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Relativistic J-matrix theory of scattering
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A systematic development of the relativisticJ-matrix theory of scattering is presented. The reference Hamil-
tonian includes the Coulomb interaction, and the short-range perturbing potential may include spin-dependent
coupling. The nonrelativistic limit is obtained and shown to be identical to the familiar nonrelativisticJ matrix.
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I. INTRODUCTION

TheJ-matrix theory of quantum scattering is an algebr
method@1–4# which exploits the fact that the unperturbe
~reference! Hamiltonian can be tridiagonalized in a certa
complete set ofL2 basis functions. The resulting symmetr
three-term recursion relation for the expansion coefficient
the unperturbed wave function is solved in terms of app
priate orthogonal polynomials. The method yields exact s
tering information over a continuous range of energy fo
model potential obtained by truncating the given short-ra
potential in a finite subset of this basis. This method has b
applied successfully to a large number of nonrelativis
problems. It is shown to be free from the fictitious res
nances that plague some algebraic variational scatte
methods@5#. The group-theoretical foundation of the theo
has been exploited to account for the class of analytic po
tials that are compatible with the formalism@6,7#.

Recently, Horodecki introduced a relativistic extension
the theory in which the unperturbed reference Hamilton
included only the kinetic-energy term@8#. The recursion re-
lation obtained is identical to the nonrelativistic one exc
for a rescaling of the energy variable. He derived an exp
sion for the scattering phase shift that has the correct non
ativistic limit. In this article, we make a systematic deriv
tion of the relativistic theory starting from the bas
principles of theJ-matrix formalism together with manifes
relativistic invariance. As an extension to Horodecki’s wo
we include the Coulomb interaction in the reference Ham
tonian and consider short-range perturbing potentials
may have spin-dependent coupling. The two-compon
relativistic L2 basis, which is compatible with the require
ments of theJ-matrix formalism, is obtained. It turned out t
be of the generalized Laguerre-type basis, which has b
demonstrated to be numerically more accurate and stab
variational calculations as compared to other bases like
Slater type@9#. The recursion relation is derived. It differ
from the nonrelativistic relation even for a vanishing Co
lomb interaction, which is a point of departure from Hor
decki’s results. The orthogonal polynomials associated w
this symmetric recursion relation are not calculated anal
cally; however, a numerical solution is obtained. The non
ativistic limit of the theory is obtained and shown to coinci
with the familiar nonrelativisticJ matrix. The small compo-
nent of the spinor wave function is related to the larger co
ponent by a parametrized first-order differential equati
1050-2947/2001/63~6!/062708~12!/$20.00 63 0627
f
-
t-
a
e

en
c
-
ng

n-

f
n

t
s-
l-

,
-
at
nt

en
in
e

-

h
i-
l-

-
.

The ‘‘kinetic-balance condition’’@8,10# used by Horodecki
for the small component is a special case of this differen
equation; however, they coincide in the nonrelativistic lim

The plan of the paper is as follows. In Sec. II, the tw
component relativisticL2 basis is obtained and the symme
ric three-term recursion relation is derived. In Sec. III, t
nonrelativistic limit of the theory is obtained and shown
coincide with the familiar nonrelativisticJ matrix. This is
also verified in the scattering examples of Sec. IV where
also calculate the relativistic effects in the phase shift. T
matrix elements for a given short-range perturbing poten
are obtained in Appendix A using the Gauss quadrature
proximation @11#. Due to the fact that the basis is nono
thogonal, care must be taken in the calculation of the sin
lar Green’s functions. This is done in Appendix B.
Appendix C, we calculate the tridiagonal matrix elements
the reference Hamiltonian and the basis-overlap mat
which are used in obtaining the recursion relation.

II. THE RELATIVISTIC COULOMB-DIRAC J MATRIX

In this section we make a systematic derivation of t
relativistic theory starting with the basic principles of th
J-matrix formalism applied to the Dirac equation. In atom
units, the two-component radial Dirac equation for a charg
spinor in the Coulomb field2Z/r is @12#

S 12a2
Z

r
aS k

r
2

d

dr D
aS k

r
1

d

dr D 212a2
Z

r

D S g~r !

f ~r ! D5«S g~r !

f ~r ! D ,

~2.1!

where a is the fine-structure constant,« is the relativistic
energy, andk is the spin-orbit coupling parameter defined

k56~ j 1 1
2 ! for l 5 j 6 1

2 , ~2.2!

wherej is the total angular momentum quantum number.
eliminating the upper component in the coupled equat
~2.1! we obtain a second-order differential equation for t
lower component. This differential equation is n
Schrödinger-like, i.e., it contains first-order derivative
Therefore, we seek a general local unitary transformat
that eliminates the first-order derivative:
©2001 The American Physical Society08-1
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r 5q~r 8! and S g~r !

f ~r ! D5S cos~r! sin~r!

2sin~r! cos~r!
D S f~r 8!

u~r 8! D ,

~2.3!

wherer is a function ofr 8. The stated requirement gives th
constraint

dq

dr8 Fcos~2r!1
ak

q
sin~2r!2a2

Z

q
2a

dr/dr8

dq/dr8G5const.

~2.4!

