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Complete controllability of quantum systems
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Sufficient conditions for complete controllability ofN-level quantum systems subject to a single control
pulse that addresses multiple allowed transitions concurrently are established. The results are applied in par-
ticular to Morse and harmonic-oscillator systems, as well as some systems with degenerate energy levels.
Controllability of these model systems is of special interest since they have many applications in physics, e.g.,
Morse and harmonic oscillators serve as models for molecular bonds, and the standard control approach of
using a sequence of frequency-selective pulses to address a single transition at a time is either not applicable
or only of limited utility for such systems.
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I. INTRODUCTION

Recent advances in laser technology have opened up
possibilities for laser control of quantum phenomena such
control of molecular quantum states, chemical reaction
namics, or quantum computers. This has prompted resea
ers to study these systems from a control-theoretical poin
view, in particular, in view of the limited success of initiall
advocated control schemes based largely on physical i
ition in both theory and experiment@1#.

One issue that arises is the question whether, or un
which conditions, it is possible to control a quantum syst
in such a way as to achieve any physically permitted evo
tion of the system. Complete controllability is an importa
theoretical concept that also has significant practical im
cations. For example, it has been shown that kinemat
constraints on the evolution of nondissipative quantum s
tems give rise to universal bounds on the optimization
observables@2# and that the practical issue of dynamical r
alizability of these bounds depends on the controllability
the system@3#. Controllability is also important in quantum
computation as it is directly related to the question of u
versality of a quantum computation element@4#.

It has been shown that an atomic system withN accessible
energy levels, which are sufficiently separated to allow c
trol based on frequency discrimination, is completely co
trollable using a sequence of frequency-selective pulses
address only a single transition at a time@5#. Although this
approach is enormously useful, control based on freque
discrimination is not applicable to systems with equa
spaced energy levels such as truncated harmonic oscilla
and problematic for systems with almost equally spaced
ergy levels such as Morse oscillators, since in this case,
external field is likely to address multiple transitions sim
taneously. Moreover, systems with degenerate energy le
also present problems for this technique.

In this paper, we therefore concentrate on complete c
trollability of quantum systems subject to a single cont
field, e.g., a laser pulse or magnetic field, that addresses
tiple transitions concurrently. In particular, we study t
problem of controllability of a system subject to a sing
control, for which the interaction with the control field
determined by the dipole approximation. The systems c
1050-2947/2001/63~6!/063410~8!/$20.00 63 0634
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sidered are assumed to be nondecomposable, i.e., sys
that can be decomposed into noninteracting subsystems
excluded. Note that such systems can never be comple
controllable@3#.

It will be shown in particular that a nondecomposab
quantum system with dipole interaction is completely co
trollable with a single control pulse if there is some anh
monicity in the energy levels. It must be noted, however, t
it is sufficient if, e.g., the transition frequency for the fir
transition is different from all the other transition freque
cies. This is a much weaker condition than frequency d
crimination, which requires that all the transition frequenc
are sufficiently different. Furthermore, for a system with
anharmonicity, i.e., equally spaced energy levels, we dem
strate that complete controllability depends on the values
the transition dipole moments of the system, and estab
sufficient criteria for complete controllability. The controlla
bility of some systems with degenerate energy levels is a
discussed and examples of systems that are not compl
controllable are presented.

II. QUANTUM CONTROL SYSTEM

Given anyN-level quantum system, the Hamiltonian o
the unperturbed system can be written as

Ĥ05 (
n51

N

Enun&^nu, ~1!

where $un&:n51, . . . ,N% is a complete set of orthonorma
eigenstates andEn are the corresponding energy levels of t
system.

The application of external control fields perturbs the s
tem and gives rise to a new HamiltonianĤ5Ĥ01ĤI , where
ĤI is an interaction term. In the control-linear approxim
tion, the interaction term is of the form

ĤI5 (
m51

M

f m~ t !Ĥm , ~2!

wheref m(t) for m51, . . . ,M are independent control fields
and the operatorĤm represents the interaction of the fie
©2001 The American Physical Society10-1
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f m(t) with the system. The off-diagonal elements ofĤm de-
pend on the transition dipole momentsdn,n8 for transitions
between energy eigenstates. EachĤm is Hermitian since the
transition dipole moments satisfydn8,n5dn,n8

* , wheredn,n8
* ,

is the complex conjugate ofdn,n8 . In this paper, we are
particularly interested in the caseM51, i.e., a single contro
pulse, for which the interaction operator is of dipole form

Ĥ15 (
n51

N21

dn~ un&^n11u1un11&unu&, dnÞ0. ~3!

