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Complete controllability of quantum systems
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Sufficient conditions for complete controllability d-level quantum systems subject to a single control
pulse that addresses multiple allowed transitions concurrently are established. The results are applied in par-
ticular to Morse and harmonic-oscillator systems, as well as some systems with degenerate energy levels.
Controllability of these model systems is of special interest since they have many applications in physics, e.g.,
Morse and harmonic oscillators serve as models for molecular bonds, and the standard control approach of
using a sequence of frequency-selective pulses to address a single transition at a time is either not applicable
or only of limited utility for such systems.
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[. INTRODUCTION sidered are assumed to be nondecomposable, i.e., systems
that can be decomposed into noninteracting subsystems are
Recent advances in laser technology have opened up negxcluded. Note that such systems can never be completely

possibilities for laser control of quantum phenomena such agontrollable[3].

control of molecular quantum states, chemical reaction dy- It will be shown in particular that a nondecomposable
namics, or quantum computers. This has prompted researcAUantum system with dipole interaction is completely con-
ers to study these systems from a control-theoretical point dfollable with a single control pulse if there is some anhar-
view, in particular, in view of the limited success of initially monicity in the energy levels. It must be noted, however, that
advocated control schemes based largely on physical intdt is sufficient if, e.g., the transition frequency for the first

ition in both theory and experimeft]. transition is different from all the other transition frequen-

One issue that arises is the question whether, or undéii€s. This is a much weaker condition than frequency dis-
which conditions, it is possible to control a quantum System:rimination, which requires that all the transition frequencies
in such a way as to achieve any physically permitted evoluare suﬁici(_ently _different. Furthermore, for a system with no
tion of the system. Complete controllability is an importantanharmonicity, i.e., equally spaced energy levels, we demon-
theoretical concept that also has significant practical impliStrate that complete controllability depends on the values of
cations. For example, it has been shown that kinematicdhe transition dipole moments of the system, and establish
constraints on the evolution of nondissipative quantum SySSUfﬁCient criteria for Complete ContrO”ability. The controlla-
tems give rise to universal bounds on the optimization oftility of some systems with degenerate energy levels is also
observable$2] and that the practical issue of dynamical re- discussed and examples of systems that are not completely
alizability of these bounds depends on the controllability ofcontrollable are presented.
the systeni3]. Controllability is also important in quantum
computation as it is directly related to the question of uni- Il. QUANTUM CONTROL SYSTEM
versality of a quantum computation elemést.

It has been shown that an atomic system Wtaccessible
energy levels, which are sufficiently separated to allow con
trol based on frequency discrimination, is completely con- N
trollable using a sequence of frequency-selective pulses that N
address only a single transition at a tifil§. Although this Ho nzl Ealmnl, @
approach is enormously useful, control based on frequency
discrimination is not applicable to systems with equallywhere{|n):n=1,... N} is a complete set of orthonormal
spaced energy levels such as truncated harmonic oscillatomigenstates anl, are the corresponding energy levels of the
and problematic for systems with almost equally spaced ersystem.
ergy levels such as Morse oscillators, since in this case, any The application of external control fields perturbs the sys-

external field is likely to address multiple transitions simul-tem and gives rise to a new Hamiltonigi= H,+ H, , where
taneously. Moreover, systems with degenerate energy level§ i an interaction term. In the control-linear approxima-

also present problems for this technigue. tion, the interaction term is of the form
In this paper, we therefore concentrate on complete con-

trollability of quantum systems subject to a single control M

field, e.g., a laser pulse or magnetic field, that addresses mul- H,= E fo(OH ., 2)
tiple transitions concurrently. In particular, we study the m=1

problem of controllability of a system subject to a single

control, for which the interaction with the control field is Wherefy(t) form=1,... M are independent control fields,
determined by the dipole approximation. The systems conand the operatoH,, represents the interaction of the field

