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Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns
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As demonstrated by Botoet al. @Phys. Rev. Lett.85, 2733~2000!#, quantum lithography offers an increase
in resolution below the diffraction limit. Here, we generalize this procedure in order to create patterns in one
and two dimensions. This renders quantum lithography a potentially useful tool in nanotechnology.
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Optical lithography is a widely used printing method.
this process, light is used to etch a substrate. The expose
unexposed areas on the substrate then define the patte
particular, the microchip industry uses lithography to p
duce smaller and smaller processors. However, classica
tical lithography can only achieve a resolution comparable
the wave length of the light used@1–3#. It therefore mini-
mizes the scale of the patterns. To create smaller pattern
need to venture beyond this classical boundary@4#. In Ref.
@5# we introduced a procedure calledquantumlithography
that offers an increase in resolution beyond the diffract
limit. This process allows us to write closely spaced lines
one dimension. However, for practical purposes~e.g., optical
surface etching! we need to create more complicated patte
in both one and two dimensions. Here, we study how qu
tum lithography can be extended to create these pattern

This paper is organized as follows: first, for completene
we present a derivation of the Rayleigh diffraction lim
Then, in Sec. II we reiterate the method introduced in R
@5#. Then, in Sec. III we give a generalized version of t
states used in this procedure. We show how we can ta
arbitrary one-dimensional patterns with these states. In
IV we show how four-mode entangled states lead to patte
in two dimensions. Sec. V addresses the physical implem
tation of quantum lithography.

I. CLASSICAL RESOLUTION LIMIT

When we talk about optical resolution, we can mean t
things: it may denote the minimum distance between t
nearby points that can still be resolved with microscopy.
it can denote the minimum distance separating two po
that are printed using lithography. In the limit of geomet
optics these resolutions would be identical. In this section
derive the classical resolution limit for interferometric litho
raphy using the so-called Rayleigh criterion@6#.

Suppose two plane waves characterized bykW1 andkW2 hit a
surface under an angleu from the normal vector. The wav
vectors are given by

kW15k~cosu,sinu! and kW25k~cosu,2sinu!, ~1!

*Electronic address: pieter@sees.bangor.ac.uk
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where we usedukW1u5ukW2u5k. The wave numberk is related
to the wavelength of the light according tok52p/l.

In order to find the interference pattern in the intensityI,
we sum the two plane waves at positionrW at the amplitude
level:

I ~rW !}ueikW1•rW1eikW2•rWu254 cos2F1

2
~kW12kW2!•rWG . ~2!

When we calculate the inner product (kW12kW2)•rW/2 from Eq.
~1! we obtain the expression

I ~x!}cos2~kx sinu!, ~3!

for the intensity along the substrate in directionx.
The Rayleigh criterion states that the minimal resolva

feature sizeDx corresponds to the distance between an
tensity maximum and an adjacent minimum. From Eq.~3!
we obtain

kDx sinu5
p

2
. ~4!

This means that the maximum resolution is given by

Dx5
p

2k sinu
5

p

2S 2p

l
sinu D 5

l

4 sinu
, ~5!

wherel is the wavelength of the light. The maximum res
lution is therefore proportional to the wavelength and
versely proportional to the sine of the angle between
incoming plane waves and the normal. The resolution is t
maximal (Dx is minimal! when sinu51, or u5p/2. This is
the grazing limit. The classical diffraction limit is therefor
Dx5l/4. Note that this derivation does not use the appro
mation sinu.u, which is common when considering diffrac
tion phenomena.

II. INTRODUCTION TO QUANTUM LITHOGRAPHY

In this section we briefly reiterate our method of Ref.@5#.
It exploits the physical properties of multiphoton absorpti
of a substrate. Suppose we have two intersecting light be
a andb. We place a substrate sensitive toN-photon absorp-
©2001 The American Physical Society07-1
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tion at the position where the two beams meet, such that
interference pattern is recorded. For simplicity, we consi
the grazing limit in which the angleu off axis for the two
beams isp/2 ~see Fig. 1!. Classically, the interference pa
tern on the substrate has a resolution of the order ofl/4,
wherel is the wavelength of the light. However, by usin
entangled photon-number states~i.e., inherentlynonclassical
states! we can increase the resolution well into the subwa
length regime.

