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A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into
two-body single channel scattering, two-body multichannel scattering, and genuine three-body scattering. The
corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations.
We solve these by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering
and reaction cross sections of teé+H system both below and above thn=2) threshold. We find
excellent agreements with previous calculations in most cases.
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The three-body Coulomb scattering problem is one of theCoulomb scattering process can be decomposed formally
most challenging long-standing problems of nonrelativisticinto two-body single channel scattering, two-body multi-
guantum mechanics. The source of the difficulties is relate@¢hannel scattering, and genuine three-body scattering. The
to the long-range character of the Coulomb potential. In staneorresponding integral equations are coupled Lippmann-
dard scattering theory it is supposed that particles mové&chwinger and Faddeev-Noble integral equations, which
freely asymptotically. This is not the case if Coulombic in- were solved using the Coulomb-Sturmian separable expan-
teractions are involved. As a result, the fundamental equasion method. The approach was tested first for bound-state
tions of the three-body problems, the Faddeev equations, bgroblemd 4] with repulsive Coulomb plus nuclear potentials.
come ill behaved if they are applied for Coulomb potentialsThen it was extended to calculgbed scattering at energies
in a straightforward manner. below the breakup threshol@]. More recently we used this

The first, and most formally exact, approach was pro-method to calculate resonances of theegystemg5]. Also,
posed by Nobld1]. His formulation was designed to solve atomic bound-state problems with attractive Coulomb inter-
the nuclear three-body Coulomb problem, where all Couactions were considerdd]. These calculations showed an
lomb interactions are repulsive. The interactions were spliexcellent agreement with the results of other well-established
into short and long-range Coulomb-like parts and the longimethods. The efficiency and the accuracy of the method was
range parts were formally included in the “free” Green's demonstrated.
operator. Therefore, the corresponding Faddeev-Noble equa- The aim of this paper is to generalize this method for
tions become mathematically well-behaved, and in the absolving the three-body Coulomb problem with repulsive and
sence of Coulomb interaction fell back to the standard equaattractive Coulomb interactions. We combine the concept of
tions. However, the associated Green’s operator was ndhree-potential formalism with Merkuriev’s splitting of the
known. This formalism, as presented at that time, was nointeractions, and solve the resulting set of Lippmann-
suitable for practical calculations. Schwinger and Faddeev-Merkuriev integral equations by ap-

In Noble’s approach the separation of the Coulomb-likeplying the Coulomb-Sturmian separable expansion method.
potential into short and long-range parts was carried out iin this paper we restrict ourselves to energies below the
two-body configuration space. Merkuriev extended the idedhree-body breakup threshold.
of Noble by performing the splitting in three-body configu-
ration space. This was a crucial development, since it made it
possible to treat attractive Coulomb interactions on an equa|' INTEGRAL EQUATIONS OF THE THREE-POTENTIAL
footing with repulsive ones. This theory was developed using PICTURE
integral equations with connectedompact kernels, and ) ) o
transformed into configuration-space differential equations We consider a three-body system with a Hamiltonian,
with asymptotic boundary conditiofg]. In practical calcu-
lations, so far only the latter version of the theory was con- H=H+0yC+1C+4C, (1)
sidered. The primary reason is that the more complicated o FTY
structure of the Green’s operators in the kernels of the
Faddeev-Merkuriev integral equations has not yet allowedvhereH® is the three-body kinetic-energy operator, arfg
any direct solution. However, use of integral equations is @lenotes the Coulomb-like interaction in subsystemThe
very appealing approach, since no boundary conditions argotentialv$ may have a repulsive or attractive Coulomb tail
required. and any short-range component. We use the typical

Recently, one of us developed a method for treating theonfiguration-space Jacobi coordinatesandy,; X, is a
three-body problem with repulsive Coulomb interactions incoordinate between the paiB(y), andy, is a coordinate
three-potential picturg3]. In this approach a three-body between the particler and the center of mass of the pair
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(B,7y). Thus the potentiabg, the interaction of the pair
(B,7y), appears asug(xa). We also use the notatioX 0+
:{Xﬂz7y0[}ER6'

A. Merkuriev's cut of the Coulomb potential

Hamiltonian (1) is defined in the three-body Hilbert -0.17
space. The two-body potential operators are formally embed-
ded in the three-body Hilbert space

vCe=0v%(x)1,, )

where 1, is a unit operator in the two-body Hilbert space
associated with thg coordinate. Faddeev and Merkuriev in- 0o

troduced a separation of the three-body configuration space g 1 The short-range part® of the — 1/x attractive Cou-
into different asymptotic regions. The two-body asymptotici,mp potential.

region(} , is defined as a part of the three-body configuration

space where the conditions wherev , is a short-range potential ang,) is the Faddeev
0 0Ly component of the total wave functigd’). While the total
[Xal <Xa(1H ]y lly )™, @  wave function| W), in general, has three different kind of

two-body asymptotic channelfy,) possesses only-type
two-body asymptotic channels. The other channels are sup-
pressed by the short-range potentigl. This procedure is
called asymptotic filtering, and it guarantees the asymptotic
vCep® 4, 4) orthogonality of the Faddeev componefit$.

