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Coherent control using adaptive learning algorithms
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Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 14 August 2000; published 16 May 2001!

We have constructed an automated learning apparatus to control quantum systems. By directing intense
shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback
signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is
the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic
modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of
previous pulses in achieving a predetermined goal.
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I. INTRODUCTION

An original impetus for coherent control was mod
selective laser photochemistry. This dream of exciting a s
cific bond with a laser has dimmed for various reasons. C
trol is hampered by fast relaxation, complicated mo
structure, imperfect knowledge of the inter-nuclear potent
along arbitrary coordinates, and the distorting influence
the strong external light fields. Recent theoretical@1# and
experimental advances have led to successful control of
lecular ionization and dissociation@2,3#, atomic and molecu-
lar fluorescence@4–6#, and excitations or electrical curren
in semiconductors@7–9#. Control has been predicted an
demonstrated in several systems that have only two inte
ing pathways@2,8,9#.

Strongly coupled systems such as large molecules in c
densed phase are so complicated that it is nearly impos
to calculate optimal pulse shapes in advance. Recent ef
have used experimental feedback as suggested by Judso
Rabitz @1# to determine the optimal optical pulse shape
achieve a particular control goal@3,5#. In the absence of de
tailed knowledge of the system Hamiltonian, an algorith
must be used for selecting new pulse shapes inside the f
back loop.

This paper presents a detailed investigation of a learn
strategy incorporating a modified genetic algorithm~GA!
@10# in order to discover control pathways in complicat
physical systems. Experiments have been carried out
variety of molecular systems whose common feature is
existence of observable physical properties that depende
the incident~shaped! light. Several systems are described.
the gas phase, we explore nonlinear control of ionizat
channels in diatomic sodium. Several liquid phase exp
ments are also described, including control of self-ph
modulation in CCl4 and excitation of vibrational modes i
methanol and benzene.

In addition to traditional GA search strategies, we inc
porate other search methods that all run concurrently.
algorithm adapts itself during a run in order to search
phase space most efficiently. Because of this, it is possib
obtain physical insight into the problem under investigatio
not only through the pulse-shape solutions, but also by h
the algorithm arrived at those solutions. We demonstrate
our adaptive evolutionary algorithm is capable of controlli
a diverse array of systems.
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II. EXPERIMENTAL SETUP

The control light field is made with a Kerr lens mod
locked ~KLM ! titanium sapphire laser that produces 100
pulses with about 5 nJ of energy at a central wavelength
790 nm~see Fig. 1!. The pulses are temporally dispersed
150 ps in a single grating expander and amplified to 2 mJ
a regenerative amplifier at 10 Hz. The output of the amplifi
is split to form two beams. One beam is sent to the pu
shaper, and the other is used as an unshaped referenc
spectral interferometry measurements of the shaped pu
@11#. The pulse shaper consists of a zero dispersion stret
with an acousto-optic modulator~AOM! in the Fourier plane,
where different colors in the light pulse map to differe
positions on the modulator@12#. The AOM carries a shaped
acoustic traveling wave, which diffracts different colors wi
different phases and amplitudes. These colors are r
sembled at the output of the pulse shaper, yielding a tem
rally shaped laser pulse. In order to compensate for the
efficiency of the pulse shaper (10215%), we reamplify the
shaped pulses in a low-gain multipass amplifier. The pul
are then compressed in a single grating compressor. The
sulting shaped laser pulses are then directed into the mol

FIG. 1. Diagram of the experimental setup. The shaped la
pulses interact with a molecular sample, and a single-valued fe
back function is returned to the computer. The algorithm uses th
values to determine the mating procedure.
©2001 The American Physical Society12-1
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lar sample to be studied, and a predetermined feedback
nal is monitored.

III. THE LEARNING ALGORITHM

A. Constructing the algorithm

In previous work, we demonstrated control of simp
quantum systems using feedback@13#. Now we wish to con-
trol more complex systems where the optimal pulse shap
not knowna priori. The pulse shaper has 8 bit control ov
the amplitude and phase of 100 different frequency com
nents, so there are 21600 different pulse shapes. The physic
system couples different frequencies, so they cannot eac
optimized independently. This presents a vast phase s
for the search algorithm. The search must also be robus
the face of experimental noise, and capable of escaping l
maxima in a rough potential energy landscape.

These requirements led us to consider a genetic algorit
which fulfills all of these conditions: It does not rely on an
local information about the search space, such as derivat
and it is capable of handling a multidimensional phase sp
in the presence of noise. Previous work with adaptive fe
back found genetic algorithms~or similar evolutionary strat-
egies@14#! adept at solving similar problems@1,3,15#. A GA
provides a general, robust approach to optimization, req
ing little prior information about the problem to be solve
Furthermore, the GA can generate new pulse shapes
differ radically from the previous pulse shapes, to quick
sample different sections of the phase space. Our GA im
mentation is derived from theHandbook of Genetic Algo
rithms, a standard treatise on the subject@10#.

