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Properties and removal of singular couplings at conical intersections
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We present an analysis of the characteristics of nonadiabatic couplings due to the existence of conical
intersections between potential energy surfaces of triatomic systems in collinear configurations. We discuss the
relative merits and performance of four techniques that we tested to remove the singularities, and illustrate our
findings for a conical point of two molecular surfaces involved ®" M H, collisions.
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[. INTRODUCTION to be “frozen” while the electron capture process takes
place. To describe this process, an extension of the standard
As is well known, transitions at conical intersectid@s) ~ treatment of ion-atom collisionkl8] is employed: the ion
of potential energy surfaces provide a standard mechanisfR!lows a trajectoryR(t) while the target internuclear vector
for nonradiative processes at very low energies. They ar@ stays f|xed;_and the elgctrpnlc structure is _descrlbec_:i using
also ubiquitous in the treatment of idgatom)diatomic reac- @ ¢loSe-coupling expansion in terms of the eigenfunctions of
tions at higher energies involving near-collinear and nearth triatomica molecule. These eigenfunctions are defined for
perpendicular trajectories, as was seen in our study of elediXed Positions of the nuclei in thgx(R) plane. An increased
tron capture from H targets by ion impacte.g., Refs. symmetry is obtained in the collinear configuration, such that

[1-3]), which is an important topic in fusion researet. In Rlp. and we have IL A, etc., states. Then, any of the usual

e . ; . >-IT, 3-A, etc., energy crossings becomes a CI of the cor-
addmon,' there_are many ad\{antages |n'start|ng a dy”‘?‘m'c? sponding energy surface for more general geometries,
study with ccl)l.lmear trajectories, for which wave functions where radial and rotational components of the nonadiabatic
have an additional symmetrigee below and therefore the

) oupling operatoV  are singulaf10].
+ sign ambiguities of the nonadiabatic couplings at av0|de(f Apn i?npﬁcation gf thesegfiné[ing]s for the best known

crossings are resolved with less difficulty. Hence, the probmethod to treat ion-molecule dynamics at very low impact
lem is certainly not only of academic interest. velocities, which is the infinite-order sudden approximation
The first question that comes to mind in considering Cls i§12], may be mentioned. In this method, rotational couplings
whether geometric phas¢s,7-9 are required to treat the are neglected, so that the troublesome rotational singularities
dynamics. In Ref[10], we showed how these phases can beare absent; nevertheless, those of the radial couplings re-
obviated for open trajectories, and that the practical difficultymain. At higher velocities such as those considered here,
is the singular character of dynamical couplings at the Clsrotational couplings are often very important, and both sin-
This singular character precludes a direct use of the adiabatgularities must be removed.
wave functions in close-coupling treatments; the implica- In the next section we present a more detailed account of
tions of infinitely large couplings, even for single-state dy-the theory than in our previous papgt0], showing the
namics, have been stressed by Baer and co-worleas, physical origin of the singularities. As a side result, we find
e.g., Ref[6]). Rotational couplings are particularly difficult: that the matrix elements of the nonadiabatic vibrational cou-
they exhibit a pole at the CI that gives rise to a logarithmicpling termV , also become infinite at Cls. This contradicts
singularity of the exact transition probability amplitude for athe basic tenets of our sudden approximation approach
head-on trajectory; moreover, the effect of the Cl can extendwhich neglects these couplingsnd stresses again the need
to regions far away from it, where it is difficult to implement for removing the singularities before using this approach. In
even an approximated hocelimination of the correspond- our previous work, a parametrization of the adiabatic data
ing coupling. was employed to cancel the singularities, and illustrated for
A preliminary analysis of the singularity problem was the case of Li +H, collisions; the procedure was also re-
given in Ref.[10], and complemented previous work of cently applied to charge transfer in the N+H, reaction
[7,11 for near-equilateral-triangle nuclear configurations,[19], for which experimental data have recently been re-
and of Ref[12] by considering also the rotational couplings. ported[20]. However, this method is difficult to implement
The theoretical framework of Ref10] was our implemen- because it is extremely sensitive to the values of the param-
tation[13] of the sudden approximation model for ion impact eters, and in particular it is impracticable when Cls are not
on diatomic molecules, which has been succcessfully appliedompletely isolated. Because of this, we have considered
to a sizable number of reactiofi$9,1,14-16,2,3,17In this  several alternative approaches. In Sec. Ill, we report our
model, the vibrorotational structure of the target is assumeindings on their applicability; for the sake of clarity, our
procedure is illustrated for an isolated Cl of the NH qua-
simolecule, although the more general situation is kept in
*Also at Instituto de Estructura de la Materia, CSIC, Serrano 113nind. Our conclusions are drawn in Sec. IV.
bis, 28006 Madrid, Spain. Atomic units are employed throughout.
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Il. THEORY Since the electronic wave functions depend only on rela-

