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Optimal creation of entanglement using a two-qubit gate
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We consider a general unitary operator acting on two qubits in a product state. We find the conditions such
that the state of the qubits after the action is as entangled as possible. We also consider the possibility of using
ancilla qubits to increase the entanglement.
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[. INTRODUCTION ment and their properties. In Sec. Ill, we show that there
exists a decomposition of any two-qubit gate, which allows
Entanglemenf1,2] is a quantum-mechanical feature that us to simplify the problem. In Sec. IV, we consider the prob-
can be employed for computational and communication purlem of two qubits. We determine how much entanglement
poses. During the past few years, a big effort has been mad@n be produced by a general two-qubit gate acting on a
in order to create entanglement in several laboratdi®gs product state. We also find which of those states gives rise to
This entanglement can then be used for many fascinatinghat amount of entanglement. In Sec. V, we discuss the case
things, such as teleportatigd], quantum cryptographis], in which we allow the qubits to be initially entangled with
and quantum computatid®]. In some of these experiments, ancillas. We will show that the solution to the problem de-
the entanglement is produced by starting out from a produdgends on the measure of entanglement we use to quantify it.
state of two system@ypically qubit9 and using some physi- We will also give two examples in which this problem can
cal process that gives rise to an interaction between thenbe solved analytically for a particular measure of entangle-
Such an interaction will be called nonlocal. Thus, one of themnent.
relevant problems in this context is to find ways of generat-
ing “as much entanglement as possible” for a given experi- II. DEFINITIONS AND PROPERTIES OF
mental setup, i.e., a nonlocal interaction. ENTANGLEMENT MEASURES
The first steps to answer this problem have been given in ) o
Refs.[7-9]. In particular, given a nonlocal Hamiltonian, bu  1he purpose of this section is twofold. On the one hand,
et al. have found the optimal way of generating entangle-We 9ive the definitions and notations that will be us_ed
ment. It consists of applying some fast local operations  throughout the whole paper. On the other hand, we review
ing the interaction processes in such a way that the rate &°Me measures of entangleméfot pure statesand some of

which entanglement increases is always maximal. In somE'€ir properties.
situations, however, one cannot apply fast local operations
during the process, but rather a fixed quantum gate is given. A. Definitions

In this work, we find the stateig), and|y)g for which the We consider two partners, Alice and Bob, who possess
entanglement ol xg| ) | /) is maximal, wheréJag is an o quantum systems and B, respectively. These systems
arb|_trary unitary operator. Thus, our results give a charactergj|| pe composed of one or two qubits each. We will express
ization of two-qubit gates in terms of the entanglement thatne states of these qubits in terms of the computational basis,

they can produce. For example, we will determine which arg|0),|1)}. The Hilbert space of syster (B) will be denoted
the operatorsU,g that can create maximally entangled py 7/, (74.), respectively.

states. While most of our results are concerned with two Throughout this paper, we use capital Greek letters for

qubits, we will also show that if we allow them to be initially joint states of systema and B and small letters for states
(locally) entangled with some ancillas, one can obtain MOr&escribing either systerh or systemB. We denote by W)
entanglement, at least for certain measures of entanglemen}.qiste that is orthogonal {&), whereag¥'*) denotes the

In general, an arbitrary unitary operator acting on tWocomplex conjugate of¥) in the computational basis. We
gubits can be parametrized in terms of ;5 coefficiéptss a il denote the Pauli operators by, ,o, and by
global phasg Thus, to study the maximum entanglement - fiti tol hich svst i
that can be produced in terms of all these parameters seem{& (0x,0y,07). If itis not clear on which system an opera
formidable task. However, we will show that one can always Or.'s actlng*, we spfcn‘y it with either a subscript or super-
decomposeU ag=(Uo®Ug)Uy(Va® V), WhereUy has a  SCIPL €.9.,04 OF 0. o .
special form that only depends on three parameters and the For two qubits, the Bell basis is defined as follows:
rest are local unitary operators. This implies that we can

restrict ourselves to characterize operators in the fogn £\ i -+ £\ _ i +
The use of the magic basis introduced in R&0] will also |27) \/§(|OO>_|11>)' =) \/§(|01>_|10>)'
considerably simplify our derivations. 1)

