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Variational R-matrix methods for many-electron systems: Unified relativistic theory
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We use a formalism of integral operators to present a unified approach to vari&iamettix methods for
many-electron systems described by the Dirac Hamiltonian. Variational principles for eigenvalues and matrix
elements of many-electron integral operatés’)(E) and R(*)(E), which are the central objects in the
approach, are listed. The Rayleigh-Ritz linear trial functions are used in these principles, yielding second-order
variational estimates of eigenvalues, matrix elements, and kernels of these operators. A multiconfiguration
Dirac-Hartree-Fock approach to the relativisRenatrix method is proposed.
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I. INTRODUCTION new atomic code based on the relativistic variational
R-matrix approach was established with the present author’s
The history of theR-matrix method for systems described participation. Starting the project, we did not foresee any
by the Dirac equation dates back to 1948 when Goeftidel particular problems, save for some eventual numerical ones,
presented a relativistic generalization of Wign¢@$nonrel-  since the mathematical background of the relativistic
ativistic formulation of the method. Since in low-energy R-matrix theory seemed to be sound. However, already at the
nuclear reaction phySiCS, for which tRematrix method was very pre"minary stage, making acquaintance with the exist-
originally invented, relativistic effects manifest themselvesing literature of the subject, we found an error in the
mainly through the spin-orbit coupling, which may be usu-Goertzel-Chang formulation of the DiraR-matrix theory.
ally accounted for within the semirelativistic theory based onsjnce it was not obvious at that moment whether the diffi-
the Pauli equation, Goertzel's results were scarcely referregyjty encountered did afflict the variational approaches or
to. At the beginning of the 1970s, tiematrix method was not, we attempted to clarify the situation seeking an origin of
introduced into nonrelativistic atomic physi¢8] and in  the problem with a hope to remove it. We succeeded but
1975 Chang[4], being unaware of Goertzel's work, red- found that the corrected Goertzel-Chang thefir§,18—2Q
erived theR-matrix theory for Dirac particles. Chang’s nu- appeared to be mathematically much more complicated than
merical code implementing the Dird&matrix method was  that presented in Reff1, 4], being most efficiently formu-
applied by its authof5,6] and, after significant development, |ated in the language of integral operators rather than matri-
by an Oxford-Belfast teamicf. Ref. [7] and references ces. Although the variational approaches appeared to be free
therein to studies of low-energy electron collisions with of the distressing difficulty, the mathematical effort under-
heavy atomic and ionic targets and photoionization thereofaken had also far-reaching consequences for our project: we
Furthermore, at the beginning of the 1990s, Thumm angealized that the operator language is ideally suited for pro-
Norcross([8] used their own two-electron DiraB-matrix  viding a unified treatment of variation®-matrix methods
code to study low-energy electron impact on cesium atomsfor many-electron relativistic systenj&1]. Such a unified
All aforementioned works utilized a particular relation- treatment is presented in the current paper, in which we con-
ship between th&matrix and Green’s function of an auxil- sjder a system that may be either a complete electronic cloud
iary artificial finite-volume boundary value problem involv- of 3 many-electron relativistic atom, a molecule, an ion, or a
ing a many-electron Dirac equation. In 1991, Hamacher angdroup of valence electrons, the interactions of which with a
Hinze[9] proposed an entirely different approach to the relanycleus(or nucle) and with an electronic core have been
tivistic R-matrix theory of atomic systems, based on a variamodeled somehow. Since it has been our intention to keep
tional principle for reciprocals of eigenvalues of the relativ- the presentation as general as possible, in this work we do

istic R-matrix. Their proposal is a direct extension to thenot refer to any possible symmetries that might simplify con-
relativistic case of the nonrelativistic eigenchanRehatrix  siderations at the cost of their generality.

method, which during the past two decades has evolved into The work is divided into ten sections. After this Introduc-

one of the most powerful methods of analyzing Rydbergtion, in Sec. Il we acquaint the reader with the mathematical
spectra and photoionization of atoms and small moleculegotation to be used later. In Sec. Ill we set up the physical
(cf. Refs.[10-12 and references therginThe Rmatrix  problem and in Sec. IV we introduce two linear integral op-

eigenchannel approach itself falls into a wider class of Variaératorsf%(i)(E) and study their properties. Then in Sec. V

tional R-matrix methods(cf. Refs.[13—-17 and references ~
therein. R [ L we define and investigate the operat®s’)(E) that are the

Some time ago, a collaboration aimed at developing @eneralized inverses d&*)(E). Section VI is devoted to
showing that, if a suitable functional basis set is used, the

only nonzero submatrix of the matrix representiR§”)(E)
*Electronic address: radek@mif.pg.gda.pl in that basis coincides with the relativistkmatrix appear-
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ing in earlier matrix approaches to the the¢®18,19. In If the pointt lies on the hypersurfac®, we shall denote this
Sec. VIl we list six variational principles for eigenvalues andusing the symbop instead ofe. A unit outward vector nor-
matrix elements of the operatof$™)(E) andR(*)(E). De- ~ mal to the hypersurfac& at the pointe will be denoted by
tails of derivations of these principles are omitted since theyt(9).

are completely analogous to those for the single-particle The hypersurfac& is composed oN geometrically simi-
theory presented in Refgl5, 16. Variational principles are lar hyperfacets, with th&th hyperfacetSy defined as
known to be convenient tools for approximate calculations,
and in Sec. VIII we describe how the Rayleigh-Ritz linear
trial functions may be employed in the principles (K=1,2,..N) 2.6
listed in Sec. VII to obtain convenient estimates of eigenval- e '
ues, matrix eJements, and integral kernels of the operatorg ihe point o is on Gy, we shall indicate this adding the
B&)(E) and R(F)(E). In Sec. IX we show that, after suit- subscriptK at g, i.e., writing o instead ofo. Explicitly,

able modifications, the variational principles for eigenvalues

of B*)(E) andR‘*)(E) may be used to derive two sets of Ok =1 Mk-10PK T2 N 2.7
multiconfiguration Dirac-Hartree-FocR-matrix equations,
solutions to which yield optimal approximate wave functions
describing a system under consideration within Raatrix

