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As a step towards constructing nonlocal energy density functionals, the leading term in the so-called 1/
expansion for closed-shell atomic ions is the focus here. This term is characterized by the properties of the bare
Coulomb potential £ Z€?/r), and for an arbitrary number of closed shells it is known thatr)/dr
=—(2Z/ag) ps(r), wherep(r) is the ground-state electron density whilgr) is thes-state (=0) contribu-
tion to p(r). Here, the kinetic-energy densitfr) is also derived as a double integral in termsglfr) andZ.
Although the exchange energy densityr) is more complex that(r), a proof is given that, in the Coulomb
limit system, ¢, is indeed also determined lsystate properties alone. The same is shown to be true for the
momentum density(p), which here is obtained explicitly for an arbitrary number of closed shells. Finally,
numerical results are presented that inclgdeten-electron atomic ionsk(+L shellg, (b) the limit as the
number of closed shells tends to infinity, where an appeal is made to the anahgmate study of Heilmann
and Lieb[Phys. Rev. A52, 3628(1995], and(c) momentum density and Compton line shape for an arbitrary
number of closed shells.
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[. INTRODUCTION alone, with atomic numbeZ. In this latter context, in an
earlier work by one of u$13], it was shown that a spatial
The search for closed forms of the single-particle kinetic-generalization of Kato’s theorem can be established for arbi-
energy functionall { p] and the corresponding exchange en-trary ' as
ergy E,[p] continues unabatedll—4]. Such knowledge
would bypass the calculation of orbitals presently obtained ap(r) —2Z h?
by solving the Slater-Kohn-Sham equatidss] and would a a_ops(r)' AT ne (1.3)
greatly facilitate therefore progress in studying, for example,
the very large molecules of biological interest. But naturally

e oy Ao o S Sty n TSo(). Ot el am,afived n Se. bl
this area Th)(larefore we have);ecently been in\?oking m)(;deléhen tc-) obtain a resul't for the_kinetic-energy dgns([y)
. ; " , i ' olely in terms of atomic humbet ands-state density(r)

such as one-dimensional harmonic confinement in order tg,, arbitrary A in this Coulomb-limit system. Section |
gain insight into the nature of nonlocality] in T{p]. What  contains the proof that the corresponding exchange-energy
seems remarkable in this admittedly simple framework i%ensityex(r) is also determined, at least in principle, By
thatT4[ p] for this model can be completely characterized by, (r), and physical boundary conditions although the result
the original Thomas-Fermi kinetic-energy functional and thejs less explicit than for the kinetic contribution. In addition to
von Weizsaker inhomogeneity kinetic enerd$]. And this  the exchange energy, we treat in Sec. Ill the momentum
is notwithstanding the genuine nonlocal charactef$p] in  density n(p) and show again thas-state properties alone
this harmonic mod€]7]. determine this quantity. A complete solution fofp) for an

In a recent papef9] we have presented both analytical arbitrary number of closed shells is the content of Sec. IV.
and numerical results for the exchange-energy dersgty) As numerical examples, we give in Sec. V explicit results for
for ten-electron Ne-like atomic ions in the limit of large t(r), both for ten-electron atomic ions f@= 92 and for the
atomic numbeZ. Comparison was made between the exactimit when the number of closed shells is allowed to tend to
form of 4mr2e(r) and the Dirac-Slatep®® LDA equiva- infinity. Here, we lean heavily on the important analysis of
lent, p(r) being the exact electron density. The point-to-Heilmann and Lieb[14] in this limit when N—~. After
point agreement between the two results farrde,(r) was  numerical results fon(p) and the associated Compton line
excellent but the total LDA exchange eneffd@0,11,9 was  shape, some approximate results are also presenteg(for
still in error by about 10%. for N—oo. Section VI constitutes a summary, with some

The present work has a different focus, namely, to handlg@roposals for possible further studies. In one of the appendi-
first of all an arbitrary number of closed shells in the leadingces, some generalizations are presented that are applicable to
term of the 17 expansion, which is the bare Coulomb limit any central potentiaV/(r) that confines electrons. In closing
[12], in bothr space and momentulp) space. Second, we this section, we should refer the reader who requires general
shall demonstrate that both kinetic- and exchange-energyackground for what follows to the review by Benesch and
densities are determined in this Coulomb-limit case and foSmith[15] on density matrix methods in x-ray scattering and
an arbitrary number of closed shell¢, by s(I=0) states momentum-space calculations.