For a global fixed-coordinate transformation~i.e., r 5r 8 and
dr/dr850!, we obtain

sin~2r!5aZ/k, ~2.5!

cos~2r!56A12~aZ/k!2, ~2.6!

giving two solutions, one for each sign. A change of sign
Eq. ~2.6! is equivalent to a change of sign ofk in Eq. ~2.2!.
For the upper sign, this transformation takes Eq.~2.1! into
the form

S 2
g

k
2aS Z

k
1

g

r
1

d

dr D
2aS Z

k
1

g

r
2

d

dr D g

k
22

a2Z

r

D S f~r !

u~r ! D

5«S f~r !

u~r ! D , ~2.7!

where

g5Ak22~aZ!2. ~2.8!

Equation~2.7! gives

f~r !5
2a

«1g/k S Z

k
1

g

r
1

d

dr D u~r ! ~2.9!

for «Þ2g/k. Substituting this back into the coupled equ
tions in Eq.~2.7! gives the following Schro¨dinger-like equa-
tion for u(r ) @13,14#:

F2
d2

dr2 1
g~g11!

r 2 22
Z«

r
2

«221

a2 Gu~r !50. ~2.10!

This is analogous to the Schro¨dinger-Coulomb equation

F2
d2

dr2 1
l ~ l 11!

r 2 22
Ẑ

r
22ÊG û~r !50 ~2.11!

with the substitutions

Ẑ5Z«, Ê5~«221!/2a2, and l 5g. ~2.12!

The well-known nonrelativistic bound-state spectrum of E
~2.11! is
06270
-

.

Ên52
Ẑ2

2~ l 1n!2 , n51,2, . . . . ~2.13!

Therefore, the substitution~2.12! gives the relativistic spec
trum

«n5F11S aZ

g1nD 2G21/2

, n51,2, . . . . ~2.14!

For building the relativisticJ-matrix scattering formalism,
we need to construct anL2 discrete representation in whic
the reference Hamiltonian

H05S 2
g

k
2aS Z

k
1

g

r
1

d

dr D
2aS Z

k
1

g

r
2

d

dr D g

k
22

a2Z

r

D
~2.15!

is tridiagonal so that the operatorJ5H02« gives a symmet-
ric three-term recursion relation for the expansion coe
cients of the wave function. The analytic solution of the r
cursion relation gives the two ‘‘regularized’’ solution
$cn(«),sn(«)%n50

` of the relativistic wave equation~2.7! that
behave asymptotically as cos(kr) and sin(kr), respectively.
Therefore, theJ-matrix formalism can be applied to give th
relativisticSmatrix after the addition of the perturbing shor
range potentialṼ(r ). The L2 space is spanned by the two
component radial functions$cn(r )%n50

` whose upper compo
nent is fn(r ) and lower componentun(r ). The conjugate
space is spanned by$c̄n(r )%n50

` such that

^c̄nucm&5E
0

`

f̄n~r !fm~r !dr1E
0

`

ūn~r !um~r !dr5dnm .

~2.16!

Now, the analogy of the second-order Dirac-Coulomb eq
tion ~2.10! to the Schro¨dinger-Coulomb equation~2.11! sug-
gests that the lower component is precisely the nonrelati
tic J-matrix Laguerre basis function for the Coulom
problem withg5 l @1–3#. That is,

un~r !5an~lr !g11e2lr /2Ln
2g11~lr !, ~2.17!

wherel is the basis scale parameter andLn
n(x) is the gener-

alized Laguerre polynomial. The normalization constantan
will be determined from the normalization conditio
~2.16!. un(r ) satisfies the differential equation

F2
d2

dr2 1
g~g11!

r 2 2
l~g1n11!

r
1

l2

4 Gun~r !50.

~2.18!

The requirement that the basis-overlap matrix^cnucm& and
the reference Hamiltonian matrix be at most tridiagonal
satisfied by the following expression for the upper comp
nent:
8-2
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fn~r !5CS j

2
1

g

r
1

d

dr D un~r !, ~2.19!

where the small-component strength parameterC and scale
parameterj are independent ofn; and C is nonzero. This
expression is also motivated by the solution of the wa
equation in Eq.~2.9!. The casej50 is identical to the
kinetic-balance condition used in Horodecki’s work@8#.
However, it will be shown below that this choice is nece
sary only in the nonrelativistic limit wherea→0. Using the
differential and recursion properties of the Laguerre poly
mials, we can write Eq.~2.19! as

fn~r !5CS j2l

2
1

2g1n11

r D un~r !

2C
an

an21

2g1n11

r
un21~r !. ~2.20!

Explicitly, this reads

fn~r !5
lC

2
~11j/l!an~lr !ge2lr /2F ~2g1n11!Ln

2g~lr !

1
12j/l

11j/l
~n11!Ln11

2g ~lr !G . ~2.21!

The orthogonal conjugate representation defined in
~2.16! requires that

ūn~r !5
@~22z!/4#@12~j/l!2#

~g1n11!1gj/l
un~r !1

z

lr
un~r !,

f̄n~r !5
~22z!/l2C2

~g1n11!1gj/l
fn~r !, ~2.22!

where z is an arbitrary constant parameter. Simplicity
achieved by choosingj5l. However, we stay with the gen
eral case for now and leave the parameters arbitrary.
normalization constant obtained is

an5AlG~n11!/2G~2g1n12!. ~2.23!

The matrix elements of the tridiagonal reference Hamilton
in this basis are shown in Appendix C. The tridiagonal bas
overlap matrix is also given there.