Given anyN-level quantum system, the Hamiltonian of
the unperturbed system can be written as
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f (1) with the system. The off-diagonal elementsfbf, de- Definition 1 A quantum systenfd = H,+ H, with H, and
pend on the transition dipole moments ,, for transitions  {j as in Eqs(1) and(2) is completely controllable if every

between energy eigenstates. E&this Hermitian since the  njtary operatotJ is accessible from the identity operator 1

. . . ok * ~
transition dipole moments satistl, ,=d, ,, whered; ... i, o pathy(t) =0 (t,t,) that satisfies Eq(5).

is the complex conjugate of,, .. In this paper, we are Complete controllability implies that any kinematically
particularly m_teresteq in the cade=1,le,a smgle control 5 ymissible target state can be dynamically reached from the
pulse, for which the interaction operator is of dipole form initial state by driving the system with a suitable control
N-1 field. If the system is initially in a mixed state represented by
|3|1: 2 dn(|n¥{n+1|+|n+1)|n|), d,#0. (3 a density matrixp, then this means that any other kinemati-
n=1 cally admissible mixed state can be dynamically reached.
Similarly, if the system is initially in a pure state represented
Iﬁby a normalized wave functiohy,) then complete control-
lability guarantees that every other pure state represented by
& normalized wave-function|,) can be dynamically
reached from the initial state. In Rgf3] it is furthermore
shown that complete controllability implies dynamical real-
izability of the universal kinematical bounds on the optimi-
p()=0(t,t0)poU(t,t) T, (4)  zation of observables fainondissipativi quantum systems.
It is apparent that if the dimension of the Lie algeh

whereU(t,to) is the time-evolution operator, which satisfies generated by the operatdid,,...,Ay}, or more accurately,

Note that we exclude systems for which any of the transitio
dipole momentsl, =d, ;. ;=d,; 1, vanish since these sys-
tems can be decomposed into noninteracting subsystems.

An arbitrary initial state of the system can be represente
by a density matrixp, that evolves according to the dynami-
cal law

the Schrdinger equation their skew-Hermitian counterparfsH ,...,iH ! is N2 then
P L, is the Lie algebra of skew-Hermitiahl X N matrices

i —U(t,te)=(Fo+H)0(t,t,), (5) u(N). Ramak'rishnaet al. have shown in R'e1[7]', using re-
at sults by Jurdjevic and Sussmaf8l, that in this case the

R R dynamical Lie group of the system is the unitary group
with initial condition U(tg,tp) =1. U(N). Noting that the dimension of &) is N? and that any
We say the system is initially in a pure state if KS][ Lie algebra of skew-Hermitiah X N matrices of dimension
=1. In this case, the initial state of the system can also b&l? is (isomorphic t9 u(N) we have, therefore, the follow-
represented by a normalized wave functigry), which is ing.
either an energy eigenstat® or a superposition of energy Theorem 1(Ramakrishna et al. A necessary and suffi-

eigenstates cient condition for complete controllability of a quantum
N systemH = Hy+ H, with H, andH, as in Egs(1) and(2) is
o) = 2 c ) ©6) that the Lie algebra , has dimensiomN?.
077 & ol This theorem provides a condition for complete control-

lability of a quantum system that can easily be verified by

where thec,, are complex coefficients that satisfy the nor- computing the Lie algebra generated fy,...,H,, and de-
malization conditior®,,c,c; =1 [6]. The time evolution of a termining its dimension.

pure state represented by a wave functigft)) is A basic algorithm for constructing a basis for the Lie
R algebral o in terms of iterated commutators is presented in
[(1))=U(t,t0)| o), (7)  Table I It can be optimized to increase the speed of the

) computation and to improve the accuracy of the numerical
where [4o) = |4(to)) and U(t,to) is the time-evolution op-  results. In Table | we usél to denote aNXN matrix and

erator as defined above. using the fact that a matrix can also be interpreted as a vec-
tor, H for the N2 column vector obtained by concatenating
lll. CRITERIA FOR COMPLETE CONTROLLABILITY the columns ofHl vertically. W is a N?x N? matrix whose

columnsW. ; represent the basis elementslgf. Note that

SinceH,y+H, is Hermitian, Eq(5) implies that the time- . . . .
. - . . - W. ; is the jth basis element interpreted Bis< N matrix.
evolution operatolJ(t,ty) is unitary. Hence, examination of To initialize W. we start withw =H, and addH,, for

