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Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns
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As demonstrated by Botet al. [Phys. Rev. Lett85, 2733(2000], quantum lithography offers an increase
in resolution below the diffraction limit. Here, we generalize this procedure in order to create patterns in one
and two dimensions. This renders quantum lithography a potentially useful tool in nanotechnology.
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Optical lithography is a widely used printing method. In where we usedk,| = |K;| = k. The wave numbek is related

this process, light is used to etch a substrate. The exposed & the wavelength of the light according ke= 27/X.

unexposed areas on the substrate then define the pattern. Injn order to find the interference pattern in the intensity

particular, the microchip industry uses lithography to Pro- e sum the two plane waves at positiBrat the amplitude

duce smaller and smaller processors. However, classical ORsyel:

tical lithography can only achieve a resolution comparable to '

the wave length of the light usdd—3]. It therefore mini- . .

mizes the scale of the patterns. To create smaller patterns we (1) |e'*1"+¢e'k2'"|2=4 cog

need to venture beyond this classical bounddiy In Ref.

[5] we introduced a procedure callegiantumlithography . - - -

that offers an increase in resolution beyond the diffractionWhen we c_alculate the inner produdt,-kz) -r/2 from Eq.

limit. This process allows us to write closely spaced lines in(l) we obtain the expression

one dimension. However, for practical purpoges., optical | (x)co(kxsin 8), 3

surface etchingwe need to create more complicated patterns

in both one and two dimensions. Here, we study how quanfor the intensity along the substrate in directian

tum lithography can be extended to create these patterns.  The Rayleigh criterion states that the minimal resolvable
This paper is organized as follows: first, for completenessfeature sizeAx corresponds to the distance between an in-

we present a derivation of the Rayleigh diffraction limit. tensity maximum and an adjacent minimum. From EB).
Then, in Sec. Il we reiterate the method introduced in Refywe obtain

[5]. Then, in Sec. Ill we give a generalized version of the

states used in this procedure. We show how we can tailor ) T

arbitrary one-dimensional patterns with these states. In Sec. kAxsing= . 4)
IV we show how four-mode entangled states lead to patterns

in two dimensions. Sec. V addresses the physical implemerFhis means that the maximum resolution is given by
tation of quantum lithography.
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When we talk about optical resolution, we can mean two ) ] )
things: it may denote the minimum distance between twovhereh is the wavelength of the light. The maximum reso-
nearby points that can still be resolved with microscopy. odution is therefore proportional to the wavelength and in-
it can denote the minimum distance separating two point¥ersely proportional to the sine of the angle between the
that are printed using lithography. In the limit of geometric incoming plane waves and the normal. The resolution is thus
optics these resolutions would be identical. In this section wénaximal (Ax is minimal) when sing=1, or 6= /2. This is
derive the classical resolution limit for interferometric lithog- the grazing limit. The classical diffraction limit is therefore
raphy using the so-called Rayleigh criterifi. Ax=\/4. Note that this derivation does not use the approxi-
mation siné=#, which is common when considering diffrac-

Suppose two plane waves characterizedkpgndk, hita
bp b bgndk, tion phenomena.

surface under an angkefrom the normal vector. The wave

vectors are given by
II. INTRODUCTION TO QUANTUM LITHOGRAPHY

|21= k(cosé,sing) and IZZZ k(cosf,—sin#), (1) In this section we briefly reiterate our method of Ré&f.
It exploits the physical properties of multiphoton absorption
of a substrate. Suppose we have two intersecting light beams
*Electronic address: pieter@sees.bangor.ac.uk a andb. We place a substrate sensitiveNephoton absorp-
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IIl. GENERAL PATTERNS IN ONE DIMENSION

i ¢
a 6 0 So far, we have described a method to print a simple
: b pattern of evenly spaced lines of subwavelength resolution.

substrate However, for any practical application we need the ability to
produce more complicated patterns. To this end, we intro-
FIG. 1. Two light beams andb cross each other at the surface duce the state
of a photosensitive substrate. The angle between then® iar@i ) . .
they have a relative phase differenge=kx/2. We consider the [ nm)ap=(€'™¢|N—m,m),,+ e (N"Megl fm

limit case of 06— /2.
X |m,N=m)ap)/ 2. 9

his is a generalized version of E@). In particular, Eq(9)
reduces to Eq(6) whenm=0 and 6,=0. Note that we
included a relative phase'’m, which will turn out to be
crucial in the creation of arbitrary one-dimensiofieD) pat-
terns.

