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Three-potential formalism for the three-body scattering problem
with attractive Coulomb interactions
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A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into
two-body single channel scattering, two-body multichannel scattering, and genuine three-body scattering. The
corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations.
We solve these by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering
and reaction cross sections of thee11H system both below and above theH(n52) threshold. We find
excellent agreements with previous calculations in most cases.
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The three-body Coulomb scattering problem is one of
most challenging long-standing problems of nonrelativis
quantum mechanics. The source of the difficulties is rela
to the long-range character of the Coulomb potential. In st
dard scattering theory it is supposed that particles m
freely asymptotically. This is not the case if Coulombic i
teractions are involved. As a result, the fundamental eq
tions of the three-body problems, the Faddeev equations
come ill behaved if they are applied for Coulomb potenti
in a straightforward manner.

The first, and most formally exact, approach was p
posed by Noble@1#. His formulation was designed to solv
the nuclear three-body Coulomb problem, where all C
lomb interactions are repulsive. The interactions were s
into short and long-range Coulomb-like parts and the lo
range parts were formally included in the ‘‘free’’ Green
operator. Therefore, the corresponding Faddeev-Noble e
tions become mathematically well-behaved, and in the
sence of Coulomb interaction fell back to the standard eq
tions. However, the associated Green’s operator was
known. This formalism, as presented at that time, was
suitable for practical calculations.

In Noble’s approach the separation of the Coulomb-l
potential into short and long-range parts was carried ou
two-body configuration space. Merkuriev extended the id
of Noble by performing the splitting in three-body config
ration space. This was a crucial development, since it mad
possible to treat attractive Coulomb interactions on an eq
footing with repulsive ones. This theory was developed us
integral equations with connected~compact! kernels, and
transformed into configuration-space differential equatio
with asymptotic boundary conditions@2#. In practical calcu-
lations, so far only the latter version of the theory was co
sidered. The primary reason is that the more complica
structure of the Green’s operators in the kernels of
Faddeev-Merkuriev integral equations has not yet allow
any direct solution. However, use of integral equations i
very appealing approach, since no boundary conditions
required.

Recently, one of us developed a method for treating
three-body problem with repulsive Coulomb interactions
three-potential picture@3#. In this approach a three-bod
1050-2947/2001/63~6!/062721~11!/$20.00 63 0627
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Coulomb scattering process can be decomposed form
into two-body single channel scattering, two-body mul
channel scattering, and genuine three-body scattering.
corresponding integral equations are coupled Lippma
Schwinger and Faddeev-Noble integral equations, wh
were solved using the Coulomb-Sturmian separable exp
sion method. The approach was tested first for bound-s
problems@4# with repulsive Coulomb plus nuclear potential
Then it was extended to calculatep-d scattering at energie
below the breakup threshold@3#. More recently we used this
method to calculate resonances of three-a systems@5#. Also,
atomic bound-state problems with attractive Coulomb int
actions were considered@6#. These calculations showed a
excellent agreement with the results of other well-establis
methods. The efficiency and the accuracy of the method
demonstrated.

The aim of this paper is to generalize this method
solving the three-body Coulomb problem with repulsive a
attractive Coulomb interactions. We combine the concep
three-potential formalism with Merkuriev’s splitting of th
interactions, and solve the resulting set of Lippman
Schwinger and Faddeev-Merkuriev integral equations by
plying the Coulomb-Sturmian separable expansion meth
In this paper we restrict ourselves to energies below
three-body breakup threshold.

I. INTEGRAL EQUATIONS OF THE THREE-POTENTIAL
PICTURE

We consider a three-body system with a Hamiltonian,

H5H01va
C1vb

C1vg
C , ~1!

whereH0 is the three-body kinetic-energy operator, andva
C

denotes the Coulomb-like interaction in subsystema. The
potentialva

C may have a repulsive or attractive Coulomb t
and any short-range component. We use the typ
configuration-space Jacobi coordinatesxa and ya ; xa is a
coordinate between the pair (b,g), and ya is a coordinate
between the particlea and the center of mass of the pa
©2001 The American Physical Society21-1
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(b,g). Thus the potentialva
C , the interaction of the pair

(b,g), appears asva
C(xa). We also use the notationX

5$xa ,ya%PR6.

A. Merkuriev’s cut of the Coulomb potential

Hamiltonian ~1! is defined in the three-body Hilber
space. The two-body potential operators are formally emb
ded in the three-body Hilbert space

vC5vC~x!1y) , ~2!

where 1y is a unit operator in the two-body Hilbert spac
associated with they coordinate. Faddeev and Merkuriev in
troduced a separation of the three-body configuration sp
into different asymptotic regions. The two-body asympto
regionVa is defined as a part of the three-body configurat
space where the conditions

uxau,xa
0~11uyau/ya

0 !1/n, ~3!

with xa
0 ,ya

0.0 andn.2, are satisfied. They proposed spl
ting the Coulomb interaction in the three-body configurat
space into short and long-range terms,

va
C5va

(s)1va
( l ) , ~4!

where the superscriptss and l indicate the short- and long
range attributes, respectively. The splitting is carried
with the help of a splitting functionz:

v (s)~x,y!5vC~x!z~x,y!, ~5!

v ( l )~x,y!5vC~x!@12z~x,y!#. ~6!

The functionz is defined such that

z~x,y! ——→
X→` H 1, XPVa

0 otherwise.
~7!

In practice, in the configuration-space differential equat
approaches, usually the functional form

z~x,y!52/$11@~x/x0!n/~11y/y0!#% ~8!

was used.
The long-range Hamiltonian is defined as

H ( l )5H01va
( l )1vb

( l )1vg
( l ) , ~9!

and its resolvent operator is

G( l )~z!5~z2H ( l )!21. ~10!