Genetic algorithms are a class of search and optimiza
algorithms inspired by biological evolution. In evolutio
natural selection links a string of genes to the structures
it represents. The gene string carries all of the informati
while a structure’s success determines its chance of re
ducing. Nature knows nothing about the problem to
solved; gene strings encoding successful structures me
reproduce more often. During reproduction, the algorit
has no regard for the structure represented by the gene s
Offspring have new gene strings representing new, and
sibly more successful, structures. By incorporating th
ideas, a GA can solve surprisingly difficult problems. Ea
possible solution~structure! in the search space is given
representation~gene string!. This representation is called a
individual, and a group of individuals is called a populatio

A basic example of a GA’s implementation is shown
Fig. 2. Each individual in the population is evaluated on
given molecular sample. The individuals are ranked fr
most to least fit based on a predetermined single-valued f
back function~the fitness!. These individuals~parents! then
reproduce according to some protocol, called mating. T
most fit individuals reproduce more than the least fit on
The offspring~children! form a new population~the second
generation!. This reproduction and evaluation process
peats itself until terminated. The fittest current members
the population survive until the end.

In our experiments, each individual corresponds to a pu
shape, which is encoded as a string of floating point numb
06341
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specifying the phase and amplitude at the various freque
components of the laser pulse. The algorithm typically co
trols the phases for 20 to 60 colors, linearly interpolating
phases for colors between the specified frequencies. Un
the phases, which vary continuously, the amplitudes are
at discrete levels~between 3 and 40!. The actual number of
amplitude genes was usually less than the number of ph
genes~between 10 and 20!. For some of the experiments, th
learning algorithm is only allowed to vary the phases of t
frequency components. This fixes the energy in each p
shape, and the algorithm simply determines how to best
tribute this energy in time.

Our population normally consists of 60 individual puls
shapes. The first generation is composed of random indiv
als. Each pulse shape in the population interacts with
physical system under investigation and is evaluated for
ness. Our learning algorithm implements a process know
roulette wheel selection, in which an individual’s chances
reproduction are proportional to its fitness, so that more
individuals reproduce more often. In addition, a given nu
ber of the most fit parents are passed on to the next gen
tion. This technique, known as elitism, ensures that go
genetic material is not lost if by chance one of the best in
viduals is not chosen for reproduction or does not reprod
fruitfully.

B. Operators

The protocol for the production of new children is carrie
out by mathematically definedoperatorsthat act on the gene
strings of the pulse shapes. A traditional GA uses a mixt
of crossoverand mutationoperators, both of which are de
scribed below. We have incorporated new operators to
clude many different methods for searching the availa
phase space. The algorithm then combines the entire se
mating operators into a pool, and the various operators
allowed to compete against each other for the chance to

FIG. 2. The adaptive algorithm begins by initializing a rando
population of pulse shapes. These pulse shapes interact with
molecular system and are ranked according to fitness. These
nesses, as well as the fitnesses of the various operators, are u
select the individuals and operators to be used in the mating. A
the new generation of pulse shapes is created, the cycle repea
2-2
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COHERENT CONTROL USING ADAPTIVE LEARNING . . . PHYSICAL REVIEW A63 063412
duce new pulse shapes. This learning strategy determ
which combination of methods is best for solving the p
ticular problem.

We can categorize our operators as traditional GA ope
tors ~crossovers and mutations!, or nontraditional operators
Traditional operators generate new pulse shapes from
ones on a strictly statistical basis. Traditional operators
we use includetwo-point crossover, average crossover, mu-
tation, andcreep. Nontraditional operators generally sear
the phase space by modifying the pulse shapes in a way
is guided by the physics of the system. Examples of th
operators that we use includesmoothing, time-domain cross-
over, andpolynomial phase mutation. A well-chosen set of
operators can greatly enhance the performance of the le
ing algorithm. Our learning algorithm is general and not lim
ited to the operators listed above. As has been discu
elsewhere, it is possible to add other operators to the p
even including entirely new search algorithms, such as si
lated annealing@16#. If simulated annealing happens to b
the method best suited to the particular problem, the learn
algorithm will discover this, and allow simulated anneali
to control the reproduction process.

Appendix A gives the mathematical form of each of t
operators that we use. A basic operator employed in m
traditional GA’s is known asn-point crossover. This operato
selects a portion of the gene string from each of two~or
more! parent pulse shapes, and then exchanges this se
of the gene string between the two parents. The resulting
of gene strings are the two new children pulse shapes.
use a two-point crossover, which snips the gene string at
random locations and exchanges the genetic informatio
the two parents between these two locations in order to
duce two children. Average crossover also selects two pa
gene strings, but rather than exchange genetic informa
between them, it averages the values of all the genes f
the two parents to produce a single child. One import
difference between average crossover and two-point cr
over is that average crossover can introduce new gene va
that were not present in either parent, while two-point cro
over simply exchanges values between the two parents.

Another traditional operator that we employ is mutatio
This creates a single child from a single parent by rando
reassigning the values of a group of randomly selec
genes. Creep, an operator similar to mutation, reassigns
ues for selected genes incrementally, adjusting the prev
values by a small but random amount. Like average cro
over, both creep and mutation can introduce new gene va
into the population.

Our nontraditional operators only act on the phase ge
of the pulses, leaving the amplitudes fixed. One of the n
traditional operators we use is smoothing. The smooth
operator creates a new pulse from a single parent by
forming a three-point windowed average over the phase
ues in the gene string. This operator works very well
problems that require smooth phase profiles across the b
width, and it also aids in the interpretation of the resu
because it produces pulses that are not plagued as muc
the entropically driven variations in gene values that som
times arise from the GA. The action of smoothing as see
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the time domain is to shorten the pulse and reduce struc
at long time.