Note that we exclude systems for which any of the transit
dipole momentsdn[dn,n115dn11,n vanish since these sys
tems can be decomposed into noninteracting subsystem

An arbitrary initial state of the system can be represen
by a density matrixr̂0 that evolves according to the dynam
cal law

r̂~ t !5Û~ t,t0!r̂0Û~ t,t0!†, ~4!

whereÛ(t,t0) is the time-evolution operator, which satisfie
the Schro¨dinger equation

i\
]

]t
Û~ t,t0!5~Ĥ01ĤI !Û~ t,t0!, ~5!

with initial condition Û(t0 ,t0)51̂.
We say the system is initially in a pure state if Tr(r0

2)
51. In this case, the initial state of the system can also
represented by a normalized wave functionuc0&, which is
either an energy eigenstateun& or a superposition of energ
eigenstates

uc0&5 (
n51

N

cnun&, ~6!

where thecn are complex coefficients that satisfy the no
malization conditionSncncn* 51 @6#. The time evolution of a
pure state represented by a wave functionuc(t)& is

uc~ t !&5Û~ t,t0!uc0&, ~7!

where uc0&5uc(t0)& and Û(t,t0) is the time-evolution op-
erator as defined above.

III. CRITERIA FOR COMPLETE CONTROLLABILITY

SinceĤ01ĤI is Hermitian, Eq.~5! implies that the time-
evolution operatorÛ(t,t0) is unitary. Hence, examination o
Eq. ~4! reveals that only target statesr̂(tF) that are related to
the initial stater̂0 by r̂(t f)5Û r̂0Ût, whereÛ is a unitary
operator, are kinematically admissible. However, in gene
not all of these states can actually be dynamically reach
unless the dynamical Lie group generated byiĤ 0 and iĤ m ,
m51,2, . . . ,M , is the unitary group U(N). ~See the Appen-
dix for a discussion of this requirement.! This motivates the
following.
06341
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Definition 1: A quantum systemĤ5Ĥ01ĤI with Ĥ0 and

ĤI as in Eqs.~1! and ~2! is completely controllable if every

unitary operatorU is accessible from the identity operatorˆ

via a pathg(t)5Û(t,t0) that satisfies Eq.~5!.
Complete controllability implies that any kinematical

admissible target state can be dynamically reached from
initial state by driving the system with a suitable contr
field. If the system is initially in a mixed state represented
a density matrixr̂0 , then this means that any other kinema
cally admissible mixed state can be dynamically reach
Similarly, if the system is initially in a pure state represent
by a normalized wave functionuc0& then complete control-
lability guarantees that every other pure state represente
a normalized wave-functionuc1& can be dynamically
reached from the initial state. In Ref.@3# it is furthermore
shown that complete controllability implies dynamical rea
izability of the universal kinematical bounds on the optim
zation of observables for~nondissipative! quantum systems

It is apparent that if the dimension of the Lie algebraL0

generated by the operators$Ĥ0 ,...,ĤM%, or more accurately,
their skew-Hermitian counterparts$ iĤ 0 ,...,iĤ M% is N2 then
L0 is the Lie algebra of skew-HermitianN3N matrices
u(N). Ramakrishnaet al. have shown in Ref.@7#, using re-
sults by Jurdjevic and Sussmann@8#, that in this case the
dynamical Lie group of the system is the unitary gro
U(N). Noting that the dimension of u(N) is N2 and that any
Lie algebra of skew-HermitianN3N matrices of dimension
N2 is ~isomorphic to! u(N) we have, therefore, the follow
ing.

Theorem 1~Ramakrishna et al.!. A necessary and suffi
cient condition for complete controllability of a quantu
systemĤ5Ĥ01ĤI with Ĥ0 andĤI as in Eqs.~1! and~2! is
that the Lie algebraL0 has dimensionN2.

This theorem provides a condition for complete contr
lability of a quantum system that can easily be verified
computing the Lie algebra generated byĤ0 ,...,ĤM and de-
termining its dimension.

