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Optimal creation of entanglement using a two-qubit gate

B. Kraus and J. I. Cirac
Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

~Received 20 November 2000; published 17 May 2001!

We consider a general unitary operator acting on two qubits in a product state. We find the conditions such
that the state of the qubits after the action is as entangled as possible. We also consider the possibility of using
ancilla qubits to increase the entanglement.
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I. INTRODUCTION

Entanglement@1,2# is a quantum-mechanical feature th
can be employed for computational and communication p
poses. During the past few years, a big effort has been m
in order to create entanglement in several laboratories@3#.
This entanglement can then be used for many fascina
things, such as teleportation@4#, quantum cryptography@5#,
and quantum computation@6#. In some of these experiment
the entanglement is produced by starting out from a prod
state of two systems~typically qubits! and using some physi
cal process that gives rise to an interaction between th
Such an interaction will be called nonlocal. Thus, one of
relevant problems in this context is to find ways of gener
ing ‘‘as much entanglement as possible’’ for a given expe
mental setup, i.e., a nonlocal interaction.

The first steps to answer this problem have been give
Refs.@7–9#. In particular, given a nonlocal Hamiltonian, Du¨r
et al. have found the optimal way of generating entang
ment. It consists of applying some fast local operationsdur-
ing the interaction processes in such a way that the rat
which entanglement increases is always maximal. In so
situations, however, one cannot apply fast local operati
during the process, but rather a fixed quantum gate is gi
In this work, we find the statesuf&A and uc&B for which the
entanglement ofUABuf&Auc&B is maximal, whereUAB is an
arbitrary unitary operator. Thus, our results give a charac
ization of two-qubit gates in terms of the entanglement t
they can produce. For example, we will determine which
the operatorsUAB that can create maximally entangle
states. While most of our results are concerned with t
qubits, we will also show that if we allow them to be initiall
~locally! entangled with some ancillas, one can obtain m
entanglement, at least for certain measures of entanglem

In general, an arbitrary unitary operator acting on tw
qubits can be parametrized in terms of 15 coefficients~plus a
global phase!. Thus, to study the maximum entangleme
that can be produced in terms of all these parameters see
formidable task. However, we will show that one can alwa
decomposeUAB5(UA^ UB)Ud(VA^ VB), whereUd has a
special form that only depends on three parameters and
rest are local unitary operators. This implies that we c
restrict ourselves to characterize operators in the formUd .
The use of the magic basis introduced in Ref.@10# will also
considerably simplify our derivations.

This paper is divided into five sections. In Sec. II, w
introduce our notation and recall some measures of entan
1050-2947/2001/63~6!/062309~8!/$20.00 63 0623
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ment and their properties. In Sec. III, we show that the
exists a decomposition of any two-qubit gate, which allo
us to simplify the problem. In Sec. IV, we consider the pro
lem of two qubits. We determine how much entanglem
can be produced by a general two-qubit gate acting o
product state. We also find which of those states gives ris
that amount of entanglement. In Sec. V, we discuss the c
in which we allow the qubits to be initially entangled wit
ancillas. We will show that the solution to the problem d
pends on the measure of entanglement we use to quanti
We will also give two examples in which this problem ca
be solved analytically for a particular measure of entang
ment.

II. DEFINITIONS AND PROPERTIES OF
ENTANGLEMENT MEASURES

The purpose of this section is twofold. On the one ha
we give the definitions and notations that will be us
throughout the whole paper. On the other hand, we rev
some measures of entanglement~for pure states! and some of
their properties.

A. Definitions

We consider two partners, Alice and Bob, who poss
two quantum systems,A andB, respectively. These system
will be composed of one or two qubits each. We will expre
the states of these qubits in terms of the computational ba
$u0&,u1&%. The Hilbert space of systemA ~B! will be denoted
by HA (HB), respectively.

Throughout this paper, we use capital Greek letters
joint states of systemsA and B and small letters for state
describing either systemA or systemB. We denote byuC'&
a state that is orthogonal touC&, whereasuC* & denotes the
complex conjugate ofuC& in the computational basis. W
will denote the Pauli operators bysx ,sy ,sz and by
sW 5(sx ,sy ,sz). If it is not clear on which system an opera
tor is acting, we specify it with either a subscript or supe
script, e.g.,sW A or s x

A .
For two qubits, the Bell basis is defined as follows:

uF6&5
1

A2
~ u00&6u11&), uC6&5

1

A2
~ u01&6u10&).

~1!