Time-domain crossover is a variation of two-point cros
over that first transforms the gene string into a time dom
representation of the pulse by performing an inverse
Fourier transform~IFFT!. It then performs a standard two
point crossover on the time domain pulse representation
transforms the pulse back to the frequency domain vi
FFT. This operator is useful for problems that involve tim
domain correlations in the pulse. High-order processes
depend sensitively onI (t) are examples of such problem
and we have shown that the time domain crossover oper
performs well in these situations.

Polynomial-phase mutation produces children by repl
ing a portion of a gene string with a polynomial phase fun
tion with a small degree of random variation. The resulti
phase profile resembles a polynomial curve over a sectio
the spectrum. This operator and smoothing work well in co
junction to produce pulses with smooth polynomial pha
which have simpler interpretations in a time-frequency~i.e.,
Wigner or Husimi! representation@17#.

C. Adaptive operators

The adaptive algorithm determines how to best solv
problem by evaluating ‘‘operator fitnesses.’’ Like the ind
vidual pulse shapes, each of the operators in the poo
evaluated to form a basis for operator selection; each op
tor is chosen to produce new pulse shapes with a probab
proportional to its own fitness. The operator fitnesses
controlled by compiling an operator geneology to keep tra
of the operators responsible for creating each individual,
assigning a ‘‘credit’’ anytime an operator produces a very
new pulse shape. Thus, operators that produce good pu
are given the opportunity to produce more children. Spec
cally, credit is assigned when either~1! an individual pulse
shape in the current generation is more fit than the best p
shape of the previous generation, or~2! an individual was an
ancestor of a pulse shape that is more fit than the best p
shape of the previous generation. Passing credit back m
than one generation is important, since some operators
to act in concert. For example, mutation may change ge
in ways that are not beneficial until combined with certa
other genes in the gene string. By combining the chan
made by mutation, two-point crossover may be able to p
duce fitter children. Passing the credit back a generation
two insures that the mutation operator is also rewarded fo
contribution.

We begin our algorithm by assigning each operator
initial normalized fitness, or weighting. The initial weigh
ings are determined by various methods, including emp
cally ~from both experiments and simulations! or through
prior knowledge of typical algorithm performances. After th
first three generations, the operator fitnesses are allowe
evolve. At this point, the weight for each operator has t
parts: a base weight~the value of the operator’s fitness du
ing the previous generation! and an adaptive weight~the op-
erator’s fraction of the total credit assigned to all individua
during the previous three generations!. After each subse-
2-3
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PEARSON, WHITE, WEINACHT, AND BUCKSBAUM PHYSICAL REVIEW A63 063412
quent generation, each operator’s new fitness is a weig
sum of its current base weight~85%! and its current adaptive
weight ~15%!. Adaptive weighting allows the operators th
produce better children to increase their operator fitness.
serves two functions. First, this process speeds up the
vergence of the algorithm, since the operators that are
producing better children, and therefore not helping the e
lution, are prevented from dominating the reproduction p
cess. Second, the fitnesses of the different operators can
insight into the dynamics of the learning algorithm and a
into the physical system itself by monitoring each operato
fitness as a function of the generation. Possible con
mechanisms can be tested by introducing new physic
motivated operators and evaluating their success. Howe
the reproductive process is not required to ‘‘know’’ about t
particular goal for the problem. The success of the algorit
relies on the fact that the adaptive pool of operators sear
vast regions of phase space efficiently, finding succes
individuals without any prior knowledge.

The full power of the learning algorithm is best put to u
in problems where the experimental knobs are all couple
when the different degrees of freedom are not independen
each other. In our experiments, the phases and amplitud
the individual colors are coupled by the system Hamiltoni
In a completely decoupled basis, the problem is reduced
series of simple one-dimensional searches for each of
genes. However, one does not know what this basis i
general. In a coupled basis, crossover has been demons
to be a very valuable operator in selecting new pulse sha
that out perform their parents.

IV. EXPERIMENTS

A. Preliminary test of learning feedback: Second harmonic
generation in BBO

Many of the characteristics of adaptive learning are de
onstrated by the simple control experiment of seco
harmonic generation~SHG!. Feedback experiments usin
SHG have previously been carried out with the goal of t
geted pulse compression or shaping@18,19#. Our primary
goal was to investigate the dynamics of our algorithm a
the learning process in a well-characterized and well-stud
system. Frequency doubling in a noncentrosymmetric cry
with a largex (2) provided us with this opportunity. Eve
though the interaction of the light field with this system c
be described classically, this experiment illustrates featu
that are relevant to all the experiments described in this
per. In addition we are able to simulate the experimen
feedback signal, which allows us to compare learning al
rithms on the model with experiment.

In the low-intensity regime, the interaction of the las
pulses with the crystal can be described by a nonlinear
larization that is proportional to the square of the input lig
field:

PNL~2v!5x (2)E~v!2. ~1!

This nonlinear polarization acts as a source or driving te
in the wave equation for a field at 2v. The experimental
feedback signal is the integrated second-harmonic intens
06341
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Fsignal5E dtE2v
2 ~ t !}E dtEv

4 ~ t !. ~2!

If the input field strength is not too large, this descriptio
of the interaction gives accurate predictions for the seco
harmonic generation without including other nonlinear
fects. For all of the frequency doubling experiments a
simulations, the amplitude of each frequency componen
the pulse is kept fixed. Only the phases may vary. The la
pulse energy is therefore constant, and the algorithm de
mines how to distribute this energy in time.

