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Direct calculation of the scattering amplitude without partial-wave analysis
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Two developments in scattering theory are reported. We show, in a practical way, how one can calculate the
scattering amplitude without invoking a partial-wave expansion. First, the integral expression for the scattering
amplitudef(6) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering
wave function that appears in the integral expressiorf {6 is obtained by solving the Schiimger equation
with the finite element method. As an example, we calculate electron scattering from static hytthegen
Hartree potential With minimal computational effort, we obtain accurate and stable results for the scattering

amplitude.
DOI: 10.1103/PhysRevA.63.062714 PACS nuntber34.10+x, 02.70.Dh
I. INTRODUCTION 1 _
f(ek):_ﬂf e K V(r)W(r)ddr, (1)

For the past decades, the standard approach to obtaining

scattering solutions for central potentials has been Vigynerew (r) is the full scattering wave function. We consider
partial-wave analysigl,2]. For increasing projectile energy, he case whera’(r) is independent of the azimuthal angle.
the number of partial waves that must be included to Obta"Re-expressing Eqd) in spherical coordinates

converged results increases. In the case of angular dependent

potentials, the Schobnger equation is not separable in 1 (= (7.

spherical coordinates and the resulting equations for the parf(6y)=— 4—f f gkr cosdy cosbi/(r )W (r, 6,)
tial waves are coupled. We propose an alternative to partial- TJo Jo

wave analysis, that also permits the treatment of noncentral 2

potentlals X sin 0rd0rr2drf e—lkr sin 6, sin 6y COS(¢k—¢r)d¢r ,
We begin with the integral expression for the scattering 0

amplitudef(#) that involves the full scattering wave func- 2

tion. We show that the integration over the azimuthal angle

can be done analytically. The Schinger equation is then the integral overp, can be done analytically. In the simpli-
solved directly by the finite elemeriEE) method, yielding fied expression for the scattering amplitude,

both the scattering wave function and the scattering ampli-

tude. Once the wave function has been determined, the inte- (e (7 ) .

gral expression fof (6) can be evaluated numerically. The  f(f)=— EL fo glkr costr costhey/(1) Jo(r sin 6, sin 6y)
scattering amplitude obtained from the integral expression is

far more accurate and stable than that obtained from the so- XW(r,6,)sin6,do,r?dr, 3)
lution of the Schrdinger equation.

The paper is organized as follows. In Sec. Il, we showy(x) is the zeroth-order Bessel function. 1 (r,6,) is

how the integral expression for the scattering amplitude cagnown, then the remaining integration ovérandr can be
be simplified for azimuthal symmetry. In Sec. lll, we discussperformed numerically.

how the FE method can be used to solve the Stihger
equation subject to theeomplex scattering boundary condi- -
tion. For the sake of completeness, we review in Sec. IV the lll. DIRECT SOLUTION OF THE SCHRO DINGER
equations for partial-wave analysis. In Sec. V, we present EQUATION

results for electron scattering from static hydrogen and com- |n this initial application, we treat electron-hydrogen scat-

pare them to fully converged partial-wave calculations. tering with no exchange. Using an ansatz
P(ry) do(ry)
Il. INTEGRAL EXPRESSION FOR THE SCATTERING W(ry,ry)= ; r—Yg(Qz), (4)
AMPLITUDE ! 2

Our starting point is the well-known integral expressionwhere ¢q(r,) is the reduced radial wave function for the
for the scattering amplitude for central potentifl$ ground state of hydrogen, we require
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1 36
Jdd D . . . . . RE{‘/’”(“‘Q)]:; api(r,0), 9)

T )
: Im{y"(r.0)]= 2, B ](1.0). (10

2/3

The basis functionﬂ{‘(r,ﬁ) are products of quintic poly-
nomials inr and #; the functions are nonzero only in element

§ 1/2 n. The precise form of the basis functions is determined by
Tror o : . : ) . the requirement that the unknown coefficieatsand 8 are

feteted e g ot . . . . . the value of the real and imaginary parts of the wave func-
173 T T T : : : : : tion ¢ and derivatives qy/dr,dpl96,0%%l 90ar) at nine

grid points in the element. The grid points are located at
the four corners, the midpoints of the four sides, and the

16 center of the element, as shown in Fig. 1. Note that the
0N N 0 O D . . . . . expansion coefficients and the basis functions are real.
ofetetel et ot . . . . . Using this expansion in Eq6) and projecting onto the