a e @ The aim of the Merkuriev procedure was to formally ob-
where the superscripsand| indicate the short- and long- ta}w)] a three-body Hamiltonian \_N|th(l)sh_ort-range potentials
range attributes, respectively. The splitiing is carried out"~ and a long-range Hamiltoniahl™, in order that we

with xg ,y2>0 andv>2, are satisfied. They proposed split-
ting the Coulomb interaction in the three-body configuration
space into short and long-range terms,

with the help of a splitting functior: could repeat the procedurg of the cqnyentional Faddeev
theory. The total wave functiop') is split into three com-
vy =0 L(xy), (5  ponents,
O (x,y)=v(X)[1-Z(x,y)]. (6) ()=o) + )+, (13

The function? is defined such that with components defined by

x—= (1, XeQ, |[4a)=G 0P| W). (14

1 . 7 . . . . .
£0xy) 0 otherwise. @ This procedure is an example of asymptotic filtering. The

o . . ) ) _ short-range potential® acting on|¥) suppresses the pos-
In practice, in the configuration-space differential equationsiple 8 and y asymptotic two-body channels, provided"
approaches, usually the functional form itself does not introduce any new two-body asymptotic chan-
_ 0w 0 nels. With the Merkuriev splitting this is avoided, because
{O6GY)=2R1+[(xPC) (1 +yly) 1} ®  HO does not have two-body asymptotic channels even if
was used some of the long-range potentials have an attractive Cou-
: e , lomb tail. In the attractive case” appears as a valley along
The long-range Hamiltonian is defined as ' X ; .
the y=x" parabolalike curve, with a Coulomb-like

HO= H0+vg)+vg)+v(yl) , (9) asymptotic behavior in at any finitey (see Figs. 1 and 2 for
the short- and long-range parts, respectivelyowever, as
and its resolvent operator is y—oo the depth of the valley goes to zero, and consequently
the two-body bound states are pushed up, and finally the
GW(z)=(z—HO)~ 1, (100  system does not have any two-body asymptotic channels. We
note that the Merkuriev formalism contains Noble’s formal-
Then the three-body Hamiltonian takes the form ism in the limity%—oo,
H=HO+u0+ Uflis)Jr U(yS) . 1D B. Three-potential picture
In the conventional Faddeev theory the wave-function In Ref.[3] the three-body scattering problem with repul-
components are defined by sive Coulomb interactions was considered in the three-
potential picture. In this picture the scattering process can be
|y =(z—H% v | W), (120  decomposed formally into three consecutive scattering pro-
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The operatoGS) is the long-range channel Green'’s operator,
andG,, is the channel-distorted long-range Green'’s operator.

e These operators are connected via the resolvent relations
0| G(2)=G{(2)+ G (2)V*G(2), (23
-0.037 ~ ~

GV(2)=G,(20+ G, (2u*GV)(2), (24)

whereV‘”=u(ﬁ5)+v(f) and U“=vg)+vg)—ug).
The scattering state, which evolves from the asymptotic
state|®,) under the influence dfl, is given as

FIG. 2. The long-range past!) of the — 1/x attractive Coulomb |[WEN=limieG(E,*ie)|D,). (25
potential. =0

cesses: two-body single channel, two-body multichannePimilarly, we can define the following scattering states
scattering and genuine three-body scattering. This formalism

(= PN ( ;
also provides the integral equations and the method of con- @)= “Lno'SG(a)(Ei'S)@a) (26)
structing theS matrix. Below we adapt this formalism to °
attractive Coulomb interactions using the Faddeevypg
Merkuriev approach.
The asymptotic Hamiltonian is defined as 1PN =limieG, (Exie)|d,), (27)
e—0

H,=H%+0§, (15)
which describe scattering processes due to Hamiltorﬁén}’\s
andH,, respectively.

The S'matrix elements of the scattering processes are ob-
Hol®,)=E[D,), (160 tained from the resolvent of the total Hamiltonian by the

reduction techniqués]
where (XY .| ® ) = (Yol xa){Xo| ¢o) is @ product of a scat-

and the asymptotic states are the eigenstates,of

tering state in coordinatg, and a bound state in the two-  Sg; ,i=lim limiee'Ea~E)(D 4 |G(E+ie)|D ).
body subsyster,, . t—e £—0
We define the two asymptotic long-range Hamiltonians as (28)
()40 C () (1) The subscripi andj denotes theth andjth eigenstates of
Ho' =H +v tug vy A7 the corresponding subsystems, respectively. If we substitute
and Eqg. (23) into Eq.(28) we obtain the following two terms:
~ | Siah=1im limise! s~ Ea (D 5| GO(E i +is)|D )
Ho=H+0S+ul), (18 (o o0
(29
whereu') is an auxiliary potential in coordinate,, and it is 3) o p i(E .
a ' ) = (Epj—Eailt 1c® ) a
required to have the asymptotic form Sl tIT:c :Iinolge ! <CD'8J|Ga (BaitielV
WO~ Z (242 )1y (19) XG(Eyitie)| D). (30)