The optimal pulse shapes are best viewed as Husimi
tributions. The Husimi distribution,Q(t,v) is calculated
from the measured fieldE(v) in the frequency domain:

Q~ t,n!5E E dt8dn8S~ t8,n8!e2(n2n8)22(t2t8)2
, ~3!

S~ t,n!5E E~n1n8!E* ~n2n8!e2in8tdn8. ~4!

S(t,n) is the Wigner function whose marginals represent
power spectrumP(n) and the temporal intensityI (t) of the
laser pulse:

E dn8S~ t,n8!5I ~ t !, ~5!

E dt8S~ t8,n!5P~n!. ~6!

Husimi distributions are generated using the values of
phase and amplitude that the pulse shaper programs
each individual pulse shape. We use spectral interferom
on a limited number of pulse shapes to verify the corresp
dence between the phase and amplitude profile of the p
and its representation on our pulse shaper. Since each
vergence run of the algorithm has the potential to provid
vast amount of information regarding the problem und
study, we monitor not only the optimal pulse shape soluti
but also compare this solution to other competing solutio
from individual generations throughout the run.

Figure 3 shows the Husimi distributions for pulses op
mized to either maximize or minimize frequency doubling
b-barium borate~BBO!. The results of both simulations an
experiments are shown for comparison. Comparison of p
els a andc reveals that experiment and simulation arrive
the same result for maximizing SHG, except for a sm
amount of quadratic dispersion~chirp! evident in the experi-
mental result that is within our measurement resolution
the laser pulse.

When the algorithm minimizes the SHG, solutions fro
both the simulation and experiment contain structure inI (t).
We initially expected the solutions for the spectral pha
f(v) would contain only the lowest nontrivial orde
@f(v)5kv2#. Given the AOM’s constraint of a maximum
allowed phase change between adjacent frequencies in
light pulse, quadratic phase is the most efficient single-or
phase variation, since it allows for the greatest amount
total phase variation across the spectrum. However, the
2-4
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COHERENT CONTROL USING ADAPTIVE LEARNING . . . PHYSICAL REVIEW A63 063412
gorithm finds that a single order of phase is not the m
efficient way to minimizeI (t) @20#. We evaluated pulses tha
were simply chirped in time by programming them with t
maximum amount of quadratic-only phase allowed by
resolution of our pulse shaper, and found that they did
perform as well as the solutions found by the learning al
rithm ~see Fig. 3!.

Simulations provide rapid testing of the performance
many possible operators. For instance, Fig. 4 shows the
fitness as a function of generation for three different runs
the SHG simulation, both with and without the smoothi
operator. The addition of the smoothing operator allows
algorithm to achieve higher fitness more rapidly and c
verge sooner. In the absence of noise, the best fitnes
creases monotonically as a function of generation, as g
anteed by elitism.

When the intensity of the light increases, our simp
model is no longer adequate to describe the doubling p
cess. Figure 5 shows the changing optimal pulse shape
maximization of SHG as the energy of the input pulse
increased. The optimal pulse in the high-energy soluti
acquires large third- and fourth-order dispersion. The sha
pulse spectrum at high intensities shows significant s

FIG. 3. Husimi distributions of the optimal pulse shapes
SHG in BBO. Panelsa andb are experimental results for maxim
zation and minimization of SHG, respectively. Panelsc and d are
the optimal pulse shapes generated using a simulation modelin
SHG process. The value of the Husimi function is indicated by
darkness of the shading.
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phase modulation~SPM!, whereas in the low-intensity limit
there is no evidence of SPM. Simulations are also consis
with SPM in the crystal, which contributes to variations
the solutions as the intensity is increased@21#. At higher
pulse energies, SPM is no longer negligible. Evidently, SP
distorts the phase matching for the SHG process, so th
transform limited input pulse is no longer optimal for max
mum SHG.

The interplay of multiple operators during the algorith
can yield further insight into the learning process. Figure

r

the
e

FIG. 4. The fitness of the best individual is plotted as a funct
of generation for a simulation of SHG maximization. The upper t
curves, the dashed and plus lines, compare two runs of the lear
algorithm using all the same operators~including smoothing!, but
starting with different random initial populations. The solid line is
third run without thesmoothingoperator.

FIG. 5. Husimi plots of the optimal pulse shapes for SHG ma
mization as the laser energy is increased. At higher input ener
~upper panels!, the incident pulse contains higher orders of disp
sion that broaden the pulse in time.
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shows the operator fitness as a function of generation
several of our common operators during the frequency d
bling experiment. The operators are initialized in a tra
tional GA configuration, with two-point crossover dominan
For the first few generations, the operators create childre
proportion to their initially assigned fitnesses, but after
third generation, their fitnesses are allowed to freely cha
in accordance with the procedure described earlier. As Fi
demonstrates, the algorithm finds that two-point crosso
and simple mutation are not always the best operators, an
different points during the evolution, different combinatio
of operators become optimal for producing the best childr
Polynomial phase mutation, smoothing, and average cr
over each produce very fit children at different stages of
run.

This example shows that operators cannot be evaluate
isolation, because they affect each other. For exam
smoothing is more important when other operators tend
introduce unnecessary phase variations across the p
Also, the performance of the operators cannot be evalu
instantaneously, but must be evaluated over the cours
several generations. An operator that is not performing w
at one point during the run may become more useful later
Since some operators that perform poorly at the beginnin
the algorithm often perform very well toward the end~e.g.,
average crossover!, their fitness is not allowed to fall below
some minimum value~5%!. This lower bound ensures tha
every operator always has some chance of being used du
reproduction. Finally, the performance of each operator
pends on the problem. Performance of a given operator
help determine whether its action on an individual is phy
cally relevant.

