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Relativistic J-matrix theory of scattering
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A systematic development of the relativisfianatrix theory of scattering is presented. The reference Hamil-
tonian includes the Coulomb interaction, and the short-range perturbing potential may include spin-dependent
coupling. The nonrelativistic limit is obtained and shown to be identical to the familiar nonrelatiVisidtrix.
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I. INTRODUCTION The “kinetic-balance condition’{8,10] used by Horodecki
for the small component is a special case of this differential

The J-matrix theory of quantum scattering is an algebraicequation; however, they coincide in the nonrelativistic limit.
method[1-4] which exploits the fact that the unperturbed  The plan of the paper is as follows. In Sec. I, the two-
(referencg Hamiltonian can be tridiagonalized in a certain component relativisti¢.> basis is obtained and the symmet-
complete set of.2 basis functions. The resulting symmetric ric three-term recursion relation is derived. In Sec. lll, the
three-term recursion relation for the expansion coefficients oponrelativistic limit of the theory is obtained and shown to
the unperturbed wave function is solved in terms of approcoincide with the familiar nonrelativistid matrix. This is
priate orthogonal polynomials. The method yields exact scatalso verified in the scattering examples of Sec. IV where we
tering information over a continuous range of energy for aalso calculate the relativistic effects in the phase shift. The
model potential obtained by truncating the given short-rangénatrix elements for a given short-range perturbing potential
potential in a finite subset of this basis. This method has beef@re obtained in Appendix A using the Gauss quadrature ap-
applied successfully to a large number of nonrelativisticProximation[11]. Due to the fact that the basis is nonor-
problems. It is shown to be free from the fictitious reso-thogonal, care must be taken in the calculation of the singu-
nances that plague some algebraic variational scatteringr Green's functions. This is done in Appendix B. In
methods[5]. The group-theoretical foundation of the theory Appendix C, we calculate the tridiagonal matrix elements of
has been exploited to account for the class of analytic poterihe reference Hamiltonian and the basis-overlap matrix,
tials that are compatible with the formalisi®,7]. which are used in obtaining the recursion relation.

Recently, Horodecki introduced a relativistic extension of
the theory in which the unperturbed reference Hamiltonian || THE RELATIVISTIC COULOMB-DIRAC  J MATRIX
included only the kinetic-energy terf8]. The recursion re-
lation obtained is identical to the nonrelativistic one except In this section we make a systematic derivation of the
for a rescaling of the energy variable. He derived an exprege€lativistic theory starting with the basic principles of the
sion for the scattering phase shift that has the correct nonref-matrix formalism applied to the Dirac equation. In atomic
ativistic limit. In this article, we make a systematic deriva- Units, the two-component radial Dirac equation for a charged
tion of the relativistic theory starting from the basic spinor in the Coulomb field-Z/r is [12]
principles of theJ-matrix formalism together with manifest

relativistic invariance. As an extension to Horodecki’'s work, ,Z k d

we include the Coulomb interaction in the reference Hamil- 1-a T YT ar 9(r) 9(r)
tonian and consider short-range perturbing potentials that d 7 (f(l’)):s(f(l’))’
may have spin-dependent coupling. The two-component o f+ —| —1—a2=

relativistic L? basis, which is compatible with the require- rodr r

ments of thel-matrix formalism, is obtained. It turned out to (2.7)

be of the generalized Laguerre-type basis, which has been ) i . o
demonstrated to be numerically more accurate and stable #here a is the fine-structure constant, is the relativistic
variational calculations as compared to other bases like th@nergy, and is the spin-orbit coupling parameter defined by
Slater type[9]. The recursion relation is derived. It differs

from the nonrelativistic relation even for a vanishing Cou- k=*(j+3) forl=j=*3, (2.2
lomb interaction, which is a point of departure from Horo-

decki’'s results. The orthogonal polynomials associated wittwherej is the total angular momentum quantum number. By
this symmetric recursion relation are not calculated analytieliminating the upper component in the coupled equation
cally; however, a numerical solution is obtained. The nonrel{2.1) we obtain a second-order differential equation for the
ativistic limit of the theory is obtained and shown to coincidelower component. This differential equation is not
with the familiar nonrelativistic) matrix. The small compo- Schralinger-like, i.e., it contains first-order derivatives.
nent of the spinor wave function is related to the larger com-Therefore, we seek a general local unitary transformation
ponent by a parametrized first-order differential equationthat eliminates the first-order derivative:
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22

T

n=12,.... (2.13

Therefore, the substitutio(2.12) gives the relativistic spec-

wherep is a function ofr’. The stated requirement gives the tyym

constraint
dqg ) +aK i ,Z dp/dr’ B .
W cog p) FSIH( p)—a E—QW =const.
(2.9

For a global fixed-coordinate transformati@re.,r=r' and
dp/dr’=0), we obtain

sin(2p)=aZlk, (2.5
COS(Zp)Ii\/l—(a’Z/K)Z, (2.6

giving two solutions, one for each sign. A change of sign in

Eq. (2.6) is equivalent to a change of sign gfin Eq. (2.2).
For the upper sign, this transformation takes Exjl) into
the form