This paper is divided into five sections. In Sec. Il, we
introduce our notation and recall some measures of entangl&¥e also make use of the so-called magic bpE®, which is
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defined in the same way as the Bell basis except for somfr n=1, ... m—1.
global phases. We will denote the elements of this basis by We will also use the so-called 2-entrogrelated to the

. o 2-Renyi entropy of the reduced density operatf4]. It is
[P)=|DT), [Py=—i]D"), (28 defined as

(@) =[7),  |@)=—i[T"). (2b) L
5 _ o | Er(|W))=Sp(pa)=1-tr(p)=1- 2> ct, (8
The coefficients of a general state in that basis will be typi- k=1
cally denoted byu,; that is, we write|U)=3, u,|®,). In

what follows, |®) denotes a maximally entangled state. ~ Where againp, denotes the reduced density operator of
|W){¥|, andc, denotes the Schmidt coefficients & ). In

the following, we will call this measure thRenyi entangle-

ment
We review here some measures of entanglement for pure

states. In the first part of the paper, we are going to use the
so-calledconcurrencg 11], C. It is defined as

B. Measures of entanglement

C. Properties

A state describing two qubits contains two Schmidt coef-
C(|w))=KV|oy® o, |¥*)]. () ficients at mostc;,c, wherec,=+1—c2. Thus, its en-
tanglement is completely determined by one parameter,
All the measures of entanglement are monotonic functions of
each other and, therefore, equivalent. In higher dimensions
) (4) (m-level systemg though, this is no longer true. Let us de-
note now by¥) and|¥’) two states describing twarlevel
systems. Then it might happen that for some mealsteis

In the second part of the paper, we will use other meagre entangled thaht'’), whereas for some other measure
sures of entanglement, which are better expressed in terms gfis the other way around.

Writing |¥) in the magic basis, we get

C(lw)=|2 ni

the Schmidt coefficients. A pure staf@’), describing the Let us briefly recall some of the properties that have to be
state of two partlclesA and_B, ez_ach of dimensiom, always  gatisfied by any measure of entanglem@&nf15].
has a Schmidt decomposition in the form (a) Monotonicity under local operations: Suppose that Al-
m ice makes a measurement on her qubit and she obtains with
_ probability p, the states,. Then the entanglement cannot
) kgl ol ¢l e ®  increase on average, i.e.,

where (| b)) =(d| )=y VYV Kk, I=1,... m. The real
and po<siti\|/e 2:0e<ffic|ien>tsk, which are the square roots of E(p)sz PiE()- ©

the eigenvalues of the reduced density operatog,

=trg(|W)N(W|) [or pg=tra(|]¥)(¥])], are called Schmidt (b) Convexity: The entanglement decreases if we discard
coefficients. We will choose them in decreasing order, i.e.some information, i.e.,

C1=Cy=---=Cp.

The entropy of entanglemeiig defined as follows: E

Ek PxPk

iEk PE(pi).- (10

m

Ee(|W))=S(pa)=—tlpalogz(pa)]=— 2, cflogy(c). . . |
k=1 Now we briefly summarize some useful properties of the
(6) particular measures of entanglement mentioned in the pre-
ceding subsection. Let us start with the properties of the

This measure has a well-defined meaning: gimesopies of  concurrenceC, assuming that we have the following two
a state| V'), one can then produce, using only local opera-gypits.

tions and classical communicatiamEg(|¥)) maximally en- (i) c(wy)=1 iff Mﬁzei6|ﬂk|2 (k=1,...,4). This

tangled states and vice verga the limit n—c). means that a state, written in the magic basis, is maximally

Another useful measure is thBchmidt numberf12],  eniangled iff its coefficients are real, except for a global
which we will denote byEg. It is the number of Schmidt phase.