The fitness function assigns each individual pulse sha
single-valued number, reflecting that individual’s ability
achieve the goal. Since an individual’s fitness is used in p
ent selection~see Appendix B for details!, its determination
is an important step in the performance of the algorithm.
the frequency doubling experiment, the fitness assigne

FIG. 6. The fitness for multiple operators plotted as a funct
of generation for a single run of the learning algorithm while ma
mizing SHG.
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each individual was simply the integrated blue light intens
as measured by a photodiode in a regime where the resp
of the diode was linear. The frequency doubling experime
therefore, provides a clear testing ground for the learn
algorithm. In other experiments, it is not always so clear h
to assign a fitness to each individual, given the nature of
measurement to evaluate the success of each pulse.

B. Controlling dissociative ionization in diatomic sodium

We next explore nonlinear control mechanisms for ioniz
tion of diatomic sodium. This experiment provides furth
opportunities to understand the learning algorithm. Howev
unlike second-harmonic generation, which can be descri
classically, this is strictly a quantum system. Here, the ad
tive algorithm and pulse shaper must control higher-or
nonlinearities. The multiphoton ionization of this system w
previously studied using low-energy laser pulses with
single photon resonance enhancement@22#. Our experiments
use lower-energy laser photons that are below this resona

The shaped pulses were focused into a molecular bea
sodium, causing the molecules to undergo multiphoton i
ization. A time-of-flight mass spectrometer allowed identi
cation of molecules that dissociatively ionized and those t
did not. The fitness function was a normalized ratio of t
ion yield for the two channels. The learning algorithm th
worked to optimize either dissociative or nondissociat
ionization. As in the doubling experiment, we restricted t
algorithm to control only the phases of the colors, with t
amplitudes fixed. The algorithm was able to find pul
shapes that could maximize either channel. In the case
maximizing the nondissociative channel, the optimal pu
yielded 88% nondissociative ionization. When we optimiz
the other channel, we found 73% dissociative ionization.

Figure 7 shows the Husimi distributions for pulses op
mized to either nondissociatively or dissociatively ionize t
sodium molecules. In addition, the ion yield as a function
the laser energy for an unshaped laser pulse is plotted
both of the channels. The solutions resemble the opti
pulse shapes for the second-harmonic generation experim
~see Fig. 3!. For the dissociative channel, the pulse shape
similar to the short-pulse, high-intensity solution of SH
maximization, while for the nondissociative channel, t
pulse shape is similar to the long-pulse, low-intensity so
tion of SHG minimization. These results are consistent w
the fact that the two channels in log-log plot have differe
slopes, and that the branching ratio is a function of intens

The sodium experiment demonstrates the importance
the choice of basis for encoding pulse shapes. The lear
algorithm incorporates the time-domain crossover opera
which allows it to choose the basis best suited to the pr
lem. Figure 8 shows the operator fitnesses as a functio
generation when optimizing the nondissociative chann
There are five operators—four in the usual frequency ba
and the time-domain crossover operator in the time basis
Fig. 8 shows, the time-domain crossover operator increa
its fitness at the expense of the operators working in
frequency basis. Correlations in the time domain are an
portant control parameter for this problem, as expected.

n
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COHERENT CONTROL USING ADAPTIVE LEARNING . . . PHYSICAL REVIEW A63 063412
Another possible control mechanism involves the pa
of the phase profile of the pulse: Is the phase as a functio
frequency an even function, an odd function, or neither ab
the central frequency? Parity control in nonlinear atomic
sorption was previously demonstrated by Meshulach and
berberg@4#. The amount and sign of chirp on the pulse
another possible way to control the population dynamics@5#.
We investigated both possibilities using our pulse shaper
feedback, but saw no conclusive dependence on the diss
tion fraction with either method. The adaptive pool of ope
tors performs a more effective search of the phase spac

C. Controlling molecular liquids

Molecular liquids pose a greater challenge for learn
control, because of rapid relaxation and inhomogene
broadening. Our initial goal was to control molecular vibr
tions in liquids through impulsive stimulated Raman scatt

FIG. 7. Husimi distributions of the optimal pulse shape for co
trolling sodium ionization. The upper plot is for maximizing th
nondissociative yield, while the lower plot is for the dissociati
yield. In between is a log10-log10 plot of the ion yield into each of
the two channels as a function of the energy of an unshaped
pulse.
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ing. Impulsive scattering occurs when the laser pulse
shorter than the vibrational period of the molecule. In t
frequency domain, this means that the bandwidth of the la
is broad compared to the vibrational energy spacing of
mode in question. The result is that a stimulated Stokes w
can be seeded with light that is already present in the la
and does not have to build up from noise, thereby making
process much more efficient than the nonimpulsive ca
Shaped laser pulses should allow selective control over
citation of Raman modes since the pulse shaper can m
late the spectrum ofE2(v), the driving term in Raman ex
citation @23#. In the time domain, this corresponds
resonantly driving some modes but not others.