_ _a(E z+i)
K k r dr (qg(r))
Z vy d) y _a?Z 6(r)
— o _+___ S R
k r dr K r
gl @
where
y=vKk’—(aZ)?. (2.9
Equation(2.7) gives
el et T
¢(N= o\ = T T T ar) o) 2.9

for e # — y/ k. Substituting this back into the coupled equa-

tions in Eq.(2.7) gives the following Schidinger-like equa-
tion for 6(r) [13,14:

d>  y(y+1) Ze €°-1
~are —rz——Z———z— 6(r)=0. (2.10

This is analogous to the Schiinger-Coulomb equation

d2 1(1+1) z
gt 2——2E A(r)=0 (2.11
with the substitutions
Z2=Z¢, E=(e?-1)/2a% andl=y. (2.12

21-1/2

, n=12,....

aZ

Jf_
1 y+n

(2.19

En=—

For building the relativistid-matrix scattering formalism,
we need to construct an® discrete representation in which
the reference Hamiltonian

z d
_Y A
K rodr
H_
0 Z+y d y _a’Z
“k T dr Kk Tor

(2.195

is tridiagonal so that the operatd+=H,— ¢ gives a symmet-
ric three-term recursion relation for the expansion coeffi-
cients of the wave function. The analytic solution of the re-
cursion relation gives the two “regularized” solutions
{cn(e),sn(€)}n— Of the relativistic wave equatiof®.7) that
behave asymptotically as c@&s( and sinkr), respectively.
Therefore, the)-matrix formalism can be applied to give the
relativistic Smatrix after the addition of the perturbing short-
range potentialV/(r). The L? space is spanned by the two-
component radial functionisy,(r)} ;- whose upper compo-
nent is ¢,(r) and lower componend, (r). The conjugate
space is spanned Hy/,(r)},-, such that

<En|¢m>:f:gn(r)(lsm(r)dr'}'J On(r) Om(r)dr

(2.1

Now, the analogy of the second-order Dirac-Coulomb equa-
tion (2.10 to the Schrdinger-Coulomb equatiof2.11) sug-
gests that the lower component is precisely the nonrelativis-
tic J-matrix Laguerre basis function for the Coulomb
problem withy=1 [1-3]. That is,

On(r)=an(Ar)? e A2 27 1(\r), (2.17
where\ is the basis scale parameter drjf{x) is the gener-
alized Laguerre polynomial. The normalization constapt

will be determined from the normalization condition
(2.16. 06,(r) satisfies the differential equation
d? v(y+1) A(y+n+1) A2
et T T g hn=0.

(2.18

The requirement that the basis-overlap mafuix| ¢,y and
the reference Hamiltonian matrix be at most tridiagonal is

The well-known nonrelativistic bound-state spectrum of Eg.satisfied by the following expression for the upper compo-

(21D is

nent:
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& v d dy; dy
¢n(r)=C 5 + T + dr On(1), (2.19 W(e)=W( ‘/’reg"ﬂirreg) = ’pregd—l:,’reg_ ‘pirregTreg:
where the small-component strength paramé&emnd scale —2a\(e—1)/(e+1). (2.26

parameteré are independent ofi; and C is nonzero. This o ) o )
expression is also motivated by the solution of the wavel hese coefficients also satisfy the Wronskian-like relation
equation in Eqg.(2.9. The caseé=0 is identical to the B o

kinetic-balance condition used in Horodecki's wofg]. Inn-1(CnSp-17Cn-18p) = —WI2, n=1. (2.27)
However, it will be shown below that this choice is neces-Using the matrix elements, ., given in Appendix C we can

sary only in the nonrelativistic limit whera— 0. Using the write the homogeneous recursion relati@24) as
differential and recursion properties of the Laguerre polyno- '

mials, we can write Eq(2.19 as X(NEYC22) +w R R
An —+ hn(x)+bnflhnfl(x)+bnhn+1(x)
)_C(g—)\+2y+n+1 . Xv+u
S r (") =0, n=1, (2.28
a, 2ytn+1 — ; .
-c n <% : 6, 4(r). (2.20 wherex=¢— y/k and the recursion coefficients are
" ) X(0 + N2C2/2) +[U+N2C%(y/ k+ alC)]
Explicitly, this reads a=(y+n+1) o
AC _ X+ 2(ylk+alC
(1) =5 (1+&M)an(nr) e “’2[<2y+n+1>Lﬁ’<xr) —(y+n+1) 1+ (\2C22) (XYU_“HJ“ ),
1—-¢&/IN 2 L 1
T vy (M DL | (229 by=—1V(n+1)(2ytn+2), n=0 (229

The orthogonal conjugate representation defined in Eq\{\”th the constant parameteusv, andw defined as
)\2 Z )\2c2 2
422y