where pg(r) is the |=0 contribution to the total electron
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Il. SECOND DERIVATIVE OF KINETIC-ENERGY Here then is a direct route for numerical calculations of the
DENSITY t(r) IN TERMS OF ATOMIC NUMBER swave contributiorts(r) to the total kinetic-energy density
Z AND THE s-STATE DENSITY p(r) IN THE t(r) for the Coulomb-field-limit system under consideration
LIMIT SYSTEM OF LARGE Z for any chosen number of closed shelN§ Such numerical

We generalize below the analysis of Nagy and co-workersresur[S will be presented in Sec. V below fa K+ L shells

16,17 o veaecsandp sits ony. ot deatwtn e U LC) 7 e I M e e o
kinetic-energy density in this case. For independent electrons 9 P 9 P

L : of p(r), and hence from Ed1.1), for p(r). In passing, we
moving in the general central potentk(r), one can write note that integration through the volume of E}.3) recov-

[r2ty(r)]'=—5[r2ps(r)]"—3r2p()V'(r), (2.2)  ers the earlier resu[iL8]

wheret; is given by the Laplacian form of the kinetic-energy U
density, i.e., with the wave functio%, — 2 W¥V2W¥. In this Ts Wfo p(r)dr G
study we shall consistently use tfigositive definit¢ form o

$(VW)?2 for both total kinetic-energy density(r) and itss  for the totals-state kinetic energy’.

component. The two forms differ, as is well known, by  Returning to the total kinetic-energy densify), Amov-

Making this change td. in Eq. (2.1 vields the equation Coulomb-limit system with arbitraryy,
valid for any central potentia¥(r), namely, at p" 3p' 3z ,
m 1o .1, 1, a8 a4 ol 29
(D] =g oo (FFpg)+ 7 ps=—517psV (1), _ o
2.2 and hence, by differentiation and use of Ef.1),
Applying this general equation, valid for any number of 2 Z|ps  ps_3ps 3Zps
) va(r)=—-— 74‘5—?— 2 (2.6)

filled slevels and any(r), to the Coulomb case for which
aVlor=2/r? and using Eq(1.1) in the right-hand side of

Eq. (2.2), one can integrate immediately with respect tom or, in terms of the total density(r),

find [\ w350 375!
L= LD pon] 4D 03
s 4 r? 8 ' Thereforet(r) can be written in integral form as
|
-1 r)VI8+p(r')"I2r' —3p(r')"14r'2=3Zp(r")"[2r'?
t(r)zﬂf [p(r’) p(r’) |rf(r’|) p(r’) ]dr’ 2.8

and we note thaZ can be determined in terms of the density the exchange-energy densiy(r) derived from the leading
from Eq. (1.1 asZ=—(ay/2)[p'(0)/p(0)]. For the Cou- term in the 1Z expansion can be characterized Byand
lomb problem, sinceZ=—(ay/2)[p’'(0)/p(0)] from Eq. s-state information alone. The proof we have to date is more
(1.1, Eq. (2.8 givest(r) as a functional solely of(r). Of  formal than that in Sec. Il fot(r). In particular, we appeal
course, it must not be assumed that there is universality frorto the investigation of Theophilou and Marg20] who gen-
such a result; it is specific to the Coulomb model for eralized Eq.(1.1) to apply to the Dirac density matrik7]
closed shells. However, the structure of E28) is interest- or the “off-diagonal” density y(r,r’), where p(r)

ing, and as we shall see when we compare this form with the= y(r,r’)|,,_,. Their result may be written, using variables
exchange energy densigy(r) to which we now turn, there discussed by Blind€ef21], as

is remarkable similarity of shape fafr) and e, (r) in this

model. d

J
Y r) == (x=y) Y - Wﬂxw(g;)} (3.

IIl. PROOF THAT EXCHANGE-ENERGY DENSITY  €,(r)
AND p-SPACE MOMENTUM DENSITY IN THE where
COULOMB-LIMIT CASE ARE DETERMINED
BY sSTATE INFORMATION ALONE x=r+r'+r=r'[, y=r+r'—|r—r’| (3.2

The burden of this section is to demonstrate again that, asnd vy, is the density matrix fos-states alone. The fact that
shown explicitly for kinetic-energy densitfr) in Eq.(2.7), the (compact variables x and y suffice to characterize
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y(r,r") in the bare Coulomb field stems from the existenceshown that the momentum density for theth closed shell
of the Runge-Lenz vector in this case as an additional conean be written as
stant of motion beyond those for a general central potential

2,5
V(r). 0 (p)= 16m°py,
But Dirac’s formula[10] for the total exchange enerdgy m(P)= w2 (p?+p3)t
in terms of y(r,r'), namely,

c =€ [P
X4 [r—r’|

Pm=Z/m. (4.