1. Controlling SPM in liquids

Impulsive scattering in a multimode molecular liquid w
studied in CCl4 because it has several low frequency mod
with relatively high cross sections. We discovered, howev
that it also has a large polarizability, and therefore, most
the light that was scattered near the laser bandwidth in
forward direction was a result of SPM. We found that we h
a significant degree of control over the spectrum of the f
ward scattered light, and so as an initial demonstration of
capabilities of the apparatus, we studied the nonlinear
quency shift of intense light propagating in CCl4. Early re-
sults of this investigation were previously published@24#.
Here, we describe the learning process and analyze the s
tions in more detail.

Feedback goals for SPM are based upon small feat
that are barely visible in the spectra of the forward scatte
radiation after unshaped pulses illuminate the sample. Th
modulations are typical spectral features for pulses that h
undergone SPM@25#. The learning algorithm is able to con
trol their frequency and phase by altering the shape of
driving pulse. Only phase modulation is used, so that
pulse energy is fixed. Figure 9 shows the spectra of f
different pulses after propagating through the CCl4 sample.
The first panel shows the spectrum for an unshaped pu
and the following three panels show spectra for pulses

-

er

FIG. 8. Operator fitness as a function of generation for multi
operators for optimizing the nondissociative ionization channe
sodium.
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are shaped to control the spectral modulations.
Model calculations can determine whether SPM is

sponsible for the observed spectra. The simplest descrip
of SPM, which doesn’t include spatial effects such as s
focusing, characterizes the nonlinear interaction between
laser and the medium through a intensity-dependent inde
refraction:

n~ t !5n01n2I ~ t !, ~7!

wheren0 is the field free index, I is the instantaneous las
intensity, andn2 is an empirically determined coefficien
The calculated power spectra for laser pulses that have
quired a phase proportional to their instantaneous inten
show intensity modulations with the same dependence
pulse shape that we found in the experiment~see Fig. 9!.

2. Controlling vibrations in multimode molecular liquids

The learning algorithm can also control the interacti
between the driving laser pulse and the vibrational mode
a multimode molecule without making use of impulsive sc
tering. In order to avoid confusion between Stokes light a
light generated by SPM alone, we chose a molecule wit
much larger Stokes shift, since there is much less light g
erated through SPM further from the central laser frequen
Methanol (CH3OH) is ideal because it has two close
spaced modes with large Stokes shifts and large cross
tions. Forward scattered radiation is the feedback for the
gorithm. There is no backwards scattered Stokes radia
because of the short duration of the shaped pump p
(;1 ps). The forward-backward symmetry of the scatter

FIG. 9. Power spectra for pulses propagating through 1 cm
CCl4. The top panel shows the power spectrum for an unsha
laser pulse. The following three panels show spectra for pu
shaped to control~and enhance! the spectral modulations.~From
Ref. @24#, reprinted by permission.!
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is broken for a short pump pulse because the backward t
eling Stokes wave passes through the pump wave before
appreciable buildup@26#.

The time scales for the interaction between the molecu
and the laser pulse are set by the vibrational period of
active modes and their coherence time. Stimulated scatte
with pulses that are longer than the coherence time reach
steady state and exhibits a strong dependence on pulse
tion because it is a stimulated process: The more pho
that interact with the molecules within the coherence tim
the more likely the molecule will be stimulated to absorb
laser photon and emit a Stokes photon. Scattering w
pulses that are shorter than the coherence time but lo
than the vibrational period~transient Raman scattering! ex-
hibits little dependence on the duration of the laser pu
@27,28#. Scattering with pulses that are shorter than the
brational period~impulsive scattering! results in very effi-
cient stimulated scattering as discussed above@29,30#.

With an unshaped laser pulse focused into 10 cm
methanol, the spectrum shown in Fig. 10~a! is obtained. The
two small peaks in the spectrum correspond to Stokes l
for dn51 for the symmetric and asymmetric C-H stret
modes. The lens focal length is 40 cm. The first feedb
goal is to maximize the contrast between the two Sto
peaks and the background light resulting from SPM. T
forward scattered spectrum in the spectral range of
Stokes radiation is collected for each laser pulse. The n
ber of Stokes photons at a particular frequency is a mea
of the number of molecules excited in that particular mo

f
d
s

FIG. 10. Control of Raman scattering in methanol. Panea
shows the forward scattered spectrum for an incident unshape
ser pulse. Panelb shows the spectrum after the learning algorith
optimized excitation of both modes while minimizing peak broa
ening due to other nonlinear effects. Panelc shows spectra for
optimization of each mode independently. Paneld shows the spec-
trum for a pulse that minimized Raman scattering from both mod
~From Ref.@24#, reprinted by permission.!
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COHERENT CONTROL USING ADAPTIVE LEARNING . . . PHYSICAL REVIEW A63 063412
however, since SPM is present and the bandwidth of
shaped laser pulses is large, the forward scattered spec
also contains some misleading information. The feedb
function must filter this out. Different fitness functions wo
best, depending on which peak~s!are optimized. A typical
fitness function is:

(
vr,v i,vb

NC~v i !

vb2v r
2 (

v i.vb ,v i,vr

C~v i !

Dv2~vb2v r !
. ~8!

Here,C(v i) is the number of spectrometer counts atv i , Dv
is the bandwidth of the spectrometer,v r is the low-
frequency limit for the desired peak,vb is the high-
frequency limit for the desired peak and N is an empirica
determined integer. We set the values ofv r andvb by nar-
rowing the bandwidth of shaped laser pulse and measu
the width of the Stokes peaks in the forward scattered sp
trum. We find thatN52 andN53 work well. A pulse so-
lution that optimizes the contrast between the two Sto
peaks and the background is shown in Fig. 10~b!.

