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r- and p-space electron densities and related kinetic and exchange energies in terms ofs states
alone for the leading term in the 1ÕZ expansion for nonrelativistic closed-shell atomic ions
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As a step towards constructing nonlocal energy density functionals, the leading term in the so-called 1/Z
expansion for closed-shell atomic ions is the focus here. This term is characterized by the properties of the bare
Coulomb potential (2Ze2/r ), and for an arbitrary number of closed shells it is known that]r(r )/]r
52(2Z/a0)rs(r ), wherer(r ) is the ground-state electron density whilers(r ) is thes-state (l 50) contribu-
tion to r(r ). Here, the kinetic-energy densityt(r ) is also derived as a double integral in terms ofrs(r ) andZ.
Although the exchange energy densityex(r ) is more complex thant(r ), a proof is given that, in the Coulomb
limit system,ex is indeed also determined bys-state properties alone. The same is shown to be true for the
momentum densityn(p), which here is obtained explicitly for an arbitrary number of closed shells. Finally,
numerical results are presented that include~a! ten-electron atomic ions (K1L shells!, ~b! the limit as the
number of closed shells tends to infinity, where an appeal is made to the analyticalr-space study of Heilmann
and Lieb@Phys. Rev. A52, 3628~1995!#, and~c! momentum density and Compton line shape for an arbitrary
number of closed shells.
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I. INTRODUCTION

The search for closed forms of the single-particle kine
energy functionalTs@r# and the corresponding exchange e
ergy Ex@r# continues unabated@1–4#. Such knowledge
would bypass the calculation of orbitals presently obtain
by solving the Slater-Kohn-Sham equations@5,6# and would
greatly facilitate therefore progress in studying, for examp
the very large molecules of biological interest. But natura
one must transcend the local density approximation~LDA !
to the density functional theory to contribute significantly
this area. Therefore, we have recently been invoking mo
such as one-dimensional harmonic confinement in orde
gain insight into the nature of nonlocality@7# in Ts@r#. What
seems remarkable in this admittedly simple framework
thatTs@r# for this model can be completely characterized
the original Thomas-Fermi kinetic-energy functional and
von Weizsa¨cker inhomogeneity kinetic energy@8#. And this
is notwithstanding the genuine nonlocal character ofTs@r# in
this harmonic model@7#.

In a recent paper@9# we have presented both analytic
and numerical results for the exchange-energy densityex(r )
for ten-electron Ne-like atomic ions in the limit of larg
atomic numberZ. Comparison was made between the ex
form of 4pr 2ex(r ) and the Dirac-Slaterr4/3 LDA equiva-
lent, r(r ) being the exact electron density. The point-t
point agreement between the two results for 4pr 2ex(r ) was
excellent but the total LDA exchange energy@10,11,5# was
still in error by about 10%.

The present work has a different focus, namely, to han
first of all an arbitrary number of closed shells in the lead
term of the 1/Z expansion, which is the bare Coulomb lim
@12#, in both r space and momentum~p! space. Second, w
shall demonstrate that both kinetic- and exchange-ene
densities are determined in this Coulomb-limit case and
an arbitrary number of closed shellsN, by s( l 50) states
1050-2947/2001/63~6!/062501~9!/$20.00 63 0625
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alone, with atomic numberZ. In this latter context, in an
earlier work by one of us@13#, it was shown that a spatia
generalization of Kato’s theorem can be established for a
trary N as

]r~r !

]r
5

22Z

a0
rs~r !, a05

\2

me2 , ~1.1!