We also make use of the so-called magic basis@10#, which is
©2001 The American Physical Society09-1
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B. KRAUS AND J. I. CIRAC PHYSICAL REVIEW A63 062309
defined in the same way as the Bell basis except for so
global phases. We will denote the elements of this basis

uF1&5uF1&, uF2&52 i uF2&, ~2a!

uF3&5uC2&, uF4&52 i uC1&. ~2b!

The coefficients of a general state in that basis will be ty
cally denoted bymk ; that is, we writeuC&5(kmkuFk&. In
what follows,uF& denotes a maximally entangled state.

B. Measures of entanglement

We review here some measures of entanglement for p
states. In the first part of the paper, we are going to use
so-calledconcurrence@11#, C. It is defined as

C~ uC&)5 z^Cusy^ syuC* & z. ~3!

Writing uC& in the magic basis, we get

C~ uC&)5U(
k

mk
2U. ~4!

In the second part of the paper, we will use other m
sures of entanglement, which are better expressed in term
the Schmidt coefficients. A pure stateuC&, describing the
state of two particles,A andB, each of dimensionm, always
has a Schmidt decomposition in the form

uC&5 (
k51

m

ckufk&Auck&B , ~5!

where ^fkuf l&5^ckuc l&5dkl ; k, l 51, . . . ,m. The real
and positive coefficientsck , which are the square roots o
the eigenvalues of the reduced density operator,rA
5trB(uC&^Cu) @or rB5trA(uC&^Cu)], are called Schmidt
coefficients. We will choose them in decreasing order, i
c1>c2>•••>cm .

The entropy of entanglementis defined as follows:

EE~ uC&)[S~rA!52tr@rA log2~rA!#52 (
k51

m

ck
2 log2~ck

2!.

~6!

This measure has a well-defined meaning: givenn copies of
a stateuC&, one can then produce, using only local ope
tions and classical communication,nEE(uC&) maximally en-
tangled states and vice versa~in the limit n→`).

Another useful measure is theSchmidt number@12#,
which we will denote byES . It is the number of Schmid
coefficients that are different than zero, minus one.

There is another set of measures, the so-calledentangle-
ment monotones, which arises in the context of allowe
modification of entangled states under local operations@13#.
They are defined as

En~ uC&)5 (
k5n

m

ck
2 ~7!
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for n51, . . . ,m21.
We will also use the so-called 2-entropy~related to the

2-Rènyi entropy! of the reduced density operator@14#. It is
defined as

ER~ uC&)[SR~rA!512tr~rA
2 !512 (

k51

m

ck
4 , ~8!

where againrA denotes the reduced density operator
uC&^Cu, andck denotes the Schmidt coefficients ofuC&. In
the following, we will call this measure theRènyi entangle-
ment.

C. Properties

A state describing two qubits contains two Schmidt co
ficients at most,c1 ,c2, where c25A12c1

2. Thus, its en-
tanglement is completely determined by one parameter,c1.
All the measures of entanglement are monotonic function
each other and, therefore, equivalent. In higher dimensi
(m-level systems!, though, this is no longer true. Let us de
note now byuC& anduC8& two states describing twom-level
systems. Then it might happen that for some measureuC& is
more entangled thanuC8&, whereas for some other measu
it is the other way around.

Let us briefly recall some of the properties that have to
satisfied by any measure of entanglement,E @15#.

~a! Monotonicity under local operations: Suppose that A
ice makes a measurement on her qubit and she obtains
probability pk the statesk . Then the entanglement cann
increase on average, i.e.,

E~r!>(
k

pkE~sk!. ~9!

~b! Convexity: The entanglement decreases if we disc
some information, i.e.,

EF(
k

pkrkG<(
k

pkE~rk!. ~10!

Now we briefly summarize some useful properties of t
particular measures of entanglement mentioned in the
ceding subsection. Let us start with the properties of
concurrence,C, assuming that we have the following tw
qubits.

~i! C(uC&)51 iff mk
25eidumku2 (k51, . . . ,4). This

means that a state, written in the magic basis, is maxim
entangled iff its coefficients are real, except for a glob
phase.

~ii ! C(uC&)50 iff uC& is a product state iff(kmk
250.

These two properties imply that ifuF& and uF'& are real
in the magic basis~and therefore they are maximally en
tangled!, then the stateuF&6 i uF'& is a product state.