A. Couplings in the laboratory-fixed and body-fixed tive coordinates, we have, for any angie

frames of reference —_—
, o (R p) = h(R(w)R(w0)RR(w)p) = (1R p). (3)
We shall follow here the theoretical framework given in
Ref.[10]: we have, in a laboratory-fixed reference frame, thewe now consider the nuclear gradié¥ig coupling between
variablesR, deflnlng the position of the prOJeCtl'e with re- two such wave functions. Usmg a compact notation, we
spect to the diatomic targep, the internuclear vector of the \yrite the partial derivative with respect Ras il ** keep-

target, and; , the position of the electrons. Taking tA@xis  jng constant the set of electronic coordmatesthe polar
alongp, and withR, « the polar coordinates @ in theXZ  angleq, and the nuclear vectgr. To be specific, we take a

plane, the Cartesian coordinates of those vectors are trajectory of the projectilék(t) in the XZ collision plane, so
r=(x.yi.z), R=(Rsina,0Rcosa), p=(0,0p). that we .have to consider two components of the coupling
1) operator:
We further define a rotation operatdt(w) of an anglew Vr=Ral @+ aR™10RA} (4)

about theY axis, and a rotated body-fixed frame in which the . _
new Z axis lies alongR, and the new position vectors are : t'WeInOW ?psform t? ;[he b?r(]jy—ﬁxed f;aﬁn;e.f?énce the ro-
ation leavesR invariant, from the property3) of the wave
R=R(~@)R p=R(~a)p, [i=R(=a)r;: function, we have
r_=(x- cosa—z; sina,y; ,X; Sina+z; cosa), —
i [ i i1 X i O—’g,a,p}(//: 5{RW'} . (5)
R=(0,0R), =(—psina=psinp,,0, cos . . S
(0.0R), p=(=psina=psinp,,0p cosa The tranformation for the rotational coupling is slightly more
=pCoSsp,). (2 complicated. To ordeda, we have, using Eq$2) and(3),

Sadlf™P = y(rR(~ Sa)R;p) — Y(r;R;p)
= Y(R(— a— 8a)r;RR(— a)p) — Y(R(— a)r;R; p)

= Y(R(— a— 8a)r;RR(— da) p)— Y(R(— a— 8a)r;R; p)+ Y(R(— a— da)r;R; p)— Y(R(— a)r;R; p)

=~ il R y(rRip) 60 S A (T Rp) - AR ©®

and from Eq.(2) two operators/l ! andiL yield the usual radial and rota-

[ tional couplings, respectively. They arise from the changes

girRply = — (9{r Rp}¢ 2 (—z P T R} in the wave functions wittR (radial coupling and « (rota-
. tional coupling for fixed electronic andp positions. The
xat {Z Yiti EZ}W &f)’f"’} operator arises from the rotation of the diatomic mol-

Z ecule by an angle ,= — «a for fixed projectile and electronic
CRp BT L - o positions, and is at the root of the singular character of the
=3, P(nRip) i Ly ¢(Rp) (7)) rotational couplings at Cls. This will be explicitly shown
below, but is already apparent from Ed), together with the
with Ly the component of the total electronic angular mo-fact that the interactions through they operator (which
mentum along th& =Y axis. Using Eqs(4), (5), and(7), we involves derivatives with respect to the electronic coordi-
obtain nateg cannot be singular, even when the corresponding wave
- o functions change their character abruptly as functiori® of
Vey=[RoP+ R (i Ly~ &Er,R,P})]lp. @8 P Een((:?()a, any singularity must be attributed to the first term
« in Eq. (7).

This expression, which was not explicitly derived in Refs. . . o .
[13,10, shows that the mechanisms of ion-molecule colli- B. Singular couplings at conical intersections

sions differ from those of ion-atom dynamics by transitions  |n Ref. [10] we considered a Cl of two energy surfaces
due to the couplings through th:ér'R"’} operator. The other E;(R;p) andE,(R;p) at a pointR=R, of the Z axis, and

062713-2



PROPERTIES AND REMOVAL OF SINGULR . .. PHYSICAL REVIEW A 63062713

studied the analytical behavior of the dynamical couplings; , | 5(rRe}| .\ = — P IR iL 15
near this ClI. For this, we employed the standard procedureowl| Pa ) (Wl oa ™)+l VW2> (19

a Smith transformatiofi21] = a{pﬁ'p}aﬂregular terms
th1=(c0s6) 1+ (sin6) @,
—acR(R—Ry)
: =sgria)———— 2
= —(sin6) ¢1+(cosb) ¢, 9 4c2R%a2+[a(R—Ry) +bR|al]
+ (regular termg, (16)