(2.16 requires that

u=aC

o [@-pm-En g ’ o :
O = e Dty O 5 Ol v=1+(AC/2)2(— 1+ £2\2),
— (2=pNnEc? 22
¢l = O D1 e o) 223 w=ataz+ " anye §+§ - (230

where ¢ is an arbitrary constant parameter. Simplicity is _ _ _
achieved by choosing=\. However, we stay with the gen- The symmetric recursiof2.28 can be rewritten as a three-

eral case for now and leave the parameters arbitrary. Thearameter relation in terms of a new rescaled variable. Solv-
normalization constant obtained is ing this recursion relation analytically gives orthogonal poly-

nomials in terms of which the coefficients,,c,} are
a,= AI'(n+1)/2I (2y+n+2). (2.23 obtained. Here, we are content with a numerical solution,
which is more than sufficient for demonstrating the utility
The matrix elements of the tridiagonal reference Hamiltoniarand implications of the theory.
in this basis are shown in Appendix C. The tridiagonal basis- The solution of Eq(2.28 subject to the initial conditions
overlap matrix is also given there. in Eqg. (2.29 gives the J-matrix kinematic coefficients
The expansion coefficients of the wave function that{R'f};j:l and{T.}n_,, defined at the energy— y/« as
solves the wave equatiaf2.7) satisfy the symmetric three-
term recursion relation Ch— ISy . Cpi1Xispiq

"cptis, " chris,

(2.3
Jn,nflhnfl“'Jn,nhn+Jn,n+lhn+1: 0, n=1, (2-24)

whereh,, stands for eithes, or ¢,,. The initial conditions are Alternatively, starting with the initial coefficient®; and

[3] Ty, the rest can be calculated recursively using B4 as
= + \J -
‘]OOSO+‘]01S]. O, HJrl: o \]n’n n,ni 1 and
Jn,n+1 Rn
J00C0+J01C1: _W/ZSO (225)
R-
whereW(e) is the Wronskian of the regular and irregular Tn:Tn—l_-T—a n=1. (2.32
solutions of the free Dirac problem: Rq
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These will be the coefficients that enter in the calculation ofing from Eq.(2.1) to Eq. (2.7). The unitary transformation
the Nth-order relativisticS matrix, defined in Egs.(2.3—(2.6) results in the following wave

equation, which replaces ER.7):
+On-1n-1(8)In-1n(8)Ry(€)

1
SN (g)=Ty_1(e , ~ Z d
) ) g o a(e) I i@ Ra (e) -2 a®(r) —a( + T )
(2.33 r (cﬁ(r))
. . . Z vy d\ vy o’z - o(r)
wheregy_1n-1(&) is the finite Green’s function in the con- —al—+-———| ——2—+a?V(r)
: ’ = N-1 . . k r dr] «k r
jugate space representati¢g,(r)},—o, which carries the
dynamical effects of the short-range potental ¢(f) (2.35
“lom ) '

ngl,Nfl(s):<EN71|(HO+V_8)71|EN71>' (2.34

Due to the fact that the basis of thé space{y,(r)}n_o is .
nonorthogonal, the finite G_reen's function shoul_d be calcu- vnm: azf en(r)V(r)am(r)dr
lated as shown in Appendix B. Given the matrix elements 0

V., of the potential, we may use any one of several alterna- "

tive expressions fogy_1n-_1(&) given in Appendix B. +a2f Bn(NV(r) dpm(r)dr. (2.36
Now, for the perturbing short-rangealarpotentialV/(r), 0

we replace—Z/r by the expression-Z/r +V(r) when go-  With the help of Eqs(2.17) and(2.21), this can be written as

Therefore, the matrix representation\bfis

- 2 o - 1+&IN\2
Vo=~ 28 f eyy“”Lﬁ’“(y)L%V”(y)vw/x)dwxazcz( f 2nam
0
_ 2
(2y+n+1)(2'y+m+1)f YyZVL'M(y)LZV(y)V(yn\)dy+(1+§/)\ (n+1)(m+1)

xf e Yy2'L2Y (y)LZ . (y)V(y/N)dy+ =& (2y+n+1)(m+1)
0 n+1 y +l y y y 1+§/)\ Y

A 2y 2y 2y
(2y+m+1)(n+1) . € LaT,(y)LE (y)V(y/N)dy|,

~ 3
Xfo IYL(y)LE (()V(yIN)dy+ T

(2.3

wherey=\r. To evaluate these integrals we utilize a scheme based on Gauss quadrature as summarized in Appendix A. The
result of this computation is

2

~ o
vnmz7[¢(27+n+2)(2y+m+2)|:ﬁ7r§2+\/anﬁyﬁn 1—Vm2y+n+2)F272 — n(2y+m+2)F37 2]

(aNC)2 [ 1+ &IN\? 1— &N
+ a2 T) \/(27+n+1)(2y+m+1)F§7m+ 1+g/)\ \/ (N+1)(M+1)FAY g+ m)
X[V(M+1)(2y+n+1)F 7+ (n+1)( 27+m+1>Fﬁ+1m]] (2.39

whereF ! is the integral defined in Appendix A and evalu- In Appendix A, we also include details for the general case
ated in Eq.(A12) as of a spin-dependent short-range potential matrix

Vii(r) Yy (n

M—1 Vin=|_ -
Vi(r) Vy(r)

Fro=> ALALN(elIN)=FL, for M>N.
k=0
(239  whereV  (r)=V, (r).