where rs(r ) is the l 50 contribution to the total electron
densityr(r ). Our initial aim, achieved in Sec. II below, i
then to obtain a result for the kinetic-energy densityt(r )
solely in terms of atomic numberZ ands-state densityrs(r )
for arbitrary N in this Coulomb-limit system. Section II
contains the proof that the corresponding exchange-en
densityex(r ) is also determined, at least in principle, byZ,
rs(r ), and physical boundary conditions although the res
is less explicit than for the kinetic contribution. In addition
the exchange energy, we treat in Sec. III the moment
density n(p) and show again thats-state properties alone
determine this quantity. A complete solution forn(p) for an
arbitrary number of closed shells is the content of Sec.
As numerical examples, we give in Sec. V explicit results
t(r ), both for ten-electron atomic ions forZ592 and for the
limit when the number of closed shells is allowed to tend
infinity. Here, we lean heavily on the important analysis
Heilmann and Lieb@14# in this limit when N→`. After
numerical results forn(p) and the associated Compton lin
shape, some approximate results are also presented forex(r )
for N→`. Section VI constitutes a summary, with som
proposals for possible further studies. In one of the appe
ces, some generalizations are presented that are applicab
any central potentialV(r ) that confines electrons. In closin
this section, we should refer the reader who requires gen
background for what follows to the review by Benesch a
Smith @15# on density matrix methods in x-ray scattering a
momentum-space calculations.
©2001 The American Physical Society01-1
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II. SECOND DERIVATIVE OF KINETIC-ENERGY
DENSITY t„r … IN TERMS OF ATOMIC NUMBER

Z AND THE s-STATE DENSITY r„r … IN THE
LIMIT SYSTEM OF LARGE Z

We generalize below the analysis of Nagy and co-work
@16,17# who treateds and p states only, but dealt with the
kinetic-energy density in this case. For independent electr
moving in the general central potentialV(r ), one can write

@r 2ts~r !#852 1
8 @r 2rs~r !#-2 1

2 r 2rs~r !V8~r !, ~2.1!

wherets is given by the Laplacian form of the kinetic-energ
density, i.e., with the wave functionC, 2 1

2 C¹2C. In this
study we shall consistently use the~positive definite! form
1
2 (¹C)2 for both total kinetic-energy densityt(r ) and itss
componentts . The two forms differ, as is well known, by
one-quarter of the Laplacian of the electron densityr(r ).
Making this change tots in Eq. ~2.1! yields the equation
valid for any central potentialV(r ), namely,

]

]r
@r 2ts~r !#2

1

8

]

]r
~r 2rs9!1

1

4
rs852

1

2
r 2rsV8~r !.

~2.2!

Applying this general equation, valid for any number
filled s-levels and anyV(r ), to the Coulomb case for which
]V/]r 5Z/r 2 and using Eq.~1.1! in the right-hand side of
Eq. ~2.2!, one can integrate immediately with respect tor to
find

ts~r !5
1

4

@r8~r !2rs~r !#

r 2 1
rs9~r !

8
. ~2.3!
ity

ro

th

t,
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Here then is a direct route for numerical calculations of
s-wave contributionts(r ) to the total kinetic-energy densit
t(r ) for the Coulomb-field-limit system under consideratio
for any chosen number of closed shellsN. Such numerical
results will be presented in Sec. V below for~a! K1L shells
only and ~b! for the limit N→` for which the theory of
Heilmann and Lieb gives an explicit~integral! representation
of r(r ), and hence from Eq.~1.1!, for rs(r ). In passing, we
note that integration through the volume of Eq.~2.3! recov-
ers the earlier result@18#

Ts5pE
0

`

r~r !dr ~2.4!

for the totals-state kinetic energyTs .
Returning to the total kinetic-energy densityt(r ), Amov-

illi and March @19# have shown more recently that for th
Coulomb-limit system with arbitraryN,

]t

]r
5

r-
8

2
3r8

4r 22
3Z

2r 2 r ~2.5!

and hence, by differentiation and use of Eq.~1.1!,

¹2t~r !52
Z

a0
Frs-

4
1

rs9

2r
2

3rs8

2r 22
3Zrs

r 2 G ~2.6!

or, in terms of the total densityr(r ),

¹2t~r !5Fr IV

8
1

r-
4r

2
3r9

4r 22
3Zr8

2r 2 G . ~2.7!

Therefore,t(r ) can be written in integral form as
t~r !5
21

4p E @r~r 8! IV/81r~r 8!-/2r 823r~r 8!9/4r 8223Zr~r 8!8/2r 82#

ur2r 8u
dr 8 ~2.8!
ore
l

s

t

and we note thatZ can be determined in terms of the dens
from Eq. ~1.1! as Z52(a0/2)@r8(0)/r(0)#. For the Cou-
lomb problem, sinceZ52(a0/2)@r8(0)/r(0)# from Eq.
~1.1!, Eq. ~2.8! gives t(r ) as a functional solely ofr(r ). Of
course, it must not be assumed that there is universality f
such a result; it is specific to the Coulomb model forN
closed shells. However, the structure of Eq.~2.8! is interest-
ing, and as we shall see when we compare this form with
exchange energy densityex(r ) to which we now turn, there
is remarkable similarity of shape fort(r ) and ex(r ) in this
model.