Substituting Eq(24) into Eq. (29), the first term yields two

asy,—. In fact,ul) is an effective Coulomb-like interac-
more terms

tion between the center of mass of the subsystertwith

chargeZ;+Z,) and the third particléwith chargeZ,). We

introduced this potential in order that we compensate for the “Al.ei— 770 T

long-range Coulomb tail 05§ +v) in Q,,. 31)
Let us introduce the resolvent operators

SG i=1im limise! e~ Eadl(d 4| G (E i +ie)| D o)

S =lim limige s Eal{(D 4 |G (E i+ie
G(z)=(z—H)™, (20 S — (@5[CalEaitic)

60 (2)= (2= HO)1, 21) XU“GP(E,i+ie)| D). (32)

5 5 Using the properties of the resolvent operators, the limits can
G, (2)=(z—H, (22 be performed, and we arrive at the following, physically
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plausible, result. The first temnSg i, is the S matrix of a

two-body single-channel scattering on the potemﬁal:
Shiai = 0padi S(UY). (33

If u) is a pure Coulomb interactios(u) falls back to the
S matrix of the Rutherford scattering; ifg) is identically

zero, S, is equal to unity. The second tergfy,; de-
scribes a two-body multichannel scattering on the potenti
U
2 = i o= @ |
S = — 271 85, 8(E gy — E i (DU D).

namics:

SG) = — 27 8(E g — E)(®Y v W), (35

C. Lippmann-Schwinger integral equation for |®)

Starting from the definition of®{) [Eq. (26)], by utiliz-
ing resolvent relatior{24) and definition(27), we easily de-
rive a Lippmann-Schwinger equation

|DDEN= DN+ T (Exieu @Dy, (36)
where|®{*)) are given by
|DC) =[x b (37)

a

PHYSICAL REVIEW A 63062721

45 = 100 +GOE=i0)0 P )+ 194,
(41

95y =GRE=i10)o L) +[9)], (42)
94y =GOE£i0)0 O[S + |G,

Merkuriev showed that, after a certain number of iterations,
ﬁhese equations were reduced to Fredholm integral equations

(43

of the second kind with compact kernels for all energies,
including energies belowH<0) and above E>0) the
three-body breakup threshdl@]. Thus all the nice properties

of the original Faddeev equations established for short-range
interactions also remain valid for the case of Coulomb-like

The third term takes account of the complete three-body dypotennals. We note that the triad of Lippmann-Schwinger

equations and the set of Faddeev-Merkuriev equations de-
scribe the same physics, the equations have identical spectra
and in fact, the Faddeev-Merkuriev equations are the adjoint
representations of the triad of Lippmann-Schwinger equa-
tions[10].

Utilizing the properties of the Faddeev components, the
matrix elements in Eq.35) can be rewritten in a form better
suited for numerical calculations:

<d>2%<‘>|va|wzr>>=gﬁ (@Y @Iyl (a4

Summarizing, in the three-potential formalism, starting
from |®(*)), by solving a Lippmann-Schwinger equation,
we determind® ) Then, from|® () by solving the
set of Faddeev-Merkuriev equations, we determine the com-
ponentd {")). Finally using Eqs(34) and(44) we construct

The state|x(”)) is a scattering state in the Coulomb-like the S matrix.

potentialu(y,).

D. Faddeev-Merkuriev integral equations for the wave-
function components

The integral equations for the wave functipi*)) are
arrived at by combining the resolvent relatidsq. (23)] and

Il. COULOMB-STURMIAN SEPARABLE EXPANSION
APPROACH TO THE THREE-BODY INTEGRAL
EQUATIONS

In order to solve operator equations in quantum mechan-
ics, one needs a suitable representation for the operators. For

Eg. (29). In this case, however, we have three resolvent resoying integral equations it is especially advantageous if one
lations, and therefore we obtain a triad of Lippmann-yses a representation where the Green’s operator is simple.

Schwinger equations:

[wEN=1d0EY +cOE+ioVwE)), (38
|\1f§f>>=Gg>(Eii0)vﬂ|«lfff>>, (39)
[Py =GP(E=i0)V T, (40)

For the two-body Coulomb Green’s operator there exists a
Hilbert-space basis in which its representation is very simple.
This is the Coulomb-SturmiafC9) basis. In this representa-
tion space the Coulomb Green’s operator can be given by
simple and well-computable analytic functidrid]. This ba-

sis forms a countable set. If we represent the interaction term
on a finite subset of the basis, it looks like a kind of sepa-
rable expansion of the potential, and so the integral equation