We can calculate the deposition rate again according to
the procedure in Sec. Il. As we shall see later, in general, we
can have superpositions of the states given by (Bg.We
therefore have to take into account the possibility of different
values ofm, yielding a quantity

tion at the position where the two beams meet, such that th
interference pattern is recorded. For simplicity, we conside
the grazing limit in which the angl@ off axis for the two
beams isw/2 (see Fig. 1 Classically, the interference pat-
tern on the substrate has a resolution of the ordek/df
where\ is the wavelength of the light. However, by using
entangled photon-number states., inherentlynonclassical
state$ we can increase the resolution well into the subwave
length regime.

How does quantum lithography work? Let the two coun-
terpropagating light beams and b be in the combined en-

tangled state oN photons , -
ANR = (Uniml ONl Y )- (10

— iN¢
[ida=(IN.Oyai+ €™1ON)ar)/ V2, © Note that this deposition rate depends not only on the param-
whereg=kx/2, with k= 27/\. We define the mode operator gter ¢, but also hO” Lhe relative phasés, and 6, . The
e=(a+b)/\2 and its adjoin®'=(a'+b")/y2. The depo- JEPOSItioN rate then becomes

sition rateA on the substrate is then given by N/ N
ANm’oc [ei(m’fm)go_,_ei(mefm’ypei O
. (hNeN N m/

An= (|6 with Sy=—-—, 7
n= (¥l Onl ) N NI (7) e TN M)y Mo (0],
i.e., we look at the higher moments of the electric-field op- (11
erator[7—9]. The deposition raté is measured in units of )
intensity. Leaving the substrate exposed for a time the ~ Where (w  means N!Y(N—m)!m!l.  Obviously,
light source will result in an exposure pattefe) =Ant.  (nml 6] ¥nrm) =0 whenl & {N,N’}. Form=m’, the depo-
After a straightforward calculation we see that sition rate takes on the form
Anec(1+cosNo). (8) N
Aw<| o [{1+co§(N=2m)e+bnl}), (12

We interpret this as follows. A path-differential phase-shift
in light beamb results in a displacemenrtof the interference
pattern on the substrate. Using two classical waves, a pha
shift of 27 will return the pattern to its original position.
However, according to Eq8), one cycle is completed after
a shift of 2/N. This means that a shift ofs2 will displace
the patternN times. In other words, we havé times more
maxima in the interference pattern. These need to be close
spaced, yielding an effective Rayleigh resolution &k
=\/4N, a factor of N below the classical interferometric
result of Ax=\/4[1].

Physically, we can interpret this result as follows: instea
of having a state oN single photons, Eq6) describes an N—2m N—2m’
N-photon state. Since the momentum of this statd tanes Am’(o'o)occog( ¢)Cog< <P)' (133
as large as the momentum for a single photon, the corre- 2 2
sponding DeBroglie wavelength I8 times smaller. The in-

which, in the case om=0 and ¢,,=0, coincides with Eq.
8). When 0., is suitably chosen, we see that we also have
access to deposition rates {tosN¢) and (1*sinNg).
Apart from this extra phase freedom, Ed2) does not look
like an improvement over Ed8), sinceN—2m=N, which
eans that the resolution decreases. However, we will show
Mter how these statesan be used to produce nontrivial pat-
ms.
First, we look at a few special casestf and6,,, . When

Jve write ANT = ANT (6, 6,01), we have

terference of thisN-photon state with itself on a substrate AN (0,m) 0O N—2m sin N—2m'
thus gives a periodic pattern with a characteristic resolution Nm 2= 2 ¢ 2 ¢)
dimension ofAx=N\/4N. (13b
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N—2m N—2m’ wheret is the exposure time and tlog are real and positive.
2 @)COS< 2 <P), Sincem<n and m is fixed, we havem=0. We will now
(139  Prove that this is a Fourier series up to a constant.
A general Fourier expansion @f(¢) can be written as