How does quantum lithography work? Let the two cou
terpropagating light beamsa and b be in the combined en
tangled state ofN photons

ucN&ab5~ uN,0&ab1eiNwu0,N&ab)/A2, ~6!

wherew5kx/2, with k52p/l. We define the mode operato
ê5(â1b̂)/A2 and its adjointê†5(â†1b̂†)/A2. The depo-
sition rateD on the substrate is then given by

DN5^cNud̂NucN& with d̂N5
~ ê†!NêN

N!
, ~7!

i.e., we look at the higher moments of the electric-field o
erator@7–9#. The deposition rateD is measured in units o
intensity. Leaving the substrate exposed for a timet to the
light source will result in an exposure patternP(w)5DNt.
After a straightforward calculation we see that

DN}~11cosNw!. ~8!

We interpret this as follows. A path-differential phase-shiftw
in light beamb results in a displacementx of the interference
pattern on the substrate. Using two classical waves, a p
shift of 2p will return the pattern to its original position
However, according to Eq.~8!, one cycle is completed afte
a shift of 2p/N. This means that a shift of 2p will displace
the patternN times. In other words, we haveN times more
maxima in the interference pattern. These need to be clo
spaced, yielding an effective Rayleigh resolution ofDx
5l/4N, a factor of N below the classical interferometri
result ofDx5l/4 @1#.

Physically, we can interpret this result as follows: inste
of having a state ofN single photons, Eq.~6! describes an
N-photon state. Since the momentum of this state isN times
as large as the momentum for a single photon, the co
sponding DeBroglie wavelength isN times smaller. The in-
terference of thisN-photon state with itself on a substra
thus gives a periodic pattern with a characteristic resolu
dimension ofDx5l/4N.

FIG. 1. Two light beamsa andb cross each other at the surfac
of a photosensitive substrate. The angle between them is 2u and
they have a relative phase differencew5kx/2. We consider the
limit case ofu→p/2.
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III. GENERAL PATTERNS IN ONE DIMENSION

So far, we have described a method to print a sim
pattern of evenly spaced lines of subwavelength resolut
However, for any practical application we need the ability
produce more complicated patterns. To this end, we in
duce the state

ucNm&ab5~eimwuN2m,m&ab1ei (N2m)weium

3um,N2m&ab)/A2. ~9!

This is a generalized version of Eq.~6!. In particular, Eq.~9!
reduces to Eq.~6! when m50 and um50. Note that we
included a relative phaseeium, which will turn out to be
crucial in the creation of arbitrary one-dimensional~1D! pat-
terns.

We can calculate the deposition rate again according
the procedure in Sec. II. As we shall see later, in general,
can have superpositions of the states given by Eq.~9!. We
therefore have to take into account the possibility of differe
values ofm, yielding a quantity

DNm
Nm85^cNmud̂NucNm8&. ~10!

Note that this deposition rate depends not only on the par
eter w, but also on the relative phasesum and um8 . The
deposition rate then becomes

DNm
Nm8}AS N

mD S N

m8
D @ei (m82m)w1ei (N2m2m8)weium8

1e2 i (N2m2m8)we2 ium1e2 i (m82m)wei (um82um)#,

~11!

where (m
N) means N!/(N2m)!m!. Obviously,

^cNmud̂ l ucN8m8&50 whenl ¹$N,N8%. For m5m8, the depo-
sition rate takes on the form

DNm}S N

mD $11cos@~N22m!w1um#%, ~12!

which, in the case ofm50 andum50, coincides with Eq.
~8!. Whenum is suitably chosen, we see that we also ha
access to deposition rates (12cosNw) and (16sinNw).
Apart from this extra phase freedom, Eq.~12! does not look
like an improvement over Eq.~8!, sinceN22m<N, which
means that the resolution decreases. However, we will s
later how these statescan be used to produce nontrivial pa
terns.

First, we look at a few special cases ofum andum8 . When

we write DNm
Nm85DNm

Nm8(um ,um8), we have

Dnm
Nm8~0,0!}cosS N22m

2
w D cosS N22m8

2
w D , ~13a!

DNm
Nm8~0,p!}cosS N22m

2
w D sinS N22m8

2
w D ,

~13b!
7-2
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DNm
Nm8~p,0!}sinS N22m

2
w D cosS N22m8

2
w D ,

~13c!