coefficients that are different than zero, minus one. i -0 ; : 2_

There is another set of measures, the so-cal@dngle- (i) C('¥))=0 iff | ') is & product state ifE s, =0.
ment monotoneswhich arises in the context of allowed
modification of entangled states under local operat[di33.
They are defined as

These two properties imply that i) and|®*) are real
in the magic basigand therefore they are maximally en-
tangled, then the statéd)+i|d*) is a product state.
Let us also review some properties of the entropy of en-
m tanglementEg, the Schmidt numbekg, the entanglement
E (| W)= E Cﬁ 7) monotonesE,,, and the Rayi entanglementEg, for arbi-
k=n trary states of twan-level systems.
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(1) A maximally entangled stat¢¥), of two m-level sys- V. TWO QUBITS
tems hasn Schmidt coefficients, which are allh. Thus
Ee(|W)) =logy(m), Es(|¥))=m—1, Eo(|¥))=(m—n)/m
(n=1,... m—1) andEg(|¥))=1-1/m.

(2) A product state can be written d¥)=|¢)al )z,
thus it has only one Schmidt coefficient, which is equal to 1
And 5o EE(ll;P>)=Es(|~1f>)=En(|qf>)=ER(l\If>)=o (n
=1,...m-1).

In this section, we consider the following scenario. Alice
and Bob have one qubit each. They want to entangle them by
applying a given unitary operatiod 5g. Their main goal is
to find the best separablpure[16]) input state that gives as
‘much entanglement as possible. According to our previous
discussions, we just have to find which stafes,,|)s
maximize the concurrence of the output statg ) ,|¥)g,
whereU, is given in Eq.(12) with restrictions(13). We will

IIl. UNITARY OPERATIONS call these states best input states.
In the next sections, we will calculate the maximum at-  Writing the input and output state in the magic basis with

tainable entanglement produced by two-qubit gates. In thih€ coefficientsv, and x,, respectively, we apply the uni-

section, we consider an arbitrary unitary operaigg, acting @y operatotyq and obtain

on two qubits and derive some properties that will simplify

the problem. _ > wl @Y =Uu(|d)alh)e) = > wie M D). (16)
In Appendix A, we show that for any unitary operator k k

U 55 there exist local unitary operatots, ,Ug,Va,Vg and a

unitary operatoiJ4 such that We want to maximize the concurrence of the output state,

C=|=u|, where we have to make sure that the following

Uag=Ua®@UgUy4Va® Vg, (11 conditions are satisfied.
(c1) =|ml?=1, which is that the output state is normal-
where ized. Note that sinctl 4 is unitary, this implies that the input
Ud:e—i;;TdFB (12) state is normalized.

(c2) = u2e?™k=0. This condition is due to the fact that
andd is a diagonal matrix. Herer," denotes the transpose the input state is a product state, which can be seen as fol-

— — @k ;
of o5 expressed in the computational basis. We will denotd®WS- From Eq/(16), we see thaw,= we"™, and according
the diagonal elements dfby a,, @, ,a,. Note that any mea- to Sec. ”.C,(“) th_|s last one Isa product state iff t.he sum qf
sure of entanglement is not changed by local unitary opera® Ipoeffrlluengs in the magic basis squared vanishes, which
tors. Thus the entanglement createdWy; is the same as implies the above equation.
the one created by ;V,®Vg. And so the maximal amount We can determine the maximum of the concurrence of the
of entanglement that can be produced by applying a gener&mpugState L_mder Fhe conditiofsl) and (92) by maximiz-
unitary, U,g, is the same as the one created Wy. This ing C* and Imposing the above. cpndmons in terms of
means that we have to deal with unitaries that are determineg9"ange multipliers, i.e., we maximize
by only three parametersy(,ay ,a,) instead of 15 param-
eters, which are used in order to describe a general unitary f(u,- - )=, Mﬁ(,u,*)z—2771< > |,uk|2—1>
operator acting on two qubits. kil k

Furthermore, in Appendix B we show that when studying _ _
the maximum amount of entanglement created by a two- — 2>, pie M= pE D (uk)2em N
qubit gate, we can restrict ourselves to the case in which K K