Am’(w,O)ocsin(

AN s (N—Zm ) ) (N—Zm’ N
,7T) % Sin sin : _
Nm 37 2 ¢ 2 ¢ P(¢)= 2>, (a,cosneg+b,sinng). (19)
(13d) n=0
These relations give the dependence of the matrix element/riting Eqg. (18) as
Am' on 6, and 6, in a more intuitive way than Eq11) N N
does. Finally, wherd,,= 6, = 6, we obtain P(e)=t>, c,+t> c,codne+6,), (20)
n=0 n=0
p (N=2m)ep+ 6 (N=2m")p—6
AN “COS{ 5 5 . (14 wheret=)_,c, is a constant. If we ignore this constaits

contribution to the deposition rate will give a general uni-

So far, we have only considered generalized depositioﬁorm background exposure of the substrate, since it is inde-
rates given by Eq(9), with special values of their param- Pendent ofp) we see that we need
eters. We will now turn our attention to the problem of cre-
ating more arbitrary patterns.

Note that there are two main, though fundamentally dif-with ¢ positive, 6,<[0,27), anda,, b, real. Expanding

ferent, ways we can superpose the states given bY(®0. the |eft-hand side and equating terms in npsand sime,
We can superpose states with different photon numbers \ye find

and a fixed distributioom over the two modes:

c,cogne+6,)=a,cosng+b,sinng, (21

a,=c,cosh, andb,=c,siné,. (22

N
W)= Zo | Ynm), (19  This is essentially a coordinate change from Cartesian to
" polar coordinates. Thus, EL8) is equivalent to a Fourier

with «, complex coefficients. This is a superposition of series up to an additive constant. Since in the limitNof

states withdifferent total photon numbers in each branch. —> & Fourier series can converge to any well-behaved pat-
Alternatively, we can superpose states with a fixed photof€™ P(¢), this procedure allows us to approximate arbitrary

numberN, but with different distributionsn: patterns in one dimensiofup to a constant It is now clear
why we call this procedure the pseudo-Fourier method.
IN/2| However, there is a drawback with this procedure. The
| P \)= EO Al Unm)s (16)  deposition raté\ is a positive definite quantity, which means
o

that once the substrate is exposed at a particular Fourier com-

where| N/2| denotes the largest integewith | <N/2 anda,y, ?fé;ecn;htggrsviitgg \;v:y this can be undone. Technically, Eq.

again the complex coefficients. Every branch in this super-
position is anN-photon state. N

These two different superpositions can be used to tailor P((p):QtHE (a,cosng+b,sinng), (23
patterns that are more complicated than just closely spaced n=0

lines. We will now study these two different methods. . . . Y
whereQ is the uniform background “penalty exposure rate

Q=30_,c, we mentioned earlier. The second term on the
right-hand side is a true Fourier series. Thus in the pseudo-
The first method, corresponding to the superpositionFourier method there is always a minimum exposure of the
given by Eq.(15), is called the pseudo-Fourier meth@tis  substrate. Ultimately, this penalty can be traced to the ab-
choice of name will become clear shojthiywhen we calcu-  sence of interference between the terms with different photon
late the deposition ratd,, according to the statgV,,) we  number in Eq.(15). Next, we will investigate whether our
immediately see that branches with different photon numbersecond method of tailoring patterns can remove this penalty

A. The pseudo-Fourier method

nandn’ do not exhibit interference: exposure.
N N
X B. Th iti h
Ap= ngo |an|2< ‘ﬂnml 5n| wnm> = nZO |an|2Anm- (17) € superposition method

We will now study our second method of tailoring pat-
terns, which we call the “superposition methodfacking a
better name Here we keep the total number of photdds
constant, and change how the photons are distributed be-

N
_ _ tween the two beams in each brarjslee Eq.(16)]. A dis-
P(e)=t Cnil+cog(n—2m)e+ 6,1}, 18 ; . . X o
() nz() ol 1 Jet bnl} (18 tinct advantage of this method is thatlibesexhibit interfer-

Using Eq.(12) the exposure patterR(¢)=A,t becomes
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Agg, with m =5 and m' = 9. If we want to tailor a patterir(¢), it might be the case
that this type of superposition will also converge to the re-
quired pattern. We will now compare the superposition
method with the Fourier method.