’ : m

Eq. (4) reveals that only target statpétr) that are related to m=1, ... M provided that the additional column increases

the initial statepo by p(t;)=UpoU", whereU is a unitary  the rank ofW. This guarantees thad initially consists of
operator, are kinematically admissible. However, in generalunea”y independent generators Io§. To construct a basis
not all of these states can actually be dynamically reachedor |, we compute all possible commutators of the columns
unless the dynamical Lie group generatediHy andiH ;,, W. ; of W, interpreted adN X N matrices. Whenever a com-
m=1,2,... M, is the unitary group U{). (See the Appen- mutator is linearly independent of the columns\Wéfwe add
dix for a discussion of this requirement.his motivates the the commutator as a new column\ié Note that if we add a
following. new column tow then we also have to compute the commu-
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TABLE I. Algorithm to compute the Lie algebra generated by a
control system{Hy,...,Fy}.

let W=H,
let r =rank(W)
for m=2,... M+1do
if rank(W,H,])>r then

appendW by column vectoH,,
r=r+1
endif
endfor
letr,=0
let r ,=rank(W)
repeat
for I=r,+1,...r,do
for j=1,...]1—-1do
let A=[W. ,W. ]

if rank(W,h])>r then
appendW by column vectoih
r=r+1
endif
endfor
endfor
let ro=rp,
let r,=rank(W)
until r,=r, or r=N?

tator of the matrix represented by the new column with all

the matrices represented by the old columng/oHence, we

PHYSICAL REVIEW A63 063410

TABLE II. Dimensions of the Lie algebra.

Dim. N 2 3 4 5 6 7 8
Morse d,=n 4 9 16 25 36 49 64
d,=1 4 9 16 25 36 49 64
d=1,dy ;=2 4 9 16 25 36 49 64
Harmonic d,=\n 4 9 16 25 36 49 64
d,=1 4 4 11 11 22 22 37
d,=1,dy ;=2 4 9 16 25 36 49 64

different choices of the transition dipole momeuts. The
results of some of these computations are presented in Table
1.

For the Morse oscillator system we observe that the di-
mension ol is alwaysN?, i.e., it is completely controllable
independent of the choice of thg, (as long as thal,, are
nonzero.

For the harmonic oscillator, however, the dimensiom gf
depends on the choice of the transition dipole moments. For
the usual choicaj,= \/n, the dimension of , is N?, i.e., the
system is completely controllable. However, if we chose all
thed, to be equal, e.gd,,=1 forn=1,... N—1, then the
dimension of the Lie algebra, is less thanN? and the
system is thereforaot completely controllable foN>2. It
is also worth noting that a slight modification of tlag is
sufficient in this case to restore complete controllability: if
we choosed,=1, n=1,... N—2 anddy_;=2 then the
dimension ofL, is againN2,

The extensive data we gathered strongly suggested that
any Morse oscillator system with nonzero transition dipole

repeat computing the commutators of the basis elements repsoments ied,#0,n=1,... N—1, is completely control-
resented by until no new columns have been added in the|gpie for any N, while complete controllability for a har-

previous step or the rank & reaches the maximum of2.

IV. CONTROLLABILITY CALCULATIONS

monic oscillator seemed to depend on the values of the tran-
sition dipole momentsl,. These observations prompted us
to study the issue of controllability systematically using Lie
algebra techniques.