A basic algorithm for constructing a basis for the L
algebraL0 in terms of iterated commutators is presented
Table I. It can be optimized to increase the speed of
computation and to improve the accuracy of the numer
results. In Table I we useĤ to denote aN3N matrix and
using the fact that a matrix can also be interpreted as a
tor, H for the N2 column vector obtained by concatenatin
the columns ofĤ vertically. W is a N23N2 matrix whose
columnsW:, j represent the basis elements ofL0 . Note that
Ŵ:, j is the j th basis element interpreted asN3N matrix.

To initialize W, we start withW:,15H0 and addHm for
m51, . . . ,M provided that the additional column increas
the rank ofW. This guarantees thatW initially consists of
linearly independent generators ofL0 . To construct a basis
for L0 , we compute all possible commutators of the colum
W:, j of W, interpreted asN3N matrices. Whenever a com
mutator is linearly independent of the columns ofW, we add
the commutator as a new column toW. Note that if we add a
new column toW then we also have to compute the comm
0-2
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COMPLETE CONTROLLABILITY OF QUANTUM SYSTEMS PHYSICAL REVIEW A63 063410
tator of the matrix represented by the new column with
the matrices represented by the old columns ofW. Hence, we
repeat computing the commutators of the basis elements
resented byW until no new columns have been added in t
previous step or the rank ofW reaches the maximum ofN2.

IV. CONTROLLABILITY CALCULATIONS

We implemented the algorithm presented in the previ
section and computed the dimension of the dynamical
algebra for the systemĤ5Ĥ01 f (t)Ĥ1 with Ĥ0 andĤ1 as in
Eqs.~1! and ~3! for various choices of the energy levelsEn
and the transition dipole momentsdn . In particular, we stud-
ied theN-level harmonic oscillator with energy levels

En5n2
1

2
, ~8!

and theN-level Morse oscillator with energy levels

En5S n2
1

2D F12
1

2
BS n2

1

2D G , ~9!

where B is a ~usually small! positive real number. In ou
numerical computations we usedB50.0419, which corre-
sponds to a Morse oscillator model of the molecular bond
hydrogen fluoride@9#. We computed the dimension of th
Lie algebraL0 for systems with varying dimensionN and for

TABLE I. Algorithm to compute the Lie algebra generated by

control system$Ĥ0 ,...,ĤM%.

let W5H0

let r 5rank(W)
for m52, . . . ,M11 do

if rank(@W,Hm#).r then
appendW by column vectorHm

r 5r 11
endif

endfor
let r o50
let r n5rank(W)
repeat

for l 5r o11, . . . ,r n do
for j 51, . . . ,l 21 do

let ĥ5@Ŵ:,l ,Ŵ:, j #

if rank(@W,h#).r then
appendW by column vectorh
r 5r 11

endif
endfor

endfor
let r o5r n

let r n5rank(W)
until r n5r o or r 5N2
06341
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different choices of the transition dipole momentsdn . The
results of some of these computations are presented in T
II.

For the Morse oscillator system we observe that the
mension ofL0 is alwaysN2, i.e., it is completely controllable
independent of the choice of thedn ~as long as thedn are
nonzero!.

For the harmonic oscillator, however, the dimension ofL0
depends on the choice of the transition dipole moments.
the usual choice,dn5An, the dimension ofL0 is N2, i.e., the
system is completely controllable. However, if we chose
the dn to be equal, e.g.,dn51 for n51, . . . ,N21, then the
dimension of the Lie algebraL0 is less thanN2 and the
system is thereforenot completely controllable forN.2. It
is also worth noting that a slight modification of thedn is
sufficient in this case to restore complete controllability:
we choosedn51, n51, . . . ,N22 and dN2152 then the
dimension ofL0 is againN2.

The extensive data we gathered strongly suggested
any Morse oscillator system with nonzero transition dipo
moments, i.e.,dnÞ0, n51, . . . ,N21, is completely control-
lable for any N, while complete controllability for a har-
monic oscillator seemed to depend on the values of the t
sition dipole momentsdn . These observations prompted u
to study the issue of controllability systematically using L
algebra techniques.

V. RESULTS FROM LIE ALGEBRA THEORY

In order to prove our conjectures about complete cont
lability based on numerical evidence, a few general res
from the theory of Lie algebras are required. For more
tailed information about Lie algebras and Lie groups, t
reader is referred to Refs.@10–13# or any other book on the
subject.