The expansion coefficients of the wave function th
solves the wave equation~2.7! satisfy the symmetric three
term recursion relation

Jn,n21hn211Jn,nhn1Jn,n11hn1150, n>1, ~2.24!

wherehn stands for eithersn or cn . The initial conditions are
@3#

J00s01J01s150,

J00c01J01c152W/2s0 ~2.25!

where W(«) is the Wronskian of the regular and irregul
solutions of the free Dirac problem:
06270
e

-

-

q.

he

n
-

t

W~«!5W~c reg,c irreg!5c reg

dc irreg

dr
2c irreg

dc reg

dr
5

22aA~«21!/~«11!. ~2.26!

These coefficients also satisfy the Wronskian-like relation

Jn,n21~cnsn212cn21sn!52W/2, n>1. ~2.27!

Using the matrix elementsJnm given in Appendix C we can
write the homogeneous recursion relation~2.24! as

F ân1
x~ljgC2/2!1w

xv1u Ghn~x!1b̂n21hn21~x!1b̂nhn11~x!

50, n>1, ~2.28!

wherex5«2g/k and the recursion coefficients are

ân5~g1n11!
x~v1l2C2/2!1@u1l2C2~g/k1a/C!#

xv1u

5~g1n11!F11~l2C2/2!
x12~g/k1a/C!

xv1u G ,
b̂n52 1

2 A~n11!~2g1n12!, n>0 ~2.29!

with the constant parametersu, v, andw defined as

u5aCS 2
l2

2
1

Zj

g D1
gl2C2

2k S 211
j2

l2D ,

v511~lC/2!2~211j2/l2!,

w5a2lZ1
ljg2C2

k
1algCS j

2
1

Z

k D . ~2.30!

The symmetric recursion~2.28! can be rewritten as a three
parameter relation in terms of a new rescaled variable. S
ing this recursion relation analytically gives orthogonal po
nomials in terms of which the coefficients$sn ,cn% are
obtained. Here, we are content with a numerical soluti
which is more than sufficient for demonstrating the utili
and implications of the theory.

The solution of Eq.~2.28! subject to the initial conditions
in Eq. ~2.25! gives the J-matrix kinematic coefficients
$Rn

6%n51
` and$Tn%n50

` , defined at the energy«2g/k as

Tn5
cn2 isn

cn1 isn
, Rn11

6 5
cn116 isn11

cn6 isn
. ~2.31!

Alternatively, starting with the initial coefficientsR1
6 and

T0 , the rest can be calculated recursively using Eq.~2.24! as

Rn11
6 52

1

Jn,n11
S Jn,n1

Jn,n21

Rn
6 D and

Tn5Tn21

Rn
2

Rn
1 , n>1. ~2.32!
8-3
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These will be the coefficients that enter in the calculation
the Nth-order relativisticS matrix,

S~N!~«!5TN21~«!
11gN21,N21~«!JN21,N~«!RN

2~«!

11gN21,N21~«!JN21,N~«!RN
1~«!

,

~2.33!

wheregN21,N21(«) is the finite Green’s function in the con
jugate space representation$c̄n(r )%n50

N21, which carries the

dynamical effects of the short-range potentialṼ:

gN21,N21~«!5^c̄N21u~H01Ṽ2«!21uc̄N21&. ~2.34!

Due to the fact that the basis of theL2 space$cn(r )%n50
` is

nonorthogonal, the finite Green’s function should be cal
lated as shown in Appendix B. Given the matrix eleme
Ṽnm of the potential, we may use any one of several alter
tive expressions forgN21,N21(«) given in Appendix B.

Now, for the perturbing short-rangescalarpotentialṼ(r ),
we replace2Z/r by the expression2Z/r 1Ṽ(r ) when go-
u-

06270
f

-
s
-

ing from Eq. ~2.1! to Eq. ~2.7!. The unitary transformation
defined in Eqs.~2.3!–~2.6! results in the following wave
equation, which replaces Eq.~2.7!:

S 2
g

k
1a2Ṽ~r ! 2aS Z

k
1

g

r
1

d

dr D
2aS Z

k
1

g

r
2

d

dr D g

k
22

a2Z

r
1a2Ṽ~r !

D S f~r !

u~r ! D

5«S f~r !

u~r ! D . ~2.35!

Therefore, the matrix representation ofṼ is

Ṽnm5a2E
0

`

un~r !Ṽ~r !um~r !dr

1a2E
0

`

fn~r !Ṽ~r !fm~r !dr. ~2.36!

With the help of Eqs.~2.17! and~2.21!, this can be written as
ix A. The
Ṽnm5
a2

l
anamE

0

`

e2yy2g12Ln
2g11~y!Lm

2g11~y!Ṽ~y/l!dy1la2C2S 11j/l

2 D 2

anam

3F ~2g1n11!~2g1m11!E
0

`

e2yy2gLn
2g~y!Lm

2g~y!Ṽ~y/l!dy1S 12j/l

11j/l D 2

~n11!~m11!

3E
0

`

e2yy2gLn11
2g ~y!Lm11

2g ~y!Ṽ~y/l!dy1S 12j/l

11j/l D ~2g1n11!~m11!