We implemented the algorithm presented in the previous
section and computed the dimension of the dynamical Lie

algebra for the systetd = H,+ f (t)H, with H, andH; as in
Egs. (1) and(3) for various choices of the energy leveis
and the transition dipole momerds. In particular, we stud-
ied theN-level harmonic oscillator with energy levels

1
Eq=n-—>, ®
and theN-level Morse oscillator with energy levels
E ! 1 ! B ! 9
n=|{N=3]|1=5B{n=5]], €)

where B is a (usually small positive real number. In our
numerical computations we usdt=0.0419, which corre-

V. RESULTS FROM LIE ALGEBRA THEORY

In order to prove our conjectures about complete control-
lability based on numerical evidence, a few general results
from the theory of Lie algebras are required. For more de-
tailed information about Lie algebras and Lie groups, the
reader is referred to Refsl0—13 or any other book on the
subject.

We first observe that IN) =su(N)@u(1), where sulN)
is the Lie algebra of traceless skew-Hermitidix N matri-
ces. If the diagonal elements, ,, of the interaction opera-

tors H,,, for m>0 are zero, as is the case in the dipole ap-
proximation, then the interaction 0peratorl§|m are
represented by traceless Hermitian matrices, iiél,,

e su(N) for m>0. If the internal Hamiltoniat, is traceless
as well, i.e.,iﬂoesu(N), then the dynamical Lie algebta,

sponds to a Morse oscillator model of the molecular bond fogenerated byH , andiH ,, must be su), or a subalgebra of

hydrogen fluoridg9]. We computed the dimension of the
Lie algebral ( for systems with varying dimensidd and for

su(N), since the commutator of two traceless skew-
Hermitian matrices is always a traceless skew-Hermitian ma-
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trix. By our strict definition of complete controllability, a
system whose dynamical Lie algebra is Ny(is not com-
pletely controllable since its dynamical Lie group is $U(
i.e., the Lie group of unitaryNX N matrices with determi-
nant one, and SUN) is a proper subgroup of W), the Lie
group of all unitaryNX N matrices[For a discussion of the
practical significance of the difference betweenNu@nd
u(N) see appendix AOn the other hand, we have the fol-
lowing useful result.

Lemma 1If the dynamical Lie algebra, contains sufl)
and H, has nonzero trace then we haue,=su(N)
@ u(l)=u(N).

Proof. Note that we can write

N 1 PN
Fo=g Tr(Ao) T + A1 (10)
whereiHjesu(N). iHg is in Lo by definition. Sincel,
contains suy), and hencejﬂ(’,, it must also contain the
identity matrixil = (Ho—H)N/Tr(H,). Hence, noting that

i generates a one-dimensional Lie algebra isomorphi¢ip u
we have indeed. = su(N)®u(l). |

PHYSICAL REVIEW /3 063410

AR AR AR

[enn v ]=8,  N"#n,

aR al _al "

[&nn B =8 N"#0, (13
AR 4l i/ ~
[en,n"en’,n]_2|(en,n_en’,n')-

and a hit of algebra therefore shows that thé&N2(1) ele-
mentse,, .1 andé:],nﬂ for l<=n=N-1 generate the entire
Lie algebra suy). |
Hence, ifL, contains the generatog§  , ; and@,, . , for
1=sn=<N-1, thenLy must contain su{). Thus, given a
system whose energy levels are well-enough separated to
permit selective control of each transition between adjacent
energy levels through frequency discrimination, i.e.,

N—1
iH=iHo+ >, f,(t) codunt)iFy,
n=1
with Hg as in(1), uy=E,—E,., and
iHa=idn(In)(n+1]+[n+1)(n))=dn& 1,

wheref ,(t) is slowly time-varying compared to cgsft) and

Thus, in order to show that a system is completely cony o we can conclude immediately that the Lie algebra of

trollable we only need to show that Fi)#0 and thatl_,
contains sul).