The next goal is to generate spectra with each peak s
rately. These spectra, shown in Fig. 10~c!, correspond to ex-
citing symmetric or antisymmetric modes alone. The Sto
shift for these modes is large compared to the bandwidth
the driving laser pulse. This is equivalent to saying that
Raman excitation is nonimpulsive, and therefore, one can
seed the Stokes radiation directly with the laser light. O
final feedback goal is to eliminate all forward scattered lig
at either of the two Stokes frequencies, with the result
spectrum shown in Fig. 10~d!.

3. Using the adaptive algorithm to investigate possible contro
mechanisms for SRS in methanol

The Stokes shift for the C-H stretch is almost 3000 cm21

and the laser bandwidth is roughly 100 cm21, so the scat-
tering is definitely nonimpulsive. Another possible mech
nism that could account for our ability to selectively exc
the symmetric or asymmetric stretch mode of methanol
coupling between the electronic polarizability of the ato
and the vibrational modes. The results with CCl4 have shown
that the light generated from SPM of the pump beam is v
sensitive to the input pulse shape. A large contribution
SPM, particularly for femtosecond pulses, is the atomic
larizability @31#. Perhaps the atomic polarizability generat
SPM to seed one of the two Raman modes but not the ot

This hypothesis was tested by replacing the methanol w
a mixture of benzene (C6H6) and deuterated benzen
(C6D6). Similar control experiments were attempted, exc
now the two modes of vibration were in two different mo
ecules. The ring breathing mode of benzenen
5992 cm21) has a large Raman cross section making ex
tation easy. Deuterated benzene has a frequency ofnD
5945 cm21, which is shifted by 47 cm21, similar to the
mode splitting in methanol. Initially, an unshaped laser pu
was focused into the experimental cell with pure C6H6, and
we measured no forward scattered Stokes light. We t
used the learning algorithm to find a shaped pulse that g
erates the forward scattered Stokes radiation shown in
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11 ~top panel, left curve!. The deuterated benzene (C6D6)
generates the spectrum shown in Fig. 11~top panel, right
curve!, demonstrating the expected shift of the mode f
quency. Finally, a 50/50 mixture of C6H6 and C6D6 is placed
in the cell and we ask the algorithm to selectively drive ea
of the two modes. Figure 11~bottom panel! shows the learn-
ing algorithm can select the C6H6 mode but not the C6D6
mode. This demonstration of a lack of control is consist
with the idea that the mode selection is an intramolecu
effect that relies on coupling between the two modes ins
each molecule, rather than seeding of one of the modes
light from SPM.

Another experiment supports this conclusion: Expe
ments conducted in CO2 gas show that light generated b
SPM more than a few hundred cm21 away from the laser
frequency is extremely noisy and not reproducible@32#. The
reproducibility of SPM spectra increases nearer the
quency of the driving laser. Figure 9 shows that SPM p
duces stable spectra very near the laser frequency. Howe
far from the laser at the frequency of the Stokes light fro
the C-H stretch mode, the light produced by SPM would
too noisy to reproducibly seed one of the two Raman mo
but not the other.

Another possible control mechanism is suggested by a
lyzing the optimal pulse shape solutions for exciting each
the two modes. Figure 12 shows the Husimi distribution
pulses that were optimized for excitation of the asymme
stretch mode in methanol, while Fig. 13 shows the Hus

FIG. 11. Stimulated Raman scattering in C6H6 and C6D6. Top
panel shows spectra for C6H6 ~left curve! and C6D6 ~right curve!
separately after optimization of the pulse shape to excite the bre
ing mode of each molecule. Bottom panel shows the results a
using the learning algorithm to excite each molecule separately
50-50 mixture of the two.
2-9
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PEARSON, WHITE, WEINACHT, AND BUCKSBAUM PHYSICAL REVIEW A63 063412
distribution for pulses optimized for excitation of the sym
metric stretch mode. The structure of the optimal pulse sh
for the symmetric stretch mode suggests a ‘‘qua
impulsive’’ model, where the frequency separation of t
two subpulses is exactly the beat frequency between
symmetric and asymmetric modes. The term ‘‘qua
impulsive’’ is used, since although the laser bandwidth
narrow compared to the Stokes shift of each mode, it is w
in comparison to the spacing between the modes. Thi
equivalent to saying that in the time domain, the laser pu
is long compared to the vibrational period of the modes,
short compared to the beat note between them. The beat
period is 285 fs, while the time duration of the unshap
laser pulse is 150 fs. Therefore, energy could be transfe
between the two modes by engineering temporal structur
the driving pulse at the coupling frequency between the
modes. Once an initial vibrational population is establish
in some combination of the two modes, the population co
be redistributed by the shaped pulse through an impul
coupling of the two levels.

FIG. 12. Husimi plot of the optimal pulse shape to excite t
asymmetric stretch in methanol.

FIG. 13. Husimi plot of the optimal pulse shape to excite t
symmetric stretch in methanol.
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General trends in an entire population can provide va
able information, since looking at a single individual, even
it is the very best pulse shape of the group, does not g
information about which features are necessary and wh
are merely sufficient. One cannot tell whether a feature in
pulse shape plays some physical role in the process u
investigation, or whether the algorithm simply did not r
move the feature since its presence did not degrade the
ness. We test this by repeating a convergence sequenc
the learning algorithm with different random initial popula
tions. If the best solution has similar structure multiple tim
it is likely that the structure is physically necessary.