3E
0

`

e2yy2gLn
2g~y!Lm11

2g ~y!Ṽ~y/l!dy1S 12j/l

11j/l D ~2g1m11!~n11!E
0

`

e2yy2gLn11
2g ~y!Lm

2g~y!Ṽ~y/l!dyG ,
~2.37!

wherey5lr . To evaluate these integrals we utilize a scheme based on Gauss quadrature as summarized in Append
result of this computation is

Ṽnm>
a2

2
@A~2g1n12!~2g1m12!Fn,m

2g121AnmFn21,m21
2g12 2Am~2g1n12!Fn,m21

2g12 2An~2g1m12!Fn21,m
2g12 #

1
~alC!2

2 S 11j/l

2 D 2HA~2g1n11!~2g1m11!Fn,m
2g 1S 12j/l

11j/l D 2

A~n11!~m11!Fn11,m11
2g 1S 12j/l

11j/l D
3@A~m11!~2g1n11!Fn,m11

2g 1A~n11!~2g1m11!Fn11,m
2g #J , ~2.38!
se
whereFnm
n is the integral defined in Appendix A and eval

ated in Eq.~A12! as

Fnm
n [ (

k50

M21

Lnk
n Lmk

n Ṽ~«k
n/l!5Fmn

n for M.N.

~2.39!
In Appendix A, we also include details for the general ca
of a spin-dependent short-range potential matrix

Ṽ~r !5S Ṽ↑↑~r ! Ṽ↑↓~r !

Ṽ↓↑~r ! Ṽ↓↓~r !
D ~2.40!

whereṼ↓↑(r )5Ṽ↑↓(r ).
8-4
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FIG. 1. Result of the numerical scheme as
plot of the nonrelativistic limit ofu12S(N)(«)u vs
E for the first scattering example in the presen

of the short-range potentialṼ(r )57.5r 2e2r . The
energy variables are related byE>(«2g/k)/a2

and we took the parameter valuesZ50, k5 l
50, a51023, l52, j50, C52a/2, N530.
tic

a
u

e

n
n

e

III. THE NONRELATIVISTIC J-MATRIX LIMIT

It is instructive at this point to compare the nonrelativis
limit of Eq. ~2.28! with the nonrelativisticJ-matrix recursion
relation, which reads@3#

F ~ l 1n11!
E2l̃2/8

E1l̃2/8
1

l̃Z/2

E1l̃2/8
Ghn~E!1b̂n21hn21~E!

1b̂nhn11~E!50, n>1, ~3.1!

wherel̃ is the nonrelativistic basis scale parameter andb̂n is
the same as that given in Eq.~2.29! with g replaced byl. It
is obvious that without some limiting process neither
choice of parameters nor a redefinition would put the rec
sion ~2.28! into the form given by~3.1!. The nonrelativistic
limit of the development in the previous section is achiev
by taking the limita→0 ~i.e., c→`!, which gives

g>uku5 l ,

«2g/k>«21>a2E. ~3.2!

Moreover, in the same limit, the small spinor compone
fn(r ) will be negligible compared to the larger compone
un(r ). That is, the small-component strength parameterC in
Eq. ~2.19! will be of the order ofa. Taking this limit in the
relativistic recursion relation defined in Eqs.~2.28!–~2.30!
and using Eq.~3.2! above, we obtain
06270
r-

d

t
t

F ~ l 1n11!
E2 r̃

E1ũ
1

w̃

E1ũGhn~E!1b̂n21hn21~E!

1b̂nhn11~E!50, ~3.3!

where

ũ5
C

a S 2
l2

2
1

Zj

k D1
l2

2 S C

a D 2S 211
j2

l2D ,

p̃52
C

a S l2

2
1

Zj

k D2
l2

2 S C

a D 2S 11
j2

l2D ,

w̃5lZS 11
C

a D1 llj
C

a S 1

2
1

C

a D . ~3.4!

This nonrelativistic limit of the recursion relation can b
identified with Eq.~3.1! if we requirep̃5ũ and thel depen-
dence inw̃ vanishes. All of these requirements givej50,
which results in the recursion relation

F ~ l 1n11!
E1~l2C/2a!~11C/a!

E2~l2C/2a!~11C/a!

1
lZ~11C/a!

E2~l2C/2a!~11C/a!Ghn~E!1b̂n21hn21~E!

1b̂nhn11~E!50. ~3.5!
e

FIG. 2. Plot of the nonrelativ-
istic u12SNR

(N)(E)u vs E resulting
from the standard nonrelativistic
J-matrix calculation for the same
problem as in Fig. 1 with the sam
parametersZ50, l 50, l52, N
530.
8-5
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FIG. 3. Superposition of the two plots in Figs
1 and 2, with the exception that the fine-structu
parametera is chosen to be large enough (a
50.2) so that relativistic effects become releva
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Therefore, this equation will be identical to the nonrelativ
tic recursion~3.1! if we make the following choice of param
eters:

C52a/2,

l5l̃. ~3.6!

In summary, the nonrelativisticJ-matrix limit is achieved
by making the following choice of parameters in the relat
istic J-matrix formalism developed in the previous section

a→0,

uku5 l ,

j50,

C52a/2, ~3.7!

with the nonrelativistic energyE>(«2g/k)a2. Note that
when taking the limita→0 one should keep relativistic en
ergy terms~including potential terms! up to ordera2 because
at the end thea2 factor will be divided out. The kinetic-
balance condition used by Horodecki is therefore requi
only when taking the nonrelativistic limit.