We first observe that u(N)5su(N) % u(1), where su(N)
is the Lie algebra of traceless skew-HermitianN3N matri-
ces. If the diagonal elementsdm,m of the interaction opera-
tors Ĥm for m.0 are zero, as is the case in the dipole a
proximation, then the interaction operatorsĤm are
represented by traceless Hermitian matrices, i.e.,iĤ m

Psu(N) for m.0. If the internal HamiltonianĤ0 is traceless
as well, i.e.,iĤ 0Psu(N), then the dynamical Lie algebraL0

generated byiĤ 0 andiĤ m must be su(N), or a subalgebra of
su(N), since the commutator of two traceless ske
Hermitian matrices is always a traceless skew-Hermitian m

TABLE II. Dimensions of the Lie algebra.

Dim. N 2 3 4 5 6 7 8

Morse dn5An 4 9 16 25 36 49 64
dn51 4 9 16 25 36 49 64
dn51, dN2152 4 9 16 25 36 49 64

Harmonic dn5An 4 9 16 25 36 49 64
dn51 4 4 11 11 22 22 37
dn51, dN2152 4 9 16 25 36 49 64
0-3
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trix. By our strict definition of complete controllability, a
system whose dynamical Lie algebra is su(N) is not com-
pletely controllable since its dynamical Lie group is SU(N),
i.e., the Lie group of unitaryN3N matrices with determi-
nant one, and SU(N) is a proper subgroup of U(N), the Lie
group of all unitaryN3N matrices.@For a discussion of the
practical significance of the difference between su(N) and
u(N) see appendix A# On the other hand, we have the fo
lowing useful result.

Lemma 1. If the dynamical Lie algebraL0 contains su(N)
and Ĥ0 has nonzero trace then we haveL05su(N)
% u~1!.u(N).

Proof. Note that we can write

Ĥ05
1

N
Tr~Ĥ0! Î 1Ĥ08 ~10!

where iĤ 08Psu(N). iĤ 0 is in L0 by definition. SinceL0

contains su(N), and hence,iĤ 08 , it must also contain the

identity matrix i Î 5(Ĥ02Ĥ08)N/Tr(Ĥ0). Hence, noting that

Î generates a one-dimensional Lie algebra isomorphic to~1!
we have indeedL05su(N) % u~1!. j

Thus, in order to show that a system is completely c
trollable we only need to show that Tr(Ĥ0)Þ0 and thatL0
contains su(N).

To verify thatL0 contains su(N) we need a complete se
of generators for the Lie algebra su(N). Let ên,n8 be theN
3N matrix such that the element in thenth row andn8th
column is 1 while all other elements are 0, i.e.,

~ ên,n8! i j 5d ind jn , ~11!

whered i j is the Kronecker symbol. One can easily see t
any traceless skew-Hermitian matrix must be a real lin
combination of theN221 basic matrices

ên,n8
R

5ên,n82ên8,n 1<n<N21, n,n8<N

ên,n8
I

5 i ~ ên,n81ên8,n! 1<n<N21, n,n8<N ~12!

ĥn5ênn2ên11,n11 1<n<N21.

However, verifying thatL0 contains all of theN221 basis
elements would be quite tedious. Fortunately, this is not n
essary.

Lemma 2. The skew-HermitianN3N matricesên,n11
R and

ên,n11
I 1<n,N, generate the Lie algebra su(N).

Proof. Using the relation

ên,n8êm,m85ên,m8dn8m ,

which follows from the definition ofên,n8 , it can be verified
by direct computation that the skew-Hermitian matricesên,n8

R

and ên,n8
I satisfy the equations
06341
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@ ên,n8
R ,ên8,n9

R
#5ên,n9

R n9Þn,

@ ên,n8
R ,ên8,n9

I
#5ên,n9

I n9Þn, ~13!