Although these three equations together provide unique sdyecomes a set of algebraic equations which can then be
lutions [9], their kernels are not connected; therefore theysolved without any further approximation. The completeness
cannot be solved by iterations. The way out of the problem i®f the basis ensures the convergence of the method.
to use the Faddeev decomposition, which leads to equations This approximation scheme was thoroughly tested in two-
with connected kernels; thus they are effectively Fredholmpody calculations. Bound- and resonant-state calculations
type integral equations. were presented firgtL1]. Then the method was extended to
Multiplying each elements of the triad from left by scattering state§12]. Since only the asymptotically irrel-
Gy® | and utilizing Eq.(14), we obtain a set of Faddeev- evant short-range interaction is approximated, the correct
Merkuriev integral equations for the components: Coulomb asymptotic is guarantegt]. A recent account of
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this method was presented in R¢L4]. The method also and consider the inhomogeneous Lippmann-Schwinger equa-
proved to be very efficient in solving three-body Faddeev-tion for the scattering state),) in some partial wavé:
Noble integral equations for bounf4] and scattering-state
[3] problems with repulsive Coulomb interactions. [y =) +ar(E)o ). (50
In Sec. Il A we define the basis states in two- and three- Cr s _ _
particle Hilbert space. In Sec. IIB we review some of theH€rel¢’) is the regular Coulomb function, af (E) is the
most important formulas of the two-body problem. In SecsWo-body Coulomb Green’s operator
IIC and Il D we describe the calculation of tisamatrix and Crmy 0 Ci-1
the solution of the Faddeev-Merkuriev integral equations. 9r(B)=(E=h/=v™) (5D

We follow the line presented in Refi3]. with a free Hamiltoniar’nlo. We make the following approxi-

mation for Eq.(50):
A. Basis states c C (s)
_ S,
The Coulomb-Sturmian functionil5] in some angular [ )=o)+ (E) Iyv ™ 1n|¢h), (52)

momentum staté are defined as i.e., we approximate the short-range potemﬁl by a sepa-

n! 172 | rable form
e 1+1 _ 21+1
(r|nl) T2 1) (2br) *texp(—br)L: T (2br), N
(45) v¥=lim Lyw O~ Lw&@1= > [nho&n’l|,
N— o0 n,n'=0 -
wheren=0,1,2 . .. .HereL represents the Laguerre polyno- (53
mials, andb is a fixed parameter. In an angular momentum )

subspace they form a complete set where the matrix
N gl(:)n,=<n||v|(5)|n’|>. (54)
1= lim >, [ni}nl|= lim 1y, (46) _ _
N—o N=0 N—oo These matrix elements can always be calculdtagmeri-

cally) for any reasonable short-range potential. In practice,
e use a Gauss-Laguerre guadrature, which is well suited to
the CS basis.

Multiplied by the CS state$~nl| from the left, Eq.(52)
urns into a linear system of equations for the wave-function

where ﬁﬁ), in a configuration-space representation, read
(r[nly=(r|nly/r.

The three-body Hilbert space is a direct sum of two-body,
Hilbert spaces. Thus the appropriate basis in an angular m& - o
mentum representation should be defined as a direct produgeefficientsy; = (nl|y),

VN =|nl),®[n\), (nr=012...) (47 [@FEN == @rE)N e, (55

with the CS states of Eq@45). Herel and N denote the Where the underlined quantities are matrices with the follow-
angular momenta associated with Jacobi coordinatesly, ing elements:

respectively. In our three-body Hilbert space basis, we take —

the bipolar harmonics in the angular variables, and CS func- or =(nlle’) (56)
tions in the radial coordinates. The completeness relation o

takes the form(with angular momentum summation implic- and

itly included) . _
| g (E)=(nllgF(E)[n"l). (57)
1= lim > TnuIN)aa(nviN|=lim 1%, (48 I
N—ool,v=0 N—oo 1. Matrix elements(nl|g-(z)|n'l)

— The key point in the whole procedure is an exact and
where (XY o[NvIN) o= (XY o NPIN) /(XY ). It should be  anaiytical calculation of the CS matrix elements of the Cou-

a, B andy. two independent, analytical approaches. Both are based on
the observation that the Coulomb Hamiltonian possesses an
B. Coulomb-Sturmian separable expansion infinite symmetric tridiagonalJacob) matrix structure on
in two-body scattering problems the CS basis.

Let us study a two-body case of short-range interaction Let us consider the radial Coulomb Hamiltonian

plus Coulomb-like interaction, 7

+ ?, (58

vi=v¥+0v° (49 h= 2m

- h2< ? 1(1+1)
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wherem, |, and Z stand for the mass, angular momentum,more importantly, turn a nonconvergent continued fraction
and charge, respectively. The matﬂﬁn, (n|(z—h)|n")

possesses a Jacobi structure,

hZ
=2(n+|+1)(k2—b2)m—z

and

2
J¢

nnl

wherek=(2mz#?)*? is the wave number. The main result
of Ref.[16] is that for Jacobi matrix systems thih leading
of the infinite Green’s matrix can be deter-

submatrixgﬁ,(]',“)

mined by the elements of the Jacobi matrix,

oo =135

C —
nn’+6nN6n/N£NN+1C] ll
whereC is a continued fraction,

Uy

Un+1

dy+
Un+2

Oy gt =2
N+1 dN+2+"’

with coefficients

__‘]Cn 1/‘]n n+1»

fi
_ 1 N N
[n(n+21+1)]"4k“+b )4mb’

d __‘JC /‘Jn n+1-

(59

(60)

(61)

(62

(63

into a convergent onfl 7]. Analytic continuation is achieved

by usingw.. instead of the nonconverging tail. In R¢L6],

it was shown thatv, provides an analytic continuation of
the Green’s matrix to the physical, amd does the same to
the unphysical Riemann sheet. This way E8p), together
with Eq. (61) provides the CS basis representation of the
Coulomb Green’s operator on the whole compleplane.