To verify thatL, contains sul) we need a complete set
of generators for the Lie algebra Ni. Let &, ,, be theN
XN matrix such that the element in thth row andn’th
column is 1 while all other elements are 0, i.e.,

(én,n')ijzainajna (11

the system contains sNj, and hence, that the system is

completely controllablif Tr( Ho) # 0]. To see this, note that
the generatoré'n'nJrl are given and the generatcia’,.%n+l can
be obtained by computing the commutators

—1r: Al _aR
Mn [|H0=en,n+1]_en,n+l'

However, selective control of individual transitions be-
tween adjacent energy levels through frequency discrimina-

where §; is the Kronecker symbol. One can easily see thation is not always possible. For instance, as pointed out ear-
any traceless skew-Hermitian matrix must be a real linealier, it fails when the energy levels are equally spaced or

combination of theN?— 1 basic matrices

~R

€ =8 —8yn lsnsN-1, n<n'sN

& =18 n+&v ) 1snsN-1, n<n’sN (12

hh=€n—8y+10+1 1sns=N-1

However, verifying thal_, contains all of theN>—1 basis

degenerate, and it may not be a good approach for systems
with nearly equally spaced energy levels, such as Morse os-
cillators. Furthermore, even if it is possible to use multiple
pulses to selectively control individual transitions, one may
not wish to do so. Instead, one may, for instance, wish to
control the system with a single optimally shaped control
pulse obtained using an efficient optimal control algorithm
[14-14
In order to establish criteria for complete controllability of

N-level systems subject to a single control field that drives
all permitted transitions concurrently, we need another

elements would be quite tedious. Fortunately, this is not NneCma which makes use of the dipole formfof.

essary.
Lemma 2The skew-HermitiatNx N matricesaf . ; and
&, ni1 1<N<N, generate the Lie algebra $u.
Proof. Using the relation

en‘n/em’m/ = en'm, 5n/m,

which follows from the definition o€, ., it can be verified
by direct computation that the skew-Hermitian matriéﬁﬁ,
andé:m, satisfy the equations

Lemma 31If H, has the special forn8), i.e.,

N—1
ileer dnéln,n+1' (14
then it suffices to show thadt, contains the pair of genera-
tors &, and &}, or &F_,, and@\_,, i.e., if Ly contains
either of these two pairs of generators, then it contains all the
generators of siy).
Proof. If &F,,&l,e L, then
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=i(énn—€éxp)ely,
N-1
1912 E d enn+1€|—o

Vi=iH;—d
whereé,,=&),. This leads to
[ﬁl,\?l]:dzégae Lo,
_[ﬁlv[ﬁlvvl]]deéIZSE Lo.

Sinced,# 0 by hypothesis, it follows theégg,é'zg,e Lo. Re-

peating this procedur‘ﬂ 2 times shows that all the genera-

torsen N1 anden nt1 for 1=n<N are inLgy. Similarly, we
can show thaéR _ IN andé),_ 1N in Lo implies thatL, con-
tains all the generatoréﬁn+l anden+ln ,1=n<N. |

Thus, if H1 has the special forni3) then it suffices to
show tha?, &) ,e L, in order to conclude thdt, is at least
su(N).

VI. COMPLETE CONTROLLABILITY
FOR ANHARMONIC SYSTEMS

Let u,=E,—E,., forn=1,... N—1 andV=iH;.

Theorem 21f u;#0 andu?+# u? for n>1, then the dy-
namical Lie group of the systemd=Hy+f(t)H; with Hg
andH; as defined in Eqg1) and(3) is at least SUK). If, in
addition, TrQ:IO);&O, then the dynamical Lie group is N,
i.e., the system is completely controllable.

Proof. We evaluate

<\)

n I"I+1

ﬁ\"/é

Z €n, n+1:V”

UsingV andV”, we obtainV, e Lo, where

N-2
S 2 ~ 2 2 Al
VJ_:V”_ /-LN_]_V: nZl (/-Ln_ /'LN—l)drlen,r'H—l .