S =V X XV 1 XS X Vg1 X X Wy

It follows from the definition of&x and from Eq.(2.7) that
on &y the unit outward normal vector is

hypiervolume asAweII as variational estimates of eigenvalues n(0)=[01,...0c—1,n(p),.Ok+1,...00], (2.9
of B)(E) andR()(E). The work ends with a brief sum- _ _ _
mary in Sec. X. wheren(p) is a unit outward vector normal t8 at the point

If ®(r) and®’'(v) are sufficiently regular ¥-component
spinor functions defined i and on&, their scalar products

Let VCR® be a finite volume enclosed by a surfageA ~ over® and overS are
position vector, relative to some reference origin, of a point
in the volume) will be denoted by . If the point is located <¢|¢/>mzf dNe @ () D' (v), (2.9
on the surfaces, the position vector will be marked witp. T

If ¢(r) and @' (r) are any two sufficiently regular four-
component spinor functions, their scalar products avand
S are defined as

II. DEFINITIONS AND NOTATION

(P]®")e= jggd?”“’le@*(e)@’(e), (2.10
respectively, where

<¢|¢'>Efvd3r #'(r)¢'(r) 2.1
f d®Ne (---)Efdsrf--fd?‘rN () (219
Py v %

and
and

(plp")= ffgsdzpdf(pw’(p), (2.2 N
ﬁged“—le (=2 fe d*Nto () (212
respectively. Herel®r is an infinitesimal volume element of «

V around the point, d?p is an infinitesimalscalar surface  with
element ofS around the poinp, while the dagger denotes

the matrix Hermitian conjugation. J’ goN-1 (__.):f & f 4°r ﬂgdz
With the volumeVC R3, one may associate a hypervol- S« o I R NS R

umeUCR3N defined as
PN N N
B={v=[ry,...M¢,...,n] e RN, V 1<sK=N:irgel} vad fk+1 Ld fn (o).
(2.3 (2.13

or, equivalently, as thél-fold Cartesian product op, Hered*Nr denotes an infinitesimal element of the hypervol-

ume 2 around the point and d*N"p is an infinitesimal

T=W=Vx- X Wy (24 scalar element of the hypersurfac® around the pointo.
. The scalar product of the functiors(p) and d’'(p) over a
N
G= U VXXV 1 XS X V1 XX Wy (2.9 ((I)|(I)’)6KEL3 d*N "o TP (k). (2.19
K=1 K
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From Egs.(2.10, (2.12, and(2.14) one has | O O o 9]
N Iz(o |)’ :<0' o] #7lo —|) 3.2
D)= DD g . 2.1
(@07 I(E:l (@] )GK (219 [herel and O are the 22 unit and null matrices, respec-

tively, and o=[o,0,,0,] is a vector composed of the 2
A space of all completely antisymmetrid®€omponent  x2 Pauli matricekin the following way:
spinor functions®(r) defined in the hypervolumé& and

such that ®|® )< will be denoted byAy;. The projector B=11Q ®Lk 1@ axR T 1Q - ®ZLy, (3.3
on the space of such functiofthe hypervolume antisymme-
trizen will be marked withAy. A class of functions from By=I1® " ®Lx-1® Pk ®Tx+1® @Iy, (3.9

Ay that are at least once differentiablenwill be designed
with Ag;. A space of all completely antisymmetric functions
®(p) defined on the hypersurfac® and such that®|®)
<o will be denoted byAg; the projector on the space of
such functions(the hypersurface antisymmetrizewill be

marked withA.

where ® denotes the directKronecker's matrix product.
Subscripts at the matrices on the right-hand sides of Eqgs.
(3.3) and(3.4) refer to particular electrons.

Throughout the rest of this work, we shall be concerned
with the time-independent Dirac equation

If ®(p) andd’(p) are any two functions fromdg, from [ﬂ(t)— E]W(E,t)=0 (3.5
their antisymmetry and from the geometric similarity of any ' ’
two hyperfacetsSy and &k one infers that in which E is a preselectedotal energy of the system, in-

cluding rest energies of the electrons, and the wave function
¥ (E,r) is a #N-component column vector. Since we are
dealing with electrons, we shall conform to Pauli’s exclusion

(D|D")s, =(P|P")g, V 1<KK'=N

[P(0),P'(0) e As] (2.16  principle and consider only those solutions to E#}5) that
are completely antisymmetric Ndcomponent spinors. In
and consequentlicf. Eq. (2.15)] what follows, we shall assume that the electronic en& gy
fixed at some prescribed real value and consider those con-
(P|D")g, = (¢)|¢ ) V 1<K<=N figurations of the system when &\l electrons are in some

fictitious finite volume) enclosed by a surfac8. Then the
configuration pointe lies in the correspondingfictitious)

[P(0),P'(0) € Ag]- (2.17  hypervolume® defined by Eq.(2.3) and bounded by the
hypersurfaces defined by Eq(2.5). We emphasize that we
IIl. THE MANY-ELECTRON DIRAC HAMILTONIAN AND do not confine the electrons to the volumeéin any way
THE HYPERSURFACE OPERATORS /) AND R®) since we do not impose any atrtificial boundary condition on

the wave functionV (E,x) at the hypersurfac&.
Consider anN-electron system described by the Dirac  We shall denote bydy(E) a subspace afly built of all

Hamiltonian completely antisymmetric solutions to the Dirac equation
N N (3.5 in the hypervolumel at the real energ¥; the projec-
Py o tor on this subspace will be denoted byy(E). For later
H(v)= H(rg)+3 U(rg,rg: : _
(¥) |<§=:1 (") ng‘:l (") convenience, we define also a subspaggE)C Asg,
(K#K')

N A(E)={®(@) e Ag; TV (E,v) e Ay(E):
= > [—ichan Vi+BmE+V(ry)]

K=1 P(e)=V(E,0)} (3.6)
. N Let W(E,x) e Ay(E) and ¥'(E,¢) e Ay(E). Then, by
+3 > U(rg,rgo). (3.1  virtue of reality ofE, we have
K,K'=1
(K#K")