DNm
Nm8~p,p!}sinS N22m

2
w D sinS N22m8

2
w D .

~13d!

These relations give the dependence of the matrix elem

DNm
Nm8 on um andum8 in a more intuitive way than Eq.~11!

does. Finally, whenum5um85u, we obtain

DNm
Nm8}cosF ~N22m!w1u

2 GcosF ~N22m8!w2u

2 G . ~14!

So far, we have only considered generalized deposi
rates given by Eq.~9!, with special values of their param
eters. We will now turn our attention to the problem of cr
ating more arbitrary patterns.

Note that there are two main, though fundamentally d
ferent, ways we can superpose the states given by Eq.~9!.
We can superpose states with different photon numben
and a fixed distributionm over the two modes:

uCm&5 (
n50

N

anucnm&, ~15!

with an complex coefficients. This is a superposition
states withdifferent total photon numbers in each branc
Alternatively, we can superpose states with a fixed pho
numberN, but with different distributionsm:

uCN&5 (
m50

bN/2c
amucNm&, ~16!

wherebN/2c denotes the largest integerl with l<N/2 andam
again the complex coefficients. Every branch in this sup
position is anN-photon state.

These two different superpositions can be used to ta
patterns that are more complicated than just closely spa
lines. We will now study these two different methods.

A. The pseudo-Fourier method

The first method, corresponding to the superposit
given by Eq.~15!, is called the pseudo-Fourier method~this
choice of name will become clear shortly!. When we calcu-
late the deposition rateDm according to the stateuCm& we
immediately see that branches with different photon numb
n andn8 do not exhibit interference:

Dm5 (
n50

N

uanu2^cnmud̂nucnm&5 (
n50

N

uanu2Dnm . ~17!

Using Eq.~12! the exposure patternP(w)5Dmt becomes

P~w!5t (
n50

N

cn$11cos@~n22m!w1un#%, ~18!
06340
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wheret is the exposure time and thecn are real and positive
Since m,n and m is fixed, we havem50. We will now
prove that this is a Fourier series up to a constant.

A general Fourier expansion ofp(w) can be written as

P~w!5 (
n50

N

~an cosnw1bn sinnw!. ~19!

Writing Eq. ~18! as

P~w!5t (
n50

N

cn1t (
n50

N

cn cos~nw1un!, ~20!

wheret(n50
N cn is a constant. If we ignore this constant~its

contribution to the deposition rate will give a general un
form background exposure of the substrate, since it is in
pendent ofw) we see that we need

cn cos~nw1un!5an cosnw1bn sinnw, ~21!

with cn positive, unP@0,2p), and an , bn real. Expanding
the left-hand side and equating terms in cosnw and sinnw,
we find

an5cn cosun and bn5cn sinun . ~22!

This is essentially a coordinate change from Cartesian
polar coordinates. Thus, Eq.~18! is equivalent to a Fourier
series up to an additive constant. Since in the limit ofN
→` a Fourier series can converge to any well-behaved
tern P(w), this procedure allows us to approximate arbitra
patterns in one dimension~up to a constant!. It is now clear
why we call this procedure the pseudo-Fourier method.

However, there is a drawback with this procedure. T
deposition rateD is a positive definite quantity, which mean
that once the substrate is exposed at a particular Fourier c
ponent, there is no way this can be undone. Technically,
~18! can be written as

P~w!5Qt1t (
n50

N

~an cosnw1bn sinnw!, ~23!

whereQ is the uniform background ‘‘penalty exposure rate
Q5(n50

N cn we mentioned earlier. The second term on t
right-hand side is a true Fourier series. Thus in the pseu
Fourier method there is always a minimum exposure of
substrate. Ultimately, this penalty can be traced to the
sence of interference between the terms with different pho
number in Eq.~15!. Next, we will investigate whether ou
second method of tailoring patterns can remove this pen
exposure.

