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Variational R-matrix methods for many-electron systems: Unified relativistic theory
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We use a formalism of integral operators to present a unified approach to variationalR-matrix methods for
many-electron systems described by the Dirac Hamiltonian. Variational principles for eigenvalues and matrix

elements of many-electron integral operatorsB̂(6)(E) and R̂(6)(E), which are the central objects in the
approach, are listed. The Rayleigh-Ritz linear trial functions are used in these principles, yielding second-order
variational estimates of eigenvalues, matrix elements, and kernels of these operators. A multiconfiguration
Dirac-Hartree-Fock approach to the relativisticR-matrix method is proposed.
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I. INTRODUCTION

The history of theR-matrix method for systems describe
by the Dirac equation dates back to 1948 when Goertzel@1#
presented a relativistic generalization of Wigner’s@2# nonrel-
ativistic formulation of the method. Since in low-energ
nuclear reaction physics, for which theR-matrix method was
originally invented, relativistic effects manifest themselv
mainly through the spin-orbit coupling, which may be us
ally accounted for within the semirelativistic theory based
the Pauli equation, Goertzel’s results were scarcely refe
to. At the beginning of the 1970s, theR-matrix method was
introduced into nonrelativistic atomic physics@3# and in
1975 Chang@4#, being unaware of Goertzel’s work, red
erived theR-matrix theory for Dirac particles. Chang’s nu
merical code implementing the DiracR-matrix method was
applied by its author@5,6# and, after significant developmen
by an Oxford-Belfast team~cf. Ref. @7# and references
therein! to studies of low-energy electron collisions wi
heavy atomic and ionic targets and photoionization there
Furthermore, at the beginning of the 1990s, Thumm a
Norcross @8# used their own two-electron DiracR-matrix
code to study low-energy electron impact on cesium ato

All aforementioned works utilized a particular relatio
ship between theR-matrix and Green’s function of an auxi
iary artificial finite-volume boundary value problem involv
ing a many-electron Dirac equation. In 1991, Hamacher
Hinze @9# proposed an entirely different approach to the re
tivistic R-matrix theory of atomic systems, based on a var
tional principle for reciprocals of eigenvalues of the relat
istic R-matrix. Their proposal is a direct extension to t
relativistic case of the nonrelativistic eigenchannelR-matrix
method, which during the past two decades has evolved
one of the most powerful methods of analyzing Rydbe
spectra and photoionization of atoms and small molecu
~cf. Refs. @10–12# and references therein!. The R-matrix
eigenchannel approach itself falls into a wider class of va
tional R-matrix methods~cf. Refs. @13–17# and references
therein!.

Some time ago, a collaboration aimed at developin
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new atomic code based on the relativistic variation
R-matrix approach was established with the present auth
participation. Starting the project, we did not foresee a
particular problems, save for some eventual numerical o
since the mathematical background of the relativis
R-matrix theory seemed to be sound. However, already at
very preliminary stage, making acquaintance with the ex
ing literature of the subject, we found an error in th
Goertzel-Chang formulation of the DiracR-matrix theory.
Since it was not obvious at that moment whether the di
culty encountered did afflict the variational approaches
not, we attempted to clarify the situation seeking an origin
the problem with a hope to remove it. We succeeded
found that the corrected Goertzel-Chang theory@16,18–20#
appeared to be mathematically much more complicated t
that presented in Refs.@1, 4#, being most efficiently formu-
lated in the language of integral operators rather than ma
ces. Although the variational approaches appeared to be
of the distressing difficulty, the mathematical effort unde
taken had also far-reaching consequences for our project
realized that the operator language is ideally suited for p
viding a unified treatment of variationalR-matrix methods
for many-electron relativistic systems@21#. Such a unified
treatment is presented in the current paper, in which we c
sider a system that may be either a complete electronic c
of a many-electron relativistic atom, a molecule, an ion, o
group of valence electrons, the interactions of which with
nucleus~or nuclei! and with an electronic core have bee
modeled somehow. Since it has been our intention to k
the presentation as general as possible, in this work we
not refer to any possible symmetries that might simplify co
siderations at the cost of their generality.

The work is divided into ten sections. After this Introdu
tion, in Sec. II we acquaint the reader with the mathemat
notation to be used later. In Sec. III we set up the phys
problem and in Sec. IV we introduce two linear integral o
eratorsB̂(6)(E) and study their properties. Then in Sec.
we define and investigate the operatorsR̂(6)(E) that are the
generalized inverses ofB̂(6)(E). Section VI is devoted to
showing that, if a suitable functional basis set is used,
only nonzero submatrix of the matrix representingR̂(1)(E)
in that basis coincides with the relativisticR-matrix appear-
©2001 The American Physical Society04-1
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ing in earlier matrix approaches to the theory@9,18,19#. In
Sec. VII we list six variational principles for eigenvalues a
matrix elements of the operatorsB̂(6)(E) andR̂(6)(E). De-
tails of derivations of these principles are omitted since th
are completely analogous to those for the single-part
theory presented in Refs.@15, 16#. Variational principles are
known to be convenient tools for approximate calculatio
and in Sec. VIII we describe how the Rayleigh-Ritz line
trial functions may be employed in the principle
listed in Sec. VII to obtain convenient estimates of eigenv
ues, matrix elements, and integral kernels of the opera
B̂(6)(E) and R̂(6)(E). In Sec. IX we show that, after suit
able modifications, the variational principles for eigenvalu
of B̂(6)(E) andR̂(6)(E) may be used to derive two sets
multiconfiguration Dirac-Hartree-FockR-matrix equations,
solutions to which yield optimal approximate wave functio
describing a system under consideration within theR-matrix
hypervolume as well as variational estimates of eigenva
of B̂(6)(E) andR̂(6)(E). The work ends with a brief sum
mary in Sec. X.

II. DEFINITIONS AND NOTATION

Let V,R3 be a finite volume enclosed by a surfaceS. A
position vector, relative to some reference origin, of a po
in the volumeV will be denoted byr . If the point is located
on the surfaceS, the position vector will be marked withr.

If f(r ) and f8(r ) are any two sufficiently regular four
component spinor functions, their scalar products overV and
S are defined as

^fuf8&[E
V
d3r f†~r !f8~r ! ~2.1!

and

~fuf8![ R
S
d2r f†~r!f8~r!, ~2.2!

respectively. Hered3r is an infinitesimal volume element o
V around the pointr , d2r is an infinitesimalscalar surface
element ofS around the pointr, while the dagger denote
the matrix Hermitian conjugation.

With the volumeV,R3, one may associate a hypervo
umeV,R3N defined as

V5$r5@r1 ,...,rK ,...,rN#PR3N; ; 1<K<N:rKPV%

~2.3!

or, equivalently, as theN-fold Cartesian product ofV,

V5VN[V13¯3VN . ~2.4!

The hypervolumeV is bounded by a hypersurfaceS,

S5 ø
K51

N

V13¯3VK213SK3VK113¯3VN . ~2.5!
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If the pointr lies on the hypersurfaceS, we shall denote this
using the symbol% instead ofr. A unit outward vector nor-
mal to the hypersurfaceS at the point% will be denoted by
n(%).

The hypersurfaceS is composed ofN geometrically simi-
lar hyperfacets, with theKth hyperfacetSK defined as

SK5V13¯3VK213SK3VK113¯3VN

~K51,2,...,N!. ~2.6!

If the point % is on SK , we shall indicate this adding th
subscriptK at %, i.e., writing %K instead of%. Explicitly,

%K5@r1 ,...,rK21 ,rK ,rK11 ,...,rN#. ~2.7!

It follows from the definition ofSK and from Eq.~2.7! that
on SK the unit outward normal vector is

n~%K!5@01 ,...,0K21 ,n~rK!,0K11 ,...,0N#, ~2.8!

wheren(r) is a unit outward vector normal toS at the point
r.

