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Direct calculation of the scattering amplitude without partial-wave analysis
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Two developments in scattering theory are reported. We show, in a practical way, how one can calculate the
scattering amplitude without invoking a partial-wave expansion. First, the integral expression for the scattering
amplitude f (u) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering
wave function that appears in the integral expression forf (u) is obtained by solving the Schro¨dinger equation
with the finite element method. As an example, we calculate electron scattering from static hydrogen~the
Hartree potential!. With minimal computational effort, we obtain accurate and stable results for the scattering
amplitude.
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I. INTRODUCTION

For the past decades, the standard approach to obta
scattering solutions for central potentials has been
partial-wave analysis@1,2#. For increasing projectile energy
the number of partial waves that must be included to ob
converged results increases. In the case of angular depen
potentials, the Schro¨dinger equation is not separable
spherical coordinates and the resulting equations for the
tial waves are coupled. We propose an alternative to par
wave analysis, that also permits the treatment of noncen
potentials.

We begin with the integral expression for the scatter
amplitude f (u) that involves the full scattering wave func
tion. We show that the integration over the azimuthal an
can be done analytically. The Schro¨dinger equation is then
solved directly by the finite element~FE! method, yielding
both the scattering wave function and the scattering am
tude. Once the wave function has been determined, the
gral expression forf (u) can be evaluated numerically. Th
scattering amplitude obtained from the integral expressio
far more accurate and stable than that obtained from the
lution of the Schro¨dinger equation.

The paper is organized as follows. In Sec. II, we sh
how the integral expression for the scattering amplitude
be simplified for azimuthal symmetry. In Sec. III, we discu
how the FE method can be used to solve the Schro¨dinger
equation subject to the~complex! scattering boundary condi
tion. For the sake of completeness, we review in Sec. IV
equations for partial-wave analysis. In Sec. V, we pres
results for electron scattering from static hydrogen and co
pare them to fully converged partial-wave calculations.

II. INTEGRAL EXPRESSION FOR THE SCATTERING
AMPLITUDE

Our starting point is the well-known integral expressi
for the scattering amplitude for central potentials@1#
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f ~uk!52
1

4pE e2 ik•rV~r !C~r !d3r , ~1!

whereC(r ) is the full scattering wave function. We consid
the case whereC(r ) is independent of the azimuthal angl
Re-expressing Eq.~1! in spherical coordinates,

f ~uk!52
1

4pE0

`E
0

p

eikr cosur cosukV~r !C~r ,u r !

3sinu rdu r r
2drE

0

2p

e2 ikr sin ur sin uk cos(fk2fr )df r ,

~2!

the integral overf r can be done analytically. In the simpl
fied expression for the scattering amplitude,

f ~uk!52
1

2E0

`E
0

p

eikr cosur cosukV~r !J0~r sinu r sinuk!

3C~r ,u r !sinu rdu r r
2dr, ~3!

J0(x) is the zeroth-order Bessel function. IfC(r ,u r) is
known, then the remaining integration overu r and r can be
performed numerically.

III. DIRECT SOLUTION OF THE SCHRO ¨ DINGER
EQUATION

In this initial application, we treat electron-hydrogen sc
tering with no exchange. Using an ansatz

C~r 1,r 2!5
c~r 1!

r 1

f0~r 2!

r 2
Y0

0~V2!, ~4!

where f0(r 2) is the reduced radial wave function for th
ground state of hydrogen, we require
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E fo~r 2!

r 2
~H2E!C~r 1,r 2!d

3r 250. ~5!

This leads to an effective Schro¨dinger equation for the un
known functionc(r 1):

F2
]2

]r 2 2
1

r 2 S ]

]u2 1cotu
]

]u D1V~r !2k2Gc~r ,u!50,

~6!

where

V~r !522e22r S 11
1

r D , ~7!

is the well-known Hartree potential. We use Rydberg un
throughout.

The boundary conditions require thatc(r ,u) vanishes at
the origin and, in the asymptotic region,

c~r ,u!;reikr cosu1 f ~u!eikr ; ~8!

f (u) is the unknown scattering amplitude that we wish
determine.

In the past, the FE method has been used successful
solve the scattering problem within the framework of parti
wave analysis@3#. Here, we use the FE method to solve t
multidimensional Schro¨dinger equation for the full scatterin
wave functionc(r ,u) and the scattering amplitudef (u).

In FE analysis@4#, the coordinate space is discretized
the radial direction (0<r<R) and in the angular direction
(0<u<p) into Nr3Nu as shown in Fig. 1. In each eleme
n, the real and imaginary parts of the wave function a
expanded in a locally defined basis:

FIG. 1. Finite element grid withR58.0a0 andNr3Nu5144.
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Re@cn~r ,u!#5(
j 51

36

a j
nf j

n~r ,u!, ~9!