B. The superposition method

We will now study our second method of tailoring pa
terns, which we call the ‘‘superposition method’’~lacking a
better name!. Here we keep the total number of photonsN
constant, and change how the photons are distributed
tween the two beams in each branch@see Eq.~16!#. A dis-
tinct advantage of this method is that itdoesexhibit interfer-
7-3
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ence between the different branches in the superposi
which eliminates the uniform background penalty exposu

Take for instance a superposition of two distinct terms

uCN&5amucNm&1am8ucNm8&, ~24!

with uamu21uam8u
251 and ucnm& given by Eq.~11!. After

some algebraic manipulation the deposition rate can be w
ten as

DN}uamu2S N

mD $11cos@~N22m!w1um#%

1uam8u
2S N

m8
D $11cos@~N22m8!w1um8#%

18r m
m8AS N

mD S N

m8
D cosS um8

2
2

um

2
1jm

m8D
3cos1

2 @~N22m!w1um#cos1
2 @~N22m8!w1um8#,

~25!

where the deposition rateD is now a function ofam and

am8 , where we have chosen the real numbersr m
m8 andjm

m8 to

satisfy am* am8[r m
m8exp(ijm

m8). For the special valuesN
520, m59, m855, andum5um850 we obtain the pattern
shown in Fig. 2. Clearly, there is no uniform backgrou
penalty exposure here.

For more than two branches in the superposition this
comes a complicated function, which is not nearly as w
understood as a Fourier series. The general expression fo
deposition rate can be written as

DN} (
m50

bN/2c
(

m850

bN/2c
r m

m8AS N

mD S N

m8
D cosS um8

2
2

um

2
1jm

m8D
3cos1

2 @~N22m!w1um#cos1
2 @~N22m8!w1um8#,

~26!

where we have chosenr m
m8 and jm

m8 real to satisfyam* am8
[r m

m8exp(ijm
m8). Note thatjm

m50.

FIG. 2. The deposition rate due to a superposition of two sta
containing 20 photons with distributionsm59 and m855 (um

5um850). The deposition rate atw5p/2 and w53p/2 is zero,
which means that there is no general uniform background expos
06340
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If we want to tailor a patternF(w), it might be the case
that this type of superposition will also converge to the
quired pattern. We will now compare the superpositi
method with the Fourier method.

C. Comparing the two methods

So far, we discussed two methods of creating nontriv
patterns in one dimension. The Fourier method is simple
yields a uniform background penalty exposure. The super
sition method is far more complicated, but seems to
around the background exposure. Before we make a c
parison between the two methods we will discuss the c
ation of ‘‘arbitrary’’ patterns.

It is well known that any sufficiently well-behaved per
odic function can be written as an infinite Fourier series~we
ignore such subtleties that arise when two functions dif
only at a finite number of points, etc.!. However, when we
create patterns with the pseudo-Fourier lithography meth
we do not have access to every component of the Fou
expansion, since this would involve an infinite number
photons (n→`). This means that we can only employ tru
cated Fourier series, and these can merely approximate
trary patterns.

The Fourier expansion has the nice property that whe
series is truncated atN, the remaining terms still give the
best Fourier expansion of the function up toN. In other
words, the coefficients of a truncated Fourier series are e
to the firstN coefficients of a full Fourier series. If the ful
Fourier series is denoted byF and the truncated series b
FN , we can define the normed-distance quantityDN :

DN[E
0

2p

uF~w!2FN~w!u2dw, ~27!

which can be interpreted as a distance betweenF andFN . If
quantum lithography yields a patternpN(w)5DNt, we can
introduce the following definition: quantum lithography ca
approximate arbitrary patterns if

E
0

2p

uF~w!2PN~w!u2dw<«DN , ~28!

with « some real, positive definite proportionality consta
This definition gives the concept of approximating pattern
solid basis.

We compare the Fourier and the superposition method
one special case. We choose the test function

F~w!5H h if 2
p

2
,w,

p

2

0 otherwise.

~29!

With up to ten photons, we ask how well the Fourier and
superposition method approximate this pattern.

In the case of the Fourier method the solution is imme
ate. The Fourier expansion of the ‘trench’ function given
Eq. ~29! is well known:

s

re.
7-4
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F~w!5 (
q50

`
~21!q

2q11
cos@~2q11!w#. ~30!