If F~r! and F8~r! are sufficiently regular 4N-component
spinor functions defined inV and onS, their scalar products
over V and overS are

^FuF8&V[E
V

d3Nr F†~r!F8~r!, ~2.9!

~FuF8!S[ R
S

d3N21% F†~%!F8~%!, ~2.10!

respectively, where

E
V

d3Nr ~¯ ![E
V
d3r1¯E

V
d3rN ~¯ ! ~2.11!

and

R
S

d3N21% ~¯ ![ (
K51

N E
SK

d3N21%K ~¯ ! ~2.12!

with

E
SK

d3N21%K ~¯ ![E
V
d3r1¯E

V
d3rK21 RS

d2rK

3E
V
d3rK11¯E

V
d3rN ~¯ !.

~2.13!

Hered3Nr denotes an infinitesimal element of the hyperv
ume V around the pointr and d3N21% is an infinitesimal
scalar element of the hypersurfaceS around the point%.
The scalar product of the functionsF~%! and F8~%! over a
particular hyperfacetSK is defined as

~FuF8!SK
[E

SK

d3N21%K F†~%K!F8~%K!. ~2.14!
4-2
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From Eqs.~2.10!, ~2.12!, and~2.14! one has

~FuF8!S5 (
K51

N

~FuF8!SK
. ~2.15!

A space of all completely antisymmetric 4N-component
spinor functionsF~r! defined in the hypervolumeV and
such that̂ FuF&V,` will be denoted byAV. The projector
on the space of such functions~the hypervolume antisymme
trizer! will be marked withÂV. A class of functions from
AV that are at least once differentiable inV will be designed
with AV8 . A space of all completely antisymmetric function
F~%! defined on the hypersurfaceS and such that (FuF)S

,` will be denoted byAS; the projector on the space o
such functions~the hypersurface antisymmetrizer! will be
marked withÂS.

If F~%! andF8~%! are any two functions fromAS, from
their antisymmetry and from the geometric similarity of a
two hyperfacetsSK andSK8 one infers that

~FuF8!SK
5~FuF8!SK8

; 1<K,K8<N

@F~%!,F8~%!PAS# ~2.16!

and consequently@cf. Eq. ~2.15!#

~FuF8!SK
5

1

N
~FuF8!S ; 1<K<N

@F~%!,F8~%!PAS#. ~2.17!

III. THE MANY-ELECTRON DIRAC HAMILTONIAN AND
THE HYPERSURFACE OPERATORS Æ̂�

„Á… AND ß̂„Á…

Consider anN-electron system described by the Dir
Hamiltonian

Ĥ~r!5 (
K51

N

Ĥ~rK!1 1
2 (

K,K851
~KÞK8!

N

U~rK ,rK8!

5 (
K51

N

@2 ic\æK•“K1ßKmc21V~rK!#

1 1
2 (

K,K851
~KÞK8!

N

U~rK ,rK8!. ~3.1!

In this definition,rK is a position vector of theKth electron
in physical space,“K is the gradient operator with respect
spatial coordinates of theKth electron, andr5@r1 ,...,rN# is
a position hypervector of a point describing a configurat
of the system in an abstract 3N-dimensional configuration
space. The one- and two-electron potential functionsV(rK)
andU(rK ,rK8) are real scalar spin-independent functions
electronic spatial coordinates withU(rK ,rK8) assumed to be
symmetric in its arguments. The 4N34N matricesæK andßK
are defined in terms of the 434 matrices
06270
n

f

I5S I O

O I D , a5S O s

s OD , b5S I O

O 2I D ~3.2!

@here I and O are the 232 unit and null matrices, respec
tively, and s5@sx ,sy ,sz# is a vector composed of the 2
32 Pauli matrices# in the following way:

æK5I1^¯^ IK21^ aK ^ IK11^¯^ IN , ~3.3!

ßK5I1^¯^ IK21^ bK ^ IK11^¯^ IN , ~3.4!

where ^ denotes the direct~Kronecker’s! matrix product.
Subscripts at the matrices on the right-hand sides of E
~3.3! and ~3.4! refer to particular electrons.

Throughout the rest of this work, we shall be concern
with the time-independent Dirac equation

@Ĥ~r!2E#C~E,r!50, ~3.5!

in which E is a preselectedtotal energy of the system, in
cluding rest energies of the electrons, and the wave func
C(E,r) is a 4N-component column vector. Since we a
dealing with electrons, we shall conform to Pauli’s exclusi
principle and consider only those solutions to Eq.~3.5! that
are completely antisymmetric 4N-component spinors. In
what follows, we shall assume that the electronic energyE is
fixed at some prescribed real value and consider those
figurations of the system when allN electrons are in some
fictitious finite volumeV enclosed by a surfaceS. Then the
configuration pointr lies in the corresponding~fictitious!
hypervolumeV defined by Eq.~2.3! and bounded by the
hypersurfaceS defined by Eq.~2.5!. We emphasize that we
do not confine the electrons to the volumeV in any way
since we do not impose any artificial boundary condition
the wave functionC(E,r) at the hypersurfaceS.

We shall denote byAV(E) a subspace ofAV built of all
completely antisymmetric solutions to the Dirac equati
~3.5! in the hypervolumeV at the real energyE; the projec-
tor on this subspace will be denoted byÂV(E). For later
convenience, we define also a subspaceAS(E),AS,

AS~E!5$F~%!PAS;'C~E,r!PAV~E!:

F~%!5C~E,%!%. ~3.6!

Let C(E,r)PAV(E) and C8(E,r)PAV(E). Then, by
virtue of reality ofE, we have

^ĤC8uC&V5^C8uĤC&V, ~3.7!

which implies that the HamiltonianĤ is Hermitian on
AV(E). On the other hand, by virtue of the explicit form o
the Hamiltonian, after applying the 3N-dimensional Gauss
integration theorem, we obtain

^ĤC8uC&V2^C8uĤC&V5~C8u ic\Æ̂'C!S, ~3.8!

whereÆ̂' is a linear integral operator, defined onAS, with
the kernel
4-3
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Æ'~%,%8!5æ'~%!d~3N21!~%2%8!, ~3.9!

where

æ'~%!5n~%!•Æ, Æ5@æ1 ,...,æN#. ~3.10!

It is clear thatÆ̂' is local and Hermitian under the hype
surface scalar product (u)S. Equations~3.7! and ~3.8! yield

~C8u iÆ̂'C!S50. ~3.11!

To proceed further, we introduce two linear operato
ß̂(1) andß̂(2) such that for any sufficiently regular~not nec-
essarily antisymmetric! 4N-component functionF(%) de-
fined onS, one has

ß̂~6 !F~%K!5ßK
~6 !F~%K!, ~3.12!

where

ßK
~6 !5I1^¯^ IK21^ bK

~6 !
^ IK11^¯^ IN ~3.13!

with

b~6 !5 1
2 ~I6b!. ~3.14!

It is clear thatß̂(6) are Hermitian under the scalar produ
(u)S and that

ß̂~1 !1ß̂~2 !51̂, ß̂~6 !ß̂~6 !5ß̂~6 !, ß̂~6 !ß̂~7 !50
~3.15!

~here 1̂denotes the unit operator!, which implies thatß̂(6)

are orthogonal projectors. Then, we define two linear integ
operators

Æ̂'
~6 !5ß̂~6 !Æ̂' . ~3.16!

Obviously, if F(%) is any sufficiently regular~again, not
necessarily antisymmetric! 4N-component function defined
on the hypersurfaceS, we have

Æ̂'
~6 !F~%K!5æ'K

~6 !~%K!F~%K!, ~3.17!

where

æ'K
~6 !~%K!5ßK

~6 !æ'~%K!5I1^¯^ IK21^ a'K
~6 !~rK!

^ IK11^¯^ IN ~3.18!

with

a'
~6 !~r!5n~r!•b~6 !a. ~3.19!