Im@cn~r ,u!#5(
j 51

36

b j
nf j

n~r ,u!. ~10!

The basis functionsf j
n(r ,u) are products of quintic poly-

nomials inr andu; the functions are nonzero only in eleme
n. The precise form of the basis functions is determined
the requirement that the unknown coefficientsa j

n andb j
n are

the value of the real and imaginary parts of the wave fu
tion c and derivatives (]c/]r ,]c/]u,]2c/]u]r ) at nine
grid points in the elementn. The grid points are located a
the four corners, the midpoints of the four sides, and
center of the element, as shown in Fig. 1. Note that
expansion coefficients and the basis functions are real.

Using this expansion in Eq.~6! and projecting onto the
basis set, we obtain a simple matrix equation for the real
imaginary parts of the wavefunction in elementn:

FHn2EUn 0

0 Hn2EUnGFan

bnG50. ~11!

The matrix elementsH i j
n 5^f i

n(r ,u)uHuf j
n(r ,u)& and Ui j

n

5^f i
n(r ,u)uf j

n(r ,u)& are integrated numerically with Gaus
quadrature; with the exception of the term containingV(r ),
the integrals are simple polynomials.

We then ‘‘add’’ the equations for theN5Nr3Nu ele-
ments. Since the grid points on the corners and sides of
ment n are shared by adjacent elements, continuity of
wave function and its derivative across the element bound
is guaranteed. In the final global matrix equation

FH2EU 0

0 H2EUGFa

bG50, ~12!

the unknown vectorsa and b contain the value of the rea
and imaginary parts of the wave functionc and its deriva-
tives (]c/]r , ]c/]u, and ]2c/]r ]u) at the (2Nr11)
3(2Nu11) grid points in the coordinate space:

c~r ,u!5 (
n51

N

(
j 51

36

@a j
n1 i b j

n#f j
n~r ,u!. ~13!

Because the Hamiltonian is real, the real and imaginary p
of the wave function are still uncoupled in Eq.~12!. The
mixing between the components ofa andb occurs when we
impose the asymptotic complex boundary condition.

In order to satisfy the boundary condition at the origin, w
set equal to zero the components ofa andb that correspond
to the value ofc and]c/]u at (2Nu11) grid points where
r 50. This is equivalent to eliminating the correspondi
rows and columns from the global matrix. The asympto
boundary condition Eq.~8! is also straightforward to impos
although the bookkeeping of the matrix elements is tedio
We identify the components ofa and b that correspond to
4-2
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TABLE I. Complex scattering amplitudes„Re@ f (u)#, Im@ f (u)… at k50.5 obtained from the integra
formula f int(u) and partial-wave analysisf L(u); also included is the scattering amplitude obtained from
FE solution of the Schro¨dinger equation.

u50 u5p/4 u5p/2 u53p/4 u5p

f 0 ~0.869,1.495! ~0.869,1.495! ~0.869,1.495! ~0.869,1.495! ~0.869,1.495!
f 1 ~1.025,1.500! ~0.979,1.498! ~0.869,1.495! ~0.758,1.493! ~0.713,1.491!
f 2 ~1.039,1.500! ~0.982,1.498! ~0.862,1.495! ~0.762,1.493! ~0.726,1.491!
f 3 ~1.040,1.500! ~0.982,1.498! ~0.862,1.495! ~0.762,1.493! ~0.725,1.491!
f int ~1.040,1.500! ~0.982,1.499! ~0.862,1.496! ~0.762,1.493! ~0.725,1.491!
f FE ~1.030,1.545! ~0.979,1.525! ~0.864,1.491! ~0.762,1.470! ~0.724,1.464!
f

F

th
s
-

s

r

n
tio

es
om

an

en
the

-

ate

rges

en-
the
d

ns,
n

the (2Nu11) grid points wherer 5R. Then, the values o
the real and imaginary parts ofc, ]c/]r , ]c/]u, and
]2c/]r ]u are completely determined by Eq.~8! exceptfor
the real and imaginary parts off (u) and d f /du. These un-
knowns are exactly the expansion coefficients for the
representation of the scattering amplitude:

f ~u!5 (
n51

N

(
j 51

36

@g j
n1 i d j

n#f j
n~R,u!. ~14!

f j
n(R,u) is zero in every element that does not include

boundary; in the boundary elements, only a few of the ba
functions are nonzero atr 5R. The unknown expansion co
efficients that multiply these~nonzero! basis functions are
the real and imaginary parts off (u) and d f /du at the grid
points on the boundary.