C. Comparing the two methods

So far, we discussed two methods of creating nontrivial
patterns in one dimension. The Fourier method is simple but
yields a uniform background penalty exposure. The superpo-

/2 7 3n/2 27 ¥ sition method is far more complicated, but seems to get
around the background exposure. Before we make a com-
FIG. 2. The deposition rate due to a superposition of two stateparison between the two methods we will discuss the cre-
containing 20 photons__with distributionm=9 and m’=_5 (6 ation of “arbitrary” patterns.
=0 =0). The deposition rate ap=m/2 and ¢=3/2 is zero, It is well known that any sufficiently well-behaved peri-
which means that there is no general uniform background eXposurejic function can be written as an infinite Fourier sefige

. . ... _ignore such subtleties that arise when two functions differ
ence between the different branches in the superposmoQjnly at a finite number of points, efcHowever, when we

which ellmln_ates the uniform bac_:l_<gr0und pen_al_ty EXPOSUTE - aate patterns with the pseudo-Fourier lithography method,
Take for instance a superposition of two distinct terms we do not have access to every component of the Fourier
1V )= ] Y + @ | P s (24) expansion, since this would involve an infinite number of
photons — ). This means that we can only employ trun-
with |am|?+|am/|?=1 and|¢nm given by Eq.(11). After ~ cated Fourier series, and these can merely approximate arbi-
some algebraic manipulation the deposition rate can be writrary patterns.
ten as The Fourier expansion has the nice property that when a
series is truncated at, the remaining terms still give the

5 N best Fourier expansion of the function up K In other
Ano|ap| m {1+cod(N—2m)o+ 6]} words, the coefficients of a truncated Fourier series are equal
to the firstN coefficients of a full Fourier series. If the full
N Fourier series is denoted by and the truncated series by
+| oy |2 m’ {1+cod(N—-2m") o+ 6y ]} Fn, We can define the normed-distance quariiiy:
2w
. [[N\[N O 0 , DEJ [F(¢)—Fn(¢)|?d (27)
m _m_Zm m N ® NLP &,
+8r, (m)(m’ cos( > > +§m) 0
X COZ[(N—2m) @+ 6,,]cos [ (N—2m") o+ O], which can be interpreted as a distance betweamdF . If

quantum lithography yields a pattepy(¢)=A\t, we can
(29 introduce the following definition: quantum lithography can

. . . approximate arbitrary patterns if
where the deposition ratd is now a function ofe,, and PP yP

ayy , Where we have chosen the real numbdtsand£™ to 2m )

satisfy ot =r"exp(£l). For the special valuedN JO |F(¢)—Pn(¢)|“dp=eDy, (28)
=20, m=9, m'=5, andéf,,= 6, =0 we obtain the pattern

shown in Fig. 2. Clearly, there is no uniform backgroundyith ¢ some real, positive definite proportionality constant.

penalty exposure here. _ o _ This definition gives the concept of approximating patterns a
For more than two branches in the superposition this begq)iq pasis.

comes a complicated function, which is not nearly as well \ye compare the Fourier and the superposition method for

understood as a Fourier series. The general expression for thg o special case. We choose the test function

deposition rate can be written as

IN/2] [N/2| , N N 0., o , hoif _z< <z
Ay > > rm )( ,coa(—m——m+fm) F(e)= 2772 (29
m=0 /=0 m/\m 2 2 .
0 otherwise.
X coss[(N—2m) @+ 6,]coss[(N—2m') o+ 6],

With up to ten photons, we ask how well the Fourier and the
superposition method approximate this pattern.