It follows from Eqs.~3.15!–~3.19! and from the well-known
properties of the Dirac matricesa andb @22# that

Æ̂'
~1 !1Æ̂'

~2 !5Æ̂' , Æ̂'
~6 !‡5Æ̂'

~7 ! ~3.20!

@here ‡ denotes the operator Hermitian conjugation with
spect to the scalar product (u)S#,
06270
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Æ̂'
~6 !Æ̂'

~6 !50, Æ̂'
~6 !Æ̂'

~7 !5ß̂~6 !, ~3.21!

Æ̂'
~6 !ß̂~6 !50, ß̂~6 !Æ̂'

~6 !5Æ̂'
~6 ! , ~3.22!

ß̂~6 !Æ̂'
~7 !50, Æ̂'

~6 !ß̂~7 !5Æ̂'
~6 ! . ~3.23!

The advantage of introducing the operatorsÆ̂'
(6) is that

with their aid, by virtue of the relations~3.20!, Eq. ~3.11!
may be rewritten in two equivalent forms,

~ iÆ̂'
~6 !C8uC!S5~C8u iÆ̂'

~6 !C!S. ~3.24!

Equation~3.24! means that the operatorsiÆ̂'
(6) are Hermit-

ian on the domainAS(E).

IV. OPERATORS B̂„Á…

„E…

The key role in the rest of this paper, and in the who
R-matrix theory for many-electron systems described by
Dirac Hamiltonian~3.1!, is played by two linear integral op
eratorsB̂(1)(E) and B̂(2)(E), defined onAS, such that if
C(E,%)PAS(E), then

iÆ̂'
~6 !C~E,%!5g~6 !B̂~6 !~E!C~E,%!. ~4.1!

The coefficients

g~6 !56S \

2mcD
61

, ~4.2!

related byg (1)g (2)521, have been set off in Eq.~4.1! for
later convenience. The operatorsB̂(6)(E) are represented by
their integral kernelsB(6)(E,%,%8), in terms of which Eq.
~4.1! may be rewritten equivalently as

iÆ̂'
~6 !C~E,%!5g~6 ! R

S
d3N21%8B~6 !~E,%,%8!C~E,%8!.

~4.3!

Making use of Eq.~4.1! in the relations~3.24!, one has

~B̂~6 !C8uC!S5~C8uB̂~6 !C!S, ~4.4!

which means that the operatorsB̂(6)(E) are Hermitian with
respect to the scalar product (u)S. One easily shows also tha

ß̂~6 !B̂~6 !~E!ß̂~6 !5B̂~6 !~E! ~4.5!

and that

B̂~6 !~E!5ÂSB̂~6 !~E!ÂS, ~4.6!

which means that the operatorsB̂(6)(E) are symmetric in all
the N electrons.

Consider next a subset$Cn(E,r)%,AV(E) such that for
any function from this set on the hypersurfaceS, it holds
that

iÆ̂'
~1 !Cn~E,%!5g~1 !bn~E!ß̂~1 !Cn~E,%!, ~4.7!
4-4
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where$bn(E)% are numbers that, in general, are different
different functions from the set$Cn(E,r)%. Operating on Eq.

~4.7! from the left with the operatoriÆ̂'
(2) and utilizing the

second of Eqs.~3.21! and the second of Eqs.~3.23!, after
simple manipulations we obtain

iÆ̂'
~2 !Cn~E,%!5g~2 !bn

21~E!ß̂~2 !Cn~E,%!. ~4.8!

Next, utilizing Eq.~4.1! defining the operatorsB̂(6)(E), the
relations~4.7! and ~4.8! may be rewritten as

B̂~6 !~E!Cn~E,%!5bn
61~E!ß̂~6 !Cn~E,%!, ~4.9!

which implies that the hypersurface functions$Cn(E,%)%
may be considered as simultaneous eigenfunctions of the
erators B̂(6)(E), with the singular non-negative operat
weightsß̂(6), and the constants$bn

61(E)% may be considered

as corresponding eigenvalues. Since the operatorsB̂(6)(E)
andß̂(6) are Hermitian under the hypersurface scalar prod
(u)S, in the standard way one shows that the eigenval
$bn

61(E)% are real while eigenfunctions associated with d
ferent eigenvalues obey the following orthogonality relatio
over the hypersurfaceS:

~Cnuß̂~6 !Cn8!S50 @bn~E!Þbn8~E!#. ~4.10!
es

ce

06270
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Since for any two eigenfunctions one has

~Cnuß̂~2 !Cn8!S5~g~1 !!2bn~E!bn8~E!~Cnuß̂~1 !Cn8!S,
~4.11!

in the rest of the paper, without any loss of generality,
shall assume that eigenfunctions associated with degen
eigenvalues~if there are any! are also orthogonal under th
scalar product (u)S so that

~Cnuß̂~6 !Cn8!S50 ~nÞn8!. ~4.12!

The spectral expansions of the kernelsB(6)(E,%,%8) in
terms of the eigenfunctions$Cn(E,%)% and the eigenvalues
$bn

61(E)% are

B~6 !~E,%K ,%K8
8 !

5(
n

ßK
~6 !Cn~E,%K!bn

61~E!Cn
†~E,%K8

8 !ßK8
~6 !

~Cnuß̂~6 !Cn!S

~4.13!

or equivalently, due to Eq.~3.17!,
B~6 !~E,%K ,%K8
8 !5(

n

æ'K
~6 !~%K!Cn~E,%K!bn

61~E!Cn
†~E,%K8

8 !æ'K8
~7 !

~%K8
8 !

~Cnuß̂~7 !Cn!S

. ~4.14!
r
he
The sets$ß̂(6)Cn(E,%)% are complete in the subspac
AS

(6)(E),AS defined as

AS
~6 !~E!5$ß̂~6 !C~E,%!:C~E,%!PAS~E!%. ~4.15!

Since for anyC(E,%)PAS(E) we have

C~E,%!5ß̂~1 !C~E,%!1ß̂~2 !C~E,%! ~4.16!

@cf. the first of Eqs. ~3.15!#, the set

$ß̂(1)Cn(E,%)%ø$ß̂(2)Cn(E,%)% is complete inAS(E) and
the following expansion holds:

C~E,%!5(
n

cn
~1 !~E!ß̂~1 !Cn~E,%!

1(
n

cn
~2 !~E!ß̂~2 !Cn~E,%! ~4.17!

with the expansion coefficients, due to Eq.~4.12!, given by

cn
~6 !~E!5

~Cnuß̂~6 !C!S

~Cnuß̂~6 !Cn!S

. ~4.18!

At first sight it seems that the coefficientscn
(1)(E) and

cn
(2)(E) are different. We notice, however, that sin
C(E,%)PAS(E), on utilizing the second of Eqs.~3.21!, the
second of Eqs.~3.20!, and Eq.~4.7!, we have

~Cnuß̂~2 !C!S5g~1 !bn~E!~Cnu iÆ̂'
~1 !C!S. ~4.19!

Since Cn(E,%)PAS(E) and C(E,%)PAS(E), we know
from Eq. ~3.24! that in Eq.~4.19! the action of the operato
iÆ̂'

(1) may be transferred to the left. Then, applying t
eigenequation~4.7!, substituting the result into Eq.~4.18!,
and making use of Eq.~4.11!, we find

cn
~2 !~E!5cn

~1 !~E!. ~4.20!

Consequently, the expansion~4.17! may be rewritten in ei-
ther of the two forms

C~E,%!5(
n

~Cnuß̂~6 !C!S

~Cnuß̂~6 !Cn!S

Cn~E,%!. ~4.21!

The expansion analogous to Eq.~4.21! holds also in the hy-
pervolumeV: for any C(E,r)PAV(E), one has

C~E,r!5(
n

~Cnuß̂~6 !C!S

~Cnuß̂~6 !Cn!S

Cn~E,r!. ~4.22!
4-5
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We conclude this section observing that from the eig
functions$Cn(E,%)% and the eigenvalues$bn(E)% one may
construct kernels of the operatorsÂS

(6)(E) projecting on the
subspacesAS

(6)(E):

AS
~6 !~E,%K ,%K8

8 !5(
n

ßK
~6 !Cn~E,%K!Cn

†~E,%K8
8 !ßK8

~6 !