We note here that with the choice @&=0 the Coulomb
Hamiltonian[Eq. (58)] reduces to the kinetic-energy opera-
tor, and our formulas provide the CS basis representation of
the Green’s operator of the free particle as well. We empha-
size that this procedure does not truncate the Coulomb
Hamiltonian, because all the high&y,,, matrix elements are
implicitly contained in the continued fraction.

We note thag® has been calculated befdrkl]. From the
J-matrix structure a three-term recursion relation follows for
the matrix elementg", . This recursion relation is solvable
if the first elemenig, is known. It is given in a closed
analytical form -

dmb 1 1
%2 (b—ik)2 I+in+1

c_
Y900=

X oF4| —l1+in,1l+in+2,

b+ ik| 2
b kH (69)

where »=Zn/(#2k) is the Coulomb parameter, angF, is
the hypergeometric function. For those cases where the first

In Ref. [16] it was shown that although the continued or second indexes ofF; are equal to unity, there exists a

fraction C is convergent only on the upper-hddfplane, it
can be continued analytically to the whdteplane. This is
because the, andd,, coefficients satisfy the limit properties

u=limu,=—1,

n—o

d=limd,=2(k?

n—o

—b?)/(k*+b?).

Then the continued fraction appears as

Uy

Un+1

u
u
d+---

dysgt---+
d+

(64)

(65)

(66)

Therefore, the tailv of C satisfies the implicit relation

u

d+w’
which is solved by

w. = (b=ik)2/(b2+Kk?).

Replacing the tail of the continued fraction by its explicit

(67)

(68)

continued fraction representation, which is very efficient in
practical calculations. It was shown that the two methods
lead to numerically identical results for all energies, and our
numerical continued fraction representation possesses all the
analytical properties of. An exact analytical knowledge of

g® allows us to calculate the matrix elements of the full
Green’s operator in the whole complex plane:

9(@={lgr(@D] v} (70

The overlap vector of CS and the Coulomb functions

(nl|<p ) is known analytically{12]. It can be calculated by a
three-term recursion, derived from tlematrix, using the
starting value

— 21y
C\ _ -
(Ol gy = exp(2n arctar@k/b))\/exp(zq_m)_1
I+1 | .
2k/b 2
\——| 11
1+K?%b?) =1

2442 \12

. (7Y

)

C. Calculation of the three-body S matrix

i(i+1/2

The aim of any scattering calculation is to determine the
Smatrix elements. In our case we need to calculate terms
(33), (34), and(44) of the three-potential picture.

The termS(lj) is trivial because it is just the two-body

analytical formw.., we can speed up the convergence andmatrix of the Coulomb-like potential(!).
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To calculate the second ter8() ; of Eq. (34), the ma-
trix elements(d!;)|U|®{)") are needed. Sincéd!)|
contains a two-body bound-state wave function in coordin
X, this matrix element is confined 9 ,, whereU“ is of

short-range type. Therefore, a separable approximation

justified,
(@UDPO)~(@P|u L ePD), (72

i.e., in this matrix element, we can approximai¢ by a
separable form

U*= lim 18U°18

N— o0

~ ULy
N
~ > IneIN),uen v 1N, (73)
n,v,n’ v’ =0 -
where
Ugyl)\‘n/y/w)\/:a<nV|)\|Ua|nlV’l,)\,>a. (74)

The matrix element appears as

N
(@IU@R )= (@ i),

XU (n' vl WOV (75)

In calculating the third tern8{3) ; of Eq. (44), we have
matrix elements of the typéd' v |y, Here again
we can approximate the short-range potenti§? in the

three-body Hilbert space by a separable form

0= lim 18014

N—o

~ 1918
N — —
~ 2 eI\, oS n v N, (76)
n,v,n’ v’ =0 -
where
OB i = IOV g (T)

In Eq. (76) the ket and bra states belong to different fra
mentations depending on the neighbors of the potential

erators in the matrix elements. Finally, the matrix elements

take the form

N
<¢ij‘)lv9|¢§£’>~2 (@ Invin),

<o IN D). (78

PHYSICAL REVIEW A 63 062721

We conclude that to calculate ttf&matrix of the three-
potential formulas we need the CS matrix elemeltigs.
74) and (77)], which can always be evaluated numerically
y using the transformation of Jacobi coordinaf8]. In
gc‘i_qi_t'ion we ne‘z_e_c_j' the CS WavE:f_l:lnction components
LI D), (nvIn @) and (nvIn|¢{7). We de-
termine these in Sec. Il D by solving Lippmann-Schwinger
and Faddeev-Merkuriev integral equations.