, m’ . . In the case of the Fourier method the solution is immedi-
where we have choserfy and {5 real to satisfyayam  ate. The Fourier expansion of the ‘trench’ function given by

=rMexp(£N). Note thatém=0. Eq. (29) is well known:

(26)
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P(yp) = Aro(p)t We have to fit bottt and a. Using a genetic optimalization
algorithm [10] (with h=1, a normalized height of the test
function) we found that the deposition rate is actually very
close to zero in the intervalr/2< ¢<3w/2, unlike the
pseudo-Fourier method, where we have to pay a uniform
background penalty. This result implies that in this case, a
superposition of different photon distributioms, given a
fixed total number of photonN, works better than a super-
position of different photon number statésee Fig. 4. In
particular, the fixed photon number method allows for the

) substrate to remain virtually unexposed in certain areas

We stress that this is merely a comparison for a specific

N ) example, namely that of the trench target functidir). We

FIG. 3 The deposmon rate on the _substrate resulting from %onjecture that the superposition method can approximate

superposition of states witN=10 and differentm (black curve, other arbitrary patterns equally well, but we have not yet

and also resulting from a superposition of states with different found a proof. Besides the ability to fit an arbitrary pattern

with m=0 (grey curve. The coefficients of the superposition that another criterion of comparison between the pseudo—Fouriér
yield the black curve are optimized using a genetic algorithm, whilemethod and the superposition method, is the time needed to
the grey curve is a truncated pseudo-Fourier series. Notice the '

“penalty” (displacement from zejoof the deposition rate for the create.thd\l-photon entangled St".ﬂes'
pseudo-Fourier series betweer2 and 3r/2. Until now, we have only considered subwavelength reso-

lution in one direction, namely parallel to the direction of the
= (—1)d beams. However, for practical applications we would like
Flo)= cod (2a+1) o] 30 subwavelength resolution in both directions on the substrate.
() qZO 2q+1 1(2a+1)e] (30 This is the subject of the next section.

I penalty

/2 T 3In/2 27

Using up ton=10 photons we include terms up tp=4,

since 3+ 1=<10. The Fourier method thus yields a pattern IV. GENERAL PATTERNS IN 2D

P(e) [the two pattern®(¢) andF(¢) are generally notthe |n this section we study how to create two-dimensional
samg which can be written as patterns on a suitable substrate using the quantum lithogra-
4 phy techniques developed in the previous sections. As we

have seen, the phase shiftin the setup given by Fig. 4, acts
as a parametrization for the deposition rate in one dimension.
Let us call this thex direction.

wherec, is a constant depending on the proportionality con- We can now do the same for tlyedirection, employing
stant ofA 4, 1, the rate of production df¥nm), and the cou-  two counter-propagating beams @ndd) in they direction
pling between the light field and the substrate. The tegis  (see Fig. 4. The same conditions apply: we consider the

3 G
P((,o)—q:0 2q+1{1+cos{(2q+1)<p+m<q]}, (31

defined to accommodate for the minus signs in@@): itis  limit where the spatial anglé off axis approaches/2, thus
zero wherg is even and one whenis odd. Note the uniform grazing along the substrate’s surface.

background penalty exposure rétézocq/(quL 1). The re- Consider the region where the four beaam®, c, andd

sult of this method is shown in Fig. 3. overlap. For real lithography we have to take into account

Alternatively, the superposition method employs a state the mode shapes, but when we confine ourselves to an area
with side lengths\ (where\ is the wavelength of the used
light) this problem does not arise.
W)= 2_0 | Unim)- (32 The class of states on modago d that we consider here

" are of the form

The procedure of finding the best fit with the test function is
more complicated. We have to minimize the absolute differ-

ence between the deposition ratq(«) times the exposure
time t and the test functiorF(¢). We have chosen

[N/2|

| = 1[e”“‘P|N—m m;0,0) + €' (N~ Meg!émm,N—m;0,0)
Nm 2 1 1 1 1 L L

+e/k?0,0:N—k, k) + &/ (N Kxei %] 0,0:k, N— k)],

=(ag, - . . ,anp). Mathematically, we have to evaluate the
andt that minimizedy : (35
N _ >0 12 wherel, and?k are two relative phases. This is by no means
A= fo [F(e)=An(a)t|*de, (33 the only class of states, but we will restrict our discussion to
this one for now. Observe that this is a superposition on the
with amplitude level, which allows destructive interference in the
R . deposition rate in order to create dark spots on the substrate.
An(@)={T\| SN P y). (34  Alternatively, we could have used the one-dimensional
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method[with states given by Eq9)] in thex andy direction,
but this cannot give interference effects between the modes

a,b andc,d.