IV. ILLUSTRATIVE EXAMPLES

We consider two examples. The first is a scattering b
short-range scalar potentialṼ(r )57.5r 2e2r @15,16#. The
06270
-

-

d

a

aim of this exercise is to demonstrate the accuracy of
nonrelativistic limit of the theory and give first-order relativ
istic effects in the scattering phase shift. We take the ph
cal parametersZ50 anduku5 l 50. The other parameters ar
chosen in the nonrelativistic limit as

a51023, l52, j50, C52a/2, N530.
~4.1!

The numericalJ-matrix scheme developed in Ref.@17# is
used to calculate the relativisticS matrix. The input to the
scheme comes from the matrix elements of the refere
Hamiltonian@Eq. ~C7!#, the basis-overlap matrix@Eqs.~C1!
and~C4!#, and the matrix elements of the short-range pot
tial @Eq. ~2.38!#.

Figure 1 shows the results of the numerical sche
as a plot of u12S(N)(«)u vs E. Figure 2 is a plot of
u12SNR

(N)(E)u vs E that is obtained by the standard nonre
tivistic J-matrix calculation for the same problem with th
same parameters~Z50, l 50, l52, andN530!. The energy
variables are related byE>(«2g/k)/a2. Figure 3 is a su-
perposition of the same two plots, with the only excepti
that the fine-structure parametera is chosen to be large
enough (a50.2) so that relativistic effects become releva
Aside from variations in the overall structure of the pha
shift, it should be noted that resonance shifts are promin
in the relativisticS matrix. Sharp resonances, like the o
seen on the graph atE53.42 a.u., are shifted only slightly
The direction of the shift is also to be noted. It is not only
one direction.
-
ge
n

FIG. 4. Plot of the nonrelativistic limit ofu1
2S(N)(«)u vs E for the second example of Cou
lomb scattering in the presence of the short-ran
potential with spin-dependent coupling as give
in Eq. ~4.2!. The parameter values areZ521,
k5 l 51, a51024, l51, j50, C52a/2, N
530.
8-6
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FIG. 5. Plot of the nonrelativ-
istic u12SNR

(N)(E)u vs E for the
same problem as in Fig. 4 with th
parametersZ521, l 51, l51,
N530.
ff
p
ti

e

ke

-

s

al
The second example is that of an electron scattering o
point charge in the presence of a perturbing short-range
tential that includes spin-dependent couplings. The poten
considered is

Ṽ~r !5S 5 22

22 3 D r 2e2r . ~4.2!

Figures 4–6 show the results in an exact parallel to thos
the first example. The parameter values taken are

Z521, k5 l 51, a51024, l51, j50,

C52a/2, N530. ~4.3!

Similarly, the fine-structure parameter is subsequently ta
to be large enough (a50.2) to bring out the relativistic ef-
fects as shown in Fig. 6.
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APPENDIX A: ORTHOGONAL POLYNOMIALS, GAUSS
QUADRATURE, AND THE POTENTIAL MATRIX

Let f (x) be an element of a realL2@a,b# vector space
spanned by the complete set of orthonormal ba
$pn(x)%n50

` , wherexP@a,b#,R. Orthogonality is defined
06270
a
o-
al

of

n

is

with respect to a weight functionr(x) as

E
a

b

r~x!pn~x!pm~x!dx5dnm . ~A1!

f (x) is expandable in this basis as

f ~x!5(
n

dnpn~x! ~A2!

and pn(x) is a polynomial of ordern. These polynomials
satisfy the symmetric three-term recursion relation

xpn~x!5ânpn~x!1b̂n21pn21~x!1b̂npn11~x!, n>0,
~A3!

together with the initial conditionp0(x)51. The recursion
coefficients$ân ,b̂n% are elements ofR. Associated with this
space is the following infinite dimensional real tridiagon
symmetric matrix:

S â0 b̂0

b̂0 â1 b̂1 0

b̂1 â2 b̂2

b̂2 3 3

3 3 3

0I 3 3 3

3 3

D . ~A4!
.
-

FIG. 6. Superposition of the two plots in Figs
4 and 5, with the only exception that the fine
structure parametera is chosen to be large
enough (a50.2) so that the relativistic effects
become relevant.
8-7
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For numerical computations, however, the space is trunc
to a finiteN-dimensional space spanned by$pn(x)%n50

N21. The
tridiagonal matrix in Eq.~A4! becomes a finiteN3N matrix
H. The real eigenvalues ofH, designated as the set$«n%n50

N21,
are the zeros of the polynomialpN(x); i.e., pN(«n)50. In
this setting, the Gauss quadrature approximation@11# states
that

E
a

b

r~x! f ~x!dx. (
n50

N21

vnf ~«n!. ~A5!

The ‘‘numerical weight’’vn is the square of the zero com
ponent of the normalized eigenvector ofH,$Lmn%m50

N21, asso-
ciated with the eigenvalue«n . That is,

vn5L0n
2 . ~A6!

One can also show that

Pk~«n!5Lkn /L0n , n,k50,1,...,N21. ~A7!

The integral approximation of Eq.~A5! becomes exact if
f (x) is a polynomial of degree<2N21.

For our present work, we consider the case of the norm
ized Laguerre polynomials

pn~x![AG~n11!G~n11!/G~n1n11!Ln
n~x! ~A8!

with the following definition for the density function:

r~x![xne2x/G~n11!. ~A9!

The recursion coefficients are

ân52n1n11,

b̂n52A~n11!~n1n11!. ~A10!