~Cnuß̂~6 !Cn!S

.

~4.23!

Notice that for anyC(E,%)PAS(E) one has

ÂS
~6 !~E!C~E,%!5ß̂~6 !C~E,%! ~4.24!

and that

B̂~6 !~E!5ÂS
~6 !~E!B̂~6 !~E!ÂS

~6 !~E!. ~4.25!

V. OPERATORS R̂„Á…

„E…

The relation~4.5! implies that the operatorsB̂(6)(E) do
not have inverses in the ordinary sense. However, we m
define their generalized inversesR̂(6)(E), possessing the
properties

R̂~6 !~E!5ÂS
~6 !~E!R̂~6 !~E!ÂS

~6 !~E!, ~5.1!

through the reciprocity relations

R̂~6 !~E!B̂~6 !~E!5B̂~6 !~E!R̂~6 !~E!5ÂS
~6 !~E!. ~5.2!

The operatorsR̂(6)(E) are represented by their integral ke
nels R(6)(E,%,%8), in terms of which the definition~5.2!
reads

R
S

d3N21%9 R~6 !~E,%,%9!B~6 !~E,%9,%8!

5 R
S

d3N21%9 B~6 !~E,%,%9!R~6 !~E,%9,%8!

5AS
~6 !~E,%,%8!. ~5.3!

Since B̂(6)(E) and ÂS
(6)(E) are Hermitian with respect to

the scalar product (u)S, R̂(6)(E) are also Hermitian. More-
over,R̂(6)(E) possess properties analogous to those cha
terizing B̂(6)(E) and expressed in Eqs.~4.5! and ~4.6!.

With the aid of the operatorsR̂(6)(E), on utilizing Eq.
~4.24!, Eq. ~4.1! may be rewritten in the form

ß̂~6 !C~E,%!52g~7 !R̂~6 !~E!iÆ̂'
~6 !C~E,%!. ~5.4!

Eigenequations forR̂(6)(E) are obtained after acting with
these operators from the left on Eq.~4.9! and making use of
Eq. ~4.24!. One finds

R̂~6 !~E!Cn~E,%!5bn
71~E!ß̂~6 !Cn~E,%!. ~5.5!

Equation~5.5! and the orthogonality relations~4.12! imply
the spectral expansions
06270
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R~6 !~E,%K ,%K8
8 !

5(
n

ßK
~6 !Cn~E,%K!bn

71~E!Cn
†~E,%K8

8 !ßK8
~6 !

~Cnuß̂~6 !Cn!S

.

~5.6!

From Eqs.~4.14! and~5.6!, one infers the following relation-
ships between the operatorsB̂(6)(E) andR̂(7)(E):

B̂~6 !~E!5Æ̂'
~6 !R̂~7 !~E!Æ̂'

~7 ! . ~5.7!

VI. MATRIX REPRESENTATIONS OF THE OPERATORS
B̂„Á…

„E… AND R̂„Á…

„E…

Assume now that a functional set$F i(%)%, forming an
orthonormal basis inAS(E), is given. In this basis the ker
nelsB(6)(E,%,%8) andR(6)(E,%,%8) have the bilinear ex-
pansions

B~6 !~E,%K ,%K8
8 !5(

i , j
ßK

~6 !F i~%K!~F i uB̂~6 !F j !S

3F j
†~%K8

8 !ßK8
~6 ! , ~6.1!

R~6 !~E,%K ,%K8
8 !5(

i , j
ßK

~6 !F i~%K!~F i uR̂~6 !F j !S

3F j
†~%K8

8 !ßK8
~6 ! ~6.2!

with the expansion coefficients$(F i uB̂(6)F j )S% and

$(F i uR̂(6)F j )S% forming square matricesB(6)(E) and
R(6)(E), respectively. These matrices are mutually recip
cal in the sense of

R~6 !~E!B~6 !~E!5B~6 !~E!R~6 !~E!5A~6 !~E! ~6.3!

@cf. the operator relation~5.2!# and are additionally related
by

B~6 !~E!5Æ'
~6 !R~7 !~E!Æ'

~7 ! ~6.4!

@cf. Eq. ~5.7!#, whereA(6)(E) andÆ'
(6) are square matrice

with elements$(F i uÂS
(6)(E)F j )S% and $(F i uÆ̂'

(6)F j )S%,
respectively.

Projecting operator equations~4.1! and~5.4! from the left
on the basis functions$F i(%)% yields their matrix represen
tations

Q~6 !~E!5g~6 !B~6 !~E!P~6 !~E!, ~6.5!

P~6 !~E!52g~7 !R~6 !~E!Q~6 !~E!, ~6.6!

whereP(6)(E) and Q(6)(E) are column matrices with ele
ments $(F i uß̂(6)C)S% and $(F i u iÆ̂'

(6)C)S%, respectively,
related through

Q~6 !~E!5 iÆ'
~6 !P~7 !~E!. ~6.7!
4-6
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The matricesB(6)(E) and R(6)(E) are highly singular
and therefore inconvenient for use in potential applicatio
To overcome this singularity problem, it is convenient
choose the following particular form of the basis$F i(%)%:

$F i~%!%5$F i 8
~1 !

~%!%ø$F i 9
~2 !

~%!%, ~6.8!

where the functions in the subsets$F i
(6)(%)% are such that

ÂS
~6 !~E!F i

~6 !~%!5F i
~6 !~%!, ÂS

~6 !~E!F i
~7 !~%!50.

~6.9!

Obviously,

~F i
~6 !uF j

~6 !!S5d i j , ~F i
~6 !uF j

~7 !!S50. ~6.10!

In what follows, we shall assume that the basis functio
have been arranged in such an order that a matrix of
relevant operatorÔp in this basis has the form

Op5S Op~11 ! Op~12 !

Op~21 ! Op~22 !D , ~6.11!

where Op(11) is a square submatrix with elemen

$(F i
(1)uÔpF j

(1))S%; the other submatrices ofOp are defined
analogously. In the particular basis~6.8!, the matrices
B(6)(E), R(6)(E), A(6)(E), andÆ'

(6) are

B~1 !~E!5S B~1 !~E! 0

0 0D , B~2 !~E!5S 0 0

0 B~2 !~E!
D ,

~6.12!

R~1 !~E!5S R~1 !~E! 0

0 0D , R~2 !~E!5S 0 0

0 R~2 !~E!
D ,

~6.13!

A~1 !~E!5S I 0

0 0D , A~2 !~E!5S 0 0

0 I D , ~6.14!

Æ'
~1 !5S 0 Æ'

~1 !

0 0
D , Æ'

~2 !5S 0 0

Æ'
~2 ! 0D . ~6.15!

Here I and 0 are the unit and the null square submatric
respectively. In terms of the submatricesB(6)(E),
R(6)(E), and Æ'

(6) , the relations~6.3! and ~6.4! may be
rewritten as

R~6 !~E!B~6 !~E!5B~6 !~E!R~6 !~E!5I, ~6.16!

B~6 !~E!5Æ'
~6 !R~7 !~E!Æ'

~7 ! . ~6.17!

Moreover, in the basis~6.8! the matricesP(6)(E) and
Q(6)(E) are

P~1 !~E!5S P~1 !~E!

0 D , P~2 !~E!5S 0
P~2 !~E! D ,

~6.18!
06270
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Q~1 !~E!5S Q~1 !~E!

0 D , Q~2 !~E!5S 0
Q~2 !~E! D ,

~6.19!

respectively, with 0 denoting here the column null submat
and with the submatricesP(6)(E) and Q(7)(E) related
through

Q~6 !~E!5 iÆ'
~6 !P~7 !~E!. ~6.20!