(2.40
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FIG. 1. Result of the numerical scheme as a
plot of the nonrelativistic limit of 1— SN(&)| vs
E for the first scattering example in the presence
of the short-range potenti®i(r)=7.52e"". The
energy variables are related B (e — y/ k)/ a?
and we took the parameter valugs=0, x=I
=0,a=10"3 \=2,£=0,C=—a/2,N=30.

E(au)
Ill. THE NONRELATIVISTIC J-MATRIX LIMIT E-p ~
I+n+1 —+ ——=hy(E)+b,_1h,_1(E
It is instructive at this point to compare the nonrelativistic ( JE+u T Era) (B Po-afn-a(E)
limit of Eq. (2.28 with the nonrelativistic)-matrix recursion -
relation, which read$3] +byh,11(E)=0, (3.3
(I+n+1) E_X2/8+ \Z12 h.(E)+b, ;h, (E) where
n = - n n—1Mn—1
E+X%8 E+X%8 LGN zg 2(C 2(_1+ ¢
~ a 2 kK 2 \a A2
+byh,1(E)=0, n=1, 3.0
N . _ C[N\% zg) aP[c\? . ¢
where\ is the nonrelativistic basis scale parameter bpds p=- 2\ 27 %" 2. 1+ N2/’
the same as that given in E@.29 with y replaced byl. It
is obvious that without some limiting process neither a 1
choice of parameters nor a redefinition would put the recur- W=NZ| 1+ —|+INE—| =+ — (3.9
sion (2.28 into the form given by(3.1). The nonrelativistic 2

limit of the development in the previous section is achieved
by taking the limita—0 (i.e., c—~), which gives

This nonrelativistic limit of the recursion relation can be

identified with Eq.(3.2) if we requirep=1 and thel depen-

y=|«|=I, dence i

nWw vanishes. All of these requirements gige=0,

which results in the recursion relation

e—ylk=eg—1=a’E. (3.2
Moreover, in the same limit, the small spinor component
¢n(r) will be negligible compared to the larger component
0,(r). That is, the small-component strength param€tér

Eqg. (2.19 will be of the order ofa. Taking this limit in the
relativistic recursion relation defined in EqR.28—(2.30
and using Eq(3.2) above, we obtain

(I+n+1)

E+(\?C/2a)(1+Cla)
E—(N°C/2a)(1+Cla)

\Z(1+Cla)
T E—(N2CI2a)(1+ Cla)

hn(E)+ by 1hn_1(E)

+b,h,41(E)=0. (3.5

-S| !

0.5

FIG. 2. Plot of the nonrelativ-
istic [1—S{H(E)| vs E resulting
from the standard nonrelativistic
J-matrix calculation for the same
problem as in Fig. 1 with the same
parametersZ=0, |=0, A=2, N
=30.
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IENG . -
FIG. 3. Superposition of the two plots in Figs.

1 and 2, with the exception that the fine-structure
parametera is chosen to be large enougla (
=0.2) so that relativistic effects become relevant.

-

- S5 (E)| l

!
1
1
i

0.5

E(au)

Therefore, this equation will be identical to the nonrelativis-aim of this exercise is to demonstrate the accuracy of the
tic recursion(3.1) if we make the following choice of param- nonrelativistic limit of the theory and give first-order relativ-

eters: istic effects in the scattering phase shift. We take the physi-
cal parametergZ =0 and|x|=1=0. The other parameters are
C=-al2, chosen in the nonrelativistic limit as
A=NX. (3.6 a=10"%, \=2, =0, C=-al2, N=30.
(4.2

In summary, the nonrelativistid&-matrix limit is achieved
by making the following choice of parameters in the relativ-The numericalJ-matrix scheme developed in Rdfl7] is
istic J-matrix formalism developed in the previous section: used to calculate the relativist® matrix. The input to the
scheme comes from the matrix elements of the reference

a—0, Hamiltonian[Eq. (C7)], the basis-overlap matripEgs. (C1)
B and(C4)], and the matrix elements of the short-range poten-
|«]=1, tial [Eq. (2.39].
£=0 Figure 1 shows the results of the numerical scheme
: as a plot of[1-SN(g)| vs E. Figure 2 is a plot of
C=—al2, 37 |1-SW(E)| vs E that is obtained by the standard nonrela-

tivistic J-matrix calculation for the same problem with the
with the nonrelativistic energf=(e— y/k)a?. Note that same parametef€=0,|=0, x=2, andN=30). The energy
when taking the limite— 0 one should keep relativistic en- variables are related b= (e — y/«)/a?. Figure 3 is a su-
ergy termg(including potential termsup to ordera? because  perposition of the same two plots, with the only exception
at the end thex? factor will be divided out. The kinetic- that the fine-structure parameter is chosen to be large
balance condition used by Horodecki is therefore requiregnough @=0.2) so that relativistic effects become relevant.

only when taking the nonrelativistic limit. Aside from variations in the overall structure of the phase
shift, it should be noted that resonance shifts are prominent
IV. ILLUSTRATIVE EXAMPLES in the relativisticS matrix. Sharp resonances, like the one

] o . seen on the graph &=3.42a.u., are shifted only slightly.
We consider two examples. The first is a scattering by arhe direction of the shift is also to be noted. It is not only in
short-range scalar potentidl(r)=7.5r%e™" [15,16. The one direction.