The integrals in Eq.~2.37! for the calculation of the matrix
elements of the potential are in one of the following tw
forms:

E
0

`

e2xxnLn
n~x!Lm

n ~x!V~x/l!dx,

E
0

`

e2xxn11Ln
n~x!Lm

n ~x!V~x/l!dx. ~A11!

Using Eqs.~A5!–~A7!, we can define the symmetric tenso

Fnm
n [AG~n11!G~m11!/G~n1n11!G~m1n11!

3E
0

`

e2xxnLn
n~x!Lm

n ~x!Ṽ~x/l!dx

5E
0

`

r~x!pn~x!pm~x!Ṽ~x/l!dx

> (
k50

N21

Lnk
n Lmk

n Ṽ~«k
n/l!5Fmn

n , ~A12!
06270
ed

l-

where the eigenvalue«n
n and the corresponding normalize

eigenvector$Lmn
n % m50

N21 are associated with the tridiagon
matrix ~A4! whose recursion coefficients are defined in E
~A10! and parametrized byn.

Therefore, the first integral in Eq.~A11! is proportional to
Fnm

n . The second integral can be evaluated by one of th
alternatives:~1! Using the property of the Laguerre polyno
mials that Ln

n5Ln
n112Ln21

n11, in terms of Fnm
n11, Fn,m21

n11 ,
Fn21,m

n11 andFn21,m21
n11 ; ~2! using the recursion propertyxLn

n

5(2n1n11)Ln
n2(n1n)Ln21

n 2(n11)Ln11
n , in terms of

Fnm
n , Fn21,m

n , and Fn11,m
n ; ~3! directly in terms ofRnm

n ,
where

Rnm
n [ (

k50

N21

Lnk
n Lmk

n @«k
nṼ~«k

n/l!#5Rmn
n . ~A13!

The result of calculating the integrals in Eq.~2.37! for
Ṽnm along these lines, with extra attention given to the m
nipulation of indices, is given by Eq.~2.38!. The general
ansatz is

E
0

`

e2xxsLn
m~x!Lm

n ~x!Ṽ~x/l!dx

5
G~s11!

AG~m11!G~n11!

3AG~n1m11!G~m1n11!/G~n11!G~m11!

3E
0

`

rs~x!pn
m~x!pm

n ~x!Ṽ~x/l!dx

>
G~s11!

AG~m11!G~n11!

3AG~n1m11!G~m1n11!/G~n11!G~m11!

3 (
k50

N21
~L0k

s !2

L0k
m L0k

n Lnk
m Lmk

n Ṽ~«k
s/l!. ~A14!

For the general short-range potential with spin-depend
coupling as given by Eq.~2.40!, we proceed as follows. Ap
plying the global fixed-point transformation defined by Eq
~2.3!–~2.6! gives

Ṽ~r !→W̃~r !5S W̃1~r ! W̃0~r !

W̃0~r ! W̃2~r !
D , ~A15!

where

W̃65
Ṽ↑↑1Ṽ↓↓

2
6S aZ

k
Ṽ↑↓2

g

k

Ṽ↑↑2Ṽ↓↓
2

D ,

W̃052
g

k
Ṽ↑↓2

aZ

k

Ṽ↑↑2Ṽ↓↓
2

. ~A16!

Therefore, the matrix elements of this potential are
8-8
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Ṽnm5a2E
0

`

un~r !W̃2~r !um~r !dr

1a2E
0

`

fn~r !W̃1~r !fm~r !dr

1a2E
0

`

un~r !W̃0~r !fm~r !dr

1a2E
0

`

fn~r !W̃0~r !um~r !dr. ~A17!
s
ia
b

-

in
i

06270
Here, we give only the results for the case whereṼ(r )
5Ṽ0f (r ) and Ṽ0 is a constant 232 symmetric matrix. The
transformed potential matrix in this case is

Ṽ~r !→W̃~r !5S W̃1 W̃0

W̃0 W̃2

D f ~r !, ~A18!

where the entriesW̃6 ,W̃0 are now constant. The resultin
potential matrix is
Ṽnm>
a2W̃2

2
@A~2g1n12!~2g1m12!Gn,m

2g121AnmGn21,m21
2g12 2Am~2g1n12!Gn,m21

2g12 2An~2g1m12!Gn21,m
2g12 #

1
~alC!2W̃1

2 S 11j/l

2 D 2HA~2g1n11!~2g1m11!Gn,m
2g 1S 12j/l

11j/l D 2

A~n11!~m11!Gn11,m11
2g 1S 12j/l

11j/l D
3@A~m11!~2g1n11!Gn,m11

2g 1A~n11!~2g1m11!Gn11,m
2g #J 1

a2lCW̃0

4
~11j/l!H F ~2g1m11!

2
12j/l

11j/l
~m11!GGn,m

2g112Am~2g1m11!Gn,m21
2g11 1

12j/l

11j/l
A~m11!~2g1m12!Gn,m11

2g11 J 1
a2lCW̃0

4
~11j/l!

3H F ~2g1n11!2
12j/l

11j/l
~n11!GGn,m

2g112An~2g1n11!Gm,n21
2g11 1

12j/l

11j/l
A~n11!~2g1n12!Gm,n11

2g11 J , ~A19!
tors
lem

are
where

Gnm
n [ (

k50

N21

Lnk
n Lmk

n f ~ek
n/l!5Gmn

n . ~A20!