This implies the following simplified forms of the matri
relations~6.5! and ~6.6!:

Q~6 !~E!5g~6 !B~6 !~E!P~6 !~E!, ~6.21!

P~6 !~E!52g~7 !R~6 !~E!Q~6 !~E!. ~6.22!

Further simplifications follow if one chooses the bas
~6.8! so that

iÆ'
~1 !5 l, iÆ'

~2 !52 l. ~6.23!

In this case, Eq.~6.17! becomes

B~6 !~E!5R~7 !~E!, ~6.24!

the reciprocity relation~6.16! reads

R~6 !~E!R~7 !~E!5B~6 !~E!B~7 !~E!5 l, ~6.25!

while the relation~6.20! transforms to

Q~6 !~E!56P~7 !~E!. ~6.26!

At this moment, it is convenient to denote

B~E!5B~1 !~E!5@B~2 !~E!#21, ~6.27!

R~E![R~1 !~E!5@R~2 !~E!#21, ~6.28!

P~E![P~1 !~E!52Q~2 !~E!, ~6.29!

Q~E![Q~1 !~E!5P~2 !~E!. ~6.30!

Then

B~E!5R21~E! ~6.31!

and

P~E!52g~2 !R~E!Q~E!. ~6.32!

Equation~6.32! establishes a relationship between the ope
tor approach to the many-electron relativisticR-matrix
theory elaborated in this work and earlier matrix formu
tions of the method@9,18,19#.

VII. VARIATIONAL PRINCIPLES FOR EIGENVALUES
AND MATRIX ELEMENTS OF THE OPERATORS

B̂„Á…

„E… AND R̂„Á…

„E…

In this section we present variational principles for eige
values and matrix elements of the operatorsB̂(6)(E) and
4-7
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R̂(6)(E). The principles are presented without details
their derivations, which are completely analogous to th
for the single-particle problem considered in Refs.@15, 16#.

A. Variational principles for eigenvalues of the operators
B̂„Á…

„E… †and R̂„Â…

„E…‡

The variational principles for eigenvalues of the operat
B̂(6)(E) @andR̂(7)(E)# are

b61~E!5stat
C̄

H 2g~7 !
~C̄u iÆ̂'

~6 !C̄ !S

~C̄uß̂~6 !C̄ !S

2
g~7 !

c\

^C̄u@Ĥ2E#C̄&V

~C̄uß̂~6 !C̄ !S

J . ~7.1!

The trial functionC̄(r) is to be varied inAV8 without any
other restrictions imposed on it. Stationary points of t
functionals in Eq.~7.1! are eigenvalues ofB̂(6)(E) @and
R̂(7)(E)#, and trial functions yielding these values are tho
solutions to the Dirac equation~3.5! that on the hypersurfac
S are corresponding~simultaneous! eigenfunctions of these
operators in the sense of Eq.~4.9! @and Eq.~5.5!#. If the trial
function C̄(r) is varied freely, the principle providesall ei-
genvalues and eigenfunctions ofB̂(6)(E) @andR̂(7)(E)# and
this explains why we have not added any subscript
b61(E) on the left of Eq.~7.1!. It is easily verifiable that the
principles~7.1! have the advantage in yieldingreal estimates
of eigenvalues$bn

61(E)% for any particular trial function
used. That variational principle that corresponds to
choice of the upper superscripts in Eq.~7.1! was proposed
about a decade ago by Hamacher and Hinze@9#.

B. Variational principles for matrix elements of the operators
B̂„Á…

„E…

Let F(%)PAS(E) and F8(%)PAS(E) @unlike in Sec.
VI, from now on these functions need not be orthogonal w
respect to the scalar product (u)S#. The variational principles
for the matrix elements (FuB̂(6)F8)S are

~FuB̂~6 !F8!S5 stat
C̄~6 !,C̄8~6 !

H 2g~7 !~Fu iÆ̂'
~6 !C̄8~6 !!S

2g~7 !~ iÆ̂'
~6 !C̄~6 !uF8!S

1g~7 !~ iÆ̂'
~6 !C̄~6 !uC̄~6 !!S

2
g~7 !

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&VJ . ~7.2!

The trial functionsC̄ (6)(r) and C̄8(6)(r) may be varied
freely in AV8 . The functionals on the right of Eq.~7.2! are

stationary for C̄ (6)(r)5C (6)(E,r) and C̄8(6)(r)
5C8(6)(E,r), whereC (6)(E,r) andC8(6)(E,r) are those
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particular completely antisymmetric solutions to the Dir
equation~3.5! that on the hypersurfaceS obey the boundary
conditions

ß̂~6 !C~6 !~E,%!5ß̂~6 !F~%!,
~7.3!

ß̂~6 !C8~6 !~E,%!5ß̂~6 !F8~%!,

respectively. It is to be emphasized that the trial functio
C̄ (6)(r) and C̄8(6)(r) neednot satisfy boundary relations
analogous to those in Eq.~7.3!.

C. Variational principles for matrix elements of the operators
R̂„Á…

„E…

Let F(%)PAS(E) andF8(%)PAS(E). The variational
principles for the matrix elements (FuR̂(6)F8)S are

~FuR̂~6 !F8!S5 stat
C̄~6 !,C̄8~6 !

H ~Fuß̂~6 !C̄8~6 !!S

1~ ß̂~6 !C̄~6 !uF8!S

1g~7 !~C̄~6 !u iÆ̂'
~6 !C̄8~6 !!S

1
g~7 !

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&VJ .

~7.4!

The trial functionsC̄ (6)(r) andC̄8(6)(r) may be any func-
tions from AV8 . The stationary values of the functionals

Eq. ~7.4! are obtained for C̄ (6)(r)5C (6)(E,r) and
C̄8(6)(r)5C8(6)(E,r), with C (6)(E,r) and C8(6)(E,r)
denoting those particular completely antisymmetric solutio
to the Dirac equation~3.5! that on the hypersurfaceS satisfy
the boundary conditions

iÆ̂'
~6 !C~6 !~E,%!5g~6 !ß̂~6 !F~%!,

~7.5!
iÆ̂'

~6 !C8~6 !~E,%!5g~6 !ß̂~6 !F8~%!,

respectively. The trial functions C̄ (6)(r) and

C̄8(6)(r) neednot satisfy conditions analogous to those
Eq. ~7.5!.

VIII. DERIVATION OF VARIATIONAL ESTIMATES OF
EIGENVALUES, MATRIX ELEMENTS, AND

KERNELS OF THE OPERATORS R̂„Á…

„E… AND B̂„Á…

„E…

WITH THE USE OF LINEAR TRIAL FUNCTIONS

A. Estimates of eigenvalues ofB̂„Á…

„E… and R̂„Â…

„E…

Let us use the linear trial function

C̄~r!5(
i 51

m

āiQ i~r! ~8.1!

in the functionals
4-8
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F ~6 !@C̄#52g~7 !
~C̄u iÆ̂'

~6 !C̄ !S

~C̄uß̂~6 !C̄ !S

2
g~7 !

c\

^C̄u@Ĥ2E#C̄&V

~C̄uß̂~6 !C̄ !S

~8.2!

@cf. the right side of Eq.~7.1!#. Substitution of Eq.~8.1! into
Eq. ~8.2! yields

F ~6 !@ ā†,ā#5
ā†S~6 !ā

ā†M~6 !ā
, ~8.3!

where ā is an m-component column matrix with elemen

$āi%, ā† is its Hermitian conjugate,S(6)(E) arem3m Her-
mitian matrices with elements

Si j
~6 !~E!52g~7 !~Q i u iÆ̂~6 !Q j !S2

g~7 !

c\
^Q i u@Ĥ2E#Q j&V,

~8.4!

while M(6) arem3m Hermitian matrices with elements

Mi j
~6 !5~Q i uß̂~6 !Q j !S. ~8.5!