Using up ton510 photons we include terms up toq54,
since 2q11<10. The Fourier method thus yields a patte
P(w) @the two patternsP(w) andF(w) are generally not the
same# which can be written as

P~w!5 (
q50

4
cqt

2q11
$11cos@~2q11!w1pkq#%, ~31!

wherecq is a constant depending on the proportionality co
stant ofD2q11, the rate of production ofucnm&, and the cou-
pling between the light field and the substrate. The termkq is
defined to accommodate for the minus signs in Eq.~30!: it is
zero whenq is even and one whenq is odd. Note the uniform
background penalty exposure rate(q50

4 cq /(2q11). The re-
sult of this method is shown in Fig. 3.

Alternatively, the superposition method employs a sta

uCN&5 (
m50

bN/2c
amucNm&. ~32!

The procedure of finding the best fit with the test function
more complicated. We have to minimize the absolute diff
ence between the deposition rateDN(aW ) times the exposure
time t and the test functionF(w). We have chosenaW

5(a0 , . . . ,an/2). Mathematically, we have to evaluate theaW
and t that minimizedN :

dN5E
0

2p

uF~w!2DN~aW !tu2dw, ~33!

with

DN~aW !5^CNud̂NuCN&. ~34!

FIG. 3. The deposition rate on the substrate resulting from
superposition of states withN510 and differentm ~black curve!,
and also resulting from a superposition of states with differenn
with m50 ~grey curve!. The coefficients of the superposition th
yield the black curve are optimized using a genetic algorithm, wh
the grey curve is a truncated pseudo-Fourier series. Notice
‘‘penalty’’ ~displacement from zero! of the deposition rate for the
pseudo-Fourier series betweenp/2 and 3p/2.
06340
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We have to fit botht andaW . Using a genetic optimalization
algorithm @10# ~with h51, a normalized height of the tes
function! we found that the deposition rate is actually ve
close to zero in the intervalp/2<w<3p/2, unlike the
pseudo-Fourier method, where we have to pay a unifo
background penalty. This result implies that in this case
superposition of different photon distributionsm, given a
fixed total number of photonsN, works better than a super
position of different photon number states~see Fig. 4!. In
particular, the fixed photon number method allows for t
substrate to remain virtually unexposed in certain areas.

We stress that this is merely a comparison for a spec
example, namely that of the trench target functionF(w). We
conjecture that the superposition method can approxim
other arbitrary patterns equally well, but we have not y
found a proof. Besides the ability to fit an arbitrary patte
another criterion of comparison between the pseudo-Fou
method and the superposition method, is the time neede
create theN-photon entangled states.

Until now, we have only considered subwavelength re
lution in one direction, namely parallel to the direction of th
beams. However, for practical applications we would li
subwavelength resolution in both directions on the substr
This is the subject of the next section.

IV. GENERAL PATTERNS IN 2D

In this section we study how to create two-dimension
patterns on a suitable substrate using the quantum litho
phy techniques developed in the previous sections. As
have seen, the phase shiftw, in the setup given by Fig. 4, act
as a parametrization for the deposition rate in one dimens
Let us call this thex direction.

We can now do the same for they direction, employing
two counter-propagating beams (c andd) in the y direction
~see Fig. 4!. The same conditions apply: we consider t
limit where the spatial angleu off axis approachesp/2, thus
grazing along the substrate’s surface.

Consider the region where the four beamsa, b, c, andd
overlap. For real lithography we have to take into acco
the mode shapes, but when we confine ourselves to an
with side lengthsl ~wherel is the wavelength of the use
light! this problem does not arise.

The class of states on modesa to d that we consider here
are of the form

ucNm
k &5

1

2
@eimwuN2m,m;0,0&1ei (N2m)wei zmum,N2m;0,0&

1eikuu0,0;N2k,k&1ei (N2k)xei z̄ku0,0;k,N2k&],

~35!

wherezm andz̄k are two relative phases. This is by no mea
the only class of states, but we will restrict our discussion
this one for now. Observe that this is a superposition on
amplitude level, which allows destructive interference in t
deposition rate in order to create dark spots on the subst
Alternatively, we could have used the one-dimensio

a

e
he
7-5
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method@with states given by Eq.~9!# in thex andy direction,
but this cannot give interference effects between the mo
a,b andc,d.

The phase-shiftsw andx in the light beamsb andd ~see
Fig. 4! result in respective displacementsx andy of the in-
terference pattern on the substrate. A phase shift of 2p in a
given direction will displace the pattern, say,N times. This
means that the maxima are closer together, yielding an ef
tive resolution equal toDx5Dy5l/4N. This happens in
both thex and they direction.