Let us also review some properties of the entropy of
tanglement,EE , the Schmidt number,ES , the entanglemen
monotones,En , and the Re`nyi entanglement,ER , for arbi-
trary states of twom-level systems.
9-2



1

at
th

ify

or

e
ot

er

t
e

in
-
ita

ng
wo

le

ce
by

s
ous

ith
-

te,
g

l-
t

t
fol-

of
hich

the

of

OPTIMAL CREATION OF ENTANGLEMENT USING A . . . PHYSICAL REVIEW A63 062309
~1! A maximally entangled state,uC&, of two m-level sys-
tems hasm Schmidt coefficients, which are all 1/Am. Thus
EE(uC&)5 log2(m), ES(uC&)5m21, En(uC&)5(m2n)/m
(n51, . . . ,m21) andER(uC&)5121/m.

~2! A product state can be written asuC&5uf&Auc&B ,
thus it has only one Schmidt coefficient, which is equal to
And so EE(uC&)5ES(uC&)5En(uC&)5ER(uC&)50 (n
51, . . . ,m21).

III. UNITARY OPERATIONS

In the next sections, we will calculate the maximum
tainable entanglement produced by two-qubit gates. In
section, we consider an arbitrary unitary operatorUAB acting
on two qubits and derive some properties that will simpl
the problem.

In Appendix A, we show that for any unitary operat
UAB there exist local unitary operatorsUA ,UB ,VA ,VB and a
unitary operatorUd such that

UAB5UA^ UBUdVA^ VB , ~11!

where

Ud5e2 isA
W TdsB

W
~12!

andd is a diagonal matrix. Here,sA
W T denotes the transpos

of sA
W expressed in the computational basis. We will den

the diagonal elements ofd by ax ,ay ,az . Note that any mea-
sure of entanglement is not changed by local unitary op
tors. Thus the entanglement created byUAB is the same as
the one created byUdVA^ VB . And so the maximal amoun
of entanglement that can be produced by applying a gen
unitary, UAB , is the same as the one created byUd . This
means that we have to deal with unitaries that are determ
by only three parameters (ax ,ay ,az) instead of 15 param
eters, which are used in order to describe a general un
operator acting on two qubits.

Furthermore, in Appendix B we show that when studyi
the maximum amount of entanglement created by a t
qubit gate, we can restrict ourselves to the case in which

p/4>ax>ay>az>0. ~13!

This is due to the fact that the maximal amount of entang
ment created byUd is symmetric aroundp/4, and
p/2-periodic inax ,ay , andaz .

It can be easily shown that the operatorUd is diagonal in
the magic basis, and therefore we can write

Ud5 (
k51

4

e2 ilkuFk&^Fku. ~14!

The phaseslk are

l15ax2ay1az ,

l252ax1ay1az ,
~15!

l352ax2ay2az ,

l45ax1ay2az .
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IV. TWO QUBITS

In this section, we consider the following scenario. Ali
and Bob have one qubit each. They want to entangle them
applying a given unitary operationUAB . Their main goal is
to find the best separable~pure@16#! input state that gives a
much entanglement as possible. According to our previ
discussions, we just have to find which statesuf&A ,uc&B
maximize the concurrence of the output stateUduf&A ,uc&B ,
whereUd is given in Eq.~12! with restrictions~13!. We will
call these states best input states.

Writing the input and output state in the magic basis w
the coefficientswk and mk , respectively, we apply the uni
tary operatorUd and obtain

(
k

mkuFk&5Ud~ uf&Auc&B)5(
k

wke
2 ilkuFk&. ~16!

We want to maximize the concurrence of the output sta
C5u(kmk

2u, where we have to make sure that the followin
conditions are satisfied.

~c1! (kumku251, which is that the output state is norma
ized. Note that sinceUd is unitary, this implies that the inpu
state is normalized.

~c2! (kmk
2e2ilk50. This condition is due to the fact tha

the input state is a product state, which can be seen as
lows. From Eq.~16!, we see thatwk5mke

ilk, and according
to Sec. II C~ii ! this last one is a product state iff the sum
the coefficients in the magic basis squared vanishes, w
implies the above equation.

We can determine the maximum of the concurrence of
output state under the conditions~c1! and ~c2! by maximiz-
ing C2 and imposing the above conditions in terms
Lagrange multipliers, i.e., we maximize

f ~m1•••m4!5(
k,l

mk
2~m l* !222h1S (

k
umku221D

2h2(
k

mk
2e2ilk2h2* (

k
~mk* !2e22ilk,

~17!

whereh1 is real. We find it convenient to denote( l(m l* )2

5Ceig, h25uh2uei e, andmk5umkuei jk. We obtain

mk(
l

~m l* !25h1mk* 1h2mke
2ilk ; k. ~18!