in terms of two functionspy, ¢» that are smoothly varying—
WhICh means that their nonadla_batlc couplings do not presentiere we have taken into account that, sﬁm“Lﬂ ) is
singularities, not that they vanish: hence, the new functions | h inaul f (1R} d
are not necessarily diabatic. Use of a bilinear expansion ifiegular, the singular parts  of(y|d, ™"[¢) an
R—Ry andR|a] for the Hamiltonian matrix elements in this — (yy|a\"®#|y,) must be the same, amlﬂR"’}0= —glRehg,
basis[10] yields thelimit expression for the transformation  \ynen a—0, and as functions oR, the radial coupling

angle near the CI: (11) tends to as function, while the rotational couplin@L2)
gives rise to both as function and a polecRya (R
—Rp) . The two singularities are connected, as shown in
Ref.[10] by examining the behavior of the nuclear gradient
in terms of the variabl¢2ca™'R|a|,a(R— a) +bR|a|}, and
Using this, it follows that, aR—R, (so thatR—R, and this is why elimination of one of the singularities entails

a—0) the limit behavior of the radial and rotational cou- Supression of the other one, as was confirmed by our calcu-

hand sidgLHS) of Eq. (16) is the angular component of the
matrix element(y|V ,|4,), which is therefore singular at
the CI; moreover, the singularity of the radial component

. lt _,a(R—Rg)+bR|a]|
2an 2cRa

0=Z

(10

(Y| 9 P ) = K- 0+ (regular terms

acRy| | was shown in Ref[12]. Hence, the coupling is far from
== 5 being negligible as assumed in REL3].
4c’R?a’+[a(R—Rg) +bRlal] It is useful to introduce, at this stage, a simplification of

these analytical expressions, obtained by expanding them
about the positiolR,, of the peak of the radial couplind.1).
In the laboratory-fixed frame, this yields the limit expression

+ (regular terms (11

and
(r| 8P ) = 98P 9" + (regular terms

(y| T RPY ) = 1R PH g+ (regular term
S,lall2

— m + (regular termS

acR(R—Ry) =

=sgn«a
ot )4CZR2a2+[a(R—RO)+bR|a|]2 (17)
+ (regular termsg, (12
and
where the parametefR;, a, b, andc can be obtained by ST Rp} — giRpl g 4 lar t
fitting the energy difference to the well-known double cone (2] 05 ™| 2) = 957" 0" + (regular terms
form in the neighborhood of the CI: 5, (R—R,)/2

+ (regular terms.

T R_R 2+ 2.2
E,—E;=[a(R—Ro) + bR a| |7+ 4cPR%2.  (13) (R=R)"+

(18)
We can now change to the body-fixed frame, by using Egs.

(5) and (7), to obtain the limit expressions near the Cl: The Landau-Zener type equatiolv) (see also Re{.12]) for
the radial coupling, and E@18) for the rotational term, con-

tain only two parameterR, and é, such that lim_, (R,

(| TP ) = (pa| 95| o) = 3¢ 6+ (regular term =R, and lim, .,8,=8,=2cRy/a. For smalla, we have

R,~Ry—bRyal/a and §,~ &,.

_ acRy| /| Equations(17) and (18) yield a simpler behavior for the
4c’R%a?+[a(R—Ry)+bR|a|]? transformation angle, which we have calledto avoid con-
fusion with Eq.(10):
+ (regular termg (14
B 7 1 R-R,

with ol# 9= ol# g, and =gtz S (19
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where the single branch~(w/2,7/2) form of the tan! func-  For a—0 the pole atR=R, arises because of the corre-

tion is implied, and which can be employed to explain thesponding pole irdB/d«, so that to an infinitesimal increase

physical origin of the singularities in a simple way. in « from the zero value corresponds an increasingly larger
First, the behavior at the ®=R, is easily obtained. The increase in3 asR—R,. The long range rotational coupling

& function in the radial coupling arises from the fact that, arises because{**'6’'— — 5/2R as |R—R|— (so that

along theZ axis, ¢, and s, have the same character@g  3—0). For instance, in th&— +o limit Eq. (24) gives 0

and ¢, for R<R; and the same ag, and — ¢, for R>R,,. — 12— 5pBI2R and Eq.(9) reads

There is a discontinuous change of charag®® at the ClI

and accordingly we have the asymptotic limit there: oo ol
Ya(a)~=1(0)+ 52 ¢1(0)~ 2(R—-Rg) #1(0) + ¢2(0)

Y ar
WY =o' ~— 5 S(R-Ry). (20 @
so that the admixture ofy, to ¢, decreases likdR ™! for

The discontinuous character also explains the pole in théxed 5 and like R—R;)~* for fixed or.

rotational coupling, since for an infinitesimal#0 and R The previous explanations can obviously be extended to
=R, from Egs. (19) and (9) we have¢2=(<p2—<p1)/ﬁ. the more general transformatiohQ).