2 T T

FIG. 4. Plot of the nonrelativistic limit of1
—SMN)(g)| vs E for the second example of Cou-
- lomb scattering in the presence of the short-range
potential with spin-dependent coupling as given
in Eq. (4.2). The parameter values ae=—1,
k=1=1, a=10"% \=1, £€&=0, C=—a/2, N
=30.

h-8®e)| ]

0.5
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FIG. 5. Plot of the nonrelativ-
istic [1—S(3(E)| vs E for the
same problem as in Fig. 4 with the
parametersZ=—1, |=1, \=1,
N=30.

-S@E)| ]

0.5 1

The second example is that of an electron scattering off avith respect to a weight functiop(x) as
point charge in the presence of a perturbing short-range po- b
tential that includes spin-dependent couplings. The potential J P(X)Pn(X) Pm(X)dX= Sy . (A1)
considered is a

f(x) is expandable in this basis as

f(x>=§ dnPn(X) (A2)

5 =2

24T
o 3 ree". (4.2

V(r)z(

Figures 4—6 show the results in an exact parallel to those of

the first example. The parameter values taken are and p,(x) is a polynomial of ordem. These polynomials
Z=—1, k=l=1, a=10"% r=1, &=0 satisfy the symmetric three-term recursion relation

XPa(X)=a.p(X)+ D 1pn_1(X)+b X), n=0,
Ce—al2. N=30. 3 Pn(X) =8nPn(X) +bn_1Pn-1(X) +PnPn1(X) %3

Similarly, the fine-structure parameter is subsequently taketpgether with the initial conditiopy(x)=1. The recursion

to be large enougha(=0.2) to bring out the relativistic ef- coefficients{a, ,E)n} are elements oR. Associated with this

fects as shown in Fig. 6. space is the following infinite dimensional real tridiagonal
symmetric matrix:
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APPENDIX A: ORTHOGONAL POLYNOMIALS, GAUSS B, X X . (Ad)
QUADRATURE, AND THE POTENTIAL MATRIX 2
X X X
Let f(x) be an element of a redl’[a,b] vector space
spanned by the complete set of orthonormal basis 0 X X X
{Pn(X)}n=0, Wherexe[a,b]CR. Orthogonality is defined X X

1-5%z)| FIG. 6. Superposition of the two plots in Figs.
H 4 and 5, with the only exception that the fine-
BN 0] structure parametew is chosen to be large

enough @=0.2) so that the relativistic effects

0. become relevant.
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For numerical computations, however, the space |s truncateghere the eigenvalue; and the corresponding normalized

to a finiteN-dimensional space spanned {p(x)}h-a. The
tridiagonal matrix in Eq(A4) becomes a finit& X N matrlx
H. The real eigenvalues f, designated as the st }n_d,
are the zeros of the polynomigh(x); i.e., pn(g,)=0. In
this setting, the Gauss quadrature approxima[m] states
that

N—1

[Coat000x=3, wnften.

(A5)

The “numerical weight” w,, is the square of the zero com-
ponent of the normalized eigenvectortdf{ A ,}N_3, asso-
ciated with the eigenvalue,. That is,

wp=A3,. (AB)
One can also show that
Puen)=Aun/Aon, n,k=0,1,..N—1. (A7)

The integral approximation of EqA5) becomes exact if
f(x) is a polynomial of degrees2N—1.

For our present work, we consider the case of the normal-

ized Laguerre polynomials

Pn(X)=\T(v+ I (n+1)/T(n+v+1)LY(X) (A8)

with the following definition for the density function:

p(X)=x"e XT(v+1). (A9)
The recursion coefficients are
=2n+v+1,
=—J(n+1)(n+v+1). (A10)

The integrals in Eq(2.37) for the calculation of the matrix
elements of the potential are in one of the following two
forms:

f:e*XxVLr’;(x)L,’;(X)V(x/)\)dx
f:efxx”*lL,”](x)LrVn(x)V(x/)\)dx. (A11)

Using Egs.(A5)—(A7), we can define the symmetric tensor
Fro="T(n+ LT (m+1)/T(n+ v+ 1T (m+v+1)

<.

= J;pmpn(xmm(x)v(x/x)dx

e X LX) LL(x)V(X/\)dx

N—-1

=2 Andnd (e =Fr,, (A12)

eigenvector{A” }N_1 are associated with the tridiagonal

matrix (A4) whose recursion coefficients are defined in Eq.
(A10) and parametrized by.