With certain components of the column vectora and b
now expressed as real numbers and the unknownsg i

n andd i
n ,

we can carry out the matrix multiplication of these term
explicitly. Our goal is to rewrite Eq.~12! such that the
unknown vector @a,b# is replaced by a new vecto
@a8,b8,g,d#; a8 and b8 differ from a and b only by the
exclusion of the components that have been determined
the boundary conditions. The matrix-multiplied real co
stants are brought over to the right-hand side of the equa
The factors multiplying components ofg andd are absorbed
into off-diagonal matrix elements, which effectively coupl
together the equations for the remaining undetermined c
ponents ofa8 andb8.

The set of linear equations is then solved for the real
imaginary parts of the wave function~and derivatives! on the
interior grid points and the scattering amplitude~and deriva-
06271
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tive! on the boundary grid points. These coefficients can th
be used to construct piecewise analytic expressions for
full scattering wave-function Eq.~13! and the scattering am
plitude Eq.~14!.

The scattering wave function can now be used to evalu
the integral expression forf (u) given in Eq.~3!. The inte-
grals are evaluated using Gauss quadrature, which conve
very rapidly.

IV. PARTIAL-WAVE ANALYSIS

Since we want to compare our method with the conv
tional partial-wave approach, we shall review some of
partial-wave formulas@1,2#. The wave function is expande
in partial waves

C~r ,u!5(
l 50

`
ul~r !

r
Pl~cosu!, ~15!

where theul(r ) satisfy

S 2
d2

dr2 1
l ~ l 11!

r 2 1V~r !2k2Dul~r !50. ~16!

The boundary conditions require thatul(r ) vanishes at the
origin and, for larger,

ul~r !;kr@ j l~kr !2tanh l yl~kr !#; ~17!

j l and yl are the spherical Bessel and Neumann functio
respectively. The point of writing the boundary condition o
ul(r ) in this way is that one can extract the phase-shifth l at
TABLE II. Complex scattering amplitudes atk51.0 obtained from the integral formulaf int(u) and
partial-wave analysisf L(u).

u50 u5p/4 u5p/2 u53p/4 u5p

f 0 ~0.486,0.619! ~0.486,0.619! ~0.486,0.619! ~0.486,0.619! ~0.486,0.619!
f 1 ~0.817,0.656! ~0.720,0.645! ~0.486,0.619! ~0.251,0.593! ~0.154,0.582!
f 2 ~0.906,0.658! ~0.742,0.646! ~0.441,0.618! ~0.273,0.593! ~0.243,0.583!
f 3 ~0.928,0.658! ~0.739,0.646! ~0.441,0.618! ~0.277,0.593! ~0.221,0.583!
f 4 ~0.933,0.658! ~0.737,0.646! ~0.443,0.618! ~0.275,0.593! ~0.226,0.583!
f 5 ~0.934,0.658! ~0.736,0.646! ~0.443,0.618! ~0.276,0.593! ~0.225,0.583!
f int ~0.934,0.658! ~0.736,0.646! ~0.443,0.618! ~0.276,0.593! ~0.226,0.583!
4-3
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TABLE III. Complex scattering amplitudes atk52.0 obtained from the integral formulaf int(u) and
partial-wave analysisf L(u).

u50 u5p/4 u5p/2 u53p/4 u5p

f 0 ~0.246,0.205! ~0.246,0.205! ~0.246,0.205! ~0.246,0.205! ~0.246,0.205!
f 1 ~0.571,0.279! ~0.476.0.257! ~0.246,0.205! ~0.016,0.153! (20.079,0.131)
f 2 ~0.771,0.295! ~0.526,0.261! ~0.146,0.197! ~0.066,0.157! ~0.122,0.147!
f 3 ~0.878,0.298! ~0.507,0.261! ~0.146,0.197! ~0.085,0.157! ~0.015,0.144!
f 4 ~0.931,0.299! ~0.485,0.260! ~0.166,0.197! ~0.064,0.157! ~0.068,0.145!
f 5 ~0.957,0.299! ~0.475,0.260! ~0.166,0.197! ~0.073,0.157! ~0.043,0.145!
f 6 ~0.969,0.299! ~0.474,0.260! ~0.162,0.197! ~0.072,0.157! ~0.055,0.145!
f 7 ~0.974,0.299! ~0.474,0.260! ~0.162,0.197! ~0.071,0.157! ~0.049,0.145!
f 8 ~0.977,0.299! ~0.475,0.260! ~0.163,0.197! ~0.072,0.157! ~0.052,0.145!
f 9 ~0.978,0.299! ~0.475,0.260! ~0.163,0.197! ~0.071,0.157! ~0.051,0.145!
f int ~0.979,0.300! ~0.476,0.261! ~0.164,0.197! ~0.072,0.157! ~0.051,0.145!
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values ofr where the potentialV(r ) is negligible, but the
centrifugal term is not. This is commonly referred to as t
intermediate scattering region.@We are assuming that th
potentialV(r ) falls off faster than 1/r 2.# If we then take the
asymptotic limit of j l and yl as r→`, it is clear that the
scattering amplitude of Eq.~8! is related to the phase shift
of Eq. ~17! by

f ~u!5
1

k (
l 50

L

~2l 11!eih l sinh l Pl~cosu!. ~18!