We shall denote byã(6)† and ã(6) those vectorsā(6)† and
ā(6) for which the stationarity of the functionals~8.3! is
attained, i.e.,

dF ~6 !@ ã~6 !†,ã~6 !#50, ~8.6!

and byb61̃ the corresponding stationary values

b61̃5
ã~6 !†S~6 !ã~6 !

ã~6 !†M~6 !ã~6 ! , ~8.7!

which are the second-order variational estimates of eigen
ues ofB̂(6)(E) andR̂(7)(E). From Eq.~8.3! we find that the
conditions forF (6)@ ā(6)†,ā(6)# to be stationary atã(6)† and
ã(6) are

S~6 !ã~6 !5b61̃M~6 !ã~6 !, ã~6 !†S~6 !5b61̃ã~6 !†M~6 !.
~8.8!

We see that the numbersb61̃ are eigenvalues while the vec
tors ã(6)† andã(6) are, respectively, associated left and rig
eigenvectors of the generalized algebraic eigenvalue p
lems ~8.8!. Since the matricesS(6) are functions of energy
E, eigensolutions to the problems~8.8! are also energy-
dependent and we shall mark this occasionally.

The number of eigenvaluesb̃(E) is equal to rankM(1)

and the number of eigenvaluesb21̃(E) is equal to rankM(2)

@23#; in general, for a given finite basis set$Q i(r)% one
has rankM(1)ÞrankM(2). If b̃n(E) is a variational approxi-
mate of the particular eigenvaluebn(E) of B̂(1)(E) and

R̂(2)(E), and if bn
21̃(E) is a variational approximate o

the corresponding eigenvaluebn
21(E) of B̂(2)(E) and

R̂(1)(E), in general one hasb̃n
21(E)Þbn

21̃(E).
06270
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The hermiticity ofS(6)(E) andM(6) guarantees that the

eigenvalues$bn
61̃(E)% are real and that the following or

thogonality relations hold:

ãn
~6 !†~E!M~6 !ãn8

~6 !
~E!50 @bn

61̃~E!Þbn8
61̃

~E!#.
~8.9!

We shall assume that eigenvectors associated with dege
ate eigenvalues~if there are any! have also been orthogona
ized so that

ãn
~6 !†~E!M~6 !ãn8

~6 !
~E!50 ~nÞn8!. ~8.10!

Then it is easy to show that the approximate eigenfuncti

C̃n
~6 !~E,r!5(

i 51

m

ãin
~6 !~E!Q i~r! ~n51,2, . . . ,rank M~6 !!

~8.11!

obey the orthogonality relations

~C̃n
~6 !uß̂~6 !C̃n8

~6 !
!S50 ~nÞn8!. ~8.12!

B. Estimates of matrix elements and kernels ofR̂„Á…

„E…

The approximate eigenfunctions$C̃n
(1)(E,r)% and

$C̃n
(2)(E,r)% found in Sec. VIII A appear to be particularl

well suited for use as basis functions for variational deter
nation of approximations to matrix elements of the operat
R̂(1)(E) andR̂(2)(E), respectively. Indeed, if the trial func
tions of the form

C̄8~6 !~r!5 (
n51

rank M~6 !

c̄n
~6 !C̃n

~6 !~E,r!,

~8.13!

C̄8~6 !~r!5 (
n51

rank M~6 !

c̄n8
~6 !C̃n

~6 !~E,r!

are used in the functionals

F ~6 !@F,F8;C̄~6 !,C̄8~6 !#5~Fuß̂~6 !C̄8~6 !!S

1~ ß̂~6 !C̄~6 !uF8!S

1g~7 !~C̄~6 !u iÆ̂'
~6 !C̄8~6 !!S

1
g~7 !

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&V

~8.14!

@cf. the right side of Eq.~7.4!#, the latter become
4-9
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F ~6 !@ f~6 !†,f8~6 !; c̄~6 !†,c̄8~6 !] 5f~6 !†c̄8~6 !1 c̄~6 !†f8~6 !

2 c̄~6 !†S̃~6 !c̄8~6 !, ~8.15!

wheref(6)† and c̄(6)† are row matrices with rankM(6) ele-
ments$ f n

(6)* 5(Fuß̂(6)C̃n
(6))S% and $c̄n

(6)* %, respectively,
f8(6) andc̄8(6) are column matrices with rankM(6) elements

$ f n8
(6)5(ß̂(6)C̃n

(6)uF8)S% and $c̄n8
(6)%, respectively, while

S̃(6)(E) are rankM(6)3rank M(6) Hermitian matrices with
elements

S̃nn8
~6 !

~E!52g~7 !~C̃n
~6 !u iÆ̂'

~6 !C̃n8
~6 !

!S

2
g~7 !

c\
^C̃n

~6 !u@Ĥ2E#C̃n8
~6 !&V. ~8.16!

These particular vectorsc̄(6)† and c̄8(6), which make the
functionals~8.15! stationary, will be designated byc̃(6)† and
c̃8(6), respectively. Performing the first variations ofF (6)

due to small and otherwise arbitrary variations ofc̄(6)† and
c̄8(6) aroundc̃(6)† and c̃8(6), it is found that sufficient con-
ditions for F (6) to be stationary are

c̃~6 !†5f~6 !†~S̃~6 !!21, c̃8~6 !5~S̃~6 !!21f8~6 !.
~8.17!
is
ns

06270
Substituting these optimal vectorsc̃(6)† and c̃8(6) into the
functionals~8.15!, we obtain the following variational esti
mates of (FuR̂(6)F8)S:

~FuR̂̃~6 !F8!S5f~6 !†~S̃~6 !!21f8~6 !

5 (
n,n851

rank M~6 !

~Fuß̂~6 !C̃n
~6 !!S

3@~S̃~6 !!21#nn8~ ß̂~6 !C̃n8
~6 !uF8!S. ~8.18!

Equation~8.18! may be simplified since from the conside
ations of Sec. VIII A it follows that the matricesS̃(6)(E) are
diagonal and

S̃nn8
~6 !

~E!5bn
61̃~E!~C̃n

~6 !uß̂~6 !C̃n
~6 !!Sdnn8 . ~8.19!

Consequently, Eq.~8.18! becomes

~FuR̂̃~6 !F8!S

5 (
n51

rank M~6 !

~Fuß̂~6 !C̃n
~6 !!S ~bn

61̃!21~ ß̂~6 !C̃n
~6 !uF8!S

~C̃n
~6 !uß̂~6 !C̃n

~6 !!S

.

~8.20!

Since the hypersurface functionsF(%) andF8(%) are arbi-
trary, Eq. ~8.20! defines two linear integral operator

R̂̃(6)(E) with the kernels
R̃~6 !~E,%K ,%K8
8 !5 (

n51

rank M~6 !
ßK

~6 !C̃n
~6 !~E,%K!@bn

61̃~E!#21C̃n
~6 !†~E,%K8

8 !ßK8
~6 !

~C̃n
~6 !uß̂~6 !C̃n

~6 !!S

~8.21!
ts
@cf. the spectral expansions~5.6!#. The operatorsR̂̃(6)(E)

are variational estimates of the operatorsR̂(6)(E).

C. Estimates of matrix elements and kernels ofB̂„Á…

„E…

The approximate eigenfunctions$C̃n
(2)(E,r)% and

$C̃n
(1)(E,r)% ~notice the order! may be employed as bas

functions for the variational determination of approximatio
to matrix elements of the operatorsB̂(1)(E) and B̂(2)(E),
respectively. Extremalization of the functionals

F ~6 !@F,F8;C̄~6 !,C̄8~6 !#52g~7 !~Fu iÆ̂'
~6 !C̄8~6 !!S

2g~7 !~ iÆ̂'
~6 !C̄~6 !uF8!S

1g~7 !~ iÆ̂'
~6 !C̄~6 !uC̄8~6 !!S

2
g~7 !

c\
^C̄~6 !u@Ĥ2E#C̄8~6 !&V

~8.22!
@cf. the variational principles~7.2!# in the class of trial func-
tions

C̄~6 !~r!5 (
n51

rank M~7 !

c̄n
~6 !C̃n

~7 !~E,r!,

~8.23!