(17

where »; is real. We find it convenient to deno®(u})?
=Cé€”, n,=|n,|e', and u,=|u/€'*k. We obtain

m4= a,= ay= a,=0. (13

This is due to the fact that the maximal amount of entangle
ment created byUy is symmetric aroundw/4, and
m/2-periodic inay,ay, anda,. )

It can be easily shown that the operatdy is diagonal in e ()= + mom@®™ ¥ k. (18
the magic basis, and therefore we can write !

a Multiplying Eq. (18) by wy, summing overk, and using
Ug= z eii)\k|¢)k><q)k|- (14) conditions(c1) and (c2), we find thatz;=C?. And so we
k=1 have, assuming th&@+0,

The phases are wi(CeY— 92N C2= (19
M= ay—aytay, . . L .
One of the solutions to this equation ig=0. To find the
No=—aytaytay, others, we write Eq(19) as
o (15
Ng= o= ay—ay, 1— @ei(Z)\k_7+s) =C. (20)
A= aytay—a;. C
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Let us distinguish now two cases, namely whgnis zero or  then, for which|¢$)aar and |)gg they are able to reach
not. MaXg), . e E(UaB® larer|)an s |#)ee), WhereE de-

(i) 7,=0: From Eq.(20), it follows that C=1. Using  npotes some measure of entanglement between Alice’s two
then Eq.(19), it is easy to see tha’'*k=e™'” V k. Thus all  qubits and Bob's two qubits. In what follows, we write again
the coefficients have the same phéesecept for the signand  simply |6) (|4)) instead of| p)aar (|#)gs). On the other
therefore the output state is, according to the discussions @fang, according to Sec. Ill, we can restrict ourselves to op-
Sec. Il C, a maxima“y entangled state. In order to obtain thi%ratorst)d of the form(lZ) For Convenience, we will denote
state by applyindJq to a product state, the conditiotsl)  the input state in whicH¢) and |) are both maximally
and (c2) still have to be imposed. In Appendix C, we show entangled asocal maximally entangledand the one in
that those conditions can be fulfilled iff,+ «,=m/4 and at  \hich both are product states asoaal product state
the same timex,+ a,<7/4. There, we also determine the  The main difference from the preceding section is that
best input state. now the best input states depend on the measure of entangle-

(i) 7,#0: In this case, Eq(20) can have at most tWo ment. To illustrate this fact, we show in the first subsection
solutions for a fixed value dfp,|/C. Thus, in order to fulfill  that for some measures of entanglement the best input states
Eqg. (18) V k, at least two of the coefficients have to vanish gre the ones in which¢) and |¢) are entangled. On the
[17]. Let us call the other twaw, andu, . Then, in order to  other hand, there are measures of entanglement for which a
fulfill conditions (c1) and (c2), we have to satisfyiu/?>  local product state is the best input state.
+| | 2e? T &~ (8l = 0 and the normalization condition. I the second subsection, we show that for some special
Thus | uy/=|m|=1/y/2 and the difference between the two class ofUq (whered has only one nonvanishing elemgnt
phasesé, and & is \j—\—a/2. With all that, it is now the solution to our problem is independent of the measure of
simple to determine that the largest reachable concurrence éhtanglement. In particular, we show how much entangle-

) ment can be created in this case and what is the best input
C=max[sin(\g—N\))|. (21)  state. Furthermore, for the classWdf in which all the diag-
onal elements ofl are the same, we will determine the maxi-
Fum Rewyi entanglement as well as the best input state ac-
' cording to this measure of entanglement.

Except for global phases, the corresponding output state
12(|®)+i|®)e M) and the separable input state
which leads to this maximum, is

1 A. Dependence on the measure of entanglement

E(@O +il®))). (22 Let us compare the answer to our problem for some of the

measures of entanglement that we recalled in Sec. Il. Ac-

cording to some numerical examples, we have the following.