III. PROOF THAT EXCHANGE-ENERGY DENSITY ex„r …
AND p-SPACE MOMENTUM DENSITY IN THE
COULOMB-LIMIT CASE ARE DETERMINED

BY s-STATE INFORMATION ALONE

The burden of this section is to demonstrate again tha
shown explicitly for kinetic-energy densityt(r ) in Eq. ~2.7!,
m

e

as

the exchange-energy densityex(r ) derived from the leading
term in the 1/Z expansion can be characterized byZ and
s-state information alone. The proof we have to date is m
formal than that in Sec. II fort(r ). In particular, we appea
to the investigation of Theophilou and March@20# who gen-
eralized Eq.~1.1! to apply to the Dirac density matrix@7#
or the ‘‘off-diagonal’’ density g(r ,r 8), where r(r )
5g(r ,r 8)ur85r . Their result may be written, using variable
discussed by Blinder@21#, as

g~r ,r 8!52~x2y!21F ]

]x
2

]

]yGFxygsS x

2
,
y

2D G ~3.1!

where

x5r 1r 81ur2r 8u, y5r 1r 82ur2r 8u ~3.2!

andgs is the density matrix fors-states alone. The fact tha
the ~compact! variables x and y suffice to characterize
1-2
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r - AND p-SPACE ELECTRON DENSITIES AND . . . PHYSICAL REVIEW A63 062501
g(r ,r 8) in the bare Coulomb field stems from the existen
of the Runge-Lenz vector in this case as an additional c
stant of motion beyond those for a general central poten
V(r ).

But Dirac’s formula@10# for the total exchange energyEx
in terms ofg(r ,r 8), namely,

Ex5
2e2

4 E @g~r ,r 8!#2

ur2r 8u
dr dr 8, ~3.3!

allows a definition of the exchange-energy density as@9#

ex~r !5
2e2

4 E @g~r ,r 8!#2

ur2r 8u
dr 8, ~3.4!

and sinceg(r ,r 8) through Eq.~3.1! is characterized bygs
alone, it follows thats-state information suffices via Eqs
~3.4! and~3.1! to determineex(r ). Unfortunately, to date, we
have not been able to determinegs(r ,r 8) in terms of its
diagonal elementrs(r ) the s-state electron density thoug
the theorems of the density-functional theory assure us
gs[gs@rs#.

However, in Appendix A,ex(r ) is written for heavy Ne-
like atomic ions explicitly in terms ofr(r ) and t(r ). But
r(r ) from Eq. ~1.1! is determined byrs(r ) andZ. From Eq.
~2.4!, t(r ) is characterized by these same two quantiti
Hence in Appendix A we have an explicit, though somew
complicated, characterization of the exchange-energy den
ex(r ) by rs(r ), t(r ), andZ for ten-electron atomic ions a
largeZ.

To conclude this section, we briefly sketch the proof th
the momentum densityn(p), calculated explicitly in the fol-
lowing section, is also determined completely bys-state in-
formation alone. The counterpart ofg(r ,r 8) in momentum
space is given by

g̃~p,p8!5E g~r ,r 8!exp~ ip•r !exp~2 ip8•r 8!dr dr 8

~3.5!

and by definition the momentum densityn(p) is given, to
within a normalization factor, by the diagonal element ofg̃,
i.e.,

n~p!5g̃~p,p8!up85p . ~3.6!

But Eq. ~3.1! shows thatg(r ,r 8) is completely determined
by the density matrixgs for s states alone. Hence it follow
that for an arbitrary number of closed shells in a bare C
lomb field, the momentum densityn(p) is determined by
s-state information only.

IV. COMPLETE SOLUTION FOR MOMENTUM DENSITY
n„p… FOR AN ARBITRARY NUMBER OF CLOSED

SHELLS

Having given a formal proof in Sec. III above thatn(p) is
determined, at least in principle, bys-state information alone
we shall in this section obtain explicit analytical results f
n(p) for an arbitrary number of closed shells. Fock@22# has
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shown that the momentum density for themth closed shell
can be written as

nm~p!5
16m2pm

5

p2~p21pm
2 !4 , pm5Z/m. ~4.1!