Hence the derivative af, with respect tax tends to— o on

the left of Ry and to+ < on the right. For a fixe® value and C. Elimination of the singular couplings

small «, and from Eqs(15) and(18), we obtain We now deal with the practical aspect of devising a work-
able method to remove the singularities. From the descrip-
tion in the previous section, it follows that an appropriate
procedure is to transform the basis using inversion of(gq.
This yields well-known expressions for the Hamiltonian ma-
Incidentally, we note that thé-function term in Eq.(12), trix elements and couplings. For instance, in the laboratory-
which we found to be completely swamped by the pole infixed frame, we have

our calculationg 10,19, has been eliminated in EQR1).

_60

2(R—Rg)" @)

giReHgr— _ gRelgr _
Pa @

Second, both short and long range effects of the Cl in the Hao—Hi=(cos 20)(E>— Ey),
rotational coupling can be understood by introducing the )
angle B8 between theR— R, and p vectors, and takindR, Hio=—(sin20)(E,—E1)/2,

sufficiently large that we have, to a good approximation,
(@1l 95 P @) = (ya| Iy P o) + G 6,
Rle/|

ANA= RRy’ @2 (@l o™ 0o) = (yal o P ) + a0, (28)

and analogous expressions in the body-fixed frame. With
suitable choices of the transformation anglethis inverse
1 ) ol trans_formation can then be employed to generate sui_table
0'= Etan‘ R_R’ (23)  functions ¢, and @2 that vary §mo_0th|y, presenting nonsin-
0 gular (nonadiabatic and Hamiltoniarcouplings. In this re-
spect, it is useful to summarize first what would be the main
requirements of an appropriate procedure.

First, one should bear in mind that diabatic wave func-
tions that exhibit no dynamical couplings at all cannot be
obtained in generdkee Refs[26,7,19). In fact this is not a
(24)  hindrance: since in the semiclassical approach of Rl

only systems of first order differential equations appear,
_ _ ) there is no difficulty in dealing with both nonadiabatic and

which we can compare to

which is equivalent to Eq(19) using the double (65/2)
—(7/2,7r) branch form of the arctangent function. The com-
parison yields

%
R

1
0'=-tan !

5 tang

of B, whose derivative is is not advantageous to ask too much from the transformation.
Second, the singular behavior of the couplings poses a
(Rop} SoR/2 practical problem only whew is very small, so that we need
Ip Po'=— 2 o (29 to focus on only these grazirigtrajectories. For other kinds
82 sifB+R?codp y 9 J :

of trajectory(at least when the angle-averaging approach of
Ref.[13] is used, difficulties related to conical intersections
can be avoided in most situations, because of the strong de-
R(R—Ry) crease of the first term in Eg€l1) and(12) whene is large.
" 0 Ry This is why the transformatiori28) is needed only for a
R2a%+ (R—Ry)? narrow bundle of nuclear trajectories, depending upon the ClI
(26) considered: in the example of R¢10], a reasonable domain

and the singular term in E¢18) is due to

dp
{R,p} =
AP =

a

IP 0" =sgr @)
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is obtained fora<1°, whereas in the case treated[i9] it 0.0015
can be taken to be<10P; usually, we find that the smaller
Rp is the larger the domain is. 0.00125 |-

Finally, unless the position of the ClI is known to infinite
precision, subtraction in EQ.(28 of a 6&-type peak
— al&P' g from anothers-type peak in( |l | @,) will
yield a (generally asymmetric, and very narrpwlouble
peak. This is of no practical importance, since the area unde@
the double peak is zero, so that it can be safely ignored. Ina
fact, it shouldbe ignored, since it is so narrow that obtaining 0.0005
some(i.e., too few points and interpolating through them is
likely to yield spurious transitions. Similar considerations 0025 |
apply to the rotational coupling. The practical method would
then simply ignore the region extremely close to the ClI, use

. . . . Q . . L L L
Egs. (28) outside this region, and smoothly interpolate the 3.85 3.86 387 388 3.89 3.9
resulting data. Riaw)

In the following section we report our findings for the  F|G. 1. Analytical bilinear modell) [Eq. (13)] (lines and ab
choices that seem most obvious from the preceding discusnitio calculated(symbol3 adiabatic energies in the vicinity of the
sion. These recipes employ the following transformationCl between the states of the MH quasimolecule dissociating into
angles in Eqs(9) and(28). N**(1s?2p,) +H," (og) and N (1s?2p,)+H,*(0y), as func-

(I) The analytical expression of E¢LO) for the transfor-  tions of the projectile distancB, obtained for four values of the
mation angled. This method was employed in our previous relative anglea=0°, 1°, 4°, and 10°. Symbols: squaré8®),
work (e.g., Refs[10,19). circles(1°), uptriangles(4°), downtriangles (10°).

(I The transformation angle

0.001 |

es (a.u.)