Therefore, the first integral in EGA11) is proportional to
F.m- The second integral can be evaluated by one of three
alternativesi(1) Using the property of the Laguerre polyno-
mials thatL’=L"*"*—L'*1 in terms of F/ /%, Fui1

Fr*1 and F”+l (2r)1_uls'|ng the recursmnnmp'ropgpb;_/i_l;
n

n—1m n—1m— 1
=2n+v+1)L;—(n+v)L;_;—(n+1)L;,,, in terms of

nms Fooim, and Foo s (3) directly in terms ofR/,,
where

N—1

n= 2 Al sV (E]=R,. (ALY)

The result of calculating the integrals in E@®.37) for

V.m along these lines, with extra attention given to the ma-
nipulation of indices, is given by Eq2.38. The general
ansatz is

j:e‘xx"Lﬁ(x)LrVn(x)V/(x/)\)dx

- I'oc+1)
C T(p+ DT (v+1)

XL (n+u+1)T(m+v+1)/T(n+1)T'(m+1)
><fompo(x)pg(x)p;(x)V(x/x)dx

_ (ot
 T(p+1)(v+1)

X VI'(n+p+ 1) (m+v+1)/T(n+1)I'(m+1)

N— 1( Ok)z

XE —— AR

> NEAL » N(elIN).

(A14)

For the general short-range potential with spin-dependent
coupling as given by Eq2.40, we proceed as follows. Ap-
plying the global fixed-point transformation defined by Egs.
(2.9 —(2.6) gives

o W (r)  Wo(r)
V(i) —W(r)=| . - , (A15)
Wo(r) W_(r)
where
o _ VitV (eZe vy VTV
= 2 ke Tk 2 ’
= Y~ aszT_’\?ll
Wo=— Vi = ————. (A16)

Therefore, the matrix elements of this potential are
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Here, we give only the results for the case whétg)

=V,f(r) andV, is a constant X2 symmetric matrix. The
transformed potential matrix in this case is

Vi azfoxenu)\?v,(r)em(r)dr

+a2f:¢n<r>\7v+<r)¢m<r>dr

e ~ V(r)—W(r)=| . ~ | f(r), (A18)
+a2f On(1)Wo(1) (1) T W W_
0
+a2f°°¢ (1)W(r) B(r)dr. (A17)  Where the entrie§V.. ,W, are now constant. The resulting
o " " potential matrix is

o

~ a“W_
Vo= —75—[V(2y+n+2)(2y+m+2)G2% >+ nmG {5, 1 — Vm(2y+n+2)G3% 2% —n(2y+m+2)G2r 2]

1+&/N\2

. (aAC)Z\M
2

2

1— &N
1+ &N

) V(n+1)(M+1)GAY g i1+

23/
V(2y+n+1)(2y+m+1)Gil+ 1+§/>~

b
X[N(M+1)(2y+n+1)G2% 1 +V(n+1)(2y+m+1)G2Y }+%C\N°(1+§/A)H(2y+m+1)

1—- & ) 1— & a®>\CW,
y+1_ \/7 27+1 2y+1 - -
17 En — - (m+1) |G m(2y+m+1)G;, 1+§/)\ \/(m+1)(27+m+2)Gn,m+1 + 7] (14 E&IN)
x{(2y+n+1)— —— 1=&n (N+1)|G2% = n(2y+n+1)GA + 1- & Jin+1)(2y+n+2)G27 L (A19)
Y 1+ €N n,m Y 1+ & Y m,n+1/
|
where done in a basis in which the representation of these operators
is diagonal. That is to say, we solve the eigenvalue problem
N—1
Gon= 2 ABA LS (elIN) =G (A20) Hixn) =enlxn), n=0,1,...N—1. (B3)
Since the matrix representations of the relevant operators are
APPENDIX B: THE FINITE GREEN'S FUNCTION in the basis{(r)} o rather than{x,(r)},—,, Wwe can
On—1n—1(£) IN A NONORTHOGONAL BASIS write this equation in the form
Let {¢n(r)}n_ be the basis of ah? space that supports  n-1 N—1

a Hermitian representation for the reference Hamiltonian 2 <¢m|H|¢k><lﬁk|Xn>—8n2 (Dl ) Wlxn),  num

Ho. The conjugate orthogonal space is spanned by k=
{a(D}¥oo, whe~re<¢n|¢m>— Snm- Given a short-range per- —01,...N—1. (B4)
turbing potentialV(r) whose matrix elements are

We have used the completeness property of the basis:

vnm: <¢n|v|¢m>v- n7m$N_1’ (Bl)

0 otherwise ; |¢k><$k|:2k [l =1 (B5)

the finite Green’s functiogy_1n-1(2) is defined by
wherel is the identity.