0 1 5 5 . e ! 7 s basis set, we obtain a simple matrix equation for the real and
r imaginary parts of the wavefunction in element

FIG. 1. Finite element grid witlR=8.0g andN, X N,=144.

an

Bn
The matrix elementsH{j=(¢}'(r,0)|H|¢](r,6)) and Uj]
_ . . _ =({(r,0)|#](r,0)) are integrated numerically with Gauss
This leads to an effective Schtimger equation for the un- quadrature; with the exception of the term containif(g),
known function(r): the integrals are simple polynomials.

We then “add” the equations for th&l=N, XN, ele-
ments. Since the grid points on the corners and sides of ele-
mentn are shared by adjacent elements, continuity of the

(6)  wave function and its derivative across the element boundary
is guaranteed. In the final global matrix equation

H'—EU" 0

o H-ewp] 4y

f ¢Or(r2)(H_E)q’(rl,rz)darzzo. (5)
2

J \Y; k2 =0
S0 F (r)—k*|(r,0)=0,

where
H—-EU 0

0 H—-EU

a
B

the unknown vectorgr and 8 contain the value of the real

is the well-known Hartree potential. We use Rydberg unitsand imaginary parts of the V\éave functighand its deriva-
throughout. tives (@ylar, dwlal, and 9°ylordh) at the (N,+1)

The boundary conditions require thatr,¢) vanishes at < (2Ny+1) grid points in the coordinate space:
the origin and, in the asymptotic region,

N 36
¢(r,9)~re”“ coso+f(0)eikr; (8) l/f(r,ﬁ)znzl ;1 [a?-l—i ,BJ”]¢J”(r,0) (13

=0, (12

1
V(r)=—2e 1+ -], (7)

f(0) is the unknown scattering amplitude that we wish toBecause the Hamiltonian is real, the real and imaginary parts
determine. of the wave function are still uncoupled in E@L2). The

In the past, the FE method has been used successfully tixing between the components @fand 8 occurs when we
solve the scattering problem within the framework of partial-impose the asymptotic complex boundary condition.
wave analysi$3]. Here, we use the FE method to solve the In order to satisfy the boundary condition at the origin, we
multidimensional Schidinger equation for the full scattering set equal to zero the componentsaofind 3 that correspond
wave functiony(r, ) and the scattering amplitudé ). to the value ofyy anddy/ 96 at (2N4+ 1) grid points where

In FE analysig4], the coordinate space is discretized inr=0. This is equivalent to eliminating the corresponding
the radial direction (&r=<R) and in the angular direction rows and columns from the global matrix. The asymptotic
(0=6=) into N, XN, as shown in Fig. 1. In each element boundary condition Eq8) is also straightforward to impose
n, the real and imaginary parts of the wave function arealthough the bookkeeping of the matrix elements is tedious.
expanded in a locally defined basis: We identify the components af and 8 that correspond to
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TABLE |. Complex scattering amplitude@Re f(6)], Im[f(6)) at k=0.5 obtained from the integral
formula f;,(#) and partial-wave analysif (6); also included is the scattering amplitude obtained from the

FE solution of the Schidinger equation.

0=0 0=ml4 0=ml2 0=3ml4 0=
fo (0.869,1.49% (0.869,1.49% (0.869,1.49% (0.869,1.49% (0.869,1.49%
fq (1.025,1.50D (0.979,1.498 (0.869,1.49% (0.758,1.493 (0.713,1.491
f, (1.039,1.500  (0.982,1.498  (0.862,1.495  (0.762,1.493  (0.726,1.491
fa (1.040,1.50D (0.982,1.498 (0.862,1.495% (0.762,1.493 (0.725,1.491
fine (1.040,1.500  (0.982,1.499  (0.862,1.496  (0.762,1.493  (0.725,1.491
fre (1.030,1.545 (0.979,1.525 (0.864,1.491 (0.762,1.47D (0.724,1.464

the (2N,+1) grid points where =R. Then, the values of tive) on the boundary grid points. These coefficients can then
the real and imaginary parts af, dy/dr, dyldf, and be used to construct piecewise analytic expressions for the
9yl or 96 are completely determined by E¢B) exceptfor  full scattering wave-function Eq13) and the scattering am-

the real and imaginary parts ¢{¢) anddf/dg. These un- plitude Eq.(14).

