pulses that have agze ore Jikely the molecule will be stimulated to absorb a

quired a phase proportional to their instantaneous intens;i%lser photon and emit a Stokes photon. Scattering with
show intensity modulations with the same dependence o '

pulse shape that we found in the experimesge Fig. 9.

n(t)=ng+nyl(t), (7)

Bulses that are shorter than the coherence time but longer
than the vibrational periodtransient Raman scatteringx-
hibits little dependence on the duration of the laser pulse
[27,28. Scattering with pulses that are shorter than the vi-
The learning algorithm can also control the interactionbrational period(impulsive scatteringresults in very effi-
between the driving laser pulse and the vibrational modes ofient stimulated scattering as discussed ad@@e30.
a multimode molecule without making use of impulsive scat- With an unshaped laser pulse focused into 10 cm of
tering. In order to avoid confusion between Stokes light andnethanol, the spectrum shown in Fig.(40is obtained. The
light generated by SPM alone, we chose a molecule with &vo small peaks in the spectrum correspond to Stokes light
much larger Stokes shift, since there is much less light genfor dv=1 for the symmetric and asymmetric C-H stretch
erated through SPM further from the central laser frequencymodes. The lens focal length is 40 cm. The first feedback
Methanol (CHOH) is ideal because it has two closely goal is to maximize the contrast between the two Stokes
spaced modes with large Stokes shifts and large cross segeaks and the background light resulting from SPM. The
tions. Forward scattered radiation is the feedback for the aforward scattered spectrum in the spectral range of the
gorithm. There is no backwards scattered Stokes radiatioStokes radiation is collected for each laser pulse. The num-
because of the short duration of the shaped pump pulseer of Stokes photons at a particular frequency is a measure
(~1 ps). The forward-backward symmetry of the scatteringof the number of molecules excited in that particular mode;

2. Controlling vibrations in multimode molecular liquids
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however, since SPM is present and the bandwidth of the 1.0 ——
shaped laser pulses is large, the forward scattered spectrum :
also contains some misleading information. The feedback 0.8 |
function must filter this out. Different fitness functions work I
best, depending on which pdalare optimized. A typical 06 L
fithess function is: — i
© I
NC(w) Clw) = 04
oy =% >
wr<wi<wp WhH— Wy 0> wp,0j<op A(U_(('Ub_(ur) -g 0.2
o] L
Here,C(w;) is the number of spectrometer countswaf A @ g 0.0 ———F————7———1—— —
is the bandwidth of the spectrometes, is the low- - i 1
frequency limit for the desired peakp, is the high- © 08 N
frequency limit for the desired peak and N is an empirically © i ]
determined integer. We set the valuesuwgfand wy, by nar- & 0.6 |-
rowing the bandwidth of shaped laser pulse and measuring @2 ;
the width of the Stokes peaks in the forward scattered spec- 0.4 -
trum. We find thatN=2 andN=3 work well. A pulse so- I
lution that optimizes the contrast between the two Stokes 02
peaks and the background is shown in Fig(kl0 00 [ —

The next goal is to generate spectra with each peak sepa- |1.I18|
rately. These spectra, shown in Fig.(dQ correspond to ex- 4 1

citing symmetric or antisymmetric modes alone. The Stokes Frequency [10 cm ]

shift for these modes is large compared to the bandwidth of .

the driving laser pulse. This is equivalent to saying that the FIG. 11. Stimulated Raman scattering igHg and GDg. Top
Raman excitation is nonimpulsive, and therefore, one canndtanel shows spectra foreHs (left curve and GDs (right curve
seed the Stokes radiation directly with the laser light. Ou[separately after optimization of the pulse shape to excite the breath-
final feedback goal is to eliminate all forward scattered light'"9 Mede of each molecule. Bottom panel shows the results after
at either of the two Stokes frequencies, with the resultin%smg the learning algorithm to excite each molecule separately in a

spectrum shown in Fig. 10). 0-50 mixture of the two.