Multiplying Eq. ~18! by mk , summing overk, and using
conditions~c1! and ~c2!, we find thath15C2. And so we
have, assuming thatCÞ0,

mk~Ceig2h2e2ilk!/C25mk* . ~19!

One of the solutions to this equation ismk50. To find the
others, we write Eq.~19! as

U12
uh2u
C

ei (2lk2g1e)U5C. ~20!
9-3
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Let us distinguish now two cases, namely whenh2 is zero or
not.

~i! h250: From Eq. ~20!, it follows that C51. Using
then Eq.~19!, it is easy to see thate2i jk5e2 ig ; k. Thus all
the coefficients have the same phase~except for the sign! and
therefore the output state is, according to the discussion
Sec. II C, a maximally entangled state. In order to obtain t
state by applyingUd to a product state, the conditions~c1!
and ~c2! still have to be imposed. In Appendix C, we sho
that those conditions can be fulfilled iffax1ay>p/4 and at
the same timeay1az<p/4. There, we also determine th
best input state.

~ii ! h2Þ0: In this case, Eq.~20! can have at most two
solutions for a fixed value ofuh2u/C. Thus, in order to fulfill
Eq. ~18! ; k, at least two of the coefficients have to vani
@17#. Let us call the other twomk andm l . Then, in order to
fulfill conditions ~c1! and ~c2!, we have to satisfyumku2
1um l u2e2i [l l1j l2(lk1jk)]50 and the normalization condition
Thus umku5um l u51/A2 and the difference between the tw
phasesjk and j l is l l2lk2p/2. With all that, it is now
simple to determine that the largest reachable concurren

C5maxk,l usin~lk2l l !u. ~21!

Except for global phases, the corresponding output stat
1/A2(uFk&1 i uF l&e

lk2l l) and the separable input stat
which leads to this maximum, is

1

A2
~ uFk&1 i uF l&). ~22!

Note that the input state (1/A2)(uFk&2 i uF l&) @the corre-
sponding output state would then be (1/A2)(uFk&
2 i uF l&e

lk2l l)] leads to the same amount of entangleme
Note that in the caseax<p/8, we obtain thatC5sin(ax

1ay), which is directly related to the entanglement capabi
of the Hamiltonian of the formsA

TdsB @8#. For higher values
of ax , the result may not be directly related to that quant

In summary, in this subsection we have shown that if
apply Ud to a separable input state and calculate the m
mum of the concurrence of the output state, then we find
following: If ax1ay>p/4 and ay1az<p/4, then this
maximum is equal to 1. Otherwise it is given by Eq.~21!. In
addition, we determined the best input state in each of th
two cases. Note that, since we were dealing with two-qu
states, we could have taken, according to the discussion
Sec. II C, any other measure of entanglement to obtain
same result.

V. USING ANCILLAS

We analyze now whether and how it would be possible
increase the amount of entanglement of the output state
the help of auxiliary systems. So, we consider the situatio
which Alice and Bob have two qubits each@18#. Let us de-
note the auxiliary qubits byA8 andB8. We allow input states
in which Alice and Bob’s qubits are locally entangled, i.e.,
the form uf&AA8uc&BB8 . Then they apply a nonlocal unitar
transformation,UAB , to the qubitsA andB. The question is,
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then, for which uf&AA8 and uc&BB8 they are able to reach
maxuf&AA8 ,uc&BB8

E(UAB^ 1A8B8uf&AA8 ,uc&BB8), whereE de-
notes some measure of entanglement between Alice’s
qubits and Bob’s two qubits. In what follows, we write aga
simply uf& (uc&) instead ofuf&AA8 (uc&BB8). On the other
hand, according to Sec. III, we can restrict ourselves to
eratorsUd of the form~12!. For convenience, we will denot
the input state in whichuf& and uc& are both maximally
entangled aslocal maximally entangled, and the one in
which both are product states as alocal product state.

The main difference from the preceding section is th
now the best input states depend on the measure of enta
ment. To illustrate this fact, we show in the first subsect
that for some measures of entanglement the best input s
are the ones in whichuf& and uc& are entangled. On the
other hand, there are measures of entanglement for whi
local product state is the best input state.

In the second subsection, we show that for some spe
class ofUd ~whered has only one nonvanishing elemen!,
the solution to our problem is independent of the measur
entanglement. In particular, we show how much entang
ment can be created in this case and what is the best i
state. Furthermore, for the class ofUd in which all the diag-
onal elements ofd are the same, we will determine the max
mum Rènyi entanglement as well as the best input state
cording to this measure of entanglement.