It should be noted that approximatiot&3) and(76) used
in calculating matrix element&5) and (78) become equali-
ties asN goes to infinity. In practical calculations we in-
creaseN until we observe a numerical convergence in scat-
tering observables.

at

D. Solution of the three-body integral equations

In the set of Faddeev-Merkuriev equatiofsgs. (41)—
(43)], we make approximation of E{476):

[) =D+ GO0 D1 ) + L0 D1 )1,

(79
lg) =GP0 D13 ) + L YR )], (80)
|,y =GO Ru Y1l w.) + Ro Pk ). (8D)

Multiplied by the CS stateg(nzI\|, BZT"TJIM, and yz_rﬂz'lM,
respectively, from the left the set of integral equations turns
into a linear system of algebraic equations for the coeffi-

cients of the Faddeev components =~ = ANVIN|,),

[(E(I))_l_K(S)]fz(E(l))_lg(l)’ (82)

with
R (7 N [T KN VU<

and
@) = (DY), (84)

Note that the matrix elements of the Green’s operator are
needed only between the same partitenwhereas the ma-
trix elements of the potentials occur only between different
g_partitionSa and .
op- _
1. Matrix elements (nvIN|[GP|n"»'I'N"),
and (nvIA|®)

Unfortunately neither the matrix elemefiq. (83)] nor
the overlag Eq. (84)] is known. The appropriate Lippmann-
Schwinger equation fo@S) was proposed by Merkurig\2],

GW(2)=G2(2)+ G*(2)V=G(2), (85)
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where G2° and V2° are the asymptotic channel Green’s op- We note that from Eq(92) it follows that the left side of
erator and potential, respectively. A similar equation is validEqg. (95) is just the inhomogeneous term of E&2). Both
for |®{): Egs.(95) and(82) are solved with the same inhomogeneous
term.
[00) =3+ GV DY), (86)

2. Matrix elements (n#IX|G,In'»'T'N'), and AnwIA|D,)
Both G and|® () are genuine three-body quantities. One . L .
may wonder why a single Lippmann-Schwinger equation The three-pa.rtlcle free Ha.mlltc'mlan can be written as a
suffices. The Hamiltoniat) has a peculiar property—it 4™ of two-particle free Hamiltonians
has only a-type tvv(_)-body asympt_otic channe_ls. For _such H°=h2 +hO (97)
systems a single Lippmann-Schwinger equation provides a a Ya
unique solutio{19].

The objectsG&®, V&%, and ®%° are very complicate
Their leading-order terms were constructed in configuratio
spaces in different asymptotic regions. The potentfd] as
|X|—cc, decays faster than the Coulomb potential in all di-
rections of the three-body configuration spac®?® ) 0 c 0 0 )
~O(|X|7¢), wheree>0 [2]. Therefore, we may express With i =hy +v(x,) andhy =hy +ua'(y,), which, of
the solutions of Eqs(85) and(86) formally as course, commute. The st ), which is an eigenstate of

H,, is a product of a two-body bound-state wave function in

coordinatex, and a two-body scattering-state wave function

in coordinatey, . Their CS representations are known from

the two-particle case described above.

[(G2) 1—Vva]p D =(G3S) ~1pas, (89) The matrix elements d&,, can be determined by making
- - - - - use of the convolution theorem,

d Then the HamiltoniarH , of Eq. (18) appears as a sum of
' fwo Hamiltonians acting on different coordinates,

Ho,=h, +hy (99)
(GE)"1=(G2%) - Vee (87
and

respectively, where 5
Ga(z) = (Z_ hxa_ hya) -t

G =« MIN[GEI TN, (89 )
=— ¢ dz(z—2'—h, )" Xz’—h, )"t (99
VE VAR I, (90 i §.071 w) (@) 69
and The contourC should encircle, in a positive direction, the
spectrum ohya without penetrating into the spectrum h;ja.
D = (NVINDF). (92) The convolution theorem follows from a more general

formula. A function of a self-adjoint operattris defined as
Here G2°, V2%, and ®%° appear between finite number of
square-integrable CS states, which confine the domain of in- f(h)= i i; dzf(z)(z—h) ! (100
tegration toQ), . In this region, howeveiG2° coincides with 27 Jc ’
G,, V2 with U* and®? with ®, [2]. Finally we have _
whereC is a contour around the spectrumtoandf should
(G('))*lz(éa)*l_ua, (92) be analytic on the region encircled &
— — — In the following we suppose that!) either vanishes or is
where a repulsive Coulomb-like potential. This assumption is not
necessary, but it greatly simplifies the analysis below. Nu-
G, .. r:a<ﬁ|éa|m)\l>a (93)  Mmerical examples show that there are a great many physical
— A three-body systems where this condition is satisfied. This
condition ensures thdt, does not have bound states.
To examine the analytical structure of integrai®9) let
Ul i =alNPIN[USN 01N, (94)  Us shift the spectrum af, by takingz=E+ie, with posi-
- tive . In doing so, the two spectra become well separated
In a similar way, and the spectrum ojya can be encircled. The conto@ is
- - - deformed analytically in such a way that the upper part de-
[(G,) *-Uu*d)=(G, '®,, (95  scends to the unphysical Riemann sheegpf, while the
lower part ofC can be detoured away from the dske Fig.
3). The contour still encircles the branch cut singularity of
dy,» but in thee—0 limit avoids the singularities ogxa.