1.15 1.16 1.17

11 (top panel, left curve The deuterated benzene %)
generates the spectrum shown in Fig. dp panel, right
curve, demonstrating the expected shift of the mode fre-
The Stokes shift for the C-H stretch is almost 3000 ém  quency. Finally, a 50/50 mixture ofg8lg and GDg is placed
and the laser bandwidth is roughly 100 ¢l so the scat- in the cell and we ask the algorithm to selectively drive each
tering is definitely nonimpulsive. Another possible mecha-of the two modes. Figure 1fiottom panél shows the learn-
nism that could account for our ability to selectively excite ing algorithm can select the8s mode but not the §Dg
the symmetric or asymmetric stretch mode of methanol is anode. This demonstration of a lack of control is consistent
coupling between the electronic polarizability of the atomswith the idea that the mode selection is an intramolecular
and the vibrational modes. The results with ¢ve shown  effect that relies on coupling between the two modes inside
that the light generated from SPM of the pump beam is veryeach molecule, rather than seeding of one of the modes with
sensitive to the input pulse shape. A large contribution tdight from SPM.
SPM, particularly for femtosecond pulses, is the atomic po- Another experiment supports this conclusion: Experi-
larizability [31]. Perhaps the atomic polarizability generatesments conducted in CQOgas show that light generated by
SPM to seed one of the two Raman modes but not the otheSPM more than a few hundred crhaway from the laser
This hypothesis was tested by replacing the methanol witfrequency is extremely noisy and not reproducit8g]. The
a mixture of benzene () and deuterated benzene reproducibility of SPM spectra increases nearer the fre-
(CsDg). Similar control experiments were attempted, exceplquency of the driving laser. Figure 9 shows that SPM pro-
now the two modes of vibration were in two different mol- duces stable spectra very near the laser frequency. However,
ecules. The ring breathing mode of benzene ( far from the laser at the frequency of the Stokes light from
=992 cm'!) has a large Raman cross section making excithe C-H stretch mode, the light produced by SPM would be
tation easy. Deuterated benzene has a frequencypof too noisy to reproducibly seed one of the two Raman modes
=945 cm !, which is shifted by 47 cm!, similar to the  but not the other.
mode splitting in methanol. Initially, an unshaped laser pulse Another possible control mechanism is suggested by ana-
was focused into the experimental cell with purgHg, and  lyzing the optimal pulse shape solutions for exciting each of
we measured no forward scattered Stokes light. We thethe two modes. Figure 12 shows the Husimi distribution for
used the learning algorithm to find a shaped pulse that gerpulses that were optimized for excitation of the asymmetric
erates the forward scattered Stokes radiation shown in Figtretch mode in methanol, while Fig. 13 shows the Husimi

3. Using the adaptive algorithm to investigate possible control
mechanisms for SRS in methanol
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FIG. 12. Husimi plot of the optimal pulse shape to excite the ghase
asymmetric stretch in methanol. enes

distribution for pulses optimized for excitation of the sym-
metric stretch mode. The structure of the optimal pulse shape
for the symmetric stretch mode suggests a “quasi-

impulsive” model, where the frequency separation of the F|G. 14. Genetic variation as a function of generation. Data is
two subpulses is exactly the beat frequency between thehown for two separate runs of the learning algorithm. Top panel
symmetric and asymmetric modes. The term ‘“quasi-shows the genetic variation for optimization of the symmetric
impulsive” is used, since although the laser bandwidth isstretch mode, and the bottom panel for optimization of the asym-
narrow compared to the Stokes shift of each mode, it is widdnetric stretch mode. The vertical axis represents the gene number.
in comparison to the spacing between the modes. This i5or reference, the power spectra are overlayed to the right of the
equivalent to saying that in the time domain, the laser pu|s@hase genes. Light shading represents a large degree of variation
is long compared to the vibrational period of the modes, bumong the individuals, while dark shading represents low variation.
short compared to the beat note between them. The beat note . . . .

period is 285 fs, while the time duration of the unshaped ngeral tr_ends In an entire popul_atlon_ca_n _prowde val_u-
laser pulse is 150 fs. Therefore, energy could be transferreﬁb_le information, since looking at a single individual, even _|f
between the two modes by engineering temporal structure ift IS the very tl;)est er’]I.Sﬁ shape of the group, does r&ot ?]!Vﬁ
the driving pulse at the coupling frequency between the thnformatul)n aﬁf".‘t which features e}lre r?ecr:]essa]r‘y and w 'ﬁ
modes. Once an initial vibrational population is established"‘r? merr(]aysu I|C|ent. One Cﬁnn_ot tle \IN et ira eature in tde
in some combination of the two modes, the population coulPY'S€ Shape plays some physical role in the process under

be redistributed by the shaped pulse through an impulsivdvestigation, or whether the algorithm simply did not re-
coupling of the two levels. move the feature since its presence did not degrade the fit-

ness. We test this by repeating a convergence sequence of
the learning algorithm with different random initial popula-
385 tions. If the best solution has similar structure multiple times,
it is likely that the structure is physically necessary.
Statistical variations among gene values of individuals in
a population also reveals which genes are important for a
given problem and which are not. Figure 14 shows the ge-
netic variation as a function of generation for a run of the
algorithm during the methanol experiment. Light shading
represents a large degree of variation among individuals for
the value of a given gene, while dark shading represents low
variation. The variation is the normalized sum of the abso-
lute values of the differences between all of the genes’ values
in a given location on the gene string:

0 7 1
Generation

L

[THz]

Frequency

377

Time [ps]

N
4 0 4 > lai—gjl, 9
ij>i

FIG. 13. Husimi plot of the optimal pulse shape to excite thewhereg; ; is the value of geng for the ith,jth individual.
symmetric stretch in methanol. Since the genes are randomly initialized, all the genes begin
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with a light shading. As the algorithm converges, all genePolynomial phase mutation:
values become more similar through mating. The plots verify Pl D () Al
the intuitive idea that near convergence, frequency compo- =[Pp(@i). Ap(wi)],
nents whose amplitudes are large have smaller variation in [+ Aw)] if j<i or i<k
their programmed phase values than frequency components c:[ L

whose amplitudes are zero. The power spectra shown at right

match with the darker regiorismaller variationin the plots.

[®p(wi),Ap(wi)], all otheri,

where n=an integer in[0,6].

V. CONCLUSIONS Creep:
We have demonstrated control over a variety of systems P=[Py(wi),Ap(w)],
using an adaptive learning algorithm. The algorithm uses a )
variety of searching methods and adapts itself in order to . _ |[Pp(@i)*0.25A,(wj)=0ne leve] if r;<0.10
arrive at an optimal solution. This learning technique is gen- [@y(wi),Ax(wi)], 1;=0.10.

eral and can be applied to other systems since the interaction

does not require specific resonances and no prior knowledgemooth:
of the system Hamiltonian is required. The adaptive ap- P=[® (w),A,())]
proach provides information about the physical system PRI T
through examination of the solutions, the operator dynamics, D (@) + P p(wi41) +Pp(wi_1)

and the choice of basis. Future goals include controlling C=[ 3 Aploy) |.
bond excitation to drive reactions in bimolecular solutions.

Time-domain crossover:
P1=[®p1(wi),Apr(wi)],  Pr=[Ppa(w;),Apa(w)],
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APPENDIX A: DEFINITIONS OF OPERATORS
[Ex(t)] if j<i<k

We haver;=a random number if0,1], P=parent,C )
[El(ti)]r a”otheri,

=child, ®=phase A=amplitude. All phases are referenced 2

to adjacent genes to maintain continuity. We use multiple ,

forms for some of the operators. C1=FFT(Cy),
Two-point crossover:

C,= FFT(Cé)
P1=[Ppi(@i), Apr(@i)], P2=[Ppa(wi).Apo(wi)] with amplitudes kept fixed to one.
o [[@ral@) An(@)] if j<i<k
1= [®p1(wi),Api(wi)], all otheri, APPENDIX B: DETAILS OF FITNESS FUNCTION

Each individual is evaluated, and a single-valued fitness is

_[[(Dpl(wi)’Apl(w‘)] i j<i<k returned to the algorithm. Each individual’s fitness is trans-

=

[®pa(wi),Apa(wi)], all otheri. formed into a scaled fitness used for parent selection during

reproduction. The fitness scaling helps to ensure there is an

Average crossover: adequate degree of “selection pressure,” which is a measure
_ _ _ _ _ _ of how much successful pulse shapes are rewarded. Main-
Pi=lPpr(@i) Apr(@)], - Po=[Ppalwi) Apa(wi)] taining selection pressure becomes difficult when the range

Do)+ Ppa(w) Aps(w)+Ap(w)] of fithess values decreases as the algorithm converges. With-

_ [ 2 ; 2 if j<i<k out fitness scaling, the algorithm can stagnate since more fit
C pulse shapes receive little reward. Specifically, we use a lin-

[Pp,(@i),Ap (wi)], all otheri. ear scaling technique:

(Best fitness— (Unscaled fitnegs

Mutation: |
(Scaled fithegs= (Average fitness— (Best fitness +2

P:[q)p(wi):Ap(wi)]y

N ek Any scaled fitnesses less than zero are reset to zero. With this
[F2mri, Ap(w)] 1 J<i< scaling method the best pulse shape is selected as a parent
[Pp(wi),Ap(wi)], allotheri. twice as often as the average pulse shape.
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