In practice, the number of partial waves that must be
cluded in the sum to obtain convergence is finite and ene
dependent.

V. RESULTS

We now present and discuss the results obtained by t
methods:~i! f FE(u) of Eq. ~14! is the scattering amplitude
obtained from the direct solution of the Schro¨dinger equation
by FE analysis;~ii ! f int(u) of Eq. ~3! is the scattering ampli-
tude obtained from the integral expression using the sca
ing wave function obtained by FE analysis; and~iii ! f L(u) of
Eq. ~18! is the scattering amplitude obtained by partial-wa
analysis;L is the largest partial wave included in the sum

If one wishes to obtain an accurate value off FE(u) by
direct solution of the Schro¨dinger equation, one must choos
R sufficiently large that corrections to the asymptotic boun
ary condition of Eq.~8! are negligible. Any error in repre
senting the FE wave function atr 5R by the asymptotic
formula diminishes the accuracy of the scattering amplitu
f FE(u) obtained from the solution of the linear equation
Although reasonable results can be obtained at low ener
with small values ofR ~see Table I!, the value ofR must be
increased dramatically with increasing energy. Likewise,
number of grid points inr andu must be increased, resultin
in prohibitively large grids. This limits the applicability o
this direct approach.

In contrast, using the full FE scattering wave function
the integral expression for the scattering amplitudef int(u)
yields stable and accurate resultsas long as R is chosen suc
06271
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that V(R)'0. The main contribution to the integral come
from the region near the scattering center where the w
function is accurately represented by the local FE basis
The contribution tof int(u) outside the intermediate scatte
ing region is essentially zero. The error in the FE wave fu
tion in the vicinity of the boundary, whereV(r ) is already
small, does not appreciably effect the scattering amplitude
is still necessary to impose the boundary condition of Eq.~8!
exactly in order to obtain the scattering solution to the Sch¨-
dinger equation, but the value ofR that is needed to obtain a
accurate scattering amplitude with the integral formula
much smaller than one would expect and energy indep
dent. This result is not one that could have been fully ant
pated; it is an important finding of this calculation, which c
be expected to be of even greater utility in further applic
tions.

In Tables I–III, we present results for the scattering a
plitude (Re@ f (u)#,Im@ f (u)#) obtained from the integral ex
pressionf int(u) of Eq. ~3! and from a partial-wave calcula
tion f L(u) @5# at k50.5, 1.0, and 2.0. The number of parti
waves that must be included in the sum to obtain conv
gence steadily increases. In contrast, the computational e
required to obtain converged results using the integral
mula is independent of energy. We used the same FE grid
all three calculations, withR58a0 and Nr3Nu5144. No
attempt was made to optimize the FE grid. We used eq
spacing in theu direction; in the radial direction, smalle
elements were used near the scattering center~see Fig. 1!.

VI. CONCLUSION

We have presented an approach for obtaining the
scattering wave function by a direct solution of the Sch¨-
dinger equation. Combined with an integral expression
the scattering amplitude, one can obtain accurate and st
results with minimal computational effort. Having esta
lished the efficiency and accuracy of this approach, we p
to extend this calculation to multichannel processes
more complex systems.

The extension of this method to noncentral potenti
V(r ,u) is straightforward. Since the FE solution of th
4-4
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Schrödinger equation is carried out on a grid inr andu, the
dependence of the potential on the polar angle poses no
ditional computational effort. In the integral expression,
simply replaceV(r ) with V(r ,u) and proceed with the nu
merical integration.
06271
d-
ACKNOWLEDGMENTS

We are grateful to R. Drachman and A. Bhatia for ma
stimulating discussions. We also want to thank R. Drachm
for providing accurate partial-wave results for compariso
y-

is
@1# N. F. Mott and H. S. Massey,The Theory of Atomic Collisions
~Oxford University Press, London, England, 1965!.

@2# L. I. Schiff, Quantum Mechanics~McGraw-Hill, New York,
1968!.

@3# F. S. Levin and J. Shertzer, Phys. Rev. Lett.61, 1089~1988!;
J. Botero and J. Shertzer, Phys. Rev. A46, R1155~1992!; 49,
3673 ~1994!.
@4# K. J. Bathe,Finite Element Procedures in Engineering Anal

sis ~Prentice-Hall, Englewood Cliffs, NJ, 1982!; K. J. Bathe
and E. Wilson,Numerical Methods in Finite Element Analys
~Prentice Halll, Engelwood Cliffs, NJ, 1976!.

@5# R. Drachman~private communication!.
4-5