Summing this expression overN closed shells, we find

nN ~p!5 (
m51

N
nm~p!5

Z5

2p2 H iZ

3p9 @C3~N111 iZ/p!

2C3~N112 iZ/p!1C3~12 iZ/p!

2C3~11 iZ/p!#1
3

p8 @C2~N112 iZ/p!

1C2~N111 iZ/p!2C2~11 iZ/p!

2C2~12 iZ/p!#1
5i

Zp7 @C1~N112 iZ/p!

2C1~N111 iZ/p!1C1~11 iZ/p!

2C1~12 iZ/p!#J , ~4.2!

where

Cn~x!5
]n11 ln G~x!

]xn11 ~4.3!

is the polygamma function@23#. We may also take the limit
of Eq. ~4.2! asN→` to find the momentum density in th
limit of an infinite number of closed shells,

n`~p![ lim
N→`

@nN ~p!#5
2Z2

6p2p9 $23ip422iZ4p4

115ip2Z2p2230ip2C1~ iZ/p!118pZ3C2~ iZ/p!

12iZ4C3~ iZ/p!218ipZ3p3 coth~pZ/p!

18iZ4p4 coth2~pZ/p!215ip2Z2p2 coth2~pZ/p!

118ipZ3p3 coth3~pZ/p!26iZ4p4 coth4~pZ/p!%.

~4.4!

This is thep-space analog of the Heilmann-Lieb result@14#
for the r -space electron densityr`(r ). However, whereas
r`(r ) is everywhere finite though its volume integral d
verges,n`(p) diverges asp tends to zero. Some numerica
results forn(p) are presented in Sec. V C below.

V. SOME NUMERICAL APPLICATIONS

A. Ten-electron atomic ions: Large-Z limit

Using the ground-state electronic density given in R
@24#, we have calculated the radial kinetic-energy dens
4pr 2t(r ) from Eq. ~B2!; the result is shown in the solid
curve of Fig. 1. For comparison thes-state contribution
4pr 2ts(r ) is shown in the broken curve. One sees that
1-3
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position of the maximum in the two curves is approximate
the same for the caseZ592, which we have examined
though thep-state contribution is quantitatively important
the region from;0.005–0.12 a.u.

Though not plotted, we have also examined the v
Weizsäcker inhomogeneity kinetic-energy densitytW(r ) de-
fined by

tW~r !5
1

8

@r8~r !u2

r~r !
~5.1!

with the same exact Coulomb densityr(r ). Though it is, of
course, different fromt(r ), there is increasing accord be
tween the two quantities for largerr. We stress in the presen
context that all three kinetic energies can be constructed
rectly from thes-state density, because of the spatial gen
alization ~1.1! of Kato’s theorem.

B. Kinetic-energy densities: limit as numberN of closed
shells tends to infinity in bare Coulomb potential

The result~2.5! is applicable for an arbitrary number o
closed shellsN, and therefore can be used in conjuncti
with the Heilmann-Lieb~HL! limit @14# N→`. Using the
series representation given by these authors@their equations
~1.20! and~1.29!# for this limiting case of the bare Coulom
problem, one can construct numericallyr(r ) and also, via
the relation~1.1!, thes-state densityrs(r ). These two quan-
tities are plotted, using the HL scaling, in Fig. 2 from the H
formula. @In all our HL results of Figs. 2, 3, and 4 below
summation over the series representation of HL’s Eq.~1.29!
up to principal quantum numbern550 has been carried out#

Hence, by insertion ofr(r ) in Eq. ~2.5!, the limit
]t/]r uN→` can be obtained and, by numerical integration
this result, t(r )uN→` can be plotted. The radial kinetic
energy density 4pr 2t(r )uN→` corresponding to the HL limit
is shown in Fig. 3, where it is compared with the Thoma
Fermi approximation~LDA !

tTF~r !5ck@r~r !#5/3 ~5.2!

with the same exact density,ck having the electron-gas valu

FIG. 1. Radial kinetic-energy density 4pr 2t(r ) for the ten-
electron atom forZ592 ~solid curve! and radials-state kinetic-
energy density 4pr 2ts(r ) for the same case~broken curve!.
06250
n

i-
r-

f

-

ck5
3h2

10m S 3

8p D 2/3

~5.3!

with h52p andm51 in atomic units.
The two curves 4pr 2t(r ) and 4pr 2tTF(r ), both decaying

as r 21/2, have identical forms for sufficiently larger, since

t~r !→tTF~r !→ A

r 5/2, A5ckF &3p2G5/3

. ~5.4!