Then the three-body Hamiltonian takes the form

H5H ( l )1va
(s)1vb

(s)1vg
(s) . ~11!

In the conventional Faddeev theory the wave-funct
components are defined by

uca&5~z2H0!21vauC&, ~12!
06272
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whereva is a short-range potential anduca& is the Faddeev
component of the total wave functionuC&. While the total
wave functionuC&, in general, has three different kind o
two-body asymptotic channels,uca& possesses onlya-type
two-body asymptotic channels. The other channels are s
pressed by the short-range potentialva . This procedure is
called asymptotic filtering, and it guarantees the asympt
orthogonality of the Faddeev components@7#.

The aim of the Merkuriev procedure was to formally o
tain a three-body Hamiltonian with short-range potenti
v (s) and a long-range HamiltonianH ( l ), in order that we
could repeat the procedure of the conventional Fadd
theory. The total wave functionuC& is split into three com-
ponents,

uC&5uca&1ucb&1ucg&, ~13!

with components defined by

uca&5G( l )va
(s)uC&. ~14!

This procedure is an example of asymptotic filtering. T
short-range potentialva

(s) acting onuC& suppresses the pos
sible b andg asymptotic two-body channels, providedG( l )

itself does not introduce any new two-body asymptotic ch
nels. With the Merkuriev splitting this is avoided, becau
H ( l ) does not have two-body asymptotic channels even
some of the long-range potentials have an attractive C
lomb tail. In the attractive casev ( l ) appears as a valley alon
the y5xn parabolalike curve, with a Coulomb-like
asymptotic behavior inx at any finitey ~see Figs. 1 and 2 for
the short- and long-range parts, respectively!. However, as
y→` the depth of the valley goes to zero, and conseque
the two-body bound states are pushed up, and finally
system does not have any two-body asymptotic channels.
note that the Merkuriev formalism contains Noble’s forma
ism in the limit y0→`.

B. Three-potential picture

In Ref. @3# the three-body scattering problem with repu
sive Coulomb interactions was considered in the thr
potential picture. In this picture the scattering process can
decomposed formally into three consecutive scattering p

FIG. 1. The short-range partv (s) of the 21/x attractive Cou-
lomb potential.
1-2
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THREE-POTENTIAL FORMALISM FOR THE THREE- . . . PHYSICAL REVIEW A 63 062721
cesses: two-body single channel, two-body multichan
scattering and genuine three-body scattering. This forma
also provides the integral equations and the method of c
structing theS matrix. Below we adapt this formalism t
attractive Coulomb interactions using the Fadde
Merkuriev approach.

The asymptotic Hamiltonian is defined as

Ha5H01va
C , ~15!

and the asymptotic states are the eigenstates ofHa ,

HauFa&5EuFa&, ~16!

where ^xayauFa&5^yauxa&^xaufa& is a product of a scat
tering state in coordinateya and a bound state in the two
body subsystemxa .

We define the two asymptotic long-range Hamiltonians

Ha
( l )5H01va

C1vb
( l )1vg

( l ) ~17!

and

H̃a5H01va
C1ua

( l ) , ~18!

whereua
( l ) is an auxiliary potential in coordinateya , and it is

required to have the asymptotic form

ua
( l );Za~Zb1Zg!/ya ~19!

asya→`. In fact, ua
( l ) is an effective Coulomb-like interac

tion between the center of mass of the subsystema ~with
chargeZb1Zg) and the third particle~with chargeZa). We
introduced this potential in order that we compensate for
long-range Coulomb tail ofvb

( l )1vg
( l ) in Va .

Let us introduce the resolvent operators

G~z!5~z2H !21, ~20!

Ga
( l )~z!5~z2Ha

( l )!21, ~21!

G̃a~z!5~z2H̃a!21. ~22!

FIG. 2. The long-range partv ( l ) of the21/x attractive Coulomb
potential.
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The operatorGa
( l ) is the long-range channel Green’s operat

andG̃a is the channel-distorted long-range Green’s opera
These operators are connected via the resolvent relation

G~z!5Ga
( l )~z!1Ga

( l )~z!VaG~z!, ~23!

Ga
( l )~z!5G̃a~z!1G̃a~z!UaGa

( l )~z!, ~24!

whereVa5vb
(s)1vg

(s) andUa5vb
( l )1vg

( l )2ua
( l ) .

The scattering state, which evolves from the asympto
stateuFa& under the influence ofH, is given as

uCa
(6)&5 lim

«→0
i«G~Ea6 i«!uFa&. ~25!

Similarly, we can define the following scattering states

uFa
( l )(6)&5 lim

«→0
i«Ga

( l )~E6 i«!uFa& ~26!

and

uF̃a
(6)&5 lim

«→0
i«G̃a~E6 i«!uFa&, ~27!

which describe scattering processes due to HamiltoniansHa
( l )

and H̃a , respectively.
The S-matrix elements of the scattering processes are

tained from the resolvent of the total Hamiltonian by t
reduction technique@8#

Sb j ,a i5 lim
t→`

lim
«→0

i«ei (Eb j 2Ea i )t^Fb j uG~Ea i1 i«!uFa i&.

~28!

The subscripti and j denotes thei th and j th eigenstates of
the corresponding subsystems, respectively. If we subst
Eq. ~23! into Eq. ~28! we obtain the following two terms:

Sb j ,a i
(1,2) 5 lim

t→`

lim
«→0

i«ei (Eb j 2Ea i )t^Fb j uGa
( l )~Ea i1 i«!uFa i&

~29!

Sb j ,a i
(3) 5 lim

t→`

lim
«→0

i«ei (Eb j 2Ea i )t^Fb j uGa
( l )~Ea i1 i«!Va

3G~Ea i1 i«!uFa i&. ~30!