@ ên,n8
R ,ên8,n

I
#52i ~ ên,n2ên8,n8!,

and a bit of algebra therefore shows that the 2(N21) ele-
mentsên,n11

R andên,n11
I for 1<n<N21 generate the entire

Lie algebra su(N). j

Hence, ifL0 contains the generatorsên,n11
R andên,n11

I for
1<n<N21, then L0 must contain su(N). Thus, given a
system whose energy levels are well-enough separate
permit selective control of each transition between adjac
energy levels through frequency discrimination, i.e.,

iĤ 5 iĤ 01 (
n51

N21

f n~ t ! cos~mnt !iĤ 1 ,

with Ĥ0 as in ~1!, mn5En2En11 and

iĤ n5 idn~ un&^n11u1un11&^nu!5dnên,n11
I ,

wheref n(t) is slowly time-varying compared to cos(mnt) and
dnÞ0, we can conclude immediately that the Lie algebra
the system contains su(N), and hence, that the system
completely controllable@if Tr( Ĥ0)Þ0#. To see this, note tha
the generatorsên,n11

I are given and the generatorsên,n11
R can

be obtained by computing the commutators

mn
21@ iĤ 0 ,ên,n11

I #5ên,n11
R .

However, selective control of individual transitions b
tween adjacent energy levels through frequency discrim
tion is not always possible. For instance, as pointed out
lier, it fails when the energy levels are equally spaced
degenerate, and it may not be a good approach for syst
with nearly equally spaced energy levels, such as Morse
cillators. Furthermore, even if it is possible to use multip
pulses to selectively control individual transitions, one m
not wish to do so. Instead, one may, for instance, wish
control the system with a single optimally shaped cont
pulse obtained using an efficient optimal control algorith
@14–16#

In order to establish criteria for complete controllability
N-level systems subject to a single control field that driv
all permitted transitions concurrently, we need anoth
lemma, which makes use of the dipole form ofĤ1 .

Lemma 3. If Ĥ1 has the special form~3!, i.e.,

iĤ 15 (
n51

N21

dnên,n11
I , ~14!

then it suffices to show thatL0 contains the pair of genera
tors ê12

R and ê12
I or êN21,N

R , and êN21,N
I , i.e., if L0 contains

either of these two pairs of generators, then it contains all
generators of su(N).

Proof. If ê12
R ,ê12

I PL0 then
0-4
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COMPLETE CONTROLLABILITY OF QUANTUM SYSTEMS PHYSICAL REVIEW A63 063410
ĥ15 1
2 @ ê12

R ,ê21
I #5 i ~ ê112ê22!PL0 ,

V̂15 iĤ 12d1ê12
I 5 (

n52

N21

dnẽn,n11
I PL0 .

whereê21
I 5ê12

I . This leads to

@ ĥ1 ,V̂1#5d2ê23
R PL0 ,

2†ĥ1 ,@ ĥ1 ,V̂1#‡5d2ê23
I PL0 .

Sinced2Þ0 by hypothesis, it follows thatê23
R ,ê23

I PL0 . Re-
peating this procedureN22 times shows that all the gener
tors ên,n11

R andên,n11
I for 1<n,N are inL0 . Similarly, we

can show thatêN21,N
R and êN21,N

I in L0 implies thatL0 con-
tains all the generatorsên,n11

R and ên11,n
I ,1<n,N. j

Thus, if Ĥ1 has the special form~3! then it suffices to
show thatê12

R ,ê12
I PL0 in order to conclude thatL0 is at least

su(N).

VI. COMPLETE CONTROLLABILITY
FOR ANHARMONIC SYSTEMS

Let mn5En2En11 for n51, . . . ,N21 andV̂5 iĤ 1 .
Theorem 2. If m1Þ0 andmn

2Þm1
2 for n.1, then the dy-

namical Lie group of the systemĤ5Ĥ01 f (t)Ĥ1 with Ĥ0

andĤ1 as defined in Eqs.~1! and~3! is at least SU(N). If, in
addition, Tr(Ĥ0)Þ0, then the dynamical Lie group is U(N),
i.e., the system is completely controllable.

Proof. We evaluate

@ iĤ 0 ,V̂#52 (
n51

N21

mndnên,n11
R [2V̂8,

@ iĤ 0 ,V̂8#5 (
n51

N21

mn
2dnẽn,n11

I [V̂9.

Using V̂ and V̂9, we obtainV̂1PL0 , where

V̂1[V̂92mN21
2 V̂5 (

n51

N22

~mn
22mN21

2 !dnên,n11
I .

Repeating the previous steps foriĤ 0 and V̂1 leads toV̂2
PL0 , where

V̂2[2†iĤ 0 ,@ iĤ 0 ,V̂1#‡2mN22
2 V̂1

5 (
n51

N23

~mn
22mN22

2 !~mn
22mN21

2 !dnên,n11
I .