0.00075

as MELDR provide only the absolute values of these matrix

. TR elements. As expected, one finds numerical difficulties in the

0= f()('/’lwia p}|‘/’2>dpa (29 direct integration of the dynamical equations in the vicinity

of Cls, and the transition probabilities obtained in the adia-
using body-fixed expressions analogous to Eg8). batic basis behave erratically. Hence, we shall focus here on
(1) The transformation angle the characteristics of the quasisingular and transformed mo-

lecular data near an isolated conical point, although we keep
. el in mind more complicated situations.
0" =— JO< Y| IR P | o) dR. (30 The two selected energy surfaces correspond to two mo-
lecular states dissociating into *N(3p,)+H," and

Equations(29) and (30) provide straightforward extensions N**(3p,) +H,", which lead to sharing between the electron
of the procedures usually employed in ion-atom collisions. capture channels as.p_rOJecnle and target separate. The sur-
(IV) The analytical expression of E¢L9) for the trans- faCceSE; and E, exhibit a Cl, for Ry~4 a.u. anda=0,

formation angled’, where the parameters are obtained for awhich is considerably wider than the one considered in Ref.
value ofa sufficiently small. [10], and therefore better adapted as a benchmark to compare

different techniques.
For linearR trajectories witha=0°,1°,4°,10°, wedis-
play in Fig. 1 some calculated values of the adiabatic energy
We now discuss, and illustrate, our findings in the imple-differencesE,—E; near the Cl. For=1°,4°,10°, thecor-
mentation of techniques -1V of Sec. Il C. responding radial couplingéyy|a%*#|y4,) and rotational
We considered in Ref.19] electronic transitions taking couplings( ¢1|R‘1c7g'R"’}|¢//2> are presented in Figs. 2 and 3,
place in collisions between N ions and H molecules in  respectively. From the size and shape of the couplings,
the energy range 50 eV amt-6 keV amu ®. For these im-  which is qualitatively the same as in R€L0], it is obvious
pact energies, we can assume that ti%é (4s?) core does that a change of basis is required in order to treat the dynam-
not change during the transitions, and the active electron i&s. For this purpose, we considered the recipes I1-1V of the
represented byself-consistent-field-typamolecular orbitals.  previous section, which make use of the inverse of the trans-
Orbital energies and nonadiabatic couplings were obtainetbrmation(9) and application of Eq928).
ab initio with the MELDR program[23—-25. We do not show Method I.This procedure was employed in Ref$0,19,
the complete energy diagram, because it is not relevant herand uses a fit of the data for the energy difference and the
and it is rather complicateld 9], displaying pseudocrossings dynamical couplings, near the Cl, to the analytical expres-
and crossings of the surfaces. As a consequence of thes®ns of Eqs(13), (11), and (12), respectively. In practice,
complications, and as mentioned in the Introduction, it isthis nonlinear fit is a delicate numerical step, because of the
very useful to study first the case of a linear nuclear configuhumber of parameters involved, and the fact that it requires
ration in order to select the signs of the nonadiabatican iterative procedure, with a preliminary gross fit of the
couplings—since, as is well knowab initio programs such energy differences, followed by a fine tuning using the non-

Ill. RESULTS AND DISCUSSION
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300

250 -

200 +

-1

Radial couplings (a.u.”)

150 -

50 -

3.86 3.87 3.88

R (a.u)

3.89

FIG. 2. Comparison between analyticgf"” 6, and ab initio

calculated ¢,| 1 *#| ,) radial couplings of Eq(11), as functions
of R, for three values of the relative angle=1°, 4°, and 10°, and

with the labels as in Fig. 1.

3.9

3.91
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0.00045

0.0004

0.00035 -

0.0003

0.00026 -

0.0002

H,, (hartrees)

0.00015

0.0001

5e-05

R(a.u)

FIG. 4. H;, Hamiltonian coupling between the stafgs, ,} ob-
tained from Eq(28), as functions oR, for the same three angles
as in previous figures.

it is a rather common feature that can be expected from Eq.

adiabatic couplings, reconsideration of the energies, and 2, because of the existence of non-negligible “regular

on. As a consequence, application to the case of partiall

overlapping Cls is nearly hopeless.

In the present case, the fitted parameters BR{®}

=3.8769242, a=0.04228, b=1.28607% 10 °,

and

rms” near the CI; this point will be further discussed be-
ow. Furthermore, non-negligible regular terms in the radial
coupling are also expected for other molecular states exhib-
iting asymptotic Stark delocalizatior(in the so-called

c=5.32596X10"* a.u. To show the reliability of the fits Nikitin-Demkov mode] or residual interactiong22].

near the Cl, we have included in Figs. 1-3 the values ob- As in Ref.[10], the transformed molecular data obtained
tained from the analytical expressions of the first terms of thdrom Eqgs.(28) behave regularly as functions efandR. In
RHS of Egs.(13), (11), and(12). In the narrowR domain
about the ClI considered in Figs. 1 and 2, exact and analyticallose toE,— E; given in Fig. 1 fora=0° andR<R, and to
(parametrizefl curves for the energy differences and radialE, — E, for «=0° andR>R,, as expected. We show in Fig.

couplings are very close. On the other hand, and in appare@tthe Hamiltonian couplingsl;, which are tiny in the whole
sharp contrast with our previous findings in Rgf0], there

remain in Fig. 3 sizable discrepancies betweenaheénitio
rotational coupling and the parametrized forms. It should bgg peaks at the Cl. Thus, the radial coupling

stressed that this is not a liability of the method, and in fact<¢

4

Rotational couplings (a.u. _')

3.85

FIG.