Substituting Eq.~24! into Eq. ~29!, the first term yields two
more terms

Sb j ,a i
(1) 5 lim

t→`

lim
«→0

i«ei (Eb j 2Ea i )t^Fb j uG̃a~Ea i1 i«!uFa i&

~31!

Sb j ,a i
(2) 5 lim

t→`

lim
«→0

i«ei (Eb j 2Ea i )t^Fb j uG̃a~Ea i1 i«!

3UaGa
( l )~Ea i1 i«!uFa i&. ~32!

Using the properties of the resolvent operators, the limits
be performed, and we arrive at the following, physica
1-3



ti

d

e

re
n

s
e

io
lm

y
-

ns,
tions
es,

nge
ike
er
de-

ectra
oint
ua-

the
r

ng
n,

om-

an-
. For
one
ple.

s a
le.

-
by

erm
a-
tion

be
ess

o-
ons
to
-
rect

PAPP, HU, HLOUSEK, KO´ NYA, AND YAKOVLEV PHYSICAL REVIEW A 63 062721
plausible, result. The first term,Sb j ,a i
(1) , is theS matrix of a

two-body single-channel scattering on the potentialua
( l ) :

Sb j ,a i
(1) 5dbad j i S~ua

( l )!. ~33!

If ua
( l ) is a pure Coulomb interaction,S(ua

( l )) falls back to the
S matrix of the Rutherford scattering; ifua

( l ) is identically
zero, Sb j ,a i

(1) is equal to unity. The second termSb j ,a i
(2) de-

scribes a two-body multichannel scattering on the poten
Ua:

Sb j ,a i
(2) 522p idbad~Eb j2Ea i !^F̃b j

(2)uUauFa i
( l )(1)&.

~34!

The third term takes account of the complete three-body
namics:

Sb j ,a i
(3) 522p id~Eb j2Ea i !^Fb j

( l )(2)uVauCa i
(1)&. ~35!

C. Lippmann-Schwinger integral equation for zFa
„ l …
‹

Starting from the definition ofuFa
( l )& @Eq. ~26!#, by utiliz-

ing resolvent relation~24! and definition~27!, we easily de-
rive a Lippmann-Schwinger equation

uFa
( l )(6)&5uF̃a

(6)&1G̃a~E6 i e!UauFa
( l )(6)&, ~36!

whereuF̃a
(6)& are given by

uF̃a
(6)&5ux̃a

(6)&ufa&. ~37!

The stateux̃a
(6)& is a scattering state in the Coulomb-lik

potentialua
( l )(ya).

D. Faddeev-Merkuriev integral equations for the wave-
function components

The integral equations for the wave functionuCa
(6)& are

arrived at by combining the resolvent relation@Eq. ~23!# and
Eq. ~25!. In this case, however, we have three resolvent
lations, and therefore we obtain a triad of Lippman
Schwinger equations:

uCa
(6)&5uFa

( l )(6)&1Ga
( l )~E6 i0!VauCa

(6)&, ~38!

uCa
(6)&5Gb

( l )~E6 i0!VbuCa
(6)&, ~39!

uCa
(6)&5Gg

( l )~E6 i0!VguCa
(6)&. ~40!

Although these three equations together provide unique
lutions @9#, their kernels are not connected; therefore th
cannot be solved by iterations. The way out of the problem
to use the Faddeev decomposition, which leads to equat
with connected kernels; thus they are effectively Fredho
type integral equations.

Multiplying each elements of the triad from left b
G( l )va

(s) , and utilizing Eq.~14!, we obtain a set of Faddeev
Merkuriev integral equations for the components:
06272
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uca
(6)&5uFa

( l )(6)&1Ga
( l )~E6 i0!va

(s)@ ucb
(6)&1ucg

(6)&],
~41!

ucb
(6)&5Gb

( l )~E6 i0!vb
(s)@ uca

(6)&1ucg
(6) &], ~42!

ucg
(6)&5Gg

( l )~E6 i0!vg
(s)@ uca

(6)&1ucb
(6)&]. ~43!

Merkuriev showed that, after a certain number of iteratio
these equations were reduced to Fredholm integral equa
of the second kind with compact kernels for all energi
including energies below (E,0) and above (E.0) the
three-body breakup threshold@2#. Thus all the nice properties
of the original Faddeev equations established for short-ra
interactions also remain valid for the case of Coulomb-l
potentials. We note that the triad of Lippmann-Schwing
equations and the set of Faddeev-Merkuriev equations
scribe the same physics, the equations have identical sp
and in fact, the Faddeev-Merkuriev equations are the adj
representations of the triad of Lippmann-Schwinger eq
tions @10#.

Utilizing the properties of the Faddeev components,
matrix elements in Eq.~35! can be rewritten in a form bette
suited for numerical calculations:

^Fb j
( l )(2)uVauCa i

(1)&5 (
gÞb

^Fb j
( l )(2)uvb

(s)ucg i
(1)&. ~44!

Summarizing, in the three-potential formalism, starti
from uF̃a

(6)&, by solving a Lippmann-Schwinger equatio
we determineuFa

( l )(6)&. Then, fromuFa
( l )(1)&, by solving the

set of Faddeev-Merkuriev equations, we determine the c
ponentsuca

(1)&. Finally using Eqs.~34! and~44! we construct
the S matrix.