Repeating the previous steps fit, and V; leads toV,
ely, where

__[lHo ['H Vl]] :U~N 2V1
N-3
:ngl (:U'r21_Mﬁl—z)(ﬂﬁ_ﬂﬁ—l)dnéhn%—l'

After N—2 iterations, we havé/N,ze L, where
N—1

\A/N—zzdl{n (M%_Mﬁ) &

e12-
n=2
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Since by hypothesis d,TIN-J(u5— u2)#0, this means
V{,_,=@l,eLy and noting thaju;+0 we have

VY 1 1 /1 AR
N—2=— —[iHo,Vy_2]=8€5e L.
M1

The conclusion now follows from lemmas 1 and 3. M

This theorem shows that for anharmonic systems, com-
plete controllability does not depend on the values of the
transition dipole momentd,, (as long as they are nonzéro
In particular, we have the following.

Corollary 1. A quantum systerfd = Hy+ f(t)H, with A,
andH, as in Egs(1) and(3), respectively, ané,, as in Eq.
(9), i.e., a Morse oscillator, is completely controllable for
arbitrary nonzero values of the transition dipole moments
d,.

It is worth noting that Theorem 2 also applies to some
degenerate quantum systems.

Example 1 The systen13| = I:|0+ f(t)I:|1 with

Hozdiag{El,Ez,...,Ez}, E1¢E2,

andH, as in Eq.(3) is completely controllable by Theorem
2 despite the fact that energy levEl, has multiplicity N
—1. In fact, the proof of controllability is even simpler for

this system as we haw¢’ = w?d; &}, after only one step.
This example begs the question whether the system is still
completely controllable if we choose

A

Hozdiag{El,...,El,Ez}, El#:EZ’
—

N—-1

instead. It is obvious that this system does not satisfy the
technical conditionu,# 0. However, it can easily be shown
that this system is completely controllable by modifying the
proof. In fact, this example is just a special case of the fol-
lowing.

Theorem 3If uy_1#0 andu?+# u3_; forn<N—1, then
the dynamical Lie group of the systeith=Hq+ f(t)H; with
H, andHA; as defined in Eqg1) and(3), respectively, is at
least SUN). If, in addition, Tr(H,) #0, then the dynamical
Lie group is UN), i.e., the system is completely control-
lable.

The proof of this theorem is analogous to the proof of
Theorem 2.

VIl. COMPLETE CONTROLLABILITY FOR HARMONIC
SYSTEMS

The conditionu+ w2 in the previous theorems excludes
any system with equally spaced energy levels, such as a har-
monic oscillator, for which we haveu,=u,="-=un_1-

We shall assume that,# 0 since foru,;=0, the system is
completely degenerate with only one energy level.

In order to state our theorem, we need to introduce some
technical parameters
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2d?—d3,
2d2-d2_,—d?, .,
Zdﬁ 1 dN 2

n=1;
n=2,... N—2;
n=N-1.

Un= (15

Observe that these technical parameters depend on the val
of the transition dipole moments;, .
Theorem 4 The dynamical Lie group for a quantum sys-

temH= I:|0+f(t)l:|1 with I:|0 andH, as in Egs(1) and(3)
andN equally spaced energy levels

E,=E;+(n—1)u;, n=1,... N, u,#0,

is at least SUY) if the parameters, satisfy one of the
following conditions:

D) vp#vy_q for IsnsN-2;
(2) vy#vq for 2=n=N-1.

If, in addition, Tr(H,)#0, then the dynamical Lie group is
U(N), i.e., the system is completely controllable.
Proof. Let V=iH,. In this case, the element
N—1
V= py o, V)= 2, didloen,

is in Lo and its sum and difference witht give rise to

E d (en n+l+€n n+l)
~—

_,+
78mn+1

2

nn+l nn+l)

Eemn+1

which, along with their commutator
=HV1 VY
N-1
=idgey o 2 i(di—diy)@nn—idy_seyn,
are inL,. Starting withV$ andV; , we have

N-1
[VIVI1= 2 vadedinerelo,

N—-1
\A/;E[\A/Oa\?f]_vl\?f: nzz (Un_vl)dnér:r,nJrlE Lo,
Vi=[VV31-v,V5

N—-1
= ng:% (Un_UZ)(Un_Ul)dn(::'r:—,n+1E Lo,

"ihice by hypothesisyy_1#v, for n=1,2, ...