The phase-shiftg and y in the light beamd andd (see
Fig. 4 result in respective displacementsandy of the in-
terference pattern on the substrate. A phase shiftmirRa
given direction will displace the pattern, say,times. This
means that the maxima are closer together, yielding an effec-

tive resolution

both thex and they direction.
We proceed again as in Sec. Il by evaluating i

order momenﬁN of the electric-field operatdisee Eq.(7)].

al. PHYSICAL REVIEW A 63 063407

smemey®

equal taAx=Ay=\/4N. This happens in ¢ . substrate

FIG. 4. Four light beams, b, ¢, andd cross each other at the

This gives the deposition ratamm’kk’:(z,/fhm| 5N|(/I§,m,> surface of a photosensitive substrate. The angles betwesl b
[with w/h ) given by Eq.(35)]: and c and d are again taken in the grazing limit &= /2. The
m . :

relative phase difference betweanand b is ¢ and the relative
phase difference betweenandd is y.

N\/ N
ANM K’ m)(m,>(eimcpeim’w+eim¢ei(Nm’)¢ei;mf+ei(Nm)cpeim’weingrei(Nm)<pei(Nm’)<pei(§m§m/))
N\/N N o —— _ L . . , =
+ ol (eflm¢elk X4 @ imeal (N=K")xgilk 4 @=i(N=m)eaik xg=ilm  g=i(N=m)eai(N—Kk )Xeﬂ(gm—gk,))
N\/ N L, Lo o . L, = . . , =
+ K m’ (eflkXelm ‘P-’-e*'kXe'(N*m )‘Pe'gm’-f-e*'(N*k)Xe'm ‘Pef|§k+ef|(N7k)Xe|(N7m )‘Pe7|(§k7§m’))
N\ /N L, Lo R . o . . , = =
e (e kxgik X 4 g~ Tkxgi(N=K )xgit' 1 g~ 1(N=Kxgik xg =il 4 g~ I((N-KIXgl (N-K)xg=i(G— 4y (3p)
|
For the special choice af' =m andk’=k we have *
F((p,)()quZ_o a4 COSP@COSqy +bp,CoSpe singy
) «~
k . . .
ANm‘X(m (1+cog (N=2m)p+{n]) X CpqSINPe cOSqx +dpq Sinpe singy.  (39)
N\ 2 . with a,q, bpg, Cpg, @andd,, real. In the previous section, we
+ K (1+cog (N—2Kk)x+ ) showed that quantum lithography could approximate the

+4

oll¥

Fourier series of a one-dimensional pattern up to a constant

. displacement. This relied on the absence of interference be-

coss[N(e—x)+ (Zm— )] tween the terms with different photon numbers. The question
is now whether we can do the same for patternsaia di-

X COSL[(N—2m) o — £, ]cost [ (N—2K) - Z4]. mensions. Or alternatively, can general superpositions of the

state| z/th) approximate the pattera( o, x)?
(37) From Eq.(36) it is not obvious that we can obtain the four
trigonometric terms given by the Fourier expansion of Eq.

We can again generalize this method and use superpo§i38):
tions of the states given in E¢35). Note that there are now

three numberd\, m, andk that can be varied. Furthermore, Axcope cogiy, (393
as we have seen in the one-dimensional case, superpositions .
of differentn do not give interference terms in the deposition Aoxcopesingy, (39b)
rate.

Suppose we want to approximate a pattEfrp, ), with Axsinpe cogjy, (399

{¢,x}€[0,27]. This pattern can always be written in a Fou-

rier expansion:

Acsinpe singy. (390
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entangled photon states given by E¢®. and (35), but we
should also be able to create coherent superpositions of these
states. One possibility might be to use optical components
like parametric down converters. Contrary to the results of

Ref. [11], we are not concerned with the usually large
T 7 /iy vacuum contribution of these processes, since the vacuum
‘\\}}ks will not contribute to the spatial profile of the depositi@ee
Egs.(6) and(7)].