Thus the mathematical conditions for the contour integral

and

where
D, =u(nvIN[D,). (96)
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TABLE |. Convergence ofe™+H—e"+H elastic scattering
(011 ande” +H—p+Ps positronium formationd,,) cross sec-
tions (in wag) with respect td\, the number of CS functions in the
expansion, and with respect to increasing the angular momentum
channels [,,,,) in the bipolar basis.

g, (E+ie-z')

I max=6 I max=8 I max=10
N o1 o012 o1 012 o1 o1 FIG. 3. Analytic structure o, (z—2')gy (') as a function of
z' with z=E+ie, E<0, ande>0. The contourC encircles the

k,=0.71, Ref[20]: 04,=0.025, 01,=0.0038 continuous spectrum df, . A part of this, which goes on the un-
12 0.02662 0.00423 0.02664 0.00397 0.02665 0'00393physical Riemann sheet gf, , is shown by the broken line.

13 0.02608 0.00424 0.02609 0.00398 0.02610 0.00394
14 0.02581 0.00423 0.02582 0.00398 0.02583 0.00394n']entum|_:0' and we take angu|ar momentum channels up
15 0.02562 0.00424 0.02561 0.00398 0.02562 0.00395g |=10. We use atomic units.

16 0.02548 0.00425 0.02546 0.00400 0.02547 0.00396 | et us numerate the particles, p, ande ™, with masses

17 0.02541 0.00426 0.02539 0.00401 0.02539 0.00397m.=1m, andm,=1836.1527h,, by 1, 2, and 3, respec-
18 0.02532 0.00427 0.02529 0.00401 0.02530 0.00398jvely. In channel 3 there are no two-body asymptotic chan-
19 0.02528 0.00427 0.02524 0.00402 0.02525 0.00398nels, since particlee” and p do not form bound states.
20 0.02522 0.00428 0.02517 0.00403 0.02518 0.00399Therefore, we can take(ss)EO, and include the totalg in

k,;=0.75, Ref[20]: 01;=0.044, 5,,=0.0043 the long-range Hamiltonian:
12 004412 0.00441 0.04412 0.00424 0.04413 0.00422
13 0.04345 0.00440 0.04344 0.00422 0.04345 0.00421 H=HO+p® 4+, (102
14 004318 0.00440 0.04317 0.00423 0.04318 0.00421
15 0.04280 0.00440 0.04278 0.00423 0.04279 0.00421 HO=H+u+0P+05. (103

16 0.04269 0.00440 0.04265 0.00423 0.04266 0.00422
17 004252 0.00441 0.04248 0.00424 0.04249 0.00423N this case|ys)=0, and we have set of two-component
18 0.04246 0.00442 0.04240 0.00425 0.04241 0.004237@ddeev-Merkuriev equations:

19 0.04238 0.00442 0.04232 0.00426 0.04232 0.00424

40 M, (s)

20 0.04232 0.00442 0.04225 0.00426 0.04226 0.00424 [42)=161")+ G v ), (104
k1:0.80, Ref[ZO] 0'1120.063,0'12:0.0047 _~W..(s)

12 0.06572 0.00475 0.06571 0.00467 0.06572 0.00467 |42)=G3'v | ). (109

13 0.06573 0.00481 0.06571 0.00473 0.06572 0'00473The parameters of the splitting functiah of Eq. (8) are

14006518 000483 006515 0.00475 0.06517 0'00475rather arbitrary. The final converged results should be insen-
15 0.06488 0.00485 0.06484 0.00477 0.06486 0.00477

sitive to their values; our numerical experiences confirm this

16 0.06457 0.00486 0.06452 0.00478 0.06453 0-00478expectation. For the parameters ¢f we have takenv
17 0.06440 0.00487 0.06433 0.00479 0.06435 0.00479:2.1, XO=3, andy0= 10, whereas for the parameters of CS
18 0.06427 0.00487 0.06420 0.00479 0.06422 0.00480fnctions we have takeh=0.9. We have seen that the rate
19 0.06418 0.00487 0.06409 0.00480 0.06411 0.004800f convergence is rather insensitive to the choice ofrer a
20 0.06412 0.00488 0.06402 0.00480 0.06404 0.00480proad interval.