knowns are exactly the expansion coefficients for the FE The scattering wave function can now be used to evaluate
representation of the scattering amplitude: the integral expression fdi(6) given in Eq.(3). The inte-
grals are evaluated using Gauss quadrature, which converges

N very rapidly.

f<e>=n§1 ]21 [V +i 18] (R, 6). (14)

IV. PARTIAL-WAVE ANALYSIS
qSJ-”(R, ) is zero in every element that does not include the

boundary; in the boundary elements, only a few of the basi? S'?Ce \Q{el want to comparr]e our mhe}lhod W'th the confv;ahn—
functions are nonzero at=R. The unknown expansion co- lonal partial-wave approach, we shall review some of the

efficients that multiply thesénonzerg basis functions are parnal-_wave formula$1,2]. The wave function is expanded
the real and imaginary parts ¢{6) anddf/dé at the grid in partial waves
points on the boundary.

With certain components of the column vecterand g8
now expressed as real numbers and the unknodiesd s,
we can carry out the matrix multiplication of these terms )
explicitly. Our goal is to rewrite Eq(12) such that the Where theu,(r) satisfy
unknown vector[«,B] is replaced by a new vector

\If(r,e)zlzb @H(cos&), (15)

[a",B",7,0]; ' and B’ differ from a and B8 only by the d> 1(1+1) )
exclusion of the components that have been determined by —grzt Tz VIO -ku(r)=0. (16)

the boundary conditions. The matrix-multiplied real con-
stants are brought over to the right-hand side of the equatiorrhe poundary conditions require thaf(r) vanishes at the
The factors multiplying components gfand 5 are absorbed  grigin and, for larger,
into off-diagonal matrix elements, which effectively couples
together the equations for the remaining undetermined com- uy(r)~kr[j,(kr)—tanspy,(kr)]; (17)
ponents ofa’ andg’.

The set of linear equations is then solved for the real and, andy, are the spherical Bessel and Neumann functions,
imaginary parts of the wave functigand derivativeson the  respectively. The point of writing the boundary condition on
interior grid points and the scattering amplitu@ad deriva-  u,(r) in this way is that one can extract the phase-shiftt

TABLE Il. Complex scattering amplitudes &=1.0 obtained from the integral formulf,.,(#) and
partial-wave analysi$, (6).

6=0 0=ml4 0= ml2 0=3ml4 0=
fo (0.486,0.619 (0.486,0.619 (0.486,0.619 (0.486,0.619 (0.486,0.619
fq (0.817,0.65p (0.720,0.645 (0.486,0.619 (0.251,0.5938 (0.154,0.582
sy (0.906,0.658 (0.742,0.64p (0.441,0.618 (0.273,0.593 (0.243,0.583
fa (0.928,0.658 (0.739,0.64p (0.441,0.618 (0.277,0.593 (0.221,0.583
fq (0.933,0.658 (0.737,0.64p (0.443,0.618 (0.275,0.593 (0.226,0.583
fs (0.934,0.658 (0.736,0.64p (0.443,0.618 (0.276,0.5938 (0.225,0.583
fint (0.934,0.658 (0.736,0.64pH (0.443,0.618 (0.276,0.5938 (0.226,0.583
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TABLE lll. Complex scattering amplitudes &=2.0 obtained from the integral formulg,(6) and

partial-wave analysi$, (6).
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6=0 0=l4 0=1l2 0=3ml4 0=
fo (0.246,0.205 (0.246,0.205 (0.246,0.205 (0.246,0.20% (0.246,0.205
fq (0.571,0.279 (0.476.0.25Y (0.246,0.205 (0.016,0.153 (—0.079,0.131)
fay (0.771,0.29% (0.526,0.261 (0.146,0.197 (0.066,0.15y (0.122,0.14y
fa (0.878,0.298 (0.507,0.261 (0.146,0.197 (0.085,0.15y (0.015,0.144
fq (0.931,0.299% (0.485,0.260 (0.166,0.197 (0.064,0.15y (0.068,0.14%
fg (0.957,0.29% (0.475,0.26D (0.166,0.197 (0.073,0.15y (0.043,0.14%
fe (0.969,0.299 (0.474,0.26D (0.162,0.19y (0.072,0.15y (0.055,0.14%
fq (0.974,0.299 (0.474,0.26D (0.162,0.197 (0.071,0.15y (0.049,0.145
fg (0.977,0.299 (0.475,0.26D (0.163,0.197 (0.072,0.15y (0.052,0.145
fg (0.978,0.299 (0.475,0.26D (0.163,0.197 (0.071,0.15y (0.051,0.145
fint (0.979,0.300 (0.476,0.261 (0.164,0.197 (0.072,0.15y (0.051,0.145