APPENDIX B: THE FINITE GREEN’S FUNCTION
gNÀ1,NÀ1„«… IN A NONORTHOGONAL BASIS

Let $cn(r )%n50
` be the basis of anL2 space that support

a Hermitian representation for the reference Hamilton
H0 . The conjugate orthogonal space is spanned

$c̄n(r )%n50
` , where^c̄nucm&5dnm . Given a short-range per

turbing potentialṼ(r ) whose matrix elements are

Ṽnm5H ^cnuṼucm&, n,m<N21

0 otherwise
, ~B1!

the finite Green’s functiongN21,N21(z) is defined by

gN21,N21~z!5^c̄N21u~H2z!21uc̄N21&, ~B2!

whereH is theN3N full Hamiltonian matrixH01Ṽ andz is
a complex number. Manipulation of Green’s functions
volving the inverse of operators with nonempty null space
n
y

-
s

done in a basis in which the representation of these opera
is diagonal. That is to say, we solve the eigenvalue prob

Huxn&5«nuxn&, n50,1, . . . ,N21. ~B3!

Since the matrix representations of the relevant operators
in the basis$cn(r )%n50

` rather than$xn(r )%n50
` , we can

write this equation in the form

(
k50

N21

^cmuHuck&^c̄kuxn&5«n (
k50

N21

^cmuck&^c̄kuxn&, n,m

50,1, . . . ,N21. ~B4!

We have used the completeness property of the basis:

(
k

uck&^c̄ku5(
k

uc̄k&^cku5I ~B5!

whereI is the identity.
In matrix notation, Eq.~B4! reads

(
k50

N21

Hmkzk
n5«n (

k50

N21

Vmkzk
n , n,m50,1, . . . ,N21,

~B6!
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where$zk
n%k50

N21 is the normalized eigenvector associated w
the eigenvalue«n and Vnm is the overlap matrix elemen
^cnucm&. Equation~B6! is a generalized eigenvalue equati
in the $cn(r )% basis

Huzn&5«nVuzn&. ~B7!

Let us define the eigenvector matrixGnm[zn
m5^c̄nuxm&.

Then Eq. ~B6! reads (HG)mn5«n(VG)mn , which when
multiplied from the left byGT, whereGnm

T 5^xnuc̄m&, gives

~GTHG!mn5«n~GTVG!mn , n,m50,1,...,N21. ~B8!

The matrixG simultaneouslydiagonalizesH andV,

~GTHG!nm5hndnm and ~GTVG!nm5tndnm . ~B9!

Henceforth, we can write«n5hn /tn and Eq.~B2! can be
written as

gN21,N21~z!5 (
i , j ,n,m50

N21

^c̄N21ux i&^x i uc̄n&^cnu~H2z!21

3ucm&^c̄mux j&^x j uc̄N21&

5 (
i , j ,n,m50

N21

GN21,i

3$G i ,n
T @~H2zV!21#nmGm, j%G j ,N21

T .

~B10!

Now

(
n,m50

N21

G i ,n
T @~H2zV!21#nmGm, j5

d i , j

h i2zt i
5

1

t i

d i , j

« i2z
.

~B11!

Therefore, we finally obtain

gN21,N21~z!5 (
i 50

N21
GN21,i

2

h i2zt i
5 (

i 50

N21
1

t i

GN21,i
2

« i2z
. ~B12!

For an orthogonal basis, that is, a self-dual basis wherecn

5c̄n , the overlap matrix is just the identity matrixI; hence
t i51, h i5« i , and the eigenvectors are orthogonal~i.e.,
GTG5GGT5I !. In this orthogonal basis, we can write

gN21,N21~z!5 (
i 50

N21
GN21,i

2

« i2z
~orthogonal basis!

~B13!

Let H̃ (Ṽ) be the submatrix ofH ~V! obtained by deleting
the last row and last column, respectively. The eigenva
and generalized eigenvalue equations in the truncated sp
which parallel those of Eqs.~B3! and ~B7!, are
06270
e
ce,

H̃uf̃n&5 «̃nuf̃n&, n50,1, . . . ,N22, ~B14!

H̃u z̃n&5 «̃nṼu z̃n&. ~B15!

Similarly, we define the corresponding eigenvector mat
G̃nm[z̃n

m5^c̄nuf̄m& that simultaneously diagonalizesH̃ and

Ṽ,

~ G̃TH̃G̃ !nm5h̃ndnm and ~ G̃TṼG̃ !nm5 t̃ndnm ,
~B16!

and can also write«̃n5h̃n / t̃n . Then, it can be shown tha
the following is an alternative but equivalent form fo
gN21,N21(E):

gN21,N21~z!5
uṼu
uVu

)
m50

N22

«̄m2z

)
n50

N21

«n2z
5S )

m50

N22

j̃m

)
n50

N21

jn
D )

m50

N22

«̃m2z

)
n50

N21

«n2z
,

~B17!

where$jn%n50
N21 and$j̃m%m50

N22 are the eigenvalues of the ove

lap matricesV andṼ, respectively. In the orthogonal basi
Eq. ~B17! can be written as

gN21,N21~z!5

)
m50

N22

«̃m2z

)
n50

N21

«n2z
~orthogonal basis!.

~B18!

Combining Eqs.~B12! and ~B17!, we obtain the following
relation:

GN21,k
2 5tk

uṼu
uVu

)
m50

N22

«̃m2«k

)
n50
nÞk

N21

«n2«k

. ~B19!