(i) Schmidt number: The best local maximally entangled
states are always better than the best local product states.
This can be easily understood since in the first case the maxi-

Noteﬁh?}t'mdt.he (,iaselxs 3/8’ vr\:e obtain IthaC=sm(axb.|_ mum value thaEg can take is 3, whereas in the latter one it
+ay), which is directly related to the entanglement capabi 'Ycan be at most 1. Thus using this measure of entanglement,

of the Hamiltonian of the form;dag [8]. For higher values o ancillas will in general increase the entanglement of the
of a,, the result may not be directly related to that quantity.q,tny state.

In summary, in this su_bsection we have shown that if We (ji) Renyi entanglement: We have checked that for this
apply Uq to a separable input state and calculate the maximeasure, the best input states are always either local product
mum of the concurrence of the output state, then we find thgtates or local maximally entangled states. In particular, in
following: It a,+ay=m/4 and ay+a,<m/4, then this the next subsection we will provide analytical results for
maximum is equal to 1. Otherwise it is given by EB1). In  gome particular cases.
addition, we determined the best input state in each of those (jjj) Entanglement monotones: We have verified that there
two cases. Note that, since we were dealing with two-qubile ynitary operatortl 4 for which local product states are
states, we could have taken, according to the discussions {fe pest input states, whereas for some other values the local
Sec. IIC, any other measure of entanglement to obtain thgaximally entangled states lead to the most entangled output
same result. state. But there also exists sorlg for which neither the

local product states nor the local maximally entangled states
V. USING ANCILLAS are the best input states.

We analyze now whether and how it would be possible to From these examples, it becomes clear that it does not

increase the amount of entanglement of the output state Wit'r}nake ml.JCh sense to ask fo_r the best input state if one does
not specify according to which measure of entanglement.

the help of auxiliary systems. So, we consider the situation in
which Alice and Bob have two qubits eafh8]. Let us de-
note the auxiliary qubits b’ andB’. We allow input states

in which Alice and Bob’s qubits are locally entangled, i.e., of  Before we start with the examples, let us make some gen-
the form|¢)anr|¥)ge - Then they apply a nonlocal unitary eral statement about the input state. It can always be written
transformationlU 5g, to the qubitsA andB. The question is, in the Schmidt decomposition as

Note that the input state ({2)(|®,)—i|®,)) [the corre-
sponding output state would then be @))(|<I>k>
—i|®,)e*M)] leads to the same amount of entanglement.

B. Examples
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| ) anr=Cal Po)al0)ar +Sal g)alL)ar (239 075
1
| ) ee =Sol0)8l0)s' + Col ¥5)8| )6 » (23b)
wherec2+s2=c2+s2=1. This is due to the fact that local ~ 0.5}

unitaries applied tA’ andB’ do not change the entangle-
ment(and commute withJ4). Let us now treat two cases in Er
which it is possible to determine the best input state for some
measures of entanglement. The first one should be viewed as .5}
a very simple illustration, whereas the second one is much
more involved.

1. Example 1 .
Let us consider the following simple unitary operator: 0 /16 opw8 o 3n/l6 /4
Ud=e_i“SX=C0$_{a)]l—i sin(a)oy® oy, (24) FIG. 1. Rawyi entanglement for the local maximally entangled

input state (1) and for the product std6g) (2).

whereS,=o0,® 0. In this case, it is fairly simple to deter-
mine the output state. It has at most two Schmidt coefficients Let us start by proving that the best input state is either a
and therefore the state can be viewed as a state describifgcal product state or a local maximally entangled state. Cal-
two qubits. This implies, as discussed in Sec. Il C, that all theculating the reduced density operator, one finds phat p,
measures of entanglement are equivalent when calculating p, [tr(p,p,) =0], wherep,,p, are 2<2 matrices that de-
the optimal states. We take; . pend ons,,s,, and a. It is straightforward to calculate