(W' | W)=V |[HY ), (3.7
In this definition,r is a position vector of th&th electron

in physical spaceV y is the gradient operator with respect to Which implies that the Hamiltoniar¥( is Hermitian on
spatial coordinates of théth electron, and=[r;,...ry]is  Ax(E). On the other hand, by virtue of the explicit form of
a position hypervector of a point describing a configurationthe Hamiltonian, after applying theNsdimensional Gauss
of the system in an abstractNadimensional configuration integration theorem, we obtain

space. The one- and two-electron potential functigiis,) . . R

andU(ry,rg.) are real scalar spin-independent functions of (R | V)= (V' [HW )= (V' |ich B, V)s, (3.8
electronic spatial coordinates with(ry ,rg-) assumed to be R

symmetric in its arguments. Thé'x 4N matricessgc andRc ~ where/E, is a linear integral operator, defined gty, with
are defined in terms of thexd4 matrices the kernel
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£ (0.0)=2 (0)5N V(e—0"), (3.9

where

& (0)=n(0)- £, FA=[e,...&] (310

It is clear that/E, is local and Hermitian under the hyper-

surface scalar product). Equations(3.7) and(3.9) yield

(V'|ifE, ¥)s=0. (3.11)

To proceed further, we introduce two linear operators

) and3(~) such that for any sufficiently regulénot nec-
essarily antisymmetric4N-component functiond® (o) de-
fined on&, one has

B (0x) =R P (ex), (3.12
where

R =710 I 19 B ® L 119 0Ty (3.13
with

(3.19

PHYSICAL REVIEW A 63 062704

ESES=0, EVETI=R®, 320
EFRE=0, REES=ED, (3.22
@(i)[E(f):O, ;Eit)@(i):,fE(f)_ (3.23

The advantage of introducing the operatrﬁf§i) is that

with their aid, by virtue of the relation§3.20, Eq. (3.11)

may be rewritten in two equivalent forms,

(W W) g= (V' [iE V). (3.24
Equation(3.24 means that the operatoid!™) are Hermit-
ian on the domainAg(E).

IV. OPERATORS B®)(E)

The key role in the rest of this paper, and in the whole
R-matrix theory for many-electron systems described by the
Dirac Hamiltonian(3.1), is played by two linear integral op-
eratorsB(*)(E) and B7)(E), defined onAg, such that if
VY (E,0) e As(E), then

It is clear thatR(*) are Hermitian under the scalar product The coefficients

()s and that

RERH =R, RHORE=0

(3.19

A+ RO=1,

(here "1 denotes the unit operajpwhich implies thatf3(*)

are orthogonal projectors. Then, we define two linear integra.!heir integral kernels8(*)(E, 0,0")

operators

(3.19

Obviously, if ®(p) is any sufficiently regulaiagain, not
necessarily antisymmetjicAN-component function defined
on the hypersurfac&, we have

=R, |

AP (o) = (e)P(ek), (3.17

where
a3 (0) =B e () =T1® - ® T 1@ al Y (pK)
Tk 1® - ®Iy (3.189
with
o (p)=n(p)- B a. (3.19

It follows from Egs.(3.15—(3.19 and from the well-known
properties of the Dirac matricas and 8 [22] that
(3.20

B B

[here  denotes the operator Hermitian conjugation with re-

spect to the scalar produdi ],

i)W (E, )=y BH)(E)V(E,Q). 4.0
ﬁ +1
(£)— _

y + 2mc) , (4.2

related byy(*)y{(7)=—1, have been set off in E¢4.1) for

later convenience. The operatdss™)(E) are represented by
in terms of which Eq.
(4.1 may be rewritten equivalently as

i)W (E,0) =y 3€ d*N"to' BH)(E, 0,0 )W (E,Q").
&
(4.3
Making use of Eq(4.1) in the relationg3.24), one has

(B W) g= (V' [BW)sg, 4.4
which means that the operatds§™)(E) are Hermitian with
respect to the scalar produdj £. One easily shows also that

@(t)ig(t)(E)@(i):B(i)(E) (4.5)

and that

B=)(E)=AgB™)(E) Ag, (4.6
which means that the operatdss™)(E) are symmetric in all
the N electrons.

Consider next a subséW (E,x)} C Ay(E) such that for
any function from this set on the hypersurfa@e it holds
that

i (E,0)=y b (E)RDW (E0), (4.7

062704-4
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where{b,(E)} are numbers that, in general, are different for Since for any two eigenfunctions one has

different functions from the s¢W ,(E,t)}. Operating on Eq. R R

(4.7) from the left with the operatoiE{ ) and utilizing the (VolBOW ) 6= (Y1) 20n(E)bn (E) (W, R, 6,
second of Egs(3.21) and the second of Eq$3.23, after (4.1D
simple manipulations we obtain ) ) _
P (1A in the rest of the paper, without any loss of generality, we
i, Wa(E,0)=7 by (E)BW.(E0). (48 shall assume that eigenfunctions associated with degenerate
eigenvaluegif there are anyare also orthogonal under the

Next, utilizing Eq.(4.1) defining the operator8*)(E), the  ¢cgjar product| so that

relations(4.7) and (4.8) may be rewritten as
B(i)(E)\I’n(E,Q)Zb,fl(E)@(t)\I’n(E,Q), (4.9) (W |REW, )eg=0 (n#n’). (4.12

which implies that the hypersurface functiofi¥’,(E,e)}  The spectral expansions of the kernéd§”)(E,p,0’) in
may be considered as simultaneous eigenfunctions of the ogerms of the eigenfunctionsV ,(E,e)} and the eigenvalues
erators B*)(E), with the singular non-negative operator {b,*(E)} are

weightsR(*), and the constan{®*(E)} may be considered

" (X)(E !
as corresponding eigenvalues. Since the operdibr§E) BB e )
andfs(.i) are Hermitian under the hypersurface scalar product RV L(E,e0)br (E)WH(E, 0f )R,
(e, in the standard way one shows that the eigenvalues =>, T
{b*(E)} are real while eigenfunctions associated with dif- " (VB ) e
ferent eigenvalues obey the following orthogonality relations (4.13

over the hypersurfacé:
(P IRHW, )s=0 [by(E)#b,(E)]. (410  or equivalently, due to Eq3.17),

|
&Y (e o(E, 00 by (E)PI(E, 01 )2 (or,)
(VR ) g

B(i)(E-QKaQ((r):; (4.14

The sets{R)W¥ (E,o)} are complete in the subspaces ¥ (E,@) € As(E), on utilizing the second of Eq$3.21), the