To obtain ts(r ) is less straightforward in this limitN
→`. It can be calculated from radial wave functionsRn0(r )
via an infinite series~see Appendix C!, but in parts ofr space
this is only slowly convergent. However, if we calcula
ts(r ) using Eq. ~2.3! for 50 closed shells, then the curv
denoted by circles in Fig. 3 results.

FIG. 2. Total charge densityrH(r ) ~solid curve! and s-state
charge densityrs

H(r ) ~circles! for the sum overN550 closed shells
with Z51.

FIG. 3. Radial kinetic-energy density 4pr 2t(r ) ~solid curve!,
radial s-state kinetic-energy density 4pr 2ts(r ) ~circles!, and
Thomas-Fermi radial kinetic-energy density 4pr 2tTF(r ) ~broken
curve! for the sum overN550 closed shells using the scaling o
Heilmann and Lieb@14#.
1-4
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C. Momentum-space density and Compton profile

Equations~4.2! and ~4.4! give the momentum densit
n(p) for an arbitrary number of closed shells; this is plott
in Fig. 4~a! for N5100, 250, and 500 shells, and for a
infinite number of shells, withZ592. We also plot, in Fig.
4~b!, the momentum distribution function I (p)
54pp2n(p)/Z for the same cases. Note that for an infin
number of shells,n(p) and I (p) are singular at the origin
Finally, the Compton profileJ(q), given by

J~q!5
1

2 Eq

` I ~p!

p
dp,

is shown for the casesN5250 and 500 and for an infinite
number of shells in Fig. 5.

D. Local-density approximation to exchange-energy density

To close this section, we show in Fig. 6 the local-dens
approximation 4pr 2ex

LDA(r ), where

ex
LDA~r !uN→`52cx@r`~r !#4/3, cx5

3

4 S 3

p D 1/3

~5.5!

with the HL densityr`(r ). So far, we have not achieved
calculable form forex(r )uN→` beyond the local-density ap

FIG. 4. ~a! Momentum densitynN (p) for N5100, 250, 500,
and an infinite number of closed shells withZ592, ~b! momentum
distribution I (p)54pp2n(p) for the same cases.
06250
y

proximation. Sincer`(r )}r 23/2 asr→` from the HL study,
ex(r )uN→`}1/r 2 at large r, and hence 4pr 2ex

LDA(r )uN→`

tends to a finite, nonzero value asr→`. As for the total
kinetic energyT5* t(r )dr , the total exchange energyEx
5*ex(r )dr diverges asN→`.

VI. SUMMARY AND FUTURE DIRECTIONS

The main results of the present study are to determine,
the leading term in the 1/Z expansion of the atomic theor
for nonrelativistic atomic ions withN electrons.~i! The non-
local form ~2.8! of the kinetic-energy densityt(r ) solely in
terms of the electron densityr(r ), since the atomic numbe
Z appearing there can also be expressed in terms ofr using
Kato’s theorem. Equation~2.8!, it is to be stressed, is valid
for an arbitrary numberN of closed shells for the bare Cou
lomb field. We should also stress that, through Eq.~2.6!, t(r )
is determined completely by thes-state densityrs(r ), the
atomic numberZ, and two physical boundary conditions.~ii !
Thes-state kinetic energyts(r ) in Eq. ~2.3! that is the appro-
priate spatial generalization of the earlier integral result~2.4!

FIG. 5. Compton profileJ(q) for N5250, 500, and an infinite
number of closed shells withZ592.