values ofr where the potentiaV/(r) is negligible, but the that V(R)~0. The main contribution to the integral comes
centrifugal term is not. This is commonly referred to as thefrom the region near the scattering center where the wave
intermediate scattering regiofiWe are assuming that the function is accurately represented by the local FE basis set.
potentialV(r) falls off faster than ¥2.] If we then take the The contribution tof;,;(6) outside the intermediate scatter-
asymptotic limit ofj, andy, asr—o, it is clear that the ing region is essentially zero. The error in the FE wave func-
scattering amplitude of E(q8) is related to the phase shifts tion in the vicinity of the boundary, wher€(r) is already

of Eq. (17) by small, does not appreciably effect the scattering amplitude. It
is still necessary to impose the boundary condition of (Bj.
exactly in order to obtain the scattering solution to the Schro
dinger equation, but the value Bfthat is needed to obtain an
accurate scattering amplitude with the integral formula is

In practice, the number of partial waves that must be in—mUCh smaller than one would expect and energy indepen-

cluded in the sum to obtain convergence is finite and ener dent. This result is not one that could have been fully antici-
9 g}éated; it is an important finding of this calculation, which can

L

1 o
fHO)=1 .:20 (21+1)€'msiny P (cosd).  (18)

dependent. be expected to be of even greater utility in further applica-
tions.
V. RESULTS In Tables I-Ill, we present results for the scattering am-

We now present and discuss the results obtained by thre%itUdfa (R¢f(6)],Im[f(6)]) obtained from_ the integral ex-
methods:(i) fge(60) of Eq. (14) is the scattering amplitude pressmnfim(a) of Eg. (3) and from a partial-wave calculq-
obtained from the direct solution of the ScHilager equation tion f,(6) [3] atk=0.5, 1.0, anq 2.0. The number pf partial
by FE analysis(ii) f;.(#) of Eq. (3) is the scattering ampli- waves that mu'st be included in the sum to obtaln conver-
tude obtained from the integral expression using the scatte8€"C€ steadily increases. In contrast, the_ comput_atlonal effort
ing wave function obtained by FE analysis: diid) f, () of requw_ed_ to obtain converged results using the mtegral_for-
Eq. (18) is the scattering amplitude obtained by partial—wavemUIa IS mdependgnt of energy. We used the same FE grid for
analysisiL is the largest partial wave included in the sum, @l three calculations, wittR=8 and N, X N,=144. No

If one wishes to obtain an accurate valuef@f(6) by a“e”_‘pt was madg to .Op“m'ze the F.E gr!d. We used equal
direct solution of the Schabnger equation, one must choose spacing in the¢ direction; in the rad_lal dlrect|on,. smaller
R sufficiently large that corrections to the asymptotic bound-Eléments were used near the scattering cests Fig. 1
ary condition of Eq.(8) are negligible. Any error in repre-
senting the FE wave function at=R by the asymptotic
formula diminishes the accuracy of the scattering amplitude
fre(6) obtained from the solution of the linear equations. We have presented an approach for obtaining the full
Although reasonable results can be obtained at low energiesattering wave function by a direct solution of the Sehro
with small values oR (see Table), the value ofR must be  dinger equation. Combined with an integral expression for
increased dramatically with increasing energy. Likewise, thehe scattering amplitude, one can obtain accurate and stable
number of grid points im and & must be increased, resulting results with minimal computational effort. Having estab-
in prohibitively large grids. This limits the applicability of lished the efficiency and accuracy of this approach, we plan
this direct approach. to extend this calculation to multichannel processes and

In contrast, using the full FE scattering wave function inmore complex systems.
the integral expression for the scattering amplitddg(6) The extension of this method to noncentral potentials
yields stable and accurate reswdtslong as R is chosen such V(r, ) is straightforward. Since the FE solution of the

VI. CONCLUSION
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