AG)(E)C Ag defined as second of Eqs(3.20, and Eq.(4.7), we have
AS)(E)={REIW(E,0): W (E,0) e As(E)}. (4.19 (WalRW) o=y by(E) (Wl B W) s, (4.19
Since for any¥(E, ) € A¢(E) we have Since W, (E,0) € As(E) and W (E, o) € As(E), we know

from Eq. (3.24) that in Eq.(4.19 the action of the operator
i/£(") may be transferred to the left. Then, applying the
[cf. the first of Egs. (3.19], the set eigenequation(4.7), substituting the result into Eq4.18),
[REOW (E,0) UIRCIW (E,0)} is complete inAs(E) and and making use of Eq4.11), we find

W (E,0)=R"W(E,0)+RW(E,p0) (4.16

the following expansion holds: cCI(E)=c P(E). (4.20
\I'(E’Q):; e,V (BRI L(E, Q) Consequently, the expansi¢d.17) may be rewritten in ei-
ther of the two forms
+2 o (ERCW(Ee) (417 (W)
" V(E,0)=2 Vo (EQ). (42

| _ - | (W)
with the expansion coefficients, due to E4.12), given by

The expansion analogous to Hg.21) holds also in the hy-

R(*+)
cIE)= (\I,”lf‘z'—qf)@ (4.19  pervolumed: for any W (E,x) € Ay(E), one has
(\I,n|r5(7)q,n)6
v REw
At first sight it seems that the coefficient™ (E) and V(E,x)=>, M\P,{E,t). (4.22
c{")(E) are different. We notice, however, that since (W |RW )
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We conclude this section observing that from the eigen-

functions{¥,(E,p)} and the eigenvalugd,(E)} one may
construct kernels of the operato%i)(E) projecting on the
subspacest§ ) (E):

RV (E,0) W I(E, 00 )R,

A‘ei)(E,QK,e,’(FEn)

(Vo RV )
(4.23
Notice that for anyW (E, o) € As(E) one has
ASE)¥(E,0)=R*W(E,0) (4.24
and that
BE(E)=AG(E)B=(E)AS(E).  (4.29

V. OPERATORS R(*)(E)

The relation(4.5) implies that the operator8™)(E) do

PHYSICAL REVIEW A 63 062704

RU(E, 0k, 0x/)

RV L(E,ex)by (E)PI(E, 0r IR,
n (\I’nm(i)q,n)G .
(5.6)

From Eqgs.(4.14) and(5.6), one infers the following relation-
ships between the operatds§™)(E) and R\ (E):
B=(E)=£RT(E)ET (5.7

VI. MATRIX REPRESENTATIONS OF THE OPERATORS
B®)(E) AND R™)(E)

Assume now that a functional sé®;(¢)}, forming an
orthonormal basis idg(E), is given. In this basis the ker-
nels B*)(E,p,0") andR™)(E,p,¢') have the bilinear ex-
pansions

not have inverses in the ordinary sense. However, we may

define their generalized inversé®™)(E), possessing the
properties

RE(E)=AFERE)AS(E), (5.
through the reciprocity relations

RENE)B(E)=BE)RT(E) =4S (E). (5.2

The operatorﬁAZ(i)(E) are represented by their integral ker-

nels R)(E,p,0'), in terms of which the definitior{5.2)
reads

%(SdBN—lQ// R(i)(E,Q'Qn)B(t)(E'Qn’Ql)

§d3N 141
S

=AS)(E,0,0").

“)(E,0,0")R'™(E,0",0")
(5.3

Since B*)(E) and AL (E) are Hermitian with respect to
the scalar product|)s, R(*)(E) are also Hermitian. More-

B(t)(E'QK*QIQ'):iEj Bf)‘bi(QK)(‘Di@(t)q’j)e

XDl (ep IR (6.1

R<f)(E.eK,e’K,>=iEj REDi( ) (P} RED)) g

o ()
XD (o) )BE 6.2
with the expansion coefficients{(®;|B=)®;)s} and

{(®;|R™M) D))} forming square matricesB*)(E) and
RE)(E), respectlvely These matrices are mutually recipro-
cal in the sense of

R*)(E)B*)(E)=B*)(E)R*)(E)=A")(E) (6.3

[cf. the operator relatior(5.2)] and are additionally related
by
B(E)= A& RO(E)&™ (6.4

[cf. Eq. (5.7)], whereA™)(E) and &™) are square matrices

over, R(*)(E) possess properties analogous to those charaggith elements{(®;|AS7(E)®))s} and {(@i]E(D)) e},

terizing B*)(E) and expressed in Eq&t.5) and (4.6).

With the aid of the operator®(*)(E), on utilizing Eq.
(4.24), Eq. (4.1) may be rewritten in the form

REW(E, @)=y RENE)ATV(E,0). (54
Eigenequations fofR(*)(E) are obtained after acting with
these operators from the left on E¢.9) and making use of
Eqg. (4.24). One finds

RENE) W (E,0)=by (E)R“ W (E,0). (5.5
Equation(5.5 and the orthogonality relation@.12 imply
the spectral expansions

respectively.

Projecting operator equatior4.1) and(5.4) from the left
on the basis functions®;(0)} yields their matrix represen-
tations

(6.9
(6.6

Q*(E)=y=BH(E)P(E),
PEI(E) =~y TRE)I(E),

where P()(E) and F*)(E) are column matrices with ele-
ments{(®;|RHW) s} and {(®|iE{FW¥) s}, respectively,
related through

QHE)=i A&

PF(E). (6.7
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The matricesB(*)(E) and R*)(E) are highly singular . Q(E) . 0
and therefore inconvenient for use in potential applications. QY(E)= L Q (E):(Q()(E) :
To overcome this singularity problem, it is convenient to (6.19
choose the following particular form of the basib;(0)}:
respectively, with 0 denoting here the column null submatrix
(@i(0)}={D! " (@)}u{®, (o)}, (6.8 and with the submatrice®*)(E) and Q*)(E) related
through
where the functions in the subsdt®(*)(p)} are such that _
o) QEN(E)=i £ " 'PF)(E). (6.20
AS B[ (0)=0{*(0), AS(E)®{"(e)=0.