Secondly, we need substrates that are sensitive to the
higher moments of the electric field operator. When we want
to use the pseudo-Fourier method, up\tphotons for quan-
tum lithography in one dimension, the substrate needs to be
reasonably sensitive to all the higher moments ultdhe
maximum photon number. Alternatively, we can use the su-
perposition method foN photons when the substrate is sen-
sitive to predominantly one higher moment corresponding to
N photons. Generally, the method of lithography determines

NN
ORI
D

el
SRR

FIG. 52 A simulation of a two-dimensional intensity pattern on the requirements of the substrate.
an area\“, where\ denotes the wavelength of the used light. Here There are also some considerations about the approxima-
we modeled a square area with sharp edges. The pattern was gen- PP

erated by a Fourier series of up to ten photésee also Fig. 3 for tion of patterns. For example, We, mlght rm?eedarbltrary
the one-dimensional case patterns. It might be the case that it is sufficient to have a set
of patterns that can then be used to generate any desired

We can therefore not claim that two-dimensional quantunFirCUit- This _is_analogous to .having a gniversal set of logical

lithography can approximate arbitrary patterns in the sensgates, permitting any concelvable qulcal expression. In that
of one-dimensional lithography. Only simple patterns like C2S€ We only need to determine this elementary set of pat-
the one given in Fig. 5 can be inferred from E§6). In  t€rns. _

order to find the best fit to an arbitrary pattern one has to use Furthermore, we have to study whether the uniform back-

a minimization procedure. ground penalty exposure really presents a practical problem.
For example, we calculate the total deposition rate due t&N€ might argue that a sufficient difference between the
the quantum stately), where maximum deposition rate and the uniform background pen-
alty exposure is enough to accommodate lithography. This
[N/2] [N/2] depends on the details of the substrate’s reaction to the elec-
W)= Eo kzo amd UK. (40)  tro magnetic field.
=0 k=

Before quantum lithography can be physically imple-
mented and used in the production of nano circuits, these

Here, a, are complex coefficients. We now proceed byissues have to be addressed satisfactorily.

choosing a particular intensity patteF{¢,x) and optimiz-
ing the coefficientsy,, for a chosen number of photons. The

deposition rate due to the stdté ) is now VI. CONCLUSIONS
; IN/2] - |N/2) . In this paper we have generalized the theory of quantum
Ay(@)= > agkam,k,Amkk , (41)  lithography as first outlined in Ref5]. In particular, we
mm’=0 kk'=0 have shown how we can create arbitrary patterns in one di-

mension, albeit with a uniform background penalty exposure.

with a= (a0, @01, - - - anzN2)- We again have to evalu- \ye can also create some patterns in two dimensions, but we

ate thea andt that minimize have no proof that this method can be extended to give ar-
s bitrary patterns.
e A (2 For lithography in one dimension we distinguish two
fo fo IF(e.x) ~ An(@)t*dedy. 42 methods: the pseudo-Fourier method and the superposition

method. The pseudo-Fourier method is conceptually easier
The values ofx andt can again be found using a genetic Since it depends on Fourier analysis, but it also involves a
algorithm. finite amount of unwanted exposure of the substrate. More
specifically, the deposition rate equals the pattern in its Fou-
V. PHYSICAL IMPLEMENTATION rier basis plus a term yielding unwanted background expo-
sure. The superposition method gets around this problem and
With current experimental capabilities, the physicalseems to give better results, but lacks the intuitive clarity of
implementation of quantum lithography is very challenging.the Fourier method. Furthermore, we do not have a proof
In particular, there are two major issues to be dealt withthat this method can approximate arbitrary pattéees Sec.
before quantum lithography can become a mature technolil C for a discussion on this approximatipn
ogy. First of all, we not only need the ability to create the  Quantum lithography in two dimensions is more involved.
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Starting with a superposition of states, given by B9, we is quite sufficient for some lithography purposes, as well as
found that we can indeed create two-dimensional patternfor 3D optical holography used for data storage.
with subwavelength resolution, but we do not have a proof
that we can creatarbitrary patterns. Nevertheless, we might
be able to create a certain set of elementary basis patterns. ACKNOWLEDGEMENTS
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