C̄8~6 !~r!5 (
n51

rank M~7 !

c̄n8
~6 !C̃n

~7 !~E,r!

@notice the difference between Eqs.~8.13! and~8.23!# yields
the following estimates of the matrix elemen
(FuB̂(6)F8)S:

~Fu B̂̃~6 !F8!5~g~7 !!2 (
n,n851

rank M~7 !

~Fu iÆ̂'
~6 !C̃n

~7 !!S

3@~ T̃~6 !!21#nn8~ iÆ̂'
~6 !C̃n8

~7 !uF8!S,

~8.24!
4-10
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whereT̃(6)(E) are rankM(7)3rank M(7) Hermitian matri-
ces with elements

T̃nn8
~6 !

~E!52g~7 !~ iÆ̂'
~6 !C̃n

~7 !uC̃n8
~7 !

!S

1
g~7 !

c\
^C̃n

~7 !u@Ĥ2E#C̃n8
~7 !&V. ~8.25!

A glance at Eqs.~8.16! and~8.25! ~and comparison of matrix
dimensions! shows that elements of the matricesT̃(6)(E) are
simply related to elements of the diagonal matric
S̃(7)(E) introduced in Sec. VIII B:

T̃nn8
~6 !

~E!5~g~7 !!2S̃nn8
~7 !

~E!. ~8.26!

Hence and from Eq.~8.19! one infers that
al

d
n

t

o
u
es
om
-
is
c
a
o

n

in
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T̃nn8
~6 !

~E!5~g~7 !!2bn
71̃~E!~C̃n

~7 !uß̂~7 !C̃n
~7 !!Sdnn8

~8.27!

and consequently the estimates~8.24! become

~Fu B̂̃~6 !F8!S

5 (
n51

rankM~7 !

~Fu iÆ̂'
~6 !C̃n

~7 !!S~bn
71̃!21~ iÆ̂'

~6 !C̃n
~7 !uF8!S

~C̃n
~7 !uß̂~7 !C̃n

~7 !!S

.

~8.28!

Equation ~8.28! defines two linear integral operator

B̂̃(6)(E) with the kernels
B̃~6 !~E,%K ,%K8
8 !5 (

n51

rankM~7 !
æ'K

~6 !~%K!C̃n
~7 !~E,%K!@bn

71̃~E!#21C̃n
~7 !†~E,%K8

8 !æ'K8
~7 !

~%K8
8 !

~C̃n
~7 !uß̂~7 !C̃n

~7 !!S

~8.29!
s

@cf. the expansions~4.14!#. These operators are variation
estimates of the operatorsB̂(6)(E).

IX. MULTICONFIGURATION DIRAC-HARTREE-FOCK
APPROACH TO THE R-MATRIX METHOD FOR
RELATIVISTIC MANY-ELECTRON SYSTEMS

It is evident that the success of the method, presente
Sec. VIII A and aimed at approximating eigenvalues a
eigenfunctions ofB̂(6)(E) @andR̂(7)(E)# with the use of the
linear trial functions ~8.1!, depends greatly on the righ
choice of the basis functions$Q i(r)%. All premises~in par-
ticular, any known symmetries of the system! should be ex-
ploited to obtain converged results with a variational basis
the size as small as possible. Difficulties that may be enco
tered in the course of achieving this goal, due to the stiffn
of the basis functions used, may be, at least partly, overc
within the framework of the multiconfiguration Dirac
Hartree-Fock R-matrix approach proposed below. Th
method is an extension of the nonrelativistic Hartree-Fo
R-matrix method suggested about a decade ago by Hinze
Hamacher@24,25# and elaborated on recently by the auth
@17#.

We begin with introducing m one-electron four-
component spin orbitals$c̄n(r )% without prescribing their
forms and subjecting them only to the orthonormality co
straints within the volumeV:

^c̄nuc̄h&5dnh . ~9.1!

From Kronecker’s products of these spin orbitals, mak
use of the antisymmetrizerÂV, we may constructmN5(N

m)
different N-electron Slater determinants
in
d

f
n-
s
e

k
nd
r

-

g

Q̄ i~r![Q̄i1i2¯iN
~r1 ,r2 ,...,rN!

5AN! ÂV$c̄i1
~r1! ^ c̄i2

~r2! ^¯^ c̄iN
~rN!%

5
1

AN!
detuc̄i1

~r1!,c̄i2
~r2!,...,c̄iN

~rN!u ~9.2!

with i1,i2,¯,iN to avoid redundancy. The function
$Q̄ i(r)% obtained in that way are mutually orthonormal:

^Q̄ i uQ̄n&V5d in , ~9.3!

wherei 5$i1i2¯iN%, n5$n1n2¯nN%, and

d in5di1n1
di2n2

¯diNnN
. ~9.4!

Then, from the set$Q̄ i(r)% we choosem<mN elements and
form the trial function

C̄~r!5(
i 51

m

āiQ̄ i~r!, ~9.5!

which is to be used in the functionals

F ~6 !@C̄,$l̄nh%#52g~7 !
~C̄u iÆ̂'

~6 !C̄ !S

~C̄uß̂~6 !C̄ !S

2
g~7 !

c\

^C̄u@Ĥ2E#C̄&V

~C̄uß̂~6 !C̄ !S

1

(
n,h51

m

l̄nh@^c̄nuc̄h&2dnh#

~C̄uß̂~6 !C̄ !S

~9.6!
4-11
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for variational optimization of approximations to the eigenvalues$b61(E)%. The functionals~9.6! differ from Eq. ~8.2! since
in the current approach we have to take into account the orthonormality constraints~9.1!; this has been done including the la
term on the right-hand side of Eq.~9.6! in which $l̄nh% are the Lagrange multipliers, optimal values of which are to
determined simultaneously with the optimal values of the coefficients$āi% and the optimal forms of the spin orbitals$c̄n(r )%.

Before we apply the variational principle to the functionals~9.6!, we reduce them to the forms containing$āi%, $c̄n(r )%,
and their conjugates explicitly. This is most conveniently done with the aid of the annihilation operators defined so th@26#

ÂnQ̄$i1i2¯iN%
~N! ~r1 ,r2 ,...,rN!5H ~2 !N1 jQ̄$i1i2¯i j 21i j 11¯iN%

~N21! ~r1 ,r2 ,...,rN21! for n5i jP$i1 ,i2 ,...,iN%

0 for n¹$i1 ,i2 ,...,iN%
, ~9.7!

where the superscripts in the parentheses at theU’s refer to the numbers of electrons described by these functions.
annihilators defined in that way anticommute

ÂnÂh1ÂhÂn50 ~9.8!

and with the aid of them the Slater determinants~9.2! may be rewritten equivalently as

Q̄ i~r!5
1

AN
(
n51

m

@ÂnQ̄ i~r!# ^ c̄n~rN!5
1

AN~N21!
(

n,h51

m

@ÂnÂhQ̄ i~r!# ^ c̄n~rN21! ^ c̄h~rN!. ~9.9!

Using Eqs.~9.1!–~9.9!, the functionals~9.6! become

F ~6 !@$āi* %,$āi%,$c̄n
†%,$c̄n%,$«̄nh

~6 !%#52g~7 !

(
i , j 51

m

āi* ā j (
n,h51

m

vnh
~ i j !~ c̄nu ia'

~6 !c̄h!

(
i , j 51

m

āi* ā j (
n,h51

m

vnh
~ i j !~ c̄nub~6 !c̄h!

2
g~7 !

c\

(
i , j 51

m

āi* ā jF (
n,h51

m S vnh
~ i j !^c̄nuĤc̄h&1 1

2 (
j,z51

m

Vnj,hz
~ i j ! ^c̄nc̄juUc̄hc̄z&v3vD 2Ed i j G

(
i , j 51

m

āi* ā j (
n,h51

m

vnh
~ i j !~ c̄nub~6 !c̄h!