6.9 This implies the following simplified forms of the matrix

relations(6.5) and(6.6):
Obviously, QH)(E)=y*BH)N(E)PF)(E), (6.21)

(q)i(:)|q)}i))6:5ij 1 (q)i<i)|(b}:))620- (6.10 P(i)(E)I—y(I)R(i)(E)Q(i)(E). (6.22

In what follows, we shall assume that the basis functions Fyrther simplifications follow if one chooses the basis
have been arranged in such an order that a matrix of any g) so that

relevant operatofp in this basis has the form

iE =1, iE ) =-1 (6.23

Op= (6.11 In this case, Eq(6.17 becomes

Op(++) Op(+_)
Op(7+) Op(**) !

B)(E)=R¥)(E), (6.24
where Op(*™) is a square submatrix with elements

{(@M]0p®{")}; the other submatrices @p are defined  the reciprocity relation6.16 reads

analogously. In the particular basi6.8), the matrices + T o+ < -~

B)(E), RF)(E), AX)(E), and &™) are REERTE=BZEBTE=, - 629
while the relation(6.20 transforms to

“ B)(E) 0 - 0 0 B
B(E)= 0 ol B(E)= 0 BAE))’ Q)(E)=+=PF)(E). (6.26)
(6.12 At this moment, it is convenient to denote
R(E) 0 o 0 B(E)=B*/(E)=[B/(E)]* (6.27)
+) _ —) _ y .
R (E)_( 0 0)’ R (E)‘(o RWE))’
6.13 R(E)=R™(E)=[R"(E)] ", (6.28
o) 0 0 P(E)=P"")(E)=—Q'")(E), (6.29
A<+>(E)=(O o)’ A<>(E)=(O |>’ (6.14
Q(E)=Q")(E)=P(E). (6.30
o &M 0 o0
;ELH:(O : ) ;&E(/E() 0), 615 "
L B(E)=R Y(E) (6.31)

Herel and O are the unit and the null square submatricese1
: . - nd
respectively. In terms of the submatriceB(™)(E),
R)(E), and £, the relations(6.3) and (6.4 may be P(E)=—y~'R(E)Q(E). (6.32
rewritten as
Equation(6.32) establishes a relationship between the opera-

RE(E)BE)NE)=B*(E)R™)(E)=I, (6.16 tor approach to the many-electron relativistiR-matrix
theory elaborated in this work and earlier matrix formula-
B)(E)=&"RE(E)E. (6.17)  tions of the method9,18,19.

Moreover, in the basig6.8) the matricesP*)(E) and VII. VARIATIONAL PRINCIPLES FOR EIGENVALUES
J*)(E) are AND MATRIX ELEMENTS OF THE OPERATORS
B®)(E) AND R™)(E)
PUI(E)
0

B 0
. POE)= ( P<)(E))’ In this section we present variational principles for eigen-

P<+>(E):(
(6.18  values and matrix elements of the operaté¥s)(E) and

062704-7
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ﬁ(t)(E)' The principles are presented without details Ofparticglar completely antisymmetric solutions to the Dirac
their derivations, which are completely analogous to thos&€duation(3.5) that on the hypersurfag® obey the boundary

for the single-particle problem considered in Réf5, 1. conditions

REWE(E, 0) =R (),

A. Variational principles for eigenvalues of the operators (7.3
22 (*) R (F) P A .
B (E) [andR (E)] B(t)\l,l(t)(E’Q):B(i)q)r(g)’
The variational principles for eigenvalues of the operators
BE)E) [and R)(E)] are respectively. It is to be emphasized that the trial functions
¥ (&) (v) and P’ 5)(x) neednot satisfy boundary relations
- (\ﬂifE(f)\f)g analogous to those in E¢7.3).
b*Y(E)=stat —y'*—"—— =
v (\I’|B(7 Ve C. Variational principles for matrix elements of the operators
) (P F— BT RE(E)
YO (V| H-E]W)y , -,
T e : (7.7 Let ® () e Ag(E) andd’ (@) € As(E). The variational
(VBT e principles for the matrix elementsi(R(*)d') s are

The trial function¥ (t) is to be varied inAj;; without an NSV AT (=
other restrictions irgm))osed on it. Station;fry points 01ythe (P[RR )e=_ stat | (DR
functionals in Eq.(7.1) are eigenvalues of5*)(E) [and o

RGI(E)], and trial functions yielding these values are those +H(RETEH0)
solutions to the Dirac equatidi3.5 that on the hypersurface TV TN A ()T

S are correspondingsirﬂultageoi)beigenfunctio)r/g, of these YW EATY )
operators_in the sense of B¢4.9) [and Eq.(5.5)]. If the trial Yy _ A o
function W (v) is varied freely, the principle providesl ei- 7 (PEONH-EIY )yt
genvalues and eigenfunctions ) (E) [andR(*)(E)] and

this explains why we have not added any subscript at

b=1(E) on the left of Eq(7.1). It is easily verifiable that the ) = —
principles(7.1) have the advantage in yieldimgal estimates ~ 1he trial fun(f'[lOﬂS\I’(*)(t_) and¥'(*)(x) may be any func-

of eigenvalues{b,fl(E)} for any particular trial function tions from Ay. The stationary ialues of the functionals in
used. That variational principle that corresponds to theEd. (7.4 are obtained for W(*)(x)=¥)(E,x) and
choice of the upper superscripts in E@.1) was proposed ¥'(*)(v)=¥'(*)(E x), with ¥(*)(E,x) and ¥’ (*)(E, 1)
about a decade ago by Hamacher and Hi¢de denoting those particular completely antisymmetric solutions
to the Dirac equatiofi3.5) that on the hypersurfad® satisfy

the boundary conditions

P(E) (=)