II. COULOMB-STURMIAN SEPARABLE EXPANSION
APPROACH TO THE THREE-BODY INTEGRAL

EQUATIONS

In order to solve operator equations in quantum mech
ics, one needs a suitable representation for the operators
solving integral equations it is especially advantageous if
uses a representation where the Green’s operator is sim
For the two-body Coulomb Green’s operator there exist
Hilbert-space basis in which its representation is very simp
This is the Coulomb-Sturmian~CS! basis. In this representa
tion space the Coulomb Green’s operator can be given
simple and well-computable analytic functions@11#. This ba-
sis forms a countable set. If we represent the interaction t
on a finite subset of the basis, it looks like a kind of sep
rable expansion of the potential, and so the integral equa
becomes a set of algebraic equations which can then
solved without any further approximation. The completen
of the basis ensures the convergence of the method.

This approximation scheme was thoroughly tested in tw
body calculations. Bound- and resonant-state calculati
were presented first@11#. Then the method was extended
scattering states@12#. Since only the asymptotically irrel
evant short-range interaction is approximated, the cor
Coulomb asymptotic is guaranteed@13#. A recent account of
1-4
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this method was presented in Ref.@14#. The method also
proved to be very efficient in solving three-body Fadde
Noble integral equations for bound-@4# and scattering-state
@3# problems with repulsive Coulomb interactions.

In Sec. II A we define the basis states in two- and thr
particle Hilbert space. In Sec. II B we review some of t
most important formulas of the two-body problem. In Se
II C and II D we describe the calculation of theSmatrix and
the solution of the Faddeev-Merkuriev integral equatio
We follow the line presented in Ref.@3#.

A. Basis states

The Coulomb-Sturmian functions@15# in some angular
momentum statel are defined as

^r unl&5F n!

~n12l 11!! G
1/2

~2br ! l 11 exp~2br !Ln
2l 11~2br !,

~45!

wheren50,1,2, . . . .HereL represents the Laguerre polyn
mials, andb is a fixed parameter. In an angular momentu
subspace they form a complete set

15 lim
N→`

(
n50

N

unl̃&^nlu5 lim
N→`

1N , ~46!

where unl̃&, in a configuration-space representation, re

^r unl̃&5^r unl&/r .
The three-body Hilbert space is a direct sum of two-bo

Hilbert spaces. Thus the appropriate basis in an angular
mentum representation should be defined as a direct pro

unn ll&a5unl&a ^ unl&a ~n,n50,1,2, . . . ! ~47!

with the CS states of Eq.~45!. Here l and l denote the
angular momenta associated with Jacobi coordinatesx andy,
respectively. In our three-body Hilbert space basis, we t
the bipolar harmonics in the angular variables, and CS fu
tions in the radial coordinates. The completeness rela
takes the form~with angular momentum summation implic
itly included!

15 lim
N→`

(
n,n50

N

unn l̃l&aa^nn llu5 lim
N→`

1N
a , ~48!

where ^xayaunn l̃l&a5^xayaunn ll&a /(xaya). It should be
noted that in three-particle Hilbert space we can introd
three equivalent basis sets which belong to fragmentat
a, b andg.

B. Coulomb-Sturmian separable expansion
in two-body scattering problems

Let us study a two-body case of short-range interact
plus Coulomb-like interaction,

v l5v l
(s)1vC ~49!
06272
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and consider the inhomogeneous Lippmann-Schwinger e
tion for the scattering stateuc l& in some partial wavel:

uc l&5uf l
C&1gl

C~E!v l
(s)uc l&. ~50!

Hereuf l
C& is the regular Coulomb function, andgl

C(E) is the
two-body Coulomb Green’s operator

gl
C~E!5~E2hl

02vC!21 ~51!

with a free Hamiltonianhl
0 . We make the following approxi-

mation for Eq.~50!:

uc l&5uw l
C&1gl

C~E!1Nv l
(s)1Nuc l&, ~52!

i.e., we approximate the short-range potentialv l
(s) by a sepa-

rable form

v l
(s)5 lim

N→`

1Nv l
(s)1N'1Nv l

(s)1N5 (
n,n850

N

unl̃&v l
(s)^n8 l̃ u,

~53!

where the matrix

v l nn8

(s) 5^nluv l
(s)un8l &. ~54!

These matrix elements can always be calculated~numeri-
cally! for any reasonable short-range potential. In practi
we use a Gauss-Laguerre quadrature, which is well suite
the CS basis.

Multiplied by the CS stateŝnl̃u from the left, Eq.~52!
turns into a linear system of equations for the wave-funct

coefficientsc l n
5^nl̃uc l&,

@„gl
C~E!…212v l

(s)#c l5„gl
C~E!…21w l

C , ~55!

where the underlined quantities are matrices with the follo
ing elements:

w l n
C5^nl̃uw l

C& ~56!

and

gl nn8

C ~E!5^nl̃ugl
C~E!un8 l̃ &. ~57!

1. Matrix elementsŠnl̃ zgl
C
„z…zn8 l̃ ‹

The key point in the whole procedure is an exact a
analytical calculation of the CS matrix elements of the Co
lomb Green’s operator and of the overlap of the Coulo
and CS functions. For the Green’s matrix we have develo
two independent, analytical approaches. Both are based
the observation that the Coulomb Hamiltonian possesse
infinite symmetric tridiagonal~Jacobi! matrix structure on
the CS basis.

Let us consider the radial Coulomb Hamiltonian

hl
C52

\2

2m S d2

dr 2
2

l ~ l 11!

r 2 D 1
Z

r
, ~58!
1-5
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wherem, l, and Z stand for the mass, angular momentu
and charge, respectively. The matrixJnn8

C
5^nu(z2hl

C)un8&
possesses a Jacobi structure,

Jnn
C 52~n1 l 11!~k22b2!

\2

4mb
2Z ~59!

and

Jnn21
C 52@n~n12l 11!#1/2~k21b2!