3.

3.86

Analytical

3.87
R(a.u)

I
3.88

R iR g

3.89

and

3.9

calculated

(1| R 15 R 4, rotational couplings of Eq12), as functions of
R. Same symbols and angles as in Fig. 2.

the Cl region, the energy differencels,— H, are extremely

R domain. The nonadiabatic couplings are smooth, except
that, as explained in the previous section, they exhibit inef-

1|(9§{’“"’}|<p2) exhibits an extremely narrow double peak
structure, which should be ignored in actual dynamical cal-
culations. When those peaks are eliminated by the expedi-
tious way of interpolating through them, the ensuing radial
couplings are shown in Fig. 5, and the rotational couplings
(o1|R718"RPe,) in Fig. 6. Next, to explain the smooth
but sizable rotational term in the latter figure, we have dis-
played in Fig. 7, for arR trajectory witha=10°, the three
rotational-type  matrix  elements (¢|R™ 2ol RP| ),

(a|R72 R ys), and (yo|R™MiLT ), fulfiling Eq.
(15), together with the parametrized terRi *9'*? 6 [see

Eq. (11)] and the coupling(e:|R™14"R#|e,). Figure 7
shows that we have

(Ul RO ) = (| AR P ) + (L) (3D)

according to Eq.(15), and the approximate relations for
R>3 a.u.
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03 0=10°

-0.05

e
o

Radial couplings (a.u. ™)
1
b=

Rotational components (a.u.™")

—0.15
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FIG. 5. Radial couplinggeq| a5 **|¢,) of Eq. (28), as func-

—1 A{r,R,p} .
tions of R, for a—1°, 4°. and 10°. FIG. 7. Total ©,) (¢1|R™13,""#|y), singular component

(Ny) <¢1|R‘la£ZR’”}|l,//2), regular componentik,), [Egs. (7) and
(15)], analytical (I) R™4{R?9 [Eq. (11)], and the (new)
(@1|R™15"RP .} rotational couplings obtained for an angle
a=10° as functions oR.

IR g~ (4| (ﬁf’p” P),

IIRPH o)~ (g |iLT] ). 32
(@1]da ™"l @2)=(UnliLylva) (32 a function ofp,. As would be expected from Eg&9) and

(32), we obtain that the anglesand §” obtained in methods
| and Il are essentially the same fBe>3 a.u.

The direct integration procedure employed in this second
method has the advantage of being parameter-free, so that no
difficult fitting procedure is required as in method I. How-
ever, we have found that it is very hard to obtaiccurate

alues for the radial couplings, even outside the CI region.
he reason is that it requires the evaluation of a large number

as K* +H, collisions, where(y,|3"R?}{y,) contains siz- ©f values of thqlplwf,;m’}wz) interactions to be integrated
able “regular terms” in Eq(16) Pa with respect toa and then differentiated with respect R
Method IL The second.pos.sibility that we have testedTNis liability renders the method useful only when there is

makes use of Eq29) to define the transformation angle to some reason to believe that these couplings are negligible.
be used in the body-fixed version of Eq@8). For fixed p Moreover, the method also has the inconvenience that the

and a grid ofR values, it employs numerical integration of Hamiltonian coupling$28) are large folR values that are far

h diabati ional i (R0} from Ry. This is not desirable in the treatment of the dynam-
the exact nonadiabatic rotational coup mmpa |42) as ics, since it would require a passage frgm, ¢, to the origi-

nal ¢ ,¢, basis, and this is awkward unless }im,6(R)
= /2 to a good enough approximation.
Method IlI. Similar difficulties are met when employing
the third procedure of Eq30), in which the radial coupling
is integrated instead of the rotational one. This procedure is
very close to the previous one, but is not completely identi-
cal, since, as is easily shown by using the argument of
[26,7,13 in the body-fixed frame, an orthogonal transforma-
tion (9) can get rid of only the irrotational part of the cou-
pling (4| V&l #,). Nevertheless, for the present example the
two methods are essentially equivalent near the CI. We thus
conclude that the methods of integration of the exact cou-
plings between the adiabatic wave functions are not well
adapted to treating ion-molecule collisions near Cls, unless
, , , , , one can neglect the residual couplings.
5 8 85 . (;‘_u') 45 5 55 Method IV.The fourth possibility that we have applied,
and that we propose here as a reasonably satisfactory solu-
FIG. 6. Rotational couplingép,|R™14"R#| ¢,) of Eq.(28), as  tion to the problem, is to use the simplified limit expression
functions ofR, for a=1°, 4°, and 10°. of Eq. (19) to definethe transformation angl@. The param-