Statistical variations among gene values of individuals
a population also reveals which genes are important fo
given problem and which are not. Figure 14 shows the
netic variation as a function of generation for a run of t
algorithm during the methanol experiment. Light shadi
represents a large degree of variation among individuals
the value of a given gene, while dark shading represents
variation. The variation is the normalized sum of the ab
lute values of the differences between all of the genes’ val
in a given location on the gene string:

(
i , j . i

N

ugi2gj u, ~9!

wheregi , j is the value of geneg for the i th,j th individual.
Since the genes are randomly initialized, all the genes be

FIG. 14. Genetic variation as a function of generation. Data
shown for two separate runs of the learning algorithm. Top pa
shows the genetic variation for optimization of the symmet
stretch mode, and the bottom panel for optimization of the asy
metric stretch mode. The vertical axis represents the gene num
For reference, the power spectra are overlayed to the right of
phase genes. Light shading represents a large degree of vari
among the individuals, while dark shading represents low variat
2-10
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COHERENT CONTROL USING ADAPTIVE LEARNING . . . PHYSICAL REVIEW A63 063412
with a light shading. As the algorithm converges, all ge
values become more similar through mating. The plots ve
the intuitive idea that near convergence, frequency com
nents whose amplitudes are large have smaller variatio
their programmed phase values than frequency compon
whose amplitudes are zero. The power spectra shown at
match with the darker regions~smaller variation! in the plots.

V. CONCLUSIONS

We have demonstrated control over a variety of syste
using an adaptive learning algorithm. The algorithm use
variety of searching methods and adapts itself in orde
arrive at an optimal solution. This learning technique is g
eral and can be applied to other systems since the intera
does not require specific resonances and no prior knowle
of the system Hamiltonian is required. The adaptive
proach provides information about the physical syst
through examination of the solutions, the operator dynam
and the choice of basis. Future goals include controll
bond excitation to drive reactions in bimolecular solution
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APPENDIX A: DEFINITIONS OF OPERATORS

We haver i5a random number in@0,1#, P5parent, C
5child, F5phase,A5amplitude. All phases are reference
to adjacent genes to maintain continuity. We use multi
forms for some of the operators.

Two-point crossover:

P15@Fp1~v i !,Ap1~v i !#, P25@Fp2~v i !,Ap2~v i !#

C15H @Fp2~v i !,Ap2~v i !# if j , i ,k

@Fp1~v i !,Ap1~v i !#, all other i,

C25H @Fp1~v i !,Ap1~v i !# if j , i ,k

@Fp2~v i !,Ap2~v i !#, all other i.

Average crossover:

P15@Fp1~v i !,Ap1~v i !#, P25@Fp2~v i !,Ap2~v i !#

C5H FFp1~v i !1Fp2~v i !

2
,
Ap1~v i !1Ap2~v i !

2 G if j , i ,k

@Fp1
~v i !,Ap1

~v i !#, all other i.

Mutation:

P5@Fp~v i !,Ap~v i !#,

C5H @62pr i ,Ap~v i !# if j , i ,k

@Fp~v i !,Ap~v i !#, all other i.
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Polynomial phase mutation:

P5@Fp~v i !,Ap~v i !#,

C5H @6v i
n ,Ap~v i !# if j , i or i ,k

@Fp~v i !,Ap~v i !#, all other i,

where n5an integer in @0,6#.

Creep:

P5@Fp~v i !,Ap~v i !#,

C5H @Fp~v i !60.25,Ap~v i !6one level# if r i,0.10

@Fp~v i !,Ap~v i !#, r i>0.10.

Smooth:

P5@Fp~v i !,Ap~v i !#,

C5FFp~v i !1Fp~v i 11!1Fp~v i 21!

3
,Ap~v i !G .

Time-domain crossover:

P15@Fp1~v i !,Ap1~v i !#, P25@Fp2~v i !,Ap2~v i !#,

P185IFFT@Fp1~v i !,Ap1~v i !#[E1~ t i !,

P285IFFT@Fp2~v i !,Ap2~v i !#[E2~ t i !,

C185H @E1~ t i !# if j , i ,k

@E2~ t i !#, all other i,

C285H @E2~ t i !# if j , i ,k

@E1~ t i !#, all other i,

C15FFT~C18!,

C25FFT~C28!

with amplitudes kept fixed to one.

APPENDIX B: DETAILS OF FITNESS FUNCTION

Each individual is evaluated, and a single-valued fitnes
returned to the algorithm. Each individual’s fitness is tran
formed into a scaled fitness used for parent selection du
reproduction. The fitness scaling helps to ensure there i
adequate degree of ‘‘selection pressure,’’ which is a meas
of how much successful pulse shapes are rewarded. M
taining selection pressure becomes difficult when the ra
of fitness values decreases as the algorithm converges. W
out fitness scaling, the algorithm can stagnate since mor
pulse shapes receive little reward. Specifically, we use a
ear scaling technique:

~Scaled fitness!5
~Best fitness!2~Unscaled fitness!

~Average fitness!2~Best fitness!
12

Any scaled fitnesses less than zero are reset to zero. With
scaling method the best pulse shape is selected as a p
twice as often as the average pulse shape.
2-11
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