\2

4mb
, ~60!

wherek5(2mz/\2)1/2 is the wave number. The main resu
of Ref. @16# is that for Jacobi matrix systems theNth leading
submatrixgnn8

C(N) of the infinite Green’s matrix can be dete
mined by the elements of the Jacobi matrix,

gnn8
C(N)

5@Jnn8
C

1dnNdn8NJNN11
C C#21, ~61!

whereC is a continued fraction,

C52
uN

dN1
uN11

dN111
uN12

dN121•••

, ~62!

with coefficients

un52Jn,n21
C /Jn,n11

C , dn52Jn,n
C /Jn,n11

C . ~63!

In Ref. @16# it was shown that although the continue
fraction C is convergent only on the upper-halfk plane, it
can be continued analytically to the wholek plane. This is
because theun anddn coefficients satisfy the limit propertie

u[ lim
n→`

un521, ~64!

d[ lim
n→`

dn52~k22b2!/~k21b2!. ~65!

Then the continued fraction appears as

C52
uN

dN1
uN11

dN111•••1
u

d1
u

d1•••

. ~66!

Therefore, the tailw of C satisfies the implicit relation

w5
u

d1w
, ~67!

which is solved by

w65~b6 ik !2/~b21k2!. ~68!

Replacing the tail of the continued fraction by its explic
analytical formw6 , we can speed up the convergence a
06272
,

,

more importantly, turn a nonconvergent continued fract
into a convergent one@17#. Analytic continuation is achieved
by usingw6 instead of the nonconverging tail. In Ref.@16#,
it was shown thatw1 provides an analytic continuation o
the Green’s matrix to the physical, andw2 does the same to
the unphysical Riemann sheet. This way Eq.~62!, together
with Eq. ~61! provides the CS basis representation of t
Coulomb Green’s operator on the whole complexk plane.
We note here that with the choice ofZ50 the Coulomb
Hamiltonian@Eq. ~58!# reduces to the kinetic-energy oper
tor, and our formulas provide the CS basis representatio
the Green’s operator of the free particle as well. We emp
size that this procedure does not truncate the Coulo
Hamiltonian, because all the higherJnn8 matrix elements are
implicitly contained in the continued fraction.

We note thatgC has been calculated before@11#. From the
J-matrix structure a three-term recursion relation follows
the matrix elementsgnn8

C . This recursion relation is solvabl
if the first elementg00

C is known. It is given in a closed
analytical form

g00
C 5

4mb

\2

1

~b2 ik!2

1

l 1 ih11

3 2F1F2 l 1 ih,1;l 1 ih12,S b1 ik

b2 ikD 2G , ~69!

whereh5Zm/(\2k) is the Coulomb parameter, and2F1 is
the hypergeometric function. For those cases where the
or second indexes of2F1 are equal to unity, there exists
continued fraction representation, which is very efficient
practical calculations. It was shown that the two metho
lead to numerically identical results for all energies, and o
numerical continued fraction representation possesses al
analytical properties ofgC. An exact analytical knowledge o
gC allows us to calculate the matrix elements of the f
Green’s operator in the whole complex plane:

gl~z!5$@gl
C~z!#212v l

(s)%21. ~70!

The overlap vector of CS and the Coulomb functio

^nl̃uw l
C& is known analytically@12#. It can be calculated by a

three-term recursion, derived from theJ matrix, using the
starting value

^0l̃ uw l
C&5 exp„2h arctan~k/b!…A 2ph

exp~2ph!21

3S 2k/b

11k2/b2D l 11

)
i 51

l S h21 i 2

i ~ i 11/2! D
1/2

. ~71!

C. Calculation of the three-bodyS matrix

The aim of any scattering calculation is to determine
S-matrix elements. In our case we need to calculate te
~33!, ~34!, and~44! of the three-potential picture.

The termSb j ,a i
(1) is trivial because it is just the two-bodyS

matrix of the Coulomb-like potentialua
( l ) .
1-6
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To calculate the second term,Sb j ,a i
(2) of Eq. ~34!, the ma-

trix elements^F̃a j
(2)uUauFa i

( l )(1)& are needed. SincêF̃a j
(2)u

contains a two-body bound-state wave function in coordin
xa this matrix element is confined toVa , whereUa is of
short-range type. Therefore, a separable approximatio
justified,

^F̃a j
(2)uUauFa i

( l )(1)&'^F̃a j
(2)u1N

aUa1N
a uFa i

( l )(1)&, ~72!

i.e., in this matrix element, we can approximateUa by a
separable form

Ua5 lim
N→`

1N
aUa1N

a

'1N
aUa1N

a

' (
n,n,n8,n850

N

unn l̃l&a U a
a^n8n8l 8
˜

l8u, ~73!

where

Unn ll,n8n8 l 8l8
a

5a^nn lluUaun8n8l 8l8&a . ~74!

The matrix element appears as

^F̃a j
(2)uUauFa i

( l )(1)&'(
N

^F̃a j
(2)unn l̃l&a

3Ua
a^n8n8l 8
˜ l8uFa i

( l )(1)&. ~75!

In calculating the third termSb j ,a i
(3) of Eq. ~44!, we have

matrix elements of the typêF̃a j
l (2)uva

(s)ucb i
(1)&. Here again

we can approximate the short-range potentialva
(s) in the

three-body Hilbert space by a separable form

va
(s)5 lim

N→`

1N
ava

(s)1N
b

'1N
ava

(s)1N
b

' (
n,n,n8,n850

N

unn l̃l&a vab
(s)

b^n8n8l 8
˜ l8u, ~76!

where

vabnn ll,n8n8l 8l8

(s) 5a^nn lluva
(s)un8n8l 8l8&b . ~77!