FIG. 6. Local-density approximation to radial exchange-ene
density 4pr 2ex

TF(r ) for the sum overN550 closed shells calcu
lated with exact electron density using the scaling of Heilmann
Lieb @14#.
1-5
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for the total kinetic energyTs for s states for a general num
ber of closed shellsN. ~iii ! The momentum densitynN(p) in
Eq. ~4.2!, together with its limiting formn`(p) in Eq. ~4.4!.
As mentioned above, Eq.~4.4! is thep-space counterpart o
the Heilmann-Lieb result@14# for the r -space electron den
sity r`(r ). Various moments of momentum have been c
culated numerically forN550, Z592, and are listed in
Table I. In particular,^p& and ^p21& have been checke
against the closed forms obtained earlier@25#.

As to possible future directions, it has not to date prov
possible for an arbitrary number of closed shells to evalu
the exchange-energy densityex(r ) exactly ~though this has
been achieved earlier in Ref.@9# for K and L shells only!.
The most promising approach to this appears to lie in
deavoring to construct the off-diagonal generalization of E
~4.2!, especiallyg̃(p,p8) in Eq. ~3.5!. Further progress seem
feasible here, since Fock@22# has given an off-diagonal gen
eralization of his diagonal result~4.1! for a particular closed
shell in terms of Tschebyscheff polynomials~see also the
later study of May@26#!. By Fourier inversion of Eq.~3.5!, if
the sum over shells can be achieved eventually, insertio
the resulting g(r ,r 8) into the Dirac form ~3.4! of the
exchange-energy densityex(r ) would allow the LDA plot in
Fig. 6 to be transcended.
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APPENDIX A: CHARACTERIZATION OF
EXCHANGE-ENERGY DENSITY FOR Ne-LIKE

IONS BY s-WAVE DENSITY rs„r …

From Eq.~6.2! of March and Santamaria@24#, we have
for the ten-electron ion

TABLE I. Moments ^pm& of the momentum distribution forZ
592 andN550 closed shells.

m ^pm& ~a.u.!

22 0.895
21 0.699a

0 1
1 2.320b

2 9.859c

3 138.56
4 13561.2

aThis result checks witĥ p21&58N(N11)/Zp(2N11) in Ref.
@25#.
bThis result reproduceŝp&58Z/p(2N11).
cThis result is the total kinetic energy, which isZ2 per shell.
06250
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g~r ,r 8!5rS r 1r 8

2 D1ur2r 8u2

3F 1

24
r9S r 1r 8

2 D2
m

3\2 tS r 1r 8

2 D G ~A1!

so that the exchange-energy densityex(r ) is given by

ex~r !52
e2

4 E @r~~r 1r 8!/2!#2

ur2r 8u
dr 82

e2

4 E 2rS r 1r 8

2 D
3ur2r 8uF 1

24
r9S r 1r 8

2 D2
m

3\2 tS r 1r 8

2 D Gdr 82
e2

4

3E ur2r 8u3F 1

24
r9S r 1r 8

2 D2
m

3\2 tS r 1r 8

2 D G2

dr 8.

~A2!

Since we knowt(r ) in terms ofrs(r ) andr(r ) for this case
@see Eq.~B3! below#, we can substitute it in the expressio
~A2! and write

ex~r !52
e2

4 E FrS r 1r 8

2 D G2H 1

ur2r 8u
1

ur2r 8u
~r 1r 8!2

1
1

4

ur2r 8u3

~r 1r 8!4J dr 81
e2

4 E rS r 1r 8

2 D raS r 1r 8

2 D
3H ur2r 8u

~r 1r 8!2 1
1

2

ur2r 8u3

~r 1r 8!4J dr 8

2
e2

16E FrsS r 1r 8

2 D G2 ur2r 8u3

~r 1r 8!4 dr 8 ~A3!

so thatex(r ) can be entirely determined for the ten-electr
ion ~in the 1/Z limit ! in terms of integrals overrs(r ) and
r(r ) or, since Eq.~1.1! relatesrs(r ) to r8(r ) through the
atomic numberZ, in terms of integrals overr(r ) andr8(r ).