First we examine the convergence of the results for cross
_ sections at incident wave numbeeg=0.71, 0.75, and 0.8,
representation oG ,(z) in Eq. (99) are met. The matrix el- which correspond to scattering states in the Ore gap. Table |
ementsG,, can be cast in the form shows the convergence ef + H—e™ + H elastic scattering

- (010 and e"+H—p*+Ps positronium formation o;,)

cross sectiongin waé) with respect taN, the number of CS

~ 1
Ga(z)=ﬁ § dz'gy (z—2")gy (2'), (101
- c - - TABLE II. Phase shiftgin rad) of e" + H—e* + H elastic scat-

) . tering below the positronium formation threshold.
where the corresponding CS matrix elements of the two-

body Green’s operators in the integrand are known analyti- x  Ref.[21] Ref.[22] Ref.[23] Ref.[20] This work
cally for all complex energies.

0.1 0.1483 0.152 0.149 0.149 0.1480

IIl. TEST OF THE METHOD 0.2 0.1877 0.188 0.188 0.189 0.1876

0.3 0.1677 0.166 0.166 0.169 0.1673

We demonstrate the power of our method by calculatingo.4 0.1201 0.118 0.120 0.121 0.1199

elastic phase shifts o™ +H scattering below the Ps( 0.5 0.0624 0.061 0.060 0.062 0.0625

=1) threshold and cross sections of #ie+H elastic scat- (.6 0.0039 0.003 0.003 0.0038
tering as well app™ + Ps reaction channels up to the Rs( 07 -00512 -0053 —0.050 -0.0513

=2) threshold. In all examples we have a total angular mo
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TABLE Ill. Partial cross sections(in wa2) in the H(n lomb interactions including attractive ones. We adopted-
=2)-Psf=2) gap(threshold energies 0.7496—-8745)Ryumbers  Merkuriev's approach, and split the Coulomb potentials in
1, 2, 3, and 4 denote the channels+H(1s), e +H(2s), e"  the three-body configuration space into short-and long-range

+H(2p), andp™ + Ps(1s), respectively. terms. In this picture the three-body Coulomb scattering pro-
cess can be decomposed into single channel Coulomb scat-
E; (Ry) o1 o012 o3 o4 tering, two-body multichannel scattering on the intermediate-

range polarization potential, and genuine three-body

. scattering due to the short-range potentials. The formalism
0.77 This work 0.0951 0.000673 0.000331 0.00558 provides us a set of Lippmann—Schwinger and Faddeev-
0.80 Ref.[24] 0.096 0.00115 0.000364 0.00585 Merkuriev integral equations.

0.80  This work 0.1010 0.00127 ~ 0.000371 0.00563  Thege integral equations are certainly too complicated for

083  Ref[24] 00993 0.00170  0.000885 0.00581 most of the numerical methods available in the literature.

0.83  Thiswork 0.1063 0.00163 0.000813 0.00566 The Coulomb-Sturmian separable expansion method can be
0.84  Ref[24] 0.101 0.00190 0.00113  0.00580 gyccessfully applied. It solves the three-body integral equa-
0.84  This work 0.1080 0.00173  0.00105 0.00566 tions by expanding only short-range terms in a separable
form on a Coulomb-Sturmian basis, while treating the long-

. . . , , , range terms in an exact manner via a proper integral repre-
functions in the expansion, and with respect to increasing thgapiation of the three-body channel distorted Coulomb

angular momentum channels in the bipolar expansion. FOf een's operator. The use of the Coulomb-Sturmian basis is
comparison, we provide the results of Rf0]. We can see  gggential, as it allows an exact analytical representation of the

that very good accuracy is achieved even with relatively Iow,,4.hody Green’s operator, and thus the contour integral for

N in the expansion. the channel distorted Coulomb Green'’s operator can be cal-
In Table Il we compare our converged results for phasg,jated. The method provides solutions which are asymptoti-
shifts (in rad) below the Psf=1) threshold to that of other a1y correct, at least i), which is sufficient if the scat-
methods. Reference21] is the best variational calculation. tering process starts from a two-body asymptotic state. Since
In Ref.[22] the Schrdinger equation was solved by means ihe two-hody Coulomb Green's operator is calculated ex-
of finite-element method. In Refg23] and[20] the configu- ety all thresholds are automatically in the right location
ration space Faddeev-Merkuriev differential equations werg egpective of the rank of the separable approximation. The
solved using the bipolar harmonic expansion meth_od and it ethod possesses good convergence properties, and in prac-
total angular momentum representation, respecuve_ly. Wece can be made arbitrarily accurate by employing an in-
can report perfect agreements with previous calculations.  ¢reasing number of terms in the expansion. Certainly, there
In Table |1l we present partial cross sections in Hfn s plenty of room for improvement, but we are convinced

=2)—Ps(n=2) gap(threshold energies 0.7496-0.8745)RY tnat this method can be a very powerful tool for studying
In Ref.[24] the configuration space Faddeev-Merkuriev dif- three-body systems with Coulomb interactions.

ferential equations were solved using a bipolar harmonic ex-

0.77 Ref.[24] 0.090 0.000702 0.000454 0.00572
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