Summing this expression oveY closed shells, we find

drdr’, (3.3 N 75 ( iz
Ny (p)= 21 N(P) = 52| 3pal WalA+1+iZ/p)

allows a definition of the exchange-energy density3s

=€ [ [y )PP
&(r)= 4 |r_r/|

— Wy (N+1—iZ/p)+W¥4(1—iZ/p)

dr’, (3.9 3
—Wa(1+iZ/p)]+ F[\Ifz(N+ 1-iz/p)

and sincey(r,r’) through Eq.(3.1) is characterized by, ] ]
alone, it follows thats-state information suffices via Egs. +W(N+1+iZ/p) = Wy(1+iZ/p)
(3.4) and(3.1) to determines,(r). Unfortunately, to date, we 5i
have not been able to determing(r,r’) in terms of its —Wy(1-iZlp)]+ 5= [V (N+1-iZ/p)
diagonal elemenpg(r) the s-state electron density though Zp
the theorems of the density-functional theory assure us that — W, (N+1+iZ/p)+ ¥ (1+iZ/p)
¥s= Vsl psl-

However, in Appendix Ae,(r) is written for heavy Ne-
like atomic ions explicitly in terms op(r) andt(r). But
p(r) from Eq.(1.1) is determined by4(r) andZ. From Eq.
(2.4), t(r) is characterized by these same two quantitieswhere
Hence in Appendix A we have an explicit, though somewhat .
complicated, characterization of the exchange-energy density W (x)= d" " InI'(x) 4.3
e.(r) by pg(r), t(r), andZ for ten-electron atomic ions at . axn Tl '
large Z.

To conclude this section, we briefly sketch the proof thats the polygamma functiof23]. We may also take the limit
the momentum density(p), calculated explicitly in the fol-  Of EQ. (4.2 asN—< to find the momentum density in the

-V¥i(1-iz/p)];, 4.2

lowing section, is also determined completely $gtate in-  limit of an infinite number of closed shells,
formation alone. The counterpart ofr,r’) in momentum 2
space is given by n.(p)= lim [ny(p)]= =—>—{—3ip*—2iz%=*
N—ow 677 p
’:)'/(p,p,): f y(r,r’)exp(ip- r)exp(—ip’ . r’)dr dr’ + 15 7T222p2_30p2\1,1(|2/p)+18pz3\I,2(IZIp)
(3.9

+2iZ2%W4(iZ/p)— 18ipZ3#S coth( wZ/p)
and by definition the momentum densityp) is given, to o4 4 292 2
within a normalization factor, by the diagonal elemenfof +8iZ%" cottf(wZ/p) — 18p°Z°x* cottF(wZ/p)
ie., +18ipZ37 coth?(7Z/p) — 6iZ*7* cott(7Z/p)}.

n(p)=7(P.p")|p—p- (3.6) (4.4)

But Eq. (3.1) shows thaty(r,r’) is completely determined NS iS thep-space analog of the Heilmann-Lieb resiiid]
by the density matrixy, for s states alone. Hence it follows fOr the r-space electron density..(r). However, whereas
that for an arbitrary number of closed shells in a bare Cou?=(") is everywhere finite though its volume integral di-

lomb field, the momentum density(p) is determined by verges,n..(p) diverges a9 tends to zero. Some numerical
s-state information only. results forn(p) are presented in Sec. V C below.

IV. COMPLETE SOLUTION FOR MOMENTUM DENSITY V. SOME NUMERICAL APPLICATIONS
n(p) FOR AN ARBITRARY NUMBER OF CLOSED A. Ten-electron atomic ions: LargeZ limit

SHELLS . . . . .
Using the ground-state electronic density given in Ref.