After N22 iterations, we haveV̂N22PL0 where

V̂N22[d1F )
n52

N21

~m1
22mn

2!G ê12
I .
06341
Since by hypothesis,d1Pn52
N21(m1

22mn
2)Þ0, this means

V̂N228 5ê12
I PL0 and noting thatm1Þ0 we have

V̂N229 [2
1

m1
@ iĤ 0 ,V̂N228 #5ê12

R PL0 .

The conclusion now follows from lemmas 1 and 3. j
This theorem shows that for anharmonic systems, co

plete controllability does not depend on the values of
transition dipole momentsdn ~as long as they are nonzero!.
In particular, we have the following.

Corollary 1. A quantum systemĤ5Ĥ01 f (t)Ĥ1 with Ĥ0

andĤ1 as in Eqs.~1! and~3!, respectively, andEn as in Eq.
~9!, i.e., a Morse oscillator, is completely controllable f
arbitrary nonzero values of the transition dipole mome
dn .

It is worth noting that Theorem 2 also applies to som
degenerate quantum systems.

Example 1. The systemĤ5Ĥ01 f (t)Ĥ1 with

Ĥ05diag$E1 ,E2 ,...,E2%, E1ÞE2 ,

andĤ1 as in Eq.~3! is completely controllable by Theorem
2 despite the fact that energy levelE2 has multiplicity N
21. In fact, the proof of controllability is even simpler fo
this system as we haveV̂95m1

2d18ê12
I after only one step.

This example begs the question whether the system is
completely controllable if we choose

instead. It is obvious that this system does not satisfy
technical conditionm1Þ0. However, it can easily be show
that this system is completely controllable by modifying t
proof. In fact, this example is just a special case of the f
lowing.

Theorem 3. If mN21Þ0 andmn
2ÞmN21

2 for n,N21, then

the dynamical Lie group of the systemĤ5Ĥ01 f (t)Ĥ1 with
Ĥ0 andĤ1 as defined in Eqs.~1! and ~3!, respectively, is at
least SU(N). If, in addition, Tr(Ĥ0)Þ0, then the dynamica
Lie group is U(N), i.e., the system is completely contro
lable.

The proof of this theorem is analogous to the proof
Theorem 2.

VII. COMPLETE CONTROLLABILITY FOR HARMONIC
SYSTEMS

The conditionm1
2Þmn

2 in the previous theorems exclude
any system with equally spaced energy levels, such as a
monic oscillator, for which we havem15m25¯5mN21 .
We shall assume thatm1Þ0 since form150, the system is
completely degenerate with only one energy level.

In order to state our theorem, we need to introduce so
technical parameters
0-5
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vn5H 2d1
22d2

2, n51;

2dn
22dn21

2 2dn11
2 , n52, . . . ,N22;

2dN21
2 2dN22

2 n5N21.

~15!

Observe that these technical parameters depend on the v
of the transition dipole momentsdn .

Theorem 4. The dynamical Lie group for a quantum sy
tem Ĥ5Ĥ01 f (t)Ĥ1 with Ĥ0 andĤ1 as in Eqs.~1! and ~3!
andN equally spaced energy levels

En5E11~n21!m1 , n51, . . . ,N, m1Þ0,

is at least SU(N) if the parametersvn satisfy one of the
following conditions:

~1! vnÞvN21 for 1<n<N22;
~2! vnÞv1 for 2<n<N21.

If, in addition, Tr(Ĥ0)Þ0, then the dynamical Lie group i
U(N), i.e., the system is completely controllable.

Proof. Let V̂5 iĤ 1 . In this case, the element

Ṽ52m1
21@ iĤ 0 ,V̂#5 (

n51

N21

dnên,n11
R ,

is in L0 and its sum and difference withV̂ give rise to

which, along with their commutator

V̂1
05 1

4 @V̂1
1 ,V̂1

21#

5 id1
2ê1,11 (

n52

N21

i ~dn
22dn21

2 !ên,n2 idN21
2 êN,N ,

are inL0 . Starting withV̂1
0 and V̂1

1 , we have

@V̂1
0,V̂1

1#5 (
n51

N21

vndnên,n11
1 PL0 ,

V̂2
1[@V̂1

0,V̂1
1#2v1V̂1

15 (
n52

N21

~vn2v1!dnên,n11
1 PL0 ,

V̂3
1[@V̂1

0,V̂2
1#2v2V̂2

1

5 (
n53

N21

~vn2v2!~vn2v1!dnên,n11
1 PL0 ,

]

06341
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V̂n21
1 [@V̂1

0,V̂N22
1 #2vN22V̂N22

1

5dN21F )
n51

N22

~vN212vn!G êN21,N
1 PL0 .