APPENDIX B: s-WAVE DENSITY MATRIX gs„r ,r 8…
AND KINETIC-ENERGY DENSITY ts„r … FOR

TEN-ELECTRON ATOMIC IONS IN THE
COULOMB-LIMIT SYSTEM

Thes-wave density matrixgs(r ,r 8) consists of the spheri
cally symmetric part of Eq.~A1! above, that is,

gs~r ,r 8!5rS r 1r 8

2 D1~r 21r 82!F 1

24
r9S r 1r 8

2 D
2

1

3
tS r 1r 8

2 D G . ~B1!

The first result of this decomposition is that, from the dia
onal element of Eq.~B1!, one finds

t~r !5
3

2 Fr~r !2rs~r !

r 2 G1
r9

8
. ~B2!
1-6
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It is worth emphasizing that the use of this result~B2! for the
quantity within the square brackets of both Eqs.~A1! and
~B1! allows the off-diagonal matrices to be rewritten sole
in terms of the densitiesr(r ) and rs(r ). Thus, for the full
Dirac density matrixg one has

g~r ,r 8!5rS r 1r 8

2 D12ur2r 8u2F rsS r 1r 8

2 D2rS r 1r 8

2 D
~r 1r 8!2

G
~B3!

giving the off-diagonal behavior solely in terms of the dia
onal densities. One can still use the spatial generalizatio
Kato’s theorem in Eq.~B3! to removers in terms ofr8, but
then the atomic numberZ enters. However, since

Z52
1

2

r8~0!

r~0!
~B4!

one can still view the result thus obtained as giving the fi
order density matrixg as a functional of its diagonal eleme
r(r ). This is related to, of course, but is somewhat mo
general than the problem of the single-particle kinetic-ene
functional Ts@r#. Reverting to this, one can return to E
~B2! and differentiate it with respect tor to find

t8~r !523
@r~r !2rs~r !#

r 3 1
3

2r 2 @r8~r !2rs8~r !#

1p-~r !/8. ~B5!

But for an arbitrary number of closed shells, Amovilli an
March obtain Eq.~2.5! @19#. Comparing Eqs.~B5! and~2.5!,
it follows for the ten-electron ions considered in this appe
dix that

2
3r8~r !

4r 2 2
3Z

2r 2 r~r !523
@r~r !2rs~r !#

r 3 1
3r8~r !

2r 2

2
3rs8~r !

2r 2 . ~B6!

1. Differential equation for ground-state electron densityr„r …

Introducing again the spatial generalization~1.1! of Ka-
to’s theorem to removers(r ) from Eq. ~B6!, one finds a
differential equation for the ground-state densityr(r ),
namely,

3

4Zr2 r9~r !1F2
3

2Zr3 1
9

4r 2Gr8~r !1F 3Z

2r 22
3

r 3Gr~r !50.

~B7!

It is noteworthy that for this example,t(r ) can be calculated
directly by combining Eq.~B2! with Eq. ~1.1! to find

t~r !5
3

2

r~r !

r 2 1
r9~r !

8
1

3

4Z
r8~r !. ~B8!
06250
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2. Calculation of s-state kinetic-energy densityts„r …

From thes-wave density matrix~B1! we have

ts~r !5
1

2

]2

]r ]r 8
gs~r ,r 8!ur 85r , ~B9!

which results in thes-wave kinetic-energy density of

ts~r !5
1

8
r9~r !1

r

24
r-1

r 2

96
r IV~r !2

r

3
t8~r !2

r 2

12
t9~r !.

~B10!

One can now use Eq.~2.5! and its derivative to eliminatet8
and t9 and hence findts(r ) in terms ofr, its derivative, and
atomic numberZ. Equation~B11! then becomes

ts~r !5
3

16
r9~r !1

r8~r !

8 S 1

r
1ZD1

Zr~r !

4r
. ~B11!

By volume integration of Eq.~B11!, the earlier result of one
of us @18# ~see also Ref.@16#! for the total s-state kinetic
energy given in Eq.~2.4! is then regained after some mode
manipulation. The result~B11! as derived here forK1L
shells is readily verified to be true also for theK shell alone.

APPENDIX C: s-WAVE DENSITY MATRIX gs„r ,r 8… FOR
THE GENERAL COULOMB PROBLEM

Thes-wave density matrixgs(r ,r 8) may be written forN
closed shells as

gs~r ,r 8!5 (
n51

N
Rn0~r !Rn0~r 8! ~C1!

with Rn0(r ) as the radial wave functions forl 50. The
Theophilou-March relation, Eq.~3.1!, may be used to ge
g(r ,r 8) by first expressinggs(r ,r 8) in terms of the variables
x andy,

gs~x/2,y/2!5 (
n21

N
Rn0~x/2!Rn0~y/2!. ~C2!