Having given a formal proof in Sec. Ill above thafp) is  [24], we have calculated the radial kinetic-energy density
determined, at least in principle, Isystate information alone, 4#r?t(r) from Eq. (B2); the result is shown in the solid
we shall in this section obtain explicit analytical results forcurve of Fig. 1. For comparison thgstate contribution
n(p) for an arbitrary number of closed shells. Fq&#2] has  4mr?tg(r) is shown in the broken curve. One sees that the
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FIG. 1. Radial kinetic-energy density742t(r) for the ten- r@u)

electron atom forZ=92 (solid curvg and radials-state kinetic-

A p FIG. 2. Total charge densitp"(r) (solid curve and s-state
energy density 4r-ty(r) for the same caséroken curve

charge densitpg'(r) (circles for the sum oveV=50 closed shells

with Z=1.
position of the maximum in the two curves is approximately

the same for the cas&=92, which we have examined, ) 23

though thep-state contribution is quantitatively important in c :ﬂ< 3 )

the region from~0.005-0.12 a.u. kK~ 10m
Though not plotted, we have also examined the von

Weizsaker inhomogeneity kinetic-energy density(r) de-

- (5.3

with h=27 andm=1 in atomic units.

f.
ined by The two curves 4r2t(r) and 4mr2t;(r), both decaying
1[p' (N2 asr 12, have identical forms for sufficiently large since
twr)==z———— 5.1
A 0} 5/3
with the same exact Coulomb densjigr). Though it is, of t(r)HtTF(r)Hr—,?, A=cy W} . (5.9

course, different fromt(r), there is increasing accord be-
tween the two quantities for largerWe stress in the present
context that all three kinetic energies can be constructed di- To obtainty(r) is less straightforward in this limif\
rectly from thes-state density, because of the spatial gener-— . |t can be calculated from radial wave functidRg(r)

alization (1.1) of Kato’s theorem. via an infinite seriegsee Appendix § but in parts of space
this is only slowly convergent. However, if we calculate
B. Kinetic-energy densities: limit as number A\ of closed ts(r) using Eq.(2.3) for 50 closed shells, then the curve
shells tends to infinity in bare Coulomb potential denoted by circles in Fig. 3 results.

The result(2.5 is applicable for an arbitrary number of
closed shellsV, and therefore can be used in conjunction 12
with the Heilmann-Lieb(HL) limit [14] AV'—cc. Using the 1
series representation given by these autfittvsir equations
(1.20 and(1.29] for this limiting case of the bare Coulomb
problem, one can construct numericafiyr) and also, via
the relation(1.1), the s-state density¢(r). These two quan-
tities are plotted, using the HL scaling, in Fig. 2 from the HL
formula. [In all our HL results of Figs. 2, 3, and 4 below,
summation over the series representation of HL's BR9
up to principal qguantum number=50 has been carried olit.

Hence, by insertion ofp(r) in Eq. (2.5, the limit
dtlar| ... can be obtained and, by numerical integration of
this result, t(r)| ... can be plotted. The radial kinetic- 5 ; ' ‘ ' : ' ; ' '

107 - AmY(r)

el | /4 —o— At (1)
———————— axr't"(r)

0.6

04 | N

024 !

o,
o,
©~0-0. -0 -G-0-0-0~0-0-0-0-0-0-3 -5

Radial kinetic energy density (a.u.)

0.0+

2 4 6 8 10
energy density 4r2t(r)| ... corresponding to the HL limit f@au)
is shown in Fig. 3, where it is compared with the Thomas-
Fermi approximatior{LDA) FIG. 3. Radial kinetic-energy densityr42t(r) (solid curve,
radial s-state kinetic-energy density #%ty(r) (circles, and
tre(r) =cil p(r)]°° (5.2 Thomas-Fermi radial kinetic-energy densityr#?t™(r) (broken

curve for the sum overt\'=50 closed shells using the scaling of
with the same exact density, having the electron-gas value Heilmann and Lield14].
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1 | 8.0x10° ]
2.0x10° \ 7=02 ]
; ——N=100
;:‘ | \ e N =250 6.0x10° ‘
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(a)
p (a.u.) q(a.u.)
6x10° : . s
* ? FIG. 5. Compton profileJ(q) for A’'=250, 500, and an infinite
x10° ‘ number of closed shells witA=92.
3 z=92
S i ——N =100 proximation. Since..(r)«r 2 asr—e from the HL study,
£ /0 =N =250 e(r)|vo»>1/r? at larger, and hence #r2e-°A(r)| o
2 sy / Xb **L‘ ff‘r_’o_? tends to a finite, nonzero value as->w«. As for the total
2 g Y nte kinetic energyT=ft(r)dr, the total exchange enerdy,
E 2x10° é, \ =[e,(r)dr diverges as\V— .
é 1x10° f O\"\D
x10 { o, N
2 gsf S VI. SUMMARY AND FUTURE DIRECTIONS
0l WH“M%’ ] )
- - The main results of the present study are to determine, for
0.0 02 04 06 08 10 the leading term in the Z/ expansion of the atomic theory
(b) p(au) for nonrelativistic atomic ions witiN electrons(i) The non-