(7.4)

B. Variational principles for matrix elements of the operators

B(:)(E) () + +)A(+
Lo I PEE, 0) =y RHD(0),
Let ®(0) e Ag(E) and ®'(p) € As(E) [unlike in Sec. (7.5
VI, from now on these functions need not be orthogonal with EEIp ) (E 0)= v ERE) D '
respect to the scalar produg} £]. The variational principles Vel (E.0)=7 (@),

i BE)D! —
for the matrix elements®|5'¢")¢ are respectively. The trial functions ¥(*)(xr) and

\?’(i)(r) neednot satisfy conditions analogous to those in

(PIBD" )= stat |-y UD[IETW ) Eq. (7.5.
\p(i)’xp/(i)
— Y PEDTE)| D) VIIl. DERIVATION OF VARIATIONAL ESTIMATES OF
o EIGENVALUES, MATRIX ELEMENTS, AND
+yPGEF TP ) KERNELS OF THE OPERATORS R*)(E) AND B®)(E)
- WITH THE USE OF LINEAR TRIAL FUNCTIONS
7 N e > T (+ iz P (F
I~ (WOIH-EIY )yt (7.2 A. Estimates of eigenvalues of3®)(E) and R¥)(E)

Let us use the linear trial function
The trial functions¥(*)(x) and ¥'(*)(x) may be varied _ o
freely in Agy. The functionals on the right of Eq7.2) are \I’(")Zzl ai0;(v) 8.1
stationary for ¥ (e)=¥E)(Ex) and ' F)(x)
=¥'()(E,x), where¥*)(E,¢) and¥'(*)(E,x) are those in the functionals

062704-8
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o (VIIEF)s Y (V|[H-E]V)y

FOW]= -y ———— —
(V|R=W) s Ch o (WRFW)g
(8.2

[cf. the right side of Eq(7.1)]. Substitution of Eq(8.1) into
Eq. (8.2 yields

a'sa

)rat —

wherea is an mcomponent column matrix with elements

{a;}, a' is its Hermitian conjugateS™)(E) aremx m Her-
mitian matrices with elements
,y(I)

ST (E)= =y (O ED0)e— -

(Oi[[H—E]®,)q,
(8.9

while M) aremx m Hermitian matrices with elements

M =(0i|R*0))e. (8.5

We shall denote ba(™)" and (™) those vectora*)' and

a'*) for which the stationarity of the functional8.3) is
attained, i.e.,

SF=[a=)" a+)]=0, (8.6
and byfa\{1 the corresponding stationary values

~ F(H)Tg(E)z(=)

b+t (8.7

REENVEEEE

PHYSICAL REVIEW A 63 062704

The hermiticity of S(*)(E) andM(*) guarantees that the

eigenvalues{,l)\ﬁi(E)} are real and that the following or-
thogonality relations hold:

8T EMES () =0 [br (E)#b (E)]
(8.9

We shall assume that eigenvectors associated with degener-
ate eigenvalueé6f there are anyhave also been orthogonal-
ized so that

AONEME T (E)=0 (n#n).  (8.10

Then it is easy to show that the approximate eigenfunctions

fifgf)(E,r):Zl a " (E)®(r) (n=1,2,...rank M)
(8.11)

obey the orthogonality relations

(TPIRDT =0 (n#n). (812

B. Estimates of matrix elements and kernels ofR (*)(E)

The approximate eigenfunctions{ﬁfﬁ”(E,r)} and
{T()(E,v)} found in Sec. VIIIA appear to be particularly
well suited for use as basis functions for variational determi-
nation of approximations to matrix elements of the operators
()(E) andR(")(E), respectively. Indeed, if the trial func-

which are the second-order variational estimates of eigenvaﬁ)nS of the form
ues of B)(E) andR(*)(E). From Eq.(8.3) we find that the
conditions forF()[a(*)T a(*)] to be stationary ()" and

+

a*) are

rank M(*)

V= 2 TP,
SEFH —pTIMEIFE)  FETSE) —pTigE) (), (8.13
(8.9 rank M(*)
—~ . VW= 2 G FTEEY
We see that the numbebs - are eigenvalues while the vec- n=1

torsa™)" anda(*) are, respectively, associated left and right
eigenvectors of the generalized algebraic eigenvalue probse ysed in the functionals
lems (8.8). Since the matrice$*) are functions of energy
E, eigensolutions to the problem®.8) are also energy-
dependent and we shall mark this occasionally.

The number of eigenvaluds(E) is equal to rankvi(*)

and the number of eigenvalubs *(E) is equal to rankvi(™)
[23]; in general, for a given finite basis sé®;(x)} one

F(i)[q),q)f;q_;(i),q_/'(i)]:(q)m(i)@'(i))e
+(BOVE D)

+ 7(1)(@(‘—’)“/]—:5_1)@/(‘:))6

has rankM(") = rankM(). If b,,(E) is a variational approxi- (5)
mate of the particular eigenvalue,(E) of B")(E) and + T:ﬁ (T [F—EJW )y

RO)(E), and if b, *(E) is a variational approximate of
the corresponding eigenvalub, *(E) of B(7)(E) and
R((E), in general one hak,, *(E) #b, *(E).

(8.14
[cf. the right side of Eq(7.4)], the latter become

062704-9
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F(i)[f(1)*,f'(i);ai)T,E’(“—’)] :f(:)‘rg/(:)+(?(:)‘rf/(:)

—c®18H) =) (8.15

wheref(*)T andc¢(*)* are row matrices with rank) ele-
ments{f(* = (®|RHT() s} and {c)*}, respectively,
/(=) andc’ *) are column matrices with rari™) elements
{f1 =RV D) s} and {c(*)}, respectively, while
S)(E) are rankM™) x rank M(*) Hermitian matrices with
elements

B E) = — o T NAEDTE)