Since by hypothesis,vN21Þvn for n51,2, . . . ,N22, we
haveêN21,N

1 PL0 .

Similarly, starting withV̂0 and V̂1
2 , we can also prove

êN21,N
2 PL0 . This impliesêN21,N

R and êN21,N
I are inL0 , and

hence, the conclusion follows from Lemmas 1 and 3.j
Example 2. The standardN-level harmonic-oscillator sys

tem Ĥ5Ĥ01 f (t)Ĥ1 with Ĥ0 andĤ1 as in Eqs.~1! and~3!,
En5n21/2 anddn5An is completely controllable by Theo
rem 4, since we have

v15v25¯5vN2250, vN215N,

i.e., thevn satisfyvN212vn5N for n51, . . . ,N22.
Example 3. However, theN-level harmonic-oscillator sys

tem Ĥ5Ĥ01 f (t)Ĥ1 with Ĥ0 andĤ1 as in Eqs.~1! and~3!,
En5n21/2 anddn51 for n51, . . . ,N21 does not satisfy
the hypothesis of Theorem 4, since we have

v151, v25¯5vN2250, vN2151,

i.e.,vN215v1 . Numerical calculations for variousN confirm
that this system is indeed not completely controllable~See
Table II!.

For N54 one can, e.g., verify either numerically or b
analyzing the Lie algebra that the simple skew-Hermit
matrix

ê12
I 5S 0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

D
is not in L0 and therefore the unitary operator

Û~u!5exp~uê12
I !5S cos~u! i sin~u! 0 0

i sin~u! cos~u! 0 0

0 0 1 0

0 0 0 1

D ,

cannot be dynamically generated for this system for anu
P(0,2p). Thus, if the system is initially in stater̂0

5(n51
4 wnun&^nu, then the target state

r̂~ tF!5Û~u!r̂0Û~u!†,

is generally not dynamically accessible since it is impossi
to put the energy eigenstatesu1& and u2& into superposition
without equally mixing the statesu3& and u4& of the initial
ensemble.

Example 4. The N-level harmonic-oscillator systemĤ
5Ĥ01 f (t)Ĥ1 with Ĥ0 and Ĥ1 as in Eqs.~1! and ~3!, En
0-6
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5n21/2, dn51 for n51, . . . ,N22, butdN2152, however,
does satisfy the hypothesis of Theorem 4 since we have

v151, v25¯5vN2350, vN22523, vN2157,

i.e., vnÞv1 for nÞ1. Numerical calculations for variousN
confirm that this system is completely controllable~see
Table II!.

The rather surprising results of the previous two examp
can be understood by analyzing the Lie algebra generate
Ĥ0 andĤ1 in both cases. Although the details of this ana
sis are beyond the scope of this paper~and will be discussed
in a future paper! we would like to mention here that for
harmonic system with transition dipole moments satisfy
the ‘‘symmetry’’ relation dN2n56dn for 1<n<N/2, the
transitionsn→n11 and N2n→N112n for 1<n<N/2
become coupled. This leads to a collapse of the Lie alge
and loss of complete controllability, which can be restor
by breaking the symmetry in the transition dipole momen
This is why changingdN2151 to dN2152 restored control-
lability in the last example. In fact, changing,dN21 to any
value other than61 would work as well.

VIII. CONCLUSION

The question of complete controllability of quantum sy
tems using external control fields has been addressed b
by various authors and it is, for instance, well known tha
quantum system is completely controllable if it is possible
address a sufficiently large set of single transitions us
multiple frequency-selective control pulses. However, ma
optimization strategies attempt to find a single control pu
that addresses all transitions concurrently to achieve the
trol objective. Furthermore, control based on frequency d
crimination is not always possible, e.g., it is not suitable
systems with equally or almost equally spaced or degene
energy levels.

Despite the relative importance of control strategies
volving a single control pulse, sufficient criteria for comple
controllability in this case have so far been missing. In t
paper, we addressed this problem and established ge
criteria for complete controllability of quantum systems su
ject to a single control pulse.