. - local form (2.8) of the kinetic-energy densiti(r) solely in
FIG. 4. () Momentum densityn,(p) for /=100, 250, 500, terms of the electron densip(r), since the atomic number

apd an i_nfinite numbeg of closed shells w92, (b) momentum Z appearing there can also be expressed in termsusing
distribution| (p)=4mp“n(p) for the same cases. Kato's theorem. EquatioR.8), it is to be stressed, is valid
for an arbitrary numbeiV of closed shells for the bare Cou-
) . _lomb field. We should also stress that, through @c), t(r)
Equations(4.2) and (4.4) give the momentum density s getermined completely by thestate densityp<(r), the
.n(p)' for an arbitrary number of closed shells; this is plotted 5tomic numbez, and two physical boundary conditior(é)
in Fig. 4@ for /=100, 250, and 500 shells, and for an Thesstate kinetic energg(r) in Eq. (2.3 that is the appro-
infinite number of shells, wittlZ =92. We also plot, in Fig.  priate spatial generalization of the earlier integral re€i4)
4(b), the momentum distribution function I(p)
=4mp?n(p)/Z for the same cases. Note that for an infinite

C. Momentum-space density and Compton profile

0.0
number of shellspn(p) and|(p) are singular at the origin. ~
Finally, the Compton profild(q), given by E o1
>
1 (=1(p) 2
J(Q):EJ po, § 0.2 : 4nr25xTF(r)
K )
(]
is shown for the case&/=250 and 500 and for an infinite § 0.3+
number of shells in Fig. 5. =4
-(C:: -0.4
D. Local-density approximation to exchange-energy density E
s
To close this section, we show in Fig. 6 the local-density § 051
approximation 4rr2e-°*(r), where S S P
3/3 1/3 ra.u.)
LDA _ 4/3 —— =
& (Nhvee=—edp=(NT o 4 ( 77) .5 FIG. 6. Local-density approximation to radial exchange-energy

. ' ' density 4mr2e,7(r) for the sum ovetN'=50 closed shells calcu-
with the HL densityp..(r). So far, we have not achieved a lated with exact electron density using the scaling of Heilmann and
calculable form fore,(r)| ... beyond the local-density ap- Lieb [14].
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TABLE I. Moments(p™) of the momentum distribution far '
=92 and\/="50 closed shells. y(r,r')=p —— +|r—r'|?
m (p™ (a.u) 1 [r+r’ m [r+r’
—2 0.895 X122P" | T2 T3zt 2 (A1)
-1 0.69¢
0 1 so that the exchange-energy densifyr) is given by
1 2.3209 )
2 9.859 Lp((r+r"2)]° (r+r )/2)] r+r’
(r)y=— -— | 2p
3 138.56
4 1 1.2
356 At m [r+r’ . €
3This result checks witp~)=8MAN+1)/Z#(2N+1) in Ref. XIr=r'll5zp"\ | 32t 5|9 — 7
[25].
PThis result reproduce&)=8Z/m(2N+1). 3 r+r’ ﬂt r+r’ 2d ,
“This result is the total kinetic energy, whichZ$ per shell. [r=r’| 24p T2 | 3p2 2 r.
(A2)

for the total kinetic energy ¢ for s states for a general num-
ber of closed shelld/. (iii) The momentum density,(p) in ~ Since we knowt(r) in terms ofps(r) andp(r) for this case
Eq. (4.2), together with its limiting forrm..(p) in Eq. (4.4).  [see Eq.(B3) below], we can substitute it in the expression
As mentioned above, E@4.4) is the p-space counterpart of (A2) and write

the Heilmann-Lieb resulf14] for the r-space electron den- 5 5

sity p..(r). Various moments of momentum have been cal- __¢ f r+r’ 1 " Ir—r’
culated numerically forA/=50, Z=92, and are listed in (N==7 ] |r 2 [r=r'| " (r+r")2
Table I. In particular,(p) and (p~!) have been checked