- Y
ch

TONH-EIT Yy (8.16

These particular vectors™" and ¢’(*), which make the

functionals(8.15 stationary, will be designated I&~)" and

¢'(), respectively. Performing the first variations iBf*)

due to small and otherwise arbitrary variationscbf)™ and

¢’ () aroundg™)" and&’' (), it is found that sufficient con-

ditions for F(*) to be stationary are

BT fT(EEN 1 (=)= ()L (=),

(8.17

PHYSICAL REVIEW A 63 062704

Substituting these optimal vectog§™)" and &' (*) into the
functionals(8.15, we obtain the following variational esti-

mates of @|R(D"):
(q)|ffg(i)q)/)sz(t)’r(é(i))—lf/(i)

rank M(*)

= X

nn =1

X[(8E) T (REOT| D) g,

(@RETE)

(8.18

Equation(8.18 may be simplified since from the consider-

ations of Sec. VIII A it follows that the matriceS(*)(E) are
diagonal and

S/ (E)=b (E) (T BT ) g Snn

nn’

(8.19
Consequently, E(8.18 becomes

(PIRFD)g
rank M(*) O|REF) [)?“1 “LREOFE)| P
_ 2 ( | n )6 ( n ) ( n | )6
n=1

(q;gi)m(i)f[}gi))g
(8.20

Since the hypersurface functiods(¢) andd’(g) are arbi-
trary, Eq. (8.20 defines two linear integral operators

RE)(E) with the kernels

() +) S (+ = — 1.3, (* ’ +
e BCT(E edlby (E)] T TNE 0 0B

:ié’(t)(EaeK7Q|,(’): E

n=1

[cf. the spectral expansior(5.6)]. The operatorsR(*)(E)
are variational estimates of the operat®s™)(E).

C. Estimates of matrix elements and kernels of3*)(E)

The approximate eigenfunctiongW{)(E,x)} and

{T((E,x)} (notice the ordermay be employed as basis
functions for the variational determination of approximations

to matrix elements of the operato&*)(E) and B)(E),
respectively. Extremalization of the functionals

F(i)[q),q)';ﬁ(i),q_ﬂ(i)]: _ ,),(I)(q)“ﬁ;(f)q_ﬂ(t))e
—YDEFT o) g
+ ,y(I)(i/E(f)\f(iw@f(i))G
(+)
~ ¢h

(PO [H—E]P Fyy

(8.22

(8.2

T RTE )

[cf. the variational principle$7.2)] in the class of trial func-
tions

rank M(¥)
VW= 2 T,
=
(8.23
rank M(¥)

V= 2 GOTTEY
n

[notice the difference between E¢8.13 and(8.23] yields

the following estimates of the matrix elements
((D|B(i)q)’)6:
A rank M(¥)
(OB =(y")? X (®IETT)g
nn' =1
XL(TE) e (LT g,
(8.29

062704-10
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TUE)=(y )2 HE)N (T IROT) S
(8.27)

where T)(E) are rankM(™)x rank M(*) Hermitian matri-
ces with elements
F() — _ AP AEFTE) G )
T, /(E)= (72 =T AR B AN .
' (E) YA e and consequently the estimai@s24) become
(+)
Y ar(F S a3, (+ s,
+C—ﬁ<‘1’§1 A-ET )y (829  (0|BDd)s

A glance at Eqs(8.16 and(8.25 (and comparison of matrix kM i AT ) o (b 1) AT D) o
dimensiong shows that elements of the matricés’(E) are - n; (T REIF ) '
simply related to elements of the diagonal matrices n n ’6
SI(E) introduced in Sec. VIII B: (8.28
F(*) — (ASFN2Z&F)
Tow (E)=(¥")?S/(E). (8.26

Equation (8.28 defines two linear integral operators
Hence and from Eq8.19 one infers that B&)(E) with the kernels

(+) + ~ (5 1 153 ’ pr ’
kM el () T, o) by HE) ] TN, or e (or)

BU(E ok 00)= 2 Py oy (8.29
n=1 (q,n |B(+)\pn )e
|
[cf. the expansion$4.14)]. These operators are variational @(Y)Ethz---LN(rl.rz,---,fN)

estimates of the operatof™)(E). - - o
= VN!A‘U{lpbl(rl)@lr//Lz(rZ)@'”®¢LN(rN)}
IX. MULTICONFIGURATION DIRAC-HARTREE-FOCK
APPROACH TO THE R-MATRIX METHOD FOR 1

RELATIVISTIC MANY-ELECTRON SYSTEMS N detr, (r) (Tl ()l (9.2

It is evident that the success of the method, presented ifith ;< :,<---<uy to avoid redundancy. The functions

Sec. VIIIA and Aalmed at apPr9X|mat|ng eigenvalues and{@i(t)} obtained in that way are mutually orthonormal:
eigenfunctions of3*)(E) [and R(*)(E)] with the use of the o

linear trial functions(8.1), depends greatly on the right (0i0,) 5= 8in, (9.3
choice of the basis functiod®,(x)}. All premises(in par- - _
ticular, any known symmetrr{ies of };he systeshould be ex- wherei={e16p e}, n={vyrz--wn}, and

ploited to obtain converged results with a variational basis of Oin=0,,0,00,0," " oy (9.9
the size as small as possible. Difficulties that may be encoun- o

tered in the course of achieving this goal, due to the stiffnesghen, from the sef®,(x)} we choosem= u\ elements and
of the basis functions used, may be, at least partly, overcomi@rm the trial function

within the framework of the multiconfiguration Dirac-
Hartree-Fock R-matrix approach proposed below. This
method is an extension of the nonrelativistic Hartree-Fock
R-matrix method suggested about a decade ago by Hinzeand . .
Hamachel24,25 and elaborated on recently by the authorWhich is to be used in the functionals
[17].

@a:; a0,(v), (9.5

We begin with introducing u one-electron four- FELT 1= — ) (P[iEHW) g

component spin orbital§,(r)} without prescribing their T (VR g
forms and subjecting them only to the orthonormality con-
straints within the volumeé: Y (W[ - E]W)y

- Cch (TIROT).