Let us definep, as the density operator whose off- Eq(Ugy|é)|#)) =Sr(pa) =Sr(p1)+Sr(p,) and determine
diagonal elements are zero, whereas the diagonal elemernits maxima. One finds that either the local product states
are the same as that of the stateJsing the fact that the von (s2 s2=0,1) or the local maximally entangled states
Neumann entropy is convex, we have t(p,)=S(p).  =s2=1) always lead to a maximum of the'Rg entangle-
Apart from that, since the problem is symmetric under ex-ment. In the case of a local product state, it is easy to check
changing systemAA’) with (BB'), it is easy to verify that  that the best one 1) (or equivalently|10) [19]). Let us
the states witho|¢)o<|¢+) and oy y)|y) lead to the  genote byEM® (EBY the Renyi entanglement for a local

most entangled output state. Now, since the Stas  mayimally entangled input stateroduct staté01)). We ob-
=[1),|#)=]1), as well as the state3¢)=|P"),|¢))  tain Y J P ® %0D)
=|® ™) fulfill this condition, both a local product state and a
local maximally entangled state are the best input states. The 3
maximal entropy of entanglement that can be obtained is me N— S ra_ _ 2

then ER (@) 16[3 2 cog4a)—cod4a)”], (283

max Eg= —cog «)? log,[ cog @)?]

1
—sin(@)? logy[ sina)?]. (25) ER(e) = 5[1-cog4a)?]. (28b)

2. Example 2 . ) .
Comparing those two expressions, we find tNatr<<«q,

_Here we determine the best input state, according 0 thghere o = arccos(1/5)/4-0.109r, the local product state is
enyi entanglement, corresponding to a unitary of the formine pest input state, and otherwise the local maximally en-
tangled state leads to the output state with the largesyiRe

— a—ia(Sy+S,+S,) — 3_i ai 3 ) X )
Ug=e "5SS =[coga)®~i sin(a)’]1 entanglement. In Fig. 1, we illustrate this result.

—isin(@)cod a)e'*(S+S,+S,), (26)

VI. CONCLUSIONS
where Sg=0z®0; (B=X,y,z). Here we have used

[S.S1=[S.S.1=[S,,S,]=0. In Appendix D we show We have shown which separable pure two-qubit states
that, according to any measure of entanglement, the best iirave to be used in order to create as much entanglement as

put state can always be written as possible by applying a general two-qubit gate. We have
shown which unitary operators are able to create a maxi-
|$)aar=Ca|0)al0)ar+Sa| 1)l L)ar (279  mally entangled state. For all the other unitary operators, we
have given the maximal amount of entanglement that can be
|#)e =Sp|0)g|0)g: +Cp| L)g| L), (27 created by therfEq. (21)]. Furthermore, we have shown that
by using ancillas one has to specify which is the measure of
wheres2+c2=s2+ci=1. entanglement to be maximized. We have given two examples
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of unitary operations for which it is possible to determine the - 1
maximal amount of some particular measure of entangle- |W,)=+—(€%e,fr)—e et 1)) (Adb)
ment. V2
Note added in proofRecently, J. Pachos informed us that
the result of Appendix A has been independently derived byor someé. In this case, choosing
N. Khaneja and S. J. GlaséRref. [20]).
Ua=10)(e|+|1)(e"[€"”, (A5a)
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APPENDIX A: DECOMPOSITION OF UNITARY Y and{|ﬁfk>} such that
OPERATORS
In this appendix, we show that for any unitary operator U|\Ifk>=eifk|(ffk>. (AB)
U 5g acting on two qubits, there exist local unitary operators
ST

Ua,Ug,Va,Vp and a nonlocal unitary 4=e~'7a%s (d di- Proof. We give a constructive proof. Let us denote by

agona) such that {IW )} the eigenstates df "U, whereUT denotes the trans-
pose ofU in the magic basis ane? <k are the corresponding