We proceed again as in Sec. II by evaluating theNth

order momentd̂N of the electric-field operator@see Eq.~7!#.

This gives the deposition rateDNmk
Nm8k85^cNm

k udNucNm8
k8 &

@with ucNm
k & given by Eq.~35!#:
o

e,
iti
on

u-

06340
es

c-

FIG. 4. Four light beamsa, b, c, andd cross each other at th
surface of a photosensitive substrate. The angles betweena and b
and c and d are again taken in the grazing limit ofu5p/2. The
relative phase difference betweena and b is w and the relative
phase difference betweenc andd is x.
DNmk
Nm8k8}S N

mD S N

m8
D ~e2 imweim8w1e2 imwei (N2m8)wei zm81e2 i (N2m)weim8we2 i zm1e2 i (N2m)wei (N2m8)we2 i (zm2zm8)!

1S N

mD S N

k8
D ~e2 imweik8x1e2 imwei (N2k8)xei z̄k81e2 i (N2m)weik8xe2 i zm1e2 i (N2m)wei (N2k8)xe2 i (zm2 z̄k8)!

1S N

k D S N

m8
D ~e2 ikxeim8w1e2 ikxei (N2m8)wei zm81e2 i (N2k)xeim8we2 i z̄k1e2 i (N2k)xei (N2m8)we2 i ( z̄k2zm8)!

1S N

k D S N

k8
D ~e2 ikxeik8x1e2 ikxei (N2k8)xei z̄k81e2 i (N2k)xeik8xe2 i z̄k1e2 i (N2k)xei (N2k8)xe2 i ( z̄k2 z̄k8)!. ~36!
e
the
tant
be-

tion

the

r
q.
For the special choice ofm85m andk85k we have

DNm
k }S N

mD 2

~11cos@~N22m!w1zm# !

1S N

k D 2

~11cos@~N22k!x1 z̄k# !

14S N

mD S N

k D cos1
2 @N~w2x!1~zm2 z̄k!#

3cos1
2 @~N22m!w2zm#cos1

2 @~N22k!x2 z̄k#.

~37!

We can again generalize this method and use superp
tions of the states given in Eq.~35!. Note that there are now
three numbersN, m, andk that can be varied. Furthermor
as we have seen in the one-dimensional case, superpos
of differentn do not give interference terms in the depositi
rate.

Suppose we want to approximate a patternF(w,x), with
$w,x%P@0,2p#. This pattern can always be written in a Fo
rier expansion:
si-

ons

F~w,x!5 (
p,q50

`

apq cospwcosqx1bpqcospw sinqx

3cpq sinpw cosqx1dpq sinpw sinqx. ~38!

with apq , bpq , cpq , anddpq real. In the previous section, w
showed that quantum lithography could approximate
Fourier series of a one-dimensional pattern up to a cons
displacement. This relied on the absence of interference
tween the terms with different photon numbers. The ques
is now whether we can do the same for patterns intwo di-
mensions. Or alternatively, can general superpositions of
stateucNm

k & approximate the patternF(w,x)?
From Eq.~36! it is not obvious that we can obtain the fou

trigonometric terms given by the Fourier expansion of E
~38!:

D}cospw cosqx, ~39a!

D}cospw sinqx, ~39b!

D}sinpw cosqx, ~39c!

D}sinpw sinqx. ~39d!
7-6
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We can therefore not claim that two-dimensional quant
lithography can approximate arbitrary patterns in the se
of one-dimensional lithography. Only simple patterns li
the one given in Fig. 5 can be inferred from Eq.~36!. In
order to find the best fit to an arbitrary pattern one has to
a minimization procedure.

For example, we calculate the total deposition rate du
the quantum stateuCN&, where

uCN&5 (
m50

bN/2c
(
k50

bN/2c
amkucNm

k &. ~40!

Here, amk are complex coefficients. We now proceed
choosing a particular intensity patternF(w,x) and optimiz-
ing the coefficientsamk for a chosen number of photons. Th
deposition rate due to the stateuCN& is now

DN~aW !5 (
m,m850

bN/2c
(

k,k850

bN/2c
amk* am8k8DNmk

Nm8k8 , ~41!

with aW 5(a0,0,a0,1, . . . ,aN/2,N/2). We again have to evalu
ate theaW and t that minimize

E
0

2pE
0

2p

uF~w,x!2DN~aW !tu2dwdx. ~42!