1
g~7 !

c\

(
n,h51

m

«̄nh
~6 !@^c̄nuc̄h&2dnh#

(
i , j 51

m

āi* ā j (
n,h51

m

vnh
~ i j !~ c̄nub~6 !c̄h!

, ~9.10!
t

ul-
n

where, for the sake of convenience, we have replaced
Lagrange multipliers$l̄nh% by the related multipliers

«̄nh
~6 !52c\g~6 !l̄nh ~9.11!

and defined the coefficients

vnh
~ i j !5^ÂnQ̄ i uÂhQ̄ j&V N215H 61 if nP i and hP j

0 otherwise
,

~9.12!

Vnj,hz
~ i j ! 5^ÂnÂjQ̄ i uÂhÂzQ̄ j&VN22

5H 61 if n,jP i and h,zP j

0 otherwise
. ~9.13!
06270
heThe stationary values of the functionals~9.10! approximate
eigenvalues of the operatorsB̂(6)(E) andR̂(7)(E); the best
estimates are given by

b61̃5F ~6 !@$ãi
~6 !* %,$ãi

~6 !%,$c̃n
~6 !†%,$c̃n

~6 !%,$«̃nh
~6 !%#,

~9.14!

where the optimal expansion coefficients$ãi
(6)%, spin orbit-

als $c̃n
(6)(r )%, their conjugates as well as the Lagrange m

tipliers $«̃nh
(6)% are determined from the stationarity conditio

dF ~6 !@$ãi
~6 !* %,$ãi

~6 !%,$c̃n
~6 !†%,$c̄n

~6 !%,$«̃nh
~6 !%#50.

~9.15!
4-12
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Varying the functionals in Eq.~9.10! and applying the con-
dition ~9.15!, one obtains a set of finite-volume multicon
figuration Dirac-Hartree-FockR-matrix equations compris
ing the generalized algebraic eigenproblem

(
j 51

m

@S̃i j
~6 !2b61̃M̃ i j

~6 !#ã j
~6 !50 ~9.16!

with

S̃i j
~6 !52g~7 ! (

n,h51

m

vnh
~ i j !(c̃n

~6 !u ia'
~6 !c̃h

~6 !)

2
g~7 !

c\ (
n,h51

m Fvnh
~ i j !^c̃n

~6 !uĤc̃h
~6 !&1 1

2 (
j,z51

m

Vnj,hz
~ i j !

3^c̃n
~6 !c̃j

~6 !uUc̃h
~6 !c̃z

~6 !&V3VG1
g~7 !

c\
Ed i j ~9.17!

and

M̃ i j
~6 !5 (

n,h51

m

vnh
~ i j !~ c̃n

~6 !ub~6 !c̃h
~6 !!, ~9.18!

and the coupled integro-differential equations

(
h51

m

ṽnh
~6 !Ĥ~r !c̃h

~6 !~r !

1 (
h,j,z51

m

Ṽnj,hz
~6 ! ^c̃j

~6 !uUc̃z
~6 !&c̃h

~6 !~r !

5 (
h51

m

«̃nh
~6 !c̃h

~6 !~r !, ~9.19!

solutions of which are subjected to the boundary conditio

(
h51

m

ṽnh
~6 !@ ia'

~6 !~r!c̃h
~6 !~r!2g~6 !b61̃b~6 !c̃h

~6 !~r!#50.

~9.20!

One obtains also a set of conjugated equations

(
i 51

m

ãi
~6 !* @S̃i j

~6 !2b61̃ M̃ i j
~6 !#50, ~9.21!

(
n51

m

ṽnh
~6 !@Ĥ~r !c̃n

~6 !~r !#†

1 (
n,j,z51

m

Ṽnj,hz
~6 ! c̃n

~6 !†~r !^c̃j
~6 !uUc̃z

~6 !&

5 (
n51

m

«̃nh
~6 !c̃n

~6 !†~r !, ~9.22!
06270
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(
n51

m

ṽnh
~6 !

†@ ia'
~6 !~r!c̃n

~6 !~r!#†2g~6 !b61̃@b~6 !c̃n
~6 !~r!#†

‡

50. ~9.23!

In addition, the orthonormality constraints

^c̃n
~6 !uc̃h

~6 !&5dnh ~9.24!

follow in agreement with Eq.~9.1!. The quantities$ṽnh
(6)%

and$Ṽnj,hz
(6) % appearing in the above equations are defined

ṽnh
~6 !5 (

i , j 51

m

ãi
~6 !* vnh

~ i j !ã j
~6 ! ,

~9.25!

Ṽnj,hz
~6 ! 5 (

i , j 51

m

ãi
~6 !* Vnj,hz

~ i j ! ã j
~6 ! .

From Eqs.~9.19! and~9.22!, with the aid of the orthonor-
mality relations~9.24!, one derives

«̃nh
~6 !5 (

s51

m

ṽns
~6 !^c̃h

~6 !uĤc̃s
~6 !&1 (

s,j,z51

m

Ṽnj,sz
~6 !

3^c̃h
~6 !c̃j

~6 !uUc̃s
~6 !c̃z

~6 !&V3V ~9.26!

and

«̃nh
~6 !5 (

s51

m

ṽsh
~6 !^Ĥc̃s

~6 !uc̃n
~6 !&1 (

s,j,z51

m

Ṽsj,hz
~6 !

3^c̃s
~6 !c̃j

~6 !uUc̃n
~6 !c̃z

~6 !&V3V , ~9.27!

hence one immediately infers that

«̃nh
~6 !5 «̃hn

~6 !* , ~9.28!

i.e., matrices composed of the Lagrange multipliers are H
mitian.

The multiconfiguration Dirac-Hartree-Fock~MCDHF!
R-matrix equations~9.16!, ~9.19!, and~9.20! are to be solved
self-consistently. In this context, several features that dis
guish these equations from standard MCDHF problems
countered in computations of atomic structures@27–35# are
to be emphasized. First, in the present case we have a fi
volume problem, since the system is considered within
volumeV. Second, the total energy of the systemE is now
prescribed; instead, boundary conditions obeyed by the
orbitals on the surfaceS enclosingV are not known in ad-
vance~as opposed to the case of the standard MCDHF pr
lems, in which the spin orbitals are forced to vanish at
boundary located at infinity! but are to be determined in th
course of solving the equations. And third, in the algebr
systems~9.16! the weight matricesM̃(6) with the elements

M̃ i j
(6) are highly singular and special numerical algorithm

for instance the QZ algorithm@36,37#, for solving such sys-
tems have to be employed.
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We conclude this section stressing that Eqs.~9.16!, ~9.19!,
and ~9.20! provide two, in general different, sets of the
MCDHF R-matrix equations, depending on which supe
scripts, upper or lower, are chosen. Results obtained by s
ing these sets of equations will be, in general, different
long as the number of spin orbitals optimized is finite~which
is always the case in actual computations!. A difference be-
tween results obtained in the two cases may serve a
additional criterion of the accuracy of the method.

X. CONCLUSIONS

In this work we have attempted to present a unified
proach to the variationalR-matrix methods for many-
electron relativistic systems. The approach has been base
the operator formulation of the relativisticR-matrix theory,
in which central objects are the integral operatorsB̂(6)(E)
and R̂(6)(E) @38#. We have presented a set of variation
A

cs

ys

oa

06270
-
lv-
s
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-
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l

principles for eigenvalues and matrix elements of these
erators. Utilizing these principles with the Rayleigh-Ritz li
ear trial functions, we have obtained suitable variational
timates of eigenvalues, matrix elements, and kernels
B̂(6)(E) and R̂(6)(E). Finally, we have proposed the mu
ticonfiguration Dirac-Hartree-Fock approach to theR-matrix
method for many-electron systems. We write a compu
code implementing that approach.
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