against the closed forms obtained ear|i25]. L Lir—r |3 _f r+r’ ﬂ
As to possible future directions, it has not to date proved 4 (r+r') 2
possible for an arbitrary number of closed shells to evaluate , 3
the exchange-energy densiéy(r) exactly (though this has r—r'f Lfr—r| dr’
been achieved earlier in RgP] for K and L shells only. (r+r’)? 2 (r+r")*
The most promising approach to this appears to lie in en- o2 e\ 2 =P
deavoring to construct the off-diagonal generalization of Eq. _ _f [ (_ —dr’ (A3)
(4.2), especiallyy(p,p’) in Eq.(3.5). Further progress seems 16 2 (r+r’)

feasible here, since Fo¢R2] has given an off-diagonal gen-

eralization of his diagonal resul¢.1) for a particular closed SO thate,(r) can be entirely determined for the ten-electron

shell in terms of Tschebyscheff polynomialsee also the ion (in the 1Z limit) in terms of mtegrals ovepy(r) and

later study of May[26]). By Fourier inversion of Eq(3.5), if ~ p(r) or, since Eq.(1.1) relatespy(r) to p'(r) through the

the sum over shells can be achieved eventually, insertion gttomic numbez, in terms of integrals oves(r) andp’(r).

the resulting y(r,r’) into the Dirac form (3.4) of the

exchange-energy densigy(r) would allow the LDA plot in APPENDIX B: sWAVE DENSITY MATRIX y4(r,r")

Fig. 6 to be transcended. AND KINETIC-ENERGY DENSITY ti(r) FOR
TEN-ELECTRON ATOMIC IONS IN THE

COULOMB-LIMIT SYSTEM
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APPENDIX A:  CHARACTERIZATION OF
EXCHANGE-ENERGY DENSITY FOR Ne-LIKE
IONS BY ssWAVE DENSITY p4(r)

The first result of this decomposition is that, from the diag-
onal element of Eq(B1), one finds

p(r)—ps(r)

r2

From Eg.(6.2) of March and Santamarig24], we have
for the ten-electron ion

t(r)=o [ %. (B2)
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It is worth emphasizing that the use of this reg8l2) for the 2. Calculation of s-state kinetic-energy densityt(r)
guantity within the square brackets of both E¢&1) and

' ) X From thes-wave density matrixB1) we have
(B1) allows the off-diagonal matrices to be rewritten solely y XB1)

in terms of the densitiep(r) and pg(r). Thus, for the full 1 9? ,
Dirac density matrixy one has ts(r) =5 — =7 vs(I.r MNer=rs (B9)
) r+r’) _p( r+r’ which results in theswave kinetic-energy density of
r+r’ S\ 2 2
7(r,r’)=p(— +2lr—r'|? — r r? r r?
2 (r+r) _ _my IV Y Y/
(B10)

giving the off-diagonal behavior solely in terms of the diag- . L -
onal densities. One can still use the spatial generalization dP"€ €an now use E@2.5 and its derivative to eliminate

Kato's theorem in Eq(B3) to removep, in terms ofp’, but andt’_’ and hence findls(_r) in terms ofp, its derivative, and
then the atomic numbeZ enters. However, since atomic numbeZ. Equation(B11) then becomes

, 3, P01\ Zp(r)
7= 1p (0) (B4) tS(r)=1—6p (I’)+ T(F+Z)+T (Bll)

o . . By volume integration of Eq(B11), the earlier result of one
one can still view the result thus obtained as giving the firstpf ys [18] (see also Ref[16]) for the total s-state kinetic
order densiy matrixy as a functional of its_diagonal element energy given in Eq(2.4) is then regained after some modest
p(r). This is related to, of course, but is somewhat moremanipulation. The resultB11) as derived here foK +L

general than the problem of the single-particle kinetic-energyneis is readily verified to be true also for tKeshell alone.
functional T p]. Reverting to this, one can return to Eq.