The values ofaW and t can again be found using a gene
algorithm.

V. PHYSICAL IMPLEMENTATION

With current experimental capabilities, the physic
implementation of quantum lithography is very challengin
In particular, there are two major issues to be dealt w
before quantum lithography can become a mature tech
ogy. First of all, we not only need the ability to create t

FIG. 5. A simulation of a two-dimensional intensity pattern
an areal2, wherel denotes the wavelength of the used light. He
we modeled a square area with sharp edges. The pattern was
erated by a Fourier series of up to ten photons~see also Fig. 3 for
the one-dimensional case!.
06340
e

e

to

l
.
h
l-

entangled photon states given by Eqs.~9! and ~35!, but we
should also be able to create coherent superpositions of t
states. One possibility might be to use optical compone
like parametric down converters. Contrary to the results
Ref. @11#, we are not concerned with the usually larg
vacuum contribution of these processes, since the vac
will not contribute to the spatial profile of the deposition@see
Eqs.~6! and ~7!#.

Secondly, we need substrates that are sensitive to
higher moments of the electric field operator. When we w
to use the pseudo-Fourier method, up toN photons for quan-
tum lithography in one dimension, the substrate needs to
reasonably sensitive to all the higher moments up toN, the
maximum photon number. Alternatively, we can use the
perposition method forN photons when the substrate is se
sitive to predominantly one higher moment corresponding
N photons. Generally, the method of lithography determin
the requirements of the substrate.

There are also some considerations about the approx
tion of patterns. For example, we might notneedarbitrary
patterns. It might be the case that it is sufficient to have a
of patterns that can then be used to generate any de
circuit. This is analogous to having a universal set of logi
gates, permitting any conceivable logical expression. In t
case we only need to determine this elementary set of
terns.

Furthermore, we have to study whether the uniform ba
ground penalty exposure really presents a practical probl
One might argue that a sufficient difference between
maximum deposition rate and the uniform background p
alty exposure is enough to accommodate lithography. T
depends on the details of the substrate’s reaction to the e
tro magnetic field.

Before quantum lithography can be physically impl
mented and used in the production of nano circuits, th
issues have to be addressed satisfactorily.

VI. CONCLUSIONS

In this paper we have generalized the theory of quant
lithography as first outlined in Ref.@5#. In particular, we
have shown how we can create arbitrary patterns in one
mension, albeit with a uniform background penalty exposu
We can also create some patterns in two dimensions, bu
have no proof that this method can be extended to give
bitrary patterns.

For lithography in one dimension we distinguish tw
methods: the pseudo-Fourier method and the superpos
method. The pseudo-Fourier method is conceptually ea
since it depends on Fourier analysis, but it also involve
finite amount of unwanted exposure of the substrate. M
specifically, the deposition rate equals the pattern in its F
rier basis plus a term yielding unwanted background ex
sure. The superposition method gets around this problem
seems to give better results, but lacks the intuitive clarity
the Fourier method. Furthermore, we do not have a pr
that this method can approximate arbitrary patterns~see Sec.
III C for a discussion on this approximation!.

Quantum lithography in two dimensions is more involve

en-
7-7
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Starting with a superposition of states, given by Eq.~35!, we
found that we can indeed create two-dimensional patte
with subwavelength resolution, but we do not have a pr
that we can createarbitrary patterns. Nevertheless, we mig
be able to create a certain set of elementary basis patte

There are several issues to be addressed in the fu
First, we need to study the specific restrictions on the s
strate and how we can physically realize them. Secondly,
need to create the various entangled states involved in
quantum lithography protocol.

Finally, G.S. Agarwal and R. Boyd have called to o
attention that quantum lithography works also if the we
parametric downconverter source, described in Ref.@5# is
replaced by a high-flux optical parametric amplifier@12#. The
visibility saturates at 20% in the limit of large gain, but th
P.

06340
s
f

s.
re.
b-
e

he

k

is quite sufficient for some lithography purposes, as well
for 3D optical holography used for data storage.
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