In particular, we showed that most anharmonic, non
composable quantum systems are completely controll
using a single control that drives all the transitions conc
rently, independent of the values of the transition dipole m
mentsdn . For quantum systems with equally spaced ene
levels, we demonstrated that complete controllability d
pends on the values of the transition dipole momentsdn and
derived conditions that guarantee complete controllability

We verified that the standard truncated harmonic osc
tor with transition dipole momentsdn5An satisfies these
conditions and gave examples of harmonic systems tha
not satisfy the conditions. In the latter case, we also chec
by direct computation of the Lie algebra that they are
completely controllable and showed that there are cer
unitary operators that cannot be dynamically realized
these systems.
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APPENDIX: CONTROLLABILITY AND THE QUESTION
OF TRACE

All the theorems about complete controllability present
in this paper require that the trace ofĤ0 be nonzero. The
mathematical necessity of this hypothesis is obvious: a se
traceless skew-HermitianN3N matrices cannot generate a
of u(N) but at most su(N). Hence, assuming that the inte
action termsĤm , m.0, are represented by traceless ske
Hermitian matrices, ifĤ0 is traceless as well, then the dy
namical Lie group can be at most SU(N), the set of unitary
matrices with determinant one, which is a proper subgro
of U(N). However, our definition of complete controllabilit
requires that all unitary matrices be dynamically accessib

Nevertheless, the trace condition is physically somew
disturbing since the energy levels of a physical system
generally only determined up to a constant, and hence,
trace ofĤ0 seems physically rather insignificant as one c
always make it either zero or nonzero by shifting the ene
levels of the system by a constant. We shall attempt to
solve this apparent conflict by showing that the differen
between SU(N) and U(N) is only a phase factor.

Let the initial state of the system be represented by
normalized wave functionuc0&. If the dynamical Lie group
of the system is U(N) then any other pure state represent
by normalized wave functionuc1& is dynamically reachable
since given any two normalized wave functions, there alw
exists a~not necessarily unique! unitary transformationÛ
such that uc1&5Ûuc0& and we can find a pathg(t)
5Û(t,t0) in U(N) such thatg(t0)51̂ andg(tF)5Û. Since
the determinant of a unitary operator is a complex numbe
modulus 1, we can write det@g(t)#5eif(t). Noting that
det(aA)5aN det(A) whereN is the size ofA, we see imme-
diately thatg̃(t)[e2 if(t)/Ng(t) has determinant 1

det@ g̃~ t !#5~e2 if~ t !/N!N det@g~ t !#5e2 if~ t !eif~ t ![1,

and thus defines a path in SU(N). Furthermore,

g̃~ tF!uc0&5e2 if/NÛuc0&5e2 if/Nuc1&,

i.e., g̃(tF)uc0& anduc1& differ only by a phase factor. Hence
if the dynamical Lie group is SU(N) then we loose contro
over the phase of the state, otherwise there is no differe

Thus, for practical applications that do not require pha
control, one need not worry about the trace. For instance
the goal of controlling the system is to maximize the exp
tation value of an observableÂ at a target timetF ,

^Â~ tF!&5^c~ tF!uÂuc~ tF!&,
0-7
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then clearly the phases of the target states are irrelevan
they are cancelled out by computing the expectation va
anyway.

Moreover, if the initial state is given by a density matr
r̂0 then any target stater̂(tF) that is dynamically accessibl
via a path in U(N) is also dynamically accessible via a pa
in SU(N). To see this, letg(t)5Û(t,t0) be a path in U(N)
such that

r̂~ tF!5Û~ tF ,t0!r̂0Û~ tF ,t0! t. ~A1!

Again, we have det@g(t)#5eif(t) and g̃(t)5e2 if(t)/Ng(t) de-
a,

h

er
ty

in

nd

06341
as
e
fines a path in SU(N) that is equivalent tog(t) since@17#

r̂~ t !5g~ t !r̂0g~ t !†5eif~ t !/Ng̃~ t !r̂0g̃~ t !†e2 if~ t !/N

5g̃~ t !r̂0g̃~ t !†,

i.e., the phase factorse2 if(t)/N cancel out completely.
However, there are some applications of control in qu

tum computation where it is important to have phase con
and when SU(N) is not adequate. Therefore, we have chos
to require the dynamical Lie group to be U(N) for complete
controllability.
ev.
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