In Eq. ~76! the ket and bra states belong to different fra
mentations depending on the neighbors of the potential
erators in the matrix elements. Finally, the matrix eleme
take the form

^Fa j
l (2)uva

(s)ucb i
(1)&'(

N

^Fa j
l (2)unn l̃l&a

3vab
(s)

b^n8n8l 8
˜ l8ucb i

(1)&. ~78!
06272
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We conclude that to calculate theS matrix of the three-
potential formulas we need the CS matrix elements@Eqs.
~74! and ~77!#, which can always be evaluated numerica
by using the transformation of Jacobi coordinates@18#. In
addition we need the CS wave-function compone

a^nn l̃luF̃a i
(6)&, a^nn l̃luFa i

l (6)&, and a^nn l̃luca
(1)&. We de-

termine these in Sec. II D by solving Lippmann-Schwing
and Faddeev-Merkuriev integral equations.

It should be noted that approximations~73! and~76! used
in calculating matrix elements~75! and ~78! become equali-
ties asN goes to infinity. In practical calculations we in
creaseN until we observe a numerical convergence in sc
tering observables.

D. Solution of the three-body integral equations

In the set of Faddeev-Merkuriev equations@Eqs. ~41!–
~43!#, we make approximation of Eq.~76!:

uca&5uFa i
( l )&1Ga

( l )@1N
ava

(s)1N
b ucb&11N

ava
(s)1N

g ucg&],
~79!

ucb&5Gb
( l )@1N

bvb
(s)1N

a uca&11N
bvb

(s)1N
g ucg&], ~80!

ucg&5Gg
( l )@1N

g vg
(s)1N

a uca&11N
g vg

(s)1N
b ucb&]. ~81!

Multiplied by the CS statesa^nn l̃lu, b^nn l̃lu, and g^nn l̃lu,
respectively, from the left the set of integral equations tu
into a linear system of algebraic equations for the coe

cients of the Faddeev componentscann ll
5a^nn l l̃uca&,

@~G( l )!212v (s)#c5~G( l )!21F ( l ) , ~82!

with

Gann ll,n8n8l 8l8

( l ) 5a^nn l̃luGa
( l )un8n8l 8
˜ l8&a , ~83!

and

Fann ll

( l ) 5a^nn l̃luFa
( l )&. ~84!

Note that the matrix elements of the Green’s operator
needed only between the same partitiona, whereas the ma-
trix elements of the potentials occur only between differe
partitionsa andb.

1. Matrix elementsaŠnn l l̃zGa
„ l …zn8n8l 8˜ l8‹a

and aŠnn l l̃zFa
„ l …
‹

Unfortunately neither the matrix element@Eq. ~83!# nor
the overlap@Eq. ~84!# is known. The appropriate Lippmann
Schwinger equation forGa

( l ) was proposed by Merkuriev@2#,

Ga
( l )~z!5Ga

as~z!1Ga
as~z!Va

asGa
( l )~z!, ~85!
1-7
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whereGa
as and Va

as are the asymptotic channel Green’s o
erator and potential, respectively. A similar equation is va
for uFa

( l )&:

uFa
( l )&5uFa

as&1Ga
as~z!Va

asuFa
( l )&. ~86!

Both Ga
( l ) and uFa

( l )& are genuine three-body quantities. O
may wonder why a single Lippmann-Schwinger equat
suffices. The HamiltonianHa

( l ) has a peculiar property—i
has only a-type two-body asymptotic channels. For su
systems a single Lippmann-Schwinger equation provide
unique solution@19#.

The objectsGa
as , Va

as , and Fa
as are very complicated

Their leading-order terms were constructed in configurat
spaces in different asymptotic regions. The potentialVas, as
uXu→`, decays faster than the Coulomb potential in all
rections of the three-body configuration space:Vas

;O(uXu212e), wheree.0 @2#. Therefore, we may expres
the solutions of Eqs.~85! and ~86! formally as

~Ga
( l )!215~Ga

as!212Va
as ~87!

and

@~Ga
as!212Va

as#Fa
( l )5~Ga

as!21Fa
as , ~88!

respectively, where

Gann ll,n8n8 l 8l8

as 5a^nn l l̃uGa
asun8n8l 8̃l8&a , ~89!

Vann ll,n8n8l 8l8

as 5a^nn lluVa
asun8n8l 8l8&a ~90!

and

Fann ll

as 5a^nn l̃luFa
as&. ~91!

Here Ga
as , Va

as , and Fa
as appear between finite number o

square-integrable CS states, which confine the domain o
tegration toVa . In this region, however,Ga

as coincides with

G̃a , Va
as with Ua andFa

as with F̃a @2#. Finally we have

~Ga
( l )!215~G̃a!212Ua, ~92!

where

G̃ann ll,n8n8 l 8l8
5a^nn l l̃uG̃aun8n8l 8̃l8&a ~93!

and

Unn ll,n8n8 l 8l8
a

5a^nn lluUaun8n8l 8l8&a . ~94!

In a similar way,

@~G̃a!212Ua#Fa
( l )5~G̃a!21F̃a , ~95!

where

F̃ann ll
5a^nn l̃luF̃a&. ~96!
06272
n

a

n

-

n-

We note that from Eq.~92! it follows that the left side of
Eq. ~95! is just the inhomogeneous term of Eq.~82!. Both
Eqs.~95! and~82! are solved with the same inhomogeneo
term.

2. Matrix elementsaŠnn l l̃zG̃azn8n8l 8̃l8‹a and aŠnn l l̃zF̃a‹

The three-particle free Hamiltonian can be written as
sum of two-particle free Hamiltonians

H05hxa

0 1hya

0 . ~97!