In-1n-1(2) = (U1l (H=2) " Y1), (B2) In matrix notation, Eq(B4) reads
- N—1 N—1
whereH is theN X N full Hamiltonian matrixHy+V andzis H _ 0 nm=0.1 -1
a complex number. Manipulation of Green’s functions in- g midic= 8“2 midic ... N=1,
volving the inverse of operators with nonempty null space is (B6)
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where{{}R=¢ is the normalized eigenvector associated with A% =%,9y, n=01,...N-2, (B14)
the eigenvalues,, and Q,,, is the overlap matrix element
(¢ ) - Equation(B6) is a generalized eigenvalue equation

in the {4,(r)} basis H[ZM=%,Q[7". (B15)

HIZ™) = 2,0 L"), (B7)
Similarly, we cEzfine the corresponding eigenvector matrix
Let us define the eigenvector matr, == (in|xm). | nm={n={¥nlbm) that simultaneously diagonalizés and

Then Eq. (B6) reads HI')mn=en(QI)my, which when  Q,
multiplied from the left byI'", wherel'| = (x| ¢m), gives

(TTHT) = ea(TTOT) e, N,mM=0,1,..N—1. (B8) (TTAT) nm=Tnnm  and (TTOT) =71 81m, 516
The matrixI" simultaneoushdiagonalizeH and (),

and can also write,=7,/7,. Then, it can be shown that

T _ T _
(F'HD)pm= 706hm - and (IO =706 (B9 e following is an alternative but equivalent form for

_1n-1(E):
Henceforth, we can write,,= »,,/7, and Eq.(B2) can be In-1n-1(F)
written as
N—-2 N72~ N—-2
N-1 o em—2Z Imé, Me,—z
= o ) 1w —»-1 Q| m=0 m=0 m=0
ngl,N—l(Z) i,j,;m=o <¢N71|X|><X||'/In><‘/fn|(H 2) ngl,Nfl(Z):m i —| w1 i ,
_ _ ITe—2z Imé¢,| Me,—z
Xl‘f’m><‘/’m|Xj><Xj|wN71> n=0 n=0 n=0
(B17)
N—-1
= '2—0 In-1j ~
b where{&,}N" and{Z,}\_3 are the eigenvalues of the over-
XATTL(H=20) "yl 3T g - lap matrices) and(}, respectively. In the orthogonal basis,
(B10) Eq. (B17) can be written as
Now N-2
g,z
N-1 S 1 8 m=0
S T [(H=2Q) Yyl = —t— == 1 On-1n-1(2)= y=7—— (orthogonal basis
n,m=0 hn nmem,) N —ZT; T &i—Z I en—2
(B11) n=0

(B19)
Therefore, we finally obtain

N—1 12 N—1 5 Combining Eqgs(B12) and (B17), we obtain the following
I'N-1j 1TN-1;

J relation:
_in-1(2)= = — . (B12
In-1n-1(2) izo 27, izo P (B12)
N—2
For an orthogonal basis, that is, a self-dual basis whigre _ O E,—¢
=, , the overlap matrix is just the identity matrixhence r2 .. —. ﬂ m=0 (B19)
=1, pi=¢;, and the eigenvectors are orthogoriak., N-1k™ ki N-1
I''T'=TTT=I). In this orthogonal basis, we can write ngosn_sk
n#k
N—1 2
In-in-1(2)= > —— (orthogonal basis
1m0 (B13) APPENDIX C: THE MATRIX ELEMENTS OF THE
REFERENCE HAMILTONIAN
LetH (£) be the submatrix off (Q) obtained by deleting Using the two components of the basis functions given in

the last row and last column, respectively. The eigenvalu&gs. (2.17 and (2.21) and with the help of Laguerre-
and generalized eigenvalue equations in the truncated spaqelynomial propertie§18], we get the following integral for-
which parallel those of Eq¥B3) and (B7), are mulas which are useful for subsequent calculations:
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f:&n(r)am(r)dr=(7+n+ 1) Sam

SRy D)5y
1
— E\/(n+ D(2y+n+2)6ym-1,
€y
w1 l
fo On(r)Om(r)dr= 5 énm, (€2

o0 d N
f Hn(r)d—am(r)dr=—\/n(2y+n+1)5n,m+1
0 r 4

\
— 2 V(n+1)(2y+n+2) 6y ms

°° d
:_fo Hm(r)aﬁn(r)dr, (C3

fmcﬁn(rwm(r)dr:{(wn+1><x<:/2>2[1+(§/>x>2]
0
+NEYC?2} Symt 3VN(2y+Nn+1)

X(NCI)Z[1—(&IN)?] S me1
+3J(n+1)(2y+n+2)(\C/2)71

—(&IN)*18nm-1, (CH
Joe 7|y
On(r) ¢m(r)dr=—-| (y+n+1) =+ y|dnm
AC £
+T\/n(2y+n+1) 1_X)5“’m+1
\C
—T\/(n+1)(2y+n+2)
X 1+§ ) (ChH
N n,m—1»
<</fn|<lfm>=foc¢n(r)¢>m(r)dr+fwﬂn(r)ﬂm(r)dr.
0 0
(CH
After some manipulations, we obtain the following:
)\ 2
(Honn=(y+n+1){ 2 1—(7) 1+ %—)
A2 Z¢ yC
—aC ?‘{‘7 —al\ 1+0(_K (aZ+Cy§/2),