PHYSICAL REVIEW /3 063410

Vi 1-[VO,VN 2] UN- 2VN 2
N—2

H (vn-1—0
1

=dn-1

n)

At
eN,l‘NE Lo.

N—-2, we
havegy_jnelo.

Similarly, starting withV° and V; , we can also prove
éy-1n€Llo. This impliesef _ IN andéy,_ 1N areinly, and
hence, the conclusion follows from Lemmas 1 and 3.1

Example 2 The standardN-level harmonic-oscillator sys-
temH=Hy+f(t)H,; with H, andH; as in Eqs(1) and(3),
E,=n—1/2 andd,= vn is completely controllable by Theo-
rem 4, since we have

v1=v2=""=vN-2=0, vn-1=N,

i.e., thev, satisfyvy_1—v,=N forn=1,... N-2.

Example 3However, theN-level harmonic-oscillator sys-
temH="H,+f(t)H; with H, andA; as in Eqs(1) and(3),
E,=n—-1/2 andd,=1 forn=1, ... N—1 does not satisfy
the hypothesis of Theorem 4, since we have

v1=1, vo=-=vN-2=0, vn-17 ],

i.e.,uny—1=v1. Numerical calculations for variou$ confirm
that this system is indeed not completely controlla{8ee
Table II).

For N=4 one can, e.g., verify either numerically or by

analyzing the Lie algebra that the simple skew-Hermitian
matrix

o O

o o O
o o o o
o o ©o o

is not inLy and therefore the unitary operator

cogh) isin(d) 0 O
isin(@d) cogh) O O

()= expl 0e12) 0 0 1 ol
0 0 0 1

cannot be dynamically generated for this system for any
€(0,27). Thus, if the system is initially in statepg
=31_,w,/n)(n|, then the target state

p(te)=0(0)po0(0)T,

is generally not dynamically accessible since it is impossible
to put the energy eigenstat&l and |2) into superposition
without equally mixing the statel8) and |4) of the initial
ensemble.

Example 4 The N-level harmonic-oscillator systerfi

=Hy+f(t)H,; with A, andH; as in Egs.(1) and (3), E,
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v1=1, vp= 1 =oN-5=0, Un-2= 73 Una =T, egon for providing valuable comments and suggestions.

i.e.,v,#v4 for n# 1. Numerical calculations for various
confirm that this system is completely controllableee  APPENDIX: CONTROLLABILITY AND THE QUESTION
Table 1I). OF TRACE
The rather surprising results of the previous two examples .
can be understood by analyzing the Lie algebra generated by All the theorems about complete controllability presented

A, andF, in both cases. Although the details of this analy-1" this paper require that the trace H be nonzero. The

sis are beyond the scope of this patend will be discussed mathematical necess!ty of this hyp_othe5|s is obvious: a set of
in a future paperwe would like to mention here that for a traceless skew-Hermitia X N matrices cannot generate all
harmonic system with transition dipole moments satisfying®f U(N) but at most suf). Hence, assuming that the inter-
the “symmetry” relationdy_,==*d, for 1<n<N/2, the action termsH,, m>0, are represented by traceless skew-
transitionsn—n+1 and N—n—N+1-n for 1<sn<N/2  Hermitian matrices, i, is traceless as well, then the dy-
become coupled. This leads to a collapse of the Lie algebraamical Lie group can be at most SV, the set of unitary
and loss of complete controllability, which can be restoredmatrices with determinant one, which is a proper subgroup
by breaking the symmetry in the transition dipole momentsof U(N). However, our definition of complete controllability
This is why changingly_;=1 tody_;=2 restored control- requires that all unitary matrices be dynamically accessible.

lability in the last example. In fact, changindy_; to any Nevertheless, the trace condition is physically somewhat
value other thant1 would work as well. disturbing since the energy levels of a physical system are
generally only determined up to a constant, and hence, the