Then the HamiltonianH̃a of Eq. ~18! appears as a sum o
two Hamiltonians acting on different coordinates,

H̃a5hxa
1hya

, ~98!

with hxa
5hxa

0 1va
C(xa) and hya

5hya

0 1ua
( l )(ya), which, of

course, commute. The stateuF̃a&, which is an eigenstate o
H̃a , is a product of a two-body bound-state wave function
coordinatexa and a two-body scattering-state wave functi
in coordinateya . Their CS representations are known fro
the two-particle case described above.

The matrix elements ofG̃a can be determined by makin
use of the convolution theorem,

G̃a~z!5~z2hxa
2hya

!21

5
1

2p i RC
dz8~z2z82hxa

!21~z82hya
!21. ~99!

The contourC should encircle, in a positive direction, th
spectrum ofhya

without penetrating into the spectrum ofhxa
.

The convolution theorem follows from a more gene
formula. A function of a self-adjoint operatorh is defined as

f ~h!5
1

2p i RC
dz f~z!~z2h!21, ~100!

whereC is a contour around the spectrum ofh and f should
be analytic on the region encircled byC.

In the following we suppose thatu( l ) either vanishes or is
a repulsive Coulomb-like potential. This assumption is n
necessary, but it greatly simplifies the analysis below. N
merical examples show that there are a great many phys
three-body systems where this condition is satisfied. T
condition ensures thathy does not have bound states.

To examine the analytical structure of integrand~99! let
us shift the spectrum ofgxa

by takingz5E1 i«, with posi-

tive «. In doing so, the two spectra become well separa
and the spectrum ofgya

can be encircled. The contourC is
deformed analytically in such a way that the upper part
scends to the unphysical Riemann sheet ofgya

, while the
lower part ofC can be detoured away from the cut~see Fig.
3!. The contour still encircles the branch cut singularity
gya

, but in the«→0 limit avoids the singularities ofgxa
.

Thus the mathematical conditions for the contour integ
1-8
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representation ofG̃a(z) in Eq. ~99! are met. The matrix el-
ementsG̃a can be cast in the form

G̃a~z!5
1

2p i RC
dz8gxa

~z2z8!gya
~z8!, ~101!

where the corresponding CS matrix elements of the tw
body Green’s operators in the integrand are known ana
cally for all complex energies.

III. TEST OF THE METHOD

We demonstrate the power of our method by calculat
elastic phase shifts ofe11H scattering below the Ps(n
51) threshold and cross sections of thee11H elastic scat-
tering as well asp11Ps reaction channels up to the Psn
52) threshold. In all examples we have a total angular m

TABLE I. Convergence ofe11H→e11H elastic scattering
(s11) and e11H→p1Ps positronium formation (s12) cross sec-
tions ~in pa0

2) with respect toN, the number of CS functions in th
expansion, and with respect to increasing the angular momen
channels (l max) in the bipolar basis.

l max56 l max58 l max510
N s11 s12 s11 s12 s11 s12

k150.71, Ref.@20#: s1150.025,s1250.0038
12 0.02662 0.00423 0.02664 0.00397 0.02665 0.003
13 0.02608 0.00424 0.02609 0.00398 0.02610 0.003
14 0.02581 0.00423 0.02582 0.00398 0.02583 0.003
15 0.02562 0.00424 0.02561 0.00398 0.02562 0.003
16 0.02548 0.00425 0.02546 0.00400 0.02547 0.003
17 0.02541 0.00426 0.02539 0.00401 0.02539 0.003
18 0.02532 0.00427 0.02529 0.00401 0.02530 0.003
19 0.02528 0.00427 0.02524 0.00402 0.02525 0.003
20 0.02522 0.00428 0.02517 0.00403 0.02518 0.003

k150.75, Ref.@20#: s1150.044,s1250.0043
12 0.04412 0.00441 0.04412 0.00424 0.04413 0.004
13 0.04345 0.00440 0.04344 0.00422 0.04345 0.004
14 0.04318 0.00440 0.04317 0.00423 0.04318 0.004
15 0.04280 0.00440 0.04278 0.00423 0.04279 0.004
16 0.04269 0.00440 0.04265 0.00423 0.04266 0.004
17 0.04252 0.00441 0.04248 0.00424 0.04249 0.004
18 0.04246 0.00442 0.04240 0.00425 0.04241 0.004
19 0.04238 0.00442 0.04232 0.00426 0.04232 0.004
20 0.04232 0.00442 0.04225 0.00426 0.04226 0.004

k150.80, Ref.@20#: s1150.063,s1250.0047
12 0.06572 0.00475 0.06571 0.00467 0.06572 0.004
13 0.06573 0.00481 0.06571 0.00473 0.06572 0.004
14 0.06518 0.00483 0.06515 0.00475 0.06517 0.004
15 0.06488 0.00485 0.06484 0.00477 0.06486 0.004
16 0.06457 0.00486 0.06452 0.00478 0.06453 0.004
17 0.06440 0.00487 0.06433 0.00479 0.06435 0.004
18 0.06427 0.00487 0.06420 0.00479 0.06422 0.004
19 0.06418 0.00487 0.06409 0.00480 0.06411 0.004
20 0.06412 0.00488 0.06402 0.00480 0.06404 0.004
06272
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mentumL50, and we take angular momentum channels
to l 510. We use atomic units.

Let us numerate the particlese1, p, ande2, with masses
me651me andmp51836.1527me , by 1, 2, and 3, respec
tively. In channel 3 there are no two-body asymptotic cha
nels, since particlese1 and p do not form bound states
Therefore, we can takev3

(s)[0, and include the totalv3
C in

the long-range Hamiltonian:

H5H ( l )1v1
(s)1v2

(s) , ~102!

H ( l )5H01v1
( l )1v2

( l )1v3
C . ~103!