Uag=Ua®UpUgVa®Vp. (A1) eigenvalues. Note that the eigenvectors of the symmetric op-

erator UTU are orthonormal and real, except for global

Our pr(_)of will be constructive. Let us call a basis 90n5|st|ngphases. Thus, since we are working in the magic basis, they
of maximally entangled orthonormal states a maximally en-

tangled basis. In what follows, the use of the subsckipt Puild @ maximally entangled basis. Now we defitig,) as

implies that the definition or statement is true fér

=1,...,4if notstated differently. |@k>ze*i6ku|\yk>_ (A7)
Lemma 1.For any maximally entangled bas{$V¥ )},

there exist phaseg, and local unitaries) 5 ,Ug such that . ~ L
phaseg ArTB Since the sef|W¥,)} also forms an orthonormal basis, it

UA®UBei§k|xyk>= |®y). (A2) remains to prove that its elements are real. In order to show
that, let us consider the eigenvalue equatiob T
Proof. According to the discussion in Sec. II@, we can —e?%1)| W, )=0. Multiplying it by U*e "%, we get that
always write| ¥, ) =e”{ ¥, ), where| ¥, ) is real in the magic (e*I' U —e'«U*)|W¥y)=0, which is true iffe”'“U[W) is
. . . — e real.
basis. Let us_conéld_er two different Staﬂ&@ ano_l |E'>' With all that, we are now in the position to show that any
Then 1/\/§(|‘1’k>—||:1’|>)= le,f) a”d~1/\/§(|‘1’k>+l|‘l’|>) unitary operator can be decomposed into local operators and
=l|e,f), where |e),|e)e Ha and |f),|f)e Hg. Note that Uy as in Eq.(Al). So let us now give the procedure to
le,f) must be orthogonal tfe,f). This immediately implies ~determine the unitary operators that appear there.

that these vectors must give the Schmidt decomposition of (i) CaIcTuIate the eigensystem of the unitairy, symmetric
. €k
both | ¥, ,). Thus we can write operatorUTU. Let us denote the eigenvalues ¥« and the

eigenstates by, ). As proven in lemma 2, the set of those
states is a maximally entangled basis.

|\§1>:i(|e,f>+|e{f$>), (A33) (i) ChooseV,,Vg and the phaseg,, as explained in
V2 lemma 1, such that

— =i Va® Ve 5w ) =|d,). A8

Vo= len)let.14). (A3b) AOVaEH (T =Dy (A8)

B (iii) Calculate
Using the same arguments fioF 5 4), it is easy to determine

that they can be written as |\Irk>:e—ifku|\pk>_ (A9)
W)= _—I(ei e, ) +e el f)), (Ada)  Note that according to lemma 2, the set of those states is also
2 a maximally entangled basis.
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(iv) Choose the eigenvalues bfy, e (note that this is (i) a;=7 and as<w. Here the imaginary part of
equivalent to choosing the diagonal elementsipfand the | u4/%e'®1 is negative, whereas that bi,|?€'*2 is positive,
unitary operatord) 5 ,Ug such that and therefore it is always possible to find a solution to Eq.

(C1. In particular, we can choose;=0. Then writing the
UL@,Ugei(kk%kﬂk)@k):|q>k>, (A10) real and imaginary part of EqC1) and the normalization

condition(cl), we simply have to solve
which, according to lemma 1, is always possible. It is simple
to check that with these definitions we obtain the decompo- sin(ag)|wo|*+sin(ay)| pal?=0, (C2
sition (Al).
| sl ?+ cog ars)| ol ?+ cOS 1) | 14l =0, (€3
APPENDIX B: PERIODICITY AND SYMMETRY OF THE
MAXIMAL AMOUNT OF ENTANGLEMENT | ol + | pal*+ | pal>=1. (C4

Let us start out by proving the periodicity of the entangle-Note that since we have found the solution for fhgs, it is
ment created byJ,. We defined (d’) as a matrix whose easy to determine the input state by using the fornwa
diagonal elements are,,ay,a;, (ax+ w/2,ay,a;), respec- = ek,
tively. It is simple to verify thatU = —iS,Uy . SinceS; is
a tensor product of.two local unitary operators, the entangle- AppenDIX D: BEST INPUT STATE FOR EXAMPLE 2
ment created by, is the same as the one createdUy .