A. Dependence on the measure of entanglement

Let us compare the answer to our problem for some of
measures of entanglement that we recalled in Sec. II.
cording to some numerical examples, we have the followi

~i! Schmidt number: The best local maximally entangl
states are always better than the best local product st
This can be easily understood since in the first case the m
mum value thatES can take is 3, whereas in the latter one
can be at most 1. Thus using this measure of entanglem
the ancillas will in general increase the entanglement of
output state.

~ii ! Rènyi entanglement: We have checked that for th
measure, the best input states are always either local pro
states or local maximally entangled states. In particular
the next subsection we will provide analytical results f
some particular cases.

~iii ! Entanglement monotones: We have verified that th
are unitary operatorsUd for which local product states ar
the best input states, whereas for some other values the
maximally entangled states lead to the most entangled ou
state. But there also exists someUd for which neither the
local product states nor the local maximally entangled sta
are the best input states.

From these examples, it becomes clear that it does
make much sense to ask for the best input state if one d
not specify according to which measure of entanglement

B. Examples

Before we start with the examples, let us make some g
eral statement about the input state. It can always be wri
in the Schmidt decomposition as
9-4
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uf&AA85cauf0&Au0&A81sauf0
'&Au1&A8 , ~23a!

uc&BB85sbuc0&Bu0&B81cbuc0
'&Bu1&B8 , ~23b!

whereca
21sa

25cb
21sb

251. This is due to the fact that loca
unitaries applied toA8 and B8 do not change the entangle
ment~and commute withUd). Let us now treat two cases i
which it is possible to determine the best input state for so
measures of entanglement. The first one should be viewe
a very simple illustration, whereas the second one is m
more involved.

1. Example 1

Let us consider the following simple unitary operator:

Ud5e2 iaSx5cos~a!12 i sin~a!sx^ sx , ~24!

whereSx5sx^ sx . In this case, it is fairly simple to deter
mine the output state. It has at most two Schmidt coefficie
and therefore the state can be viewed as a state descr
two qubits. This implies, as discussed in Sec. II C, that all
measures of entanglement are equivalent when calcula
the optimal states. We takeEE .

Let us definer1 as the density operator whose of
diagonal elements are zero, whereas the diagonal elem
are the same as that of the stater. Using the fact that the von
Neumann entropy is convex, we have thatS(r1)>S(r).
Apart from that, since the problem is symmetric under e
changing system (AA8) with (BB8), it is easy to verify that
the states withsxuf&}uf'& and sxuc&}uc'& lead to the
most entangled output state. Now, since the statesuf&
5u1&,uc&5u1&, as well as the statesuf&5uF1&,uc&
5uF1& fulfill this condition, both a local product state and
local maximally entangled state are the best input states.
maximal entropy of entanglement that can be obtained
then

max EE52cos~a!2 log2@cos~a!2#

2sin~a!2 log2@sin~a!2#. ~25!

2. Example 2

Here we determine the best input state, according to
Rènyi entanglement, corresponding to a unitary of the fo

Ud5e2 ia(Sx1Sy1Sz)5@cos~a!32 i sin~a!3#1

2 i sin~a!cos~a!eia~Sx1Sy1Sz!, ~26!

where Sb[sb ^ sb (b5x,y,z). Here we have used
@Sx ,Sy#5@Sx ,Sz#5@Sy ,Sz#50. In Appendix D we show
that, according to any measure of entanglement, the bes
put state can always be written as

uf&AA85cau0&Au0&A81sau1&Au1&A8 , ~27a!

uc&BB85sbu0&Bu0&B81cbu1&Bu1&B8 , ~27b!

wheresa
21ca

25sb
21cb

251.
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Let us start by proving that the best input state is eithe
local product state or a local maximally entangled state. C
culating the reduced density operator, one finds thatrA5r1
% r2 @ tr(r1r2)50#, wherer1 ,r2 are 232 matrices that de-
pend onsa ,sb , and a. It is straightforward to calculate
ER(Uduf&uc&)5SR(rA)5SR(r1)1SR(r2) and determine
its maxima. One finds that either the local product sta
(sa

2 ,sb
250,1) or the local maximally entangled states~sa

2

5sb
25 1

2 ! always lead to a maximum of the Re`nyi entangle-
ment. In the case of a local product state, it is easy to ch
that the best one isu01& ~or equivalentlyu10& @19#!. Let us
denote