APPENDIX C: THE MATRIX ELEMENTS OF THE
REFERENCE HAMILTONIAN

Using the two components of the basis functions given
Eqs. ~2.17! and ~2.21! and with the help of Laguerre
polynomial properties@18#, we get the following integral for-
mulas which are useful for subsequent calculations:
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E
0

`

un~r !um~r !dr5~g1n11!dnm

2
1

2
An~2g1n11!dn,m11

2
1

2
A~n11!~2g1n12!dn,m21 ,

~C1!

E
0

` 1

lr
un~r !um~r !dr5

1

2
dnm , ~C2!

E
0

`

un~r !
d

dr
um~r !dr5

l

4
An~2g1n11!dn,m11

2
l

4
A~n11!~2g1n12!dn,m21

52E
0

`

um~r !
d

dr
un~r !dr, ~C3!

E
0

`

fn~r !fm~r !dr5$~g1n11!~lC/2!2@11~j/l!2#

1ljgC2/2%dnm1 1
2 An~2g1n11!

3~lC/2!2@12~j/l!2#dn,m11

1 1
2 A~n11!~2g1n12!~lC/2!2@1

2~j/l!2#dn,m21 , ~C4!

E
0

`

un~r !fm~r !dr5
lC

2 F ~g1n11!
j

l
1gGdnm

1
lC

4
An~2g1n11!S 12

j

l D dn,m11

2
lC

4
A~n11!~2g1n12!

3S 11
j

l D dn,m21 , ~C5!

^cnucm&5E
0

`

fn~r !fm~r !dr1E
0

`

un~r !um~r !dr.

~C6!

After some manipulations, we obtain the following:

~H0!n,n5~g1n11!H g

k F12S lC

2 D 2S 11
j2

l2D G
2aCS l2

2
1

Zj

k D J 2alS 11
gC

ak D ~aZ1Cgj/2!,
06270
~H0!n,n1152
1

2
A~n11!~2g1n12!

3H g

k F11S lC

2 D 2S 12
j2

l2D G1aCS l2

2
2

Zj

k D J ,

~H0!n,n2152
1

2
An~2g1n11!H g

k F11S lC

2 D 2S 12
j2

l2D G
1aCS l2

2
2

Zj

k D J . ~C7!

Thus, the representation ofJ5H02« is the tridiagonal ma-
trix defined by

Jn,n52~g1n11!H 22
g

k
1S «1

g

k D F11S lC

2 D 2S 11
j2

l2D G
1aCS l2

2
1

Zj

k D J 2algCS j

2
1

Z

k D
2

1

2
ljgC2S «1

g

k D2a2lZ,

Jn,n1152
1

2
A~n11!~2g1n12!

3H 2
g

k
2S «1

g

k D F11S lC

2 D 2S 211
j2

l2D G
1aCS l2

2
2

Zj

k D J ,

Jn,n2152
1

2
An~2g1n11!3H 2

g

k
2S «1

g

k D
3F11S lC

2 D 2S 211
j2

l2D G1aCS l2

2
2

Zj

k D J .

~C8!

If, for the sake of simplicity, we choosej5l then Eq.~2.21!
gives

fn~r !5lCan~2g1n11!~lr !ge2lr /2Ln
2g~lr ! ~C9!

and the tridiagonal matrix representation above simplifies

~H0!n,n5~2g1n11!Fgk S 12
l2C2

2 D2aClS l

2
1

Z

k D G
2a2lZ2g2/k,

~H0!n,n1152
1

2
A~n11!~2g1n12!Fgk 1aClS l

2
2

Z

k D G ,
~H0!n,n2152

1

2
An~2g1n11!Fgk 1aClS l

2
2

Z

k D G .
~C10!
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Similarly,

Jn,n52~2g1n11!F S «2
g

k D S 11
l2C2

2 D1
gl2C2

k

1alCS Z

k
1

l

2D G1gS «2
g

k D2a2lZ,

Jn,n115
1

2
A~n11!~2g1n12!F S «2

g

k D1alCS Z

k
2

l

2D G ,
Jn,n215

1

2
An~2g1n11!F S «2

g

k D1alCS Z

k
2

l

2D G .
~C11!
in
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Moreover, the matrix elements of the scalar potential giv
in Eq. ~2.38! simplify to

Ṽnm>
a2

2
@A~2g1n12!~2g1m12!Fn,m

2g12

1AnmFn2 l ,m21
2g12 2Am~2g1n12!Fn,m21

2g12

2An~2g1m12!Fn21,m
2g12

1~lC!2A~2g1n11!~2g1m11!Fn,m
2g #,

~C12!

while those for the potential with spin-dependent coupli
constant in Eq.~A19! simplify to
Ṽnm>
a2W̃2

2
@A~2g1n12!~2g1m12!Gn,m

2g121AnmGn21,m21
2g12 2Am~2g1n12!Gn,m21

2g12 2An~2g1m12!Gn21,m
2g12 #

1
~alC!2W̃1

2
A~2g1n11!~2g1m11!Gn,m

2g 1
a2lCW̃0

2
@~2g1m11!Gn,m

2g112Am~2g1m11!Gn,m21
2g11 #

1
a2lCW̃0

2
@~2g1n11!Gn,m

2g112An~2g1n11!Gm,n21
2g11 #. ~C13!
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