VIIl. CONCLUSION trace ofl:|0 seems physically rather insignificant as one can

. - always make it either zero or nonzero by shifting the energy
The question of complete controllability of quantum sys-jeye|s of the system by a constant. We shall attempt to re-
tems using external control fields has been addressed befogg)ye this apparent conflict by showing that the difference
by various authors and it is, for instance, well known that a,anveen SUK) and UMN) is only a phase factor.
quantum system is completely control!able ifitis .possmle.to Let the initial state of the system be represented by the
addr_ess a sufficiently Ia(ge set of single transitions using,y malized wave functiofy). If the dynamical Lie group
multiple frequency-selective control pulses. However, many,¢ i system is UY) then any other pure state represented
optimization strategies attempt to find a single control pulseby normalized wave functiohy,) is dynamically reachable

that addresses all transitions concurrently to achieve the coR; o given any two normalized wave functions, there always
trol objective. Furthermore, control based on frequency dis- ’

crimination is not always possible, e.g., it is not suitable foreXIsts a(not necgssanly uniqyeunitary transformatiorl)
systems with equally or almost equally spaced or degenera@#ich that[4,)=Ul[yo) and we can find a pathy(t)
energy levels. =U(t,tp) in U(N) such thaty(tg)=1 and y(tg)=U. Since

Despite the relative importance of control strategies inthe determinant of a unitary operator is a complex number of
volving a single control pulse, sufficient criteria for completemodulus 1, we can write det(t)]=€*Y. Noting that
controllability in this case have so far been missing. In thisdet(@A)=aNdet(d) whereN is the size ofA, we see imme-
paper, we addressed this problem and established genewhtely thaty(t)=e ' *(V/Ny(t) has determinant 1
criteria for complete controllability of quantum systems sub-
jectto a s_lngle control pulse. _ defF(t)]=(e [ ?V/N)N def y(t)]=e ¢Vl d=1,

In particular, we showed that most anharmonic, nonde-
composable quantum systems are completely controllable
using a single control that drives all the transitions concur?
rently, independent of the values of the transition dipole mo-
mentsd,,. For quantum systems with equally spaced energy F(te) oy =€~ ¥NO yg) =N yy),
levels, we demonstrated that complete controllability de-
pends on the values of the transition dipole momelRtand
derived conditions that guarantee complete controllability.

nd thus defines a path in SN). Furthermore,

i.e.,¥(te)| o) and|y,) differ only by a phase factor. Hence,

e . '« _if the dynamical Lie group is SW) then we loose control
We verified that the standard truncated harmonic OSC'"a'over the phase of the state, otherwise there is no difference.

tor with transition dipole momentsl,=n satisfies these " 7p s for practical applications that do not require phase
conditions and gave examples of harmonic systems that dQyntro|, one need not worry about the trace. For instance, if
not satisfy the conditions. In the latter case, we also checkeg]e goal of controlling the system is to maximize the expec-

by direct computation of the Lie algebra that they are no&]at'on alue of an observable at a taraet time
completely controllable and showed that there are certai lon vaid v getimeég,

unitary operators that cannot be dynamically realized for . .
these systems. (A(te)) = ((te) Al y(te)),
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then clearly the phases of the target states are irrelevant fimes a path in SUY) that is equivalent toy(t) since[17]
they are cancelled out by computing the expectation value

anyway. , . o _ _ p(t)= () poy(t) =€ "N (1) poy(t) Te ¥
Moreover, if the initial state is given by a density matrix NP
po then any target statg(tg) that is dynamically accessible =Y()po¥(t)',

via a path in UN) is also dynamically accessible via a path

in SU(N). To see this, lety(t)=U(t,to) be a path in UK)  i-€- the phase factors™*(V'N cancel out completely.
such that However, there are some applications of control in quan-

tum computation where it is important to have phase control
p(te)=U(te ,to) poU(t ,to)t. (A1)  and when SUNR) is not adequate. Therefore, we have chosen
to require the dynamical Lie group to be W) for complete
Again, we have déy(t)]=€?V andF(t)=e '?/Ny(t) de-  controllability.
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