Wb = b, CEY (PIE=)s

y23

From Kronecker's products of these spin orbitals, making 12;1 Nl )= 8,,]
use of the antisymmetrizefly;, we may construcin= () + = — = (9.6
different Nelectron Slater determinants (P[RHW)g
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for variational optimization of approximations to the eigenval{les!(E)}. The functionalg9.6) differ from Eq. (8.2) since
in the current approach we have to take into account the orthonormality constainishis has been done including the last

term on the right-hand side of E¢9.6) in which {fyn} are the Lagrange multipliers, optimal values of which are to be

determined simultaneously with the optimal values of the coefficigmisand the optimal forms of the spin orblta{la&v(r)}
Before we apply the variational principle to the functionés6), we reduce them to the forms containifa}, {#,(r)},

and their conjugates explicitly. This is most conveniently done with the aid of the annihilation operators defined 26| that

N+j@(N—-1 —
— (—)N*i@ ELle)LJ par g (Ff2rn-1) - for v=gyefe, o0}

@ it (ry,ro,..fn)= , (9.7
2 N2 N 0 for ve{ig,to,...in}

where the superscripts in the parentheses atGiserefer to the numbers of electrons described by these functions. The
annihilators defined in that way anticommute
AA,+AA,=0 (9.9

and with the aid of them the Slater determinaf@&®) may be rewritten equivalently as

m ®
2 V)]0, (ry) = 2, [AA®BI(®] (T8 dy(ry). (9.9

\/N(N 1)
Using Egs.(9.1)—(9.9), the functional99.6) become

m

)
> E*Ejv;l oDy lia™y,)

=

@A = — T .
2,7 2 ol (B
m M o 22
UL gl(wi';)wylwnw%é; ;y,,gwngluwavxv) }
ok no & .
2,8 3 0 lE)
/L —_—
+7<:> V,n=1?v?z)[<‘/’v|'/’n>_5m] 010
ook '
D> ara > o)y, >w>
ihj=1 v,p=1

where, for the sake of convenience, we have replaced th€he stationary values of the functiond®.10 approximate

Lagrange multiplier§\,,} by the related multipliers eigenvalues of the operatoB§™)(E) andR(*)(E); the best
estimates are given by

g, =—chy®\,, (9.1
and defined the coefficients b*1=FI ™ * ) @ ) T L (E
(9.19

() a =1a = +1 if vei and pej
wV‘Jr]:<AV®i|A7] j>VN_1:

0  otherwise where the optimal expansion coefficief& )}, spin orbit-

912 A1s{F) ()1, their conjugates as well as the Lagrange mul-
v jug grang
AAAAA tipliers {”é(yi;])} are determined from the stationarity condition

:{jl gth'; fwzea”dMEJ 013 oA WA T L =0

062704-12
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Varying the functionals in Eq9.10 and applying the con-

dition (9.15, one obtains a set of finite-volume multicon- Z
1

figuration Dirac-Hartree-FoclR-matrix equations compris-
ing the generalized algebraic eigenproblem

m
2 S() +1M( ] =0

(9.16
with
y2
S(jt):_y(:) > <|1>(,/,( lial* )1,//( )
v,p=1
7(:) I I
_ (= 1
7 El{ YOI 2 ol
HF)
XN Yoy |+ BSy (917
and
M ~ ~
M= 2 el @IBT), (918
v, n=
and the coupled integro-differential equations
y23
> @l AR
n=1
M ~
+ 2 Qy§n§<¢(§ s >¢(+)
7,6,(=1
y23
2 G, (9.19

solutions of which are subjected to the boundary conditions

- 7 ~(+
2, @ il () (p) =/ o™ (] =0,
(9.20

One obtains also a set of conjugated equations

) TR P, (0]

_|_

y73
gE QG T @S Uy

1

14

LT

v=1

PN, (9.22

PHYSICAL REVIEW A 63 062704

o

>, B4 Mial™ ()7 (9] =7 b B ()]
=0. (9.23
In addition, the orthonormality constraints
W) =4, (9.29

follow in agreement with Eq(9.1). The quantities{Z) S
and{QV§ ,Ig} appearing in the above equations are deflned by

(9.2

0 =(D)x i) =(*)
Q' iJE:lai Qymgaj .

From Eqs.(9.19 and(9.22), with the aid of the orthonor-
mality relations(9.24), one derives

y
523 BGEIRE)  S D,
o=1 o, (=1

SO TSRS (9.26
and
M
ES’J;):O_Z )<H¢ )|{/l( )>+ Z Qo’§ nd
Xy B NPT v, (9.27)
hence one immediately infers that
5, =8, (9.29

i.e., matrices composed of the Lagrange multipliers are Her-
mitian.

The multiconfiguration Dirac-Hartree-FockMCDHF)
R-matrix equation$9.16), (9.19, and(9.20 are to be solved
self-consistently. In this context, several features that distin-
guish these equations from standard MCDHF problems en-
countered in computations of atomic structuf@g—35 are
to be emphasized. First, in the present case we have a finite-
volume problem, since the system is considered within the
volume V. Second, the total energy of the syst&nis now
prescribed; instead, boundary conditions obeyed by the spin
orbitals on the surfac& enclosingV are not known in ad-
vance(as opposed to the case of the standard MCDHF prob-
lems, in which the spin orbitals are forced to vanish at the
boundary located at infinijybut are to be determined in the
course of solving the equations. And third, in the algebraic

systems(9.16) the weight matriced!™) with the elements
M) are highly singular and special numerical algorithms,

for instance the QZ algorithri86,37), for solving such sys-
tems have to be employed.
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We conclude this section stressing that E§sl6), (9.19,  principles for eigenvalues and matrix elements of these op-
and (9.20 provide two, in generaldifferent sets of the erators. Utilizing these principles with the Rayleigh-Ritz lin-
MCDHF R-matrix equations, depending on which super-ear trial functions, we have obtained suitable variational es-
scripts, upper or lower, are chosen. Results obtained by soltimates of eigenvalues, matrix elements, and kernels of

ing these sets of equations will be, in general, different ag(*)(E) and R(*)(E). Finally, we have proposed the mul-
long as the number of spin orbitals optimized is firfithich  ticonfiguration Dirac-Hartree-Fock approach to fRenatrix

is always the case in actual computatior difference be-  method for many-electron systems. We write a computer
tween results obtained in the two cases may serve as ade implementing that approach.

additional criterion of the accuracy of the method.
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