In this caseuc3&[0, and we have set of two-compone
Faddeev-Merkuriev equations:

uc1&5uf1
( l )&1G1

( l )v1
(s)uc1&, ~104!

uc2&5G2
( l )v2

(s)uc2&. ~105!

The parameters of the splitting functionz of Eq. ~8! are
rather arbitrary. The final converged results should be ins
sitive to their values; our numerical experiences confirm t
expectation. For the parameters ofz, we have takenn
52.1, x053, andy0510, whereas for the parameters of C
functions we have takenb50.9. We have seen that the ra
of convergence is rather insensitive to the choice ofb over a
broad interval.

First we examine the convergence of the results for cr
sections at incident wave numbersk150.71, 0.75, and 0.8
which correspond to scattering states in the Ore gap. Tab
shows the convergence ofe11H→e11H elastic scattering
(s11) and e11H→p11Ps positronium formation (s12)
cross sections~in pa0

2) with respect toN, the number of CS

m

3
4
4
5
6
7
8
8
9

2
1
1
1
2
3
3
4
4

7
3
5
7
8
9
0
0
0

TABLE II. Phase shifts~in rad! of e11H→e11H elastic scat-
tering below the positronium formation threshold.

k Ref. @21# Ref. @22# Ref. @23# Ref. @20# This work

0.1 0.1483 0.152 0.149 0.149 0.1480
0.2 0.1877 0.188 0.188 0.189 0.1876
0.3 0.1677 0.166 0.166 0.169 0.1673
0.4 0.1201 0.118 0.120 0.121 0.1199
0.5 0.0624 0.061 0.060 0.062 0.0625
0.6 0.0039 0.003 0.003 0.0038
0.7 20.0512 20.053 20.050 20.0513

FIG. 3. Analytic structure ofgxa
(z2z8)gya

(z8) as a function of
z8 with z5E1 i«, E,0, and«.0. The contourC encircles the
continuous spectrum ofhya

. A part of this, which goes on the un
physical Riemann sheet ofgya

, is shown by the broken line.
1-9
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functions in the expansion, and with respect to increasing
angular momentum channels in the bipolar expansion.
comparison, we provide the results of Ref.@20#. We can see
that very good accuracy is achieved even with relatively l
N in the expansion.

In Table II we compare our converged results for pha
shifts ~in rad! below the Ps(n51) threshold to that of othe
methods. Reference@21# is the best variational calculation
In Ref. @22# the Schro¨dinger equation was solved by mea
of finite-element method. In Refs.@23# and@20# the configu-
ration space Faddeev-Merkuriev differential equations w
solved using the bipolar harmonic expansion method an
total angular momentum representation, respectively.
can report perfect agreements with previous calculations

In Table III we present partial cross sections in theH(n
52)2Ps(n52) gap~threshold energies 0.7496-0.8745 Ry!.
In Ref. @24# the configuration space Faddeev-Merkuriev d
ferential equations were solved using a bipolar harmonic
pansion in the angular variables and a quintic spline exp
sion in the radial coordinates. We can report fairly go
agreements.

IV. CONCLUSION

We have extended the three-potential formalism for tre
ing the three-body scattering problem with all kinds of Co

TABLE III. Partial cross sections~in pa0
2) in the H(n

52)-Ps(n52) gap~threshold energies 0.7496–8745 Ry!. Numbers
1, 2, 3, and 4 denote the channelse11H(1s), e11H(2s), e1

1H(2p), andp11Ps(1s), respectively.

E1 ~Ry! s11 s12 s13 s14

0.77 Ref.@24# 0.090 0.000702 0.000454 0.0057
0.77 This work 0.0951 0.000673 0.000331 0.0055
0.80 Ref.@24# 0.096 0.00115 0.000364 0.0058
0.80 This work 0.1010 0.00127 0.000371 0.0056
0.83 Ref.@24# 0.0993 0.00170 0.000885 0.0058
0.83 This work 0.1063 0.00163 0.000813 0.0056
0.84 Ref.@24# 0.101 0.00190 0.00113 0.00580
0.84 This work 0.1080 0.00173 0.00105 0.0056
t.
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lomb interactions including attractive ones. We adopte
Merkuriev’s approach, and split the Coulomb potentials
the three-body configuration space into short-and long-ra
terms. In this picture the three-body Coulomb scattering p
cess can be decomposed into single channel Coulomb
tering, two-body multichannel scattering on the intermedia
range polarization potential, and genuine three-bo
scattering due to the short-range potentials. The formal
provides us a set of Lippmann–Schwinger and Fadde
Merkuriev integral equations.

These integral equations are certainly too complicated
most of the numerical methods available in the literatu
The Coulomb-Sturmian separable expansion method ca
successfully applied. It solves the three-body integral eq
tions by expanding only short-range terms in a separa
form on a Coulomb-Sturmian basis, while treating the lon
range terms in an exact manner via a proper integral re
sentation of the three-body channel distorted Coulo
Green’s operator. The use of the Coulomb-Sturmian bas
essential, as it allows an exact analytical representation o
two-body Green’s operator, and thus the contour integral
the channel distorted Coulomb Green’s operator can be
culated. The method provides solutions which are asympt
cally correct, at least inVa , which is sufficient if the scat-
tering process starts from a two-body asymptotic state. S
the two-body Coulomb Green’s operator is calculated
actly, all thresholds are automatically in the right locati
irrespective of the rank of the separable approximation. T
method possesses good convergence properties, and in
tice can be made arbitrarily accurate by employing an
creasing number of terms in the expansion. Certainly, th
is plenty of room for improvement, but we are convinc
that this method can be a very powerful tool for studyi
three-body systems with Coulomb interactions.
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