(B2) and differentiate it with respect toto find APPENDIX C:  sWAVE DENSITY MATRIX y(r.r') FOR

THE GENERAL COULOMB PROBLEM
3[p(lr)—ps(r)]
- 3

t'(r)= ; + F[P'(f)—Pé(r)] The s-wave density matrixys(r,r') may be written fot\”
closed shells as
+p”(r)/8. B5
p"(r) (B5) v
But for an arbitrary number of closed shells, Amovilli and YS(r,f’):nZl Rno(r)Rpo(r") (Cy

March obtain Eq(2.5) [19]. Comparing Eqs(B5) and(2.5),
it follows for the ten-electron ions considered in this appen-y;iin Ryo(r) as the radial wave functions fdr=0. The

dix that Theophilou-March relation, Eq3.1), may be used to get
, , v(r,r") by first expressingys(r,r’) in terms of the variables
3p (r) 3z - [p(r)_ps(r)] 3p (r) Xandy’
BT Tl TS
N
3ps(r) Ys(XI2Y12)= 2, Ryo(X12)Ro(Y/2). (C2)
- 72— (BG) n-1
Then, since
1. Differential equation for ground-state electron densityp(r) 3 3y
Introducing again the spatial generalizatitinl) of Ka- o (X79)= 7’5+X(9—XS (C3
to’s theorem to remove(r) from Eq. (B6), one finds a
differential equation for the ground-state densibyr), and
namely,
3 9 3z 3 0 Yy =yety e (c4
" _ ’ _ _ o WYs)=YsTY
72PN+~ 573 +W}P (N+|52~ r3|p(1)=0. y ay
(B7) we have
It is noteworthy that for this examplé(r) can be calculated Xy dys Iys
directly by combining Eq(B2) with Eq. (1.1) to find y(r,r')= ys(i’ 5) —(x—y)l[xy](g— W)
" C5
O 1 W I PN “
2 r? 8 azP Now from Eq.(C2),
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where co€)=(r-r")/rr’, and the summations overand|

J
a“)y(s = E = Rno(x/2) Rno(y/2) (Co) are over all principal quantum numbers and allowed angular
n=1 momentum quantum numbers, respectively. Hpﬁéz(r)
and =[(21+1)/27]R,(r) is the square root of the density asso-
ciated with the f,1)th subshell, and thus proportional to the
s 1 (n,l)th radial wave functiorR,(r). If we takerl|lz, the ex-
R 21 5 Rno(X/2)Rpo(Y/2) (C7)  change energy densit(r) then becomes, from E@3.4),
=
S0 that with (N==(&m2) 2 2 pii{Drp(r)
X=r+r'+|r—r'|, y=r+r'—|r—r’| (C8) o
x f poi (1 )ppg(r)r'?

we can write

7 Pj(cosh’)Py(cosh’)
) x y\ L[(r+r )2 , Xf =] d(cosé’)dr’.
y(r,r')=1s 25|75 |r—r| r—r 0=0
(D2)
N
1 R’ We can then expand|t/r’| in Legendre polynomials as
x| 3 5 {Rio(¥2)Reo(y12) pand| ] | in Legendre poly
1 rt
WZZ crr1 Pu(cosé’)
Rno(X/2)Rpg(y/2)} (C9 ot
so that
or
r+r'+r=r’| r+r'—|r—r’| ex(r)=—(e 77/2)2 > 2 pri(r) pue(r)
y(rr')=7s , ) ol (p.a
2 2 B rt
a0 S P XJ_ par )ppalr )r e dr’
2| [r=r'] r=0
N +r'+r—r’ i
xS = rrr-r| xf Pi(cos@’)Py(cosd’)Py(cose’ )d(cos’).
=2 no 2 =0
r+r’—|r—r’|) (D3)
no 2 But the angular integral is just 42|+ 1)|(tq00jtql0)[?,
r+r/+|r—r’| r+r' —|r—r’| where the(tq00[tql0) are the Clebsch-Gordon coefficients.
- Rno( 5 )Rr',o 5 ” Altogether then, we can write

1

(€19 ex(r)=—(26?7%) > > pyi(r)ppe(r)

which is the desired result for the Dirac matrix in terms (nh) (p.a)
purely of thes-state information. = " )
Xf P (F)ppg(r)r’

APPENDIX D: EXCHANGE-ENERGY DENSITY &,(r) -0
FOR AN ARBITRARY NUMBER OF CLOSED =l |(tq00jtql0)|?
SHELLS IN A CENTRAL FIELD 2 1 o1

0rs

dr’ (D4)

For the full first-order density matriy(r,r’) in the pres-

ence of a central field potential, we can write so that the exchange-energy density is expressed entirely in

terms of radial integrals. We note that the Clebsch-Gordon
coefficients are zeranless

_ 12/ .\ 112 0
y(r,r')= Z pr (N pn(r')P(cos) (D1) [t—q|<I<(t+q).
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