The smooth behavior of the last two terms in E3R) stands

in contrast to the quasisingular behavior of the others, dis
cussed in Sec. I1B. From Eq$32), we see that, for the
present example, the “regular terms” of E(L6) are very
small near the CI, and those of E@l2) are close to
(#1liLy|42). However, this is not the case f&<3 a.u. nor
for wider angles. We have also found that it is not the cas
either for other systems where Cls appear at sRgrtsuch

-0.05

1
e

-0.15

Rotational couplings (a.u. )
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etersR,, 5, appearing in this equation can be obtained, e.g.singularities appear when differentiating this discontinuous
by a calculation of the radial couplingy,|d&“#|4,) fora  behavior. Thus, @ function appears for the radial coupling,
selected trajectory witlr sufficiently small. From Eq(17),  which follows as the limit of typical Lorentzian peaks at
we can take the position of the peak of the coupling to yieldpseudoscrossings in the limit of zero energy §ap|. An-
R, and its height (3,a) . In all cases considered, this other awkward singularity is due to the change of sign that
method is numerically stable, because it depends only upoaccompanies one of the two wave functions as their character
two rather unconnected parameters, so that extension to tfig interchanged. This gives rise to a pole in the rotational
case of nonisolated Cls does not present the unsurmountaigeupling, which extends to relatively large distances from
difficulties of our previous approach. the CI, because the admixture of adiabatic wavefunctions

In the present case, it is enough to take=1°, which ~ when the nuclear configuration is bent by an anglis pro-
gives R;(=R,_;-)=3.87685 and5;=0.0975 in atomic portional to this angle.
units. These values agree reasonably with the estinijes ~ Second, we found that our previous technigeelled
—R;~bRya/a and §;~8,=2cRy/a, with the values of method ) to remove the singularities, using the transforma-
Ro.a,b,c obtained for method |I. tions (28) with the angle given by Eq(10), is numerically

As may be expected, since the parameters in 8qsand  complicated and unstable with respect to errors in the param-
(18) are obtained forr=1°, the fits of the molecular data are eters. This is because E@.0) involves four parameters that
better for this particular trajectory than those obtained withare strongly coupled variables in the fitting procedure. Con-
the more general expressiofisl) and (12) with the param- sequently, method 1 is difficult to apply to situations where
eters fitted at the CI. Nevertheless, the changes are unnoticels are not clearly isolated, and even then it is prone to
able in Figs. 1-6, because they only affect unimportant feadumerical errors. Because of this, three alternative methods
tures of the couplings, such as the double peaked structurégalled methods II-1Y have been considered here.
of the radial couplings, which are eliminated in actual calcu- Two of these technique@l and I1l) consist in generaliz-
lations. Hence, the results of our figures can be taken to b&@d the procedure employed for the analogous case of ion-
identical, to all practical purposes, for methods | and IV, atatom collisions, where one integrates the culprit dynamical
least fora<10°. couplings, rather than an analytical expression. This is not a

Finally, as stressed in the Introduction, an undesirable feadiabatization procedure, which, as is well known, is not pos-
ture of the singular rotational couplings is that they extend tcsible for triatomic systems—and not even desirable, as dis-
regions far from the ClI. Actually, it is common that they cussed in Sec. Il C. Nevertheless, although integration of ei-
extend toR values such that the bilinear expressions used téher radial[Eq. (30)] or rotational[Eq. (29)] couplings near
derive Egs.(12), (16), and (18) in Ref.[10] are no longer Cls removes the singularities in the couplings, the proce-
good enough approximations. In such cases, it is impossibldures were not found to be completely satisfactory because
to separate “normal” rotational couplings from the tail of Of the difficulty in obtaining the residual nonadiabatic inter-
those due to the CI. The solution to this problem is straightactions. However, when these interactions can be neglected,
forward when, as is the case for Eq40) and (19), the methods Il and IIl are satisfactory, especially as there is wide
transformation angl@ goes from 0 tor/2 in the near neigh- €xperience in their application to the ion-atom case.
borhood of the ClI, so that a little away from this region, a _We then considered an alternative recipeethod IV) that
passage from the,, ¢, basis to the more appropriate adia- allows accurate calculation of residual couplings. The

batic functionsys, , i, obtains. In our opinion, this is an asset Method is a simplified version of | that avoids complicated
of method IV. fittings, by restricting our attention to the bundle of trajecto-

ries for which the singularities are really a problem. For

these trajectories, one uses the transformations of @8s.