PHYSICAL REVIEW A63 062708

1
(Honni1=— 5N+ 1)(2y+n+2)

y[, (ACV¥ € N2 Zé&
I« 1*(7) (1 rz) ¥ C(?_T)]*
2 2
(Ho)n,n—1=—%\/n(2y+n+l) % 1+ %) (1_)%_”
N2 Z¢
+aC| =—— (C7)
2 kK

Thus, the representation dfHy— ¢ is the tridiagonal ma-
trix defined by

y y AC\2[ &
Jn'n=—(y+n+1) _2;‘{' e+—||1+ 7) (l+)\2
\?  Z¢ &
+aC ?+7 ]—a)\yC(E-l-—
1 4
_ 2 Sl 2
2)\§'yC 8+K a“\NZ,
1
‘Jn,n+1:_§\/(n+1)(2'}’+n+2)
y y AC\? &
><|2;— e+ — 1+ 7) ( l+xz
N2 Z¢
+aC 7—7)],
1 Y Y
Jn’n,1=—§ n(2y+n+1)><[2;— 8+;
x| 1+ )\C)Z 1+§2 +aC Aoz
2 I AP A

(C8)

If, for the sake of simplicity, we choose=\ then Eq.(2.21)
gives

dn(r)=ACan(2y+n+1)(Ar)’e M2L2Y(xr) (C9)

and the tridiagonal matrix representation above simplifies to

C\ A
—a 5

y A2C?
(Ho)n,n: (

(2y+n+1)| | 1-—

—a®\NZ— %Ik,

(HO)n,n+1:

>:I\<

1 [ A z)
\/(n+1) (2y+n+2) { +aC)\(———

L \/n(2y+n+1)

N Z
+aC)\(2 K”
(C10

(Ho)n,nflz
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Similarly,

A2C2 A2C2
s—z)(l—F )—I— Y
K 2 K

Jnn=—(2y+n+1)

“« K 2 Y\ € K a !
1 T Z X\
Jn,n+1:§\/(n+1)(27+n+2){ 8_; +alC < 2/
L n@yrni D)o 2] ranc| 22
‘]n,nfl—z n(2y+n+1) e~ + a\ -5
(C1y

~ a?

Vim=

(aNC)2W,
t— V(2y+n+1)(2y+m+1)G3Y +

az)\CVVO

+———[(2y+n+ )G —Jn(2y+n+1)GZ 4 1.

PHYSICAL REVIEW A 63 062708

Moreover, the matrix elements of the scalar potential given
in Eq. (2.38 simplify to

~ a2
Vnmz7
+ynmPY (2 —Jm(2y+n+2)Fi?
—n(2y+m+2)F2712
+(AC)2V(2y+n+1)(2y+m+1)F27 ],
(C12

while those for the potential with spin-dependent coupling
constant in Eq(A19) simplify to

[V(2y+n+2)(2y+m+2)F37 2

W_
T[J(2y+n+2)(2'y+m+2)G§’7+2+\/ MG 2 —\m(2y+n+2)G2% 2 —n(2y+m+2)G27 2]

az)\CWO
——— [Ry+m+ )G = ym(2y+m+ 1)GiY ]

(C13

[1] E. J. Heller and H. A. Yamani, Phys. Rev.9 1201(1974).

[2] E. J. Heller and H. A. Yamani, Phys. Rev.9 1209(1974).

[3] H. A. Yamani and L. Fishman, J. Math. Phys, 410(1975.

[4]J. T. Broad and W. P. Reinhardt, Phys. Rev.1A 2159
(1976.

[5] E. J. Heller, Phys. Rev. A2, 1222(1975.

[6] P. C. Ojha, Phys. Rev. 84, 969(1986.

[7] A. D. Alhaidari, J. Phys. A33, 6721(2000.

[8] P. Horodecki, Phys. Rev. A2, 052716(2000.

[9] S. P. Goldman, Phys. Rev. 40, 1185(1989.

[10] K. G. Dyall, I. P. Grant, and S. Wilson, J. Phys.18, 1201
(1984).

[11] V. I. Krylov, Approximate Calculation of Integral®lacmillan

New York, 1962; R. W. Haymaker and L. Schlessinger, in

The PadeApproximation in Theoretical Physicedited by G.
A. Baker and J. L. GammeAcademic, New York, 1970

[12] S. P. Goldman, Phys. Rev. &1, 3541(1985; B. Goodman
and S. R. Ignjatovic, Am. J. Phy®5, 214 (1997; R. P.
Martinez-y-Romerojbid. 68, 1050(2000.

[13] L. C. Biedenharn, Phys. Re®26, 845(1962.

[14] B. G. Wybourne,Classical Groups for Physicist§Wiley-
Interscience, New York, 1974pp. 212-214.

[15] V. A. Mandelshtam and H. S. Taylor, Phys. Rev. Lét@,
1932(1993.

[16] C. H. Maier, L. S. Cederbaum, and W. Domcke, J. Phy&3B
L119 (1980.

[17] H. A. Yamani, A. D. Alhaidari, and M. S. Abdelmonefan-
published.

[18] W. Magnus, F. Oberhettinger, and R. P. Sdformulas and
Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, New York, 1966

062708-12