Then, since

]

]x
~xgs!5gs1x

]gs

]x
~C3!

and

]

]y
~ygs!5gs1y

]gs

]y
~C4!

we have

g~r ,r 8!5gsS x

2
,
y

2D2~x2y!21@xy#S ]gs

]x
2

]gs

]y D .

~C5!

Now from Eq.~C2!,
1-7
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]gs

]x
5 (

n51

N
1

2
Rn08 ~x/2!Rn0~y/2! ~C6!

and

]gs

]y
5 (

n21

N
1

2
Rn0~x/2!Rn08 ~y/2! ~C7!

so that with

x5r 1r 81ur2r 8u, y5r 1r 82ur2r 8u ~C8!

we can write

g~r ,r 8!5gsS x

2
,
y

2D2
1

2 F ~r 1r 8!2

ur2r 8u
2Ur2r 8UG

3F (
n51

N
1

2
$Rn08 ~x/2!Rn0~y/2!

2Rn0~x/2!Rn08 ~y/2!%G ~C9!

or

g~r ,r 8!5gsS r 1r 81ur2r 8u
2

,
r 1r 82ur2r 8u

2 D
2

1

2 F ~r 1r 8!2

ur2r 8u
2Ur2r 8UG

3 (
n51

N
1

2 FRn08 S r 1r 81ur2r 8u
2 D

3Rn0S r 1r 82ur2r 8u
2 D

2Rn0S r 1r 81ur2r 8u
2 DRn08 S r 1r 82ur2r 8u

2 D G ,
~C10!

which is the desired result for the Dirac matrix in term
purely of thes-state information.

APPENDIX D: EXCHANGE-ENERGY DENSITY ex„r …
FOR AN ARBITRARY NUMBER OF CLOSED

SHELLS IN A CENTRAL FIELD

For the full first-order density matrixg(r ,r 8) in the pres-
ence of a central field potential, we can write

g~r ,r 8!5 (
~n,l !

rnl
1/2~r !rnl

1/2~r 8!Pl~cosV! ~D1!
o

06250
where cosV5(r•r 8)/rr 8, and the summations overn and l
are over all principal quantum numbers and allowed angu
momentum quantum numbers, respectively. Herernl

1/2(r )
[@(2l 11)/2p#Rnt(r ) is the square root of the density ass
ciated with the (n,l )th subshell, and thus proportional to th
(n,l )th radial wave functionRnl(r ). If we taker iz, the ex-
change energy densityex(r ) then becomes, from Eq.~3.4!,

ex~r !52~e2p/2! (
~n,l !

(
~p,q!

rnl
1/2~r !rpq

1/2~r !

3E
r 850

`

rnl
1/2~r 8!rpq

1/2~r 8!r 82

3E
u50

p Pl~cosu8!P0~cosu8!

ur2r 8u
d~cosu8!dr8.

~D2!

We can then expand 1/ur2r 8u in Legendre polynomials as

1

ur2r 8u
5(

t50

` r ,
t

r .
t11 Pt~cosu8!

so that

ex~r !52~e2p/2! (
~n,l !

(
~p,q!

(
t50

`

rnl
1/2~r !rpq

1/2~r !

3E
r 850

`

rnl
1/2~r 8!rpq

1/2~r 8!r 82
r ,

t

r .
t11 dr8

3E
u50

p

Pl~cosu8!Pq~cosu8!Pt~cosu8!d~cosu8!.

~D3!

But the angular integral is just (4p/2l 11)z^tq00utql0& z2,
where thê tq00utql0& are the Clebsch-Gordon coefficient
Altogether then, we can write

ex~r !52~2e2p2! (
~n,l !

(
~p,q!

rnl
1/2~r !rpq

1/2~r !

3E
r 850

`

rnl
1/2~r 8!rpq

1/2~r 8!r 82

3(
t50

` r ,
t

r .
t11

u^tq00utql0&u2

2l 11
dr8 ~D4!

so that the exchange-energy density is expressed entire
terms of radial integrals. We note that the Clebsch-Gord
coefficients are zerounless

ut2qu< l<~ t1q!.
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