with the angle(19), which contains only two parameters that
The results of the present work are twofold. First, we haveare very easily obtainedsee Sec. ). The procedure is

presented a detailed analysis of the characteristics of norstable and can be applied to more complicated issues. In our

adiabatic couplings near Cls that appear in the application ofpinion, it provides a satisfactory solution to the practical

the seikoN method of Ref[13] to ion—diatomic molecule problem, as it can be applied to all cases we have treated,

processes. This applies especially to the expressions for ttethough more calculations are obviously necessary to con-

rotational termgEqgs.(7), (16), (18), and(22)—(27)], which  firm this in full generality.

were not given in our previous woi0]. In particular, we

have shown the p_hysical origin_of the couplings due to Cls ACKNOWLEDGMENT

appearing for collinear geometries of the nuclear frame. As

could be expected, since the relevant adiabatic wave func- This work was partially supported by DGICYT Project

tions abruptly exchange their character at a conical pointNo. PB96-0056.

IV. CONCLUSIONS

[1] L. F. Errea, A. Maas, L. Madez, and A. Riera, J. Phys. B [3] D. Elizaga, L. F. Errea, A. Maas, L. Maxdez, A. Riera, and

32, 4065(1999. A. Rojas, J. Phys. B3, 2037(2000.
[2] L. F. Errea, A. Ma@s, L. Mendez, |. Rabadg and A. Riera, [4] D. E. Dombrowski, E. B. Desknis and M. A. Picktomic and
J. Phys. B33, L615 (2000. Plasma-Material Interaction Data for Fusiolinternational

062713-8



PROPERTIES AND REMOVAL OF SINGULR . .. PHYSICAL REVIEW A 63062713

Atomic Energy Agency, Vienna, 1994Vol. 5, p. 19. 857 (1999.
[5] H. C. Longuet-Higgins, U. Opik, M. H. L. Pryce, and R. A. [16] L. F. Errea, J. D. Gorfinkiel, A. Maes, L. Medez, and A.
Sack, Proc. R. Soc. London, Ser.244, 1 (1958. Riera, J. Phys. B2, 1705(1999.

[6] M. Baer, S. H. Lin, A. Alijah, S. Adhikari, and D. Billing, [17] L. F. Errea, J. D. Gorfinkeil, C. Harel, H. Jouin, A. Masi L.
Phys. Rev. A62, 032506(2000. Méndez, B. Pons, and A. Riera, J. Phys38 3107(2000.
[71C. A. Mead and D. G. Truhlar, J. Chem. Phy&0, 2284  [1g] B. H. Bransden and M. H. C. McDowelCharge Exchange

(1979. and the Theory of lon-Atom Collisiori®xford Science Publi-
[8] M. V. Berry, Proc. R. Soc. London, Ser. 392, 45 (1984. cations, Oxford, 1992
[9] X. Wu, R. E. Wyatt, and M. D'Mello, J. Chem. Phy&01 [19] L. F. Errea, A. Ma@s, L. Mendez, |. Rabada A. Riera, and
2953 (1994). P. Sanz, Int. J. Quantum Chefito be published

[10] D. Elizaga, L. F. Errea, A. Maas, L. Mendez, A. Riera, and
A. Rojas, J. Phys. B2, L697 (1999.

[11] C. A. Mead, J. Chem. Phyg&8, 807 (1983.

[12] N. Baer and C. Y. Ng, Adv. Chem. Phy®&2, 1 (1992.

[13] L. F. Errea, J. D. Gorfinkiel, A. Maes, and A. Riera, J. Phys. i . hni . ional
B 30, 3855(1997). [23] E. R. Davidson, inModern Techniques in Computational

[14] D. Elizaga, L. F. Errea, J. D. Gorfinkiel, C. lllescas, L. Me Chemistry edited by E. CIemer}nﬁESCO!\/l, Leiden, 199)9
dez, A. Macas, A. Riera, and A. Rojas, Phys. Scr80, 187 [24] J. F. Castillo, L. F. Errea, A. Maas, L. Mendez, and A. Riera,

[20] G. Lubinski, Z. Juhasz, R. Morganstern, and R. Hoekstra, J.
Phys. B33, 5275(2000.

[21] F. T. Smith, Phys. Rev179, 111 (1969.

[22] A. Riera, J. Mol. Struct.. THEOCHENNBOQ, 93 (1993.

(1999. J. Chem. Phys103 2113(1995.
[15] D. Elizaga, L. F. Errea, J. D. Gorfinkiel, C. lllescas, L' Me [25] L. F. Erea, J. D. .Gorfinkeil, E. S. Kryachko, A. Mas, L.
dez, A. Macas, A. Riera, A. Rojas, O. J. Kroneisen, T. Kirch- Mendez, and A. Riera, J. Chem. Phy€6, 172(1997).

ner, H. J. Ldde, A. Henner, and R. M. Driezler, J. Phys38  [26] M. Baer, Chem. Phys. Let85, 112 (1975.

062713-9