The same argumentation holds fey anda,, and therefore Here we prove that the input state that leads to the most
the amount of entanglement createdlbyis 7/2 periodic in ~ entangled output state can be written as
ay,ay, anda,.

To prove the symmetry around/4 in a,,ay,a;, of the |¢)=Cal00)+5,/12), (D1a
maximal amount of entanglement, we use the following defi-
nition: d (d’) is a matrix whose diagonal elements ar&t | ) =15,|00)+cp| 1), (D1b)

+ay,ay,a, (77/4 ax, y»@). Itis straightforward to show

thatUy=—ioRU% o, whereUd, denotes the complex con- Where s3+c; _5b+Cb 1. We will use thal os® o, U]
jugate of Uy in the standard basis. And so we have that=0, whereon—a n. This can be easily verified using the
E(U4|¥))=E(U% 0% W)), where we used the fact that lo- commutation relations of the Pauli operators.

cal unitary operators do not change the entanglement. Now, Let us now recall that the input state in systém’ can
we use the fact that for any measure of entanglemént, be written as/¢)=ca|o)a|0)a: + Sal ¢O>A|1>A’v wherec
E(|¥))=E(¥*)). This is obvious, since all the measures +s2=1. It is clear that there exists a vectorsuch that

are determined by the Schmidt coefficients and they are rea), - |¢o>—|¢o> andgn|¢o>_ —|#4). Note that|¢) is invari-
Thus, we have tha(Ug|¥))=E(Ugy (a2|¥))*). Itis clear ant undero’® o?’ e
n Zz v '

that the maximal amount of entanglement createdJhyis
the same as the one created By, . Again the same argu-

mentation holds for the other angles, which proves the state- oy ®Uz |¢>—|¢> (D2)
ment.
Using the fact thall 4 commutes Witf‘b’?@ O'E and with local
APPENDIX C: TWO-QUBIT GATES THAT CREATE operators acting on the auxiliary systems together with Eqg.
MAXIMALLY ENTANGLED STATES (D2), we have that o-®ol ®@at®@ Vg Ul b))
We are going to prove here that there exists a normalized Yl ¢>05®Vs_'|¢> for any unitary operatovs, . _
product statd ¢)|) such that|/®)=Ug4| ¢)|) is a maxi- Let us now introduce a new auxiliary system, which we

mally entangled state ifix,+ a,>m/4 and a,+a,<m/4.  denote byC. Then, using the propertyg) of any measure of
According to our discussions in Sec. Il C and Sec. 1V, this isentanglement, we have that

equivalent to fuffilling the conditiongcl) and (c2), where _

pe=|md%e”". Multiplying condition (c2) by e (7" 23, E(Ungl®)anrl¥)es c) =E(Unsl ) an|#)ge), (D3)

we obtain
where

| mal®+ | pe|?€' %2+ | ol 2€' 2+ ug|?€'*1=0,  (CD) .
D) eerc=(1N2)(|)es[0)ct o, @ Ve ger|1)c)-
where we have definedy=4(ay+a,), ay=4(ay+ay), Bere P T R
and az3=4(ay+ a,). Note that sincer/4= a,= ay=a,=0,

we have that Z=a=a,=a3=0. N B’
N ow choosingVg, = and requirin thatr ® Vg '
Let us distinguish the following two cases now. 9Ve =07 quiring o'l es

(i) 1< (or az>). In this case, all the imaginary parts =|¥)ger, which implies thaty) = Sb|d’00>+cb|¢0 1), we

appearing in Eq(C1) are positive(negative and therefore get  that  E(Uag| B)an| W) =E(Ungl d)an[¥)eer),
the sum can never vanish. Y| #),|¥), where both|¢) and|¢) are invariant under the
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operationo;® o,. Using the same argumentatiog as before, E(Ung| ®)| #)) <E{Uag[(C4|00)+ s,/ 11))(S,|00)

we can apply the local operatot; ® o5, , Wwheren’ is de-

fined asay/|do)=|0) and o/ pg)=—|1). Combining all *col 1)1}, (3)
that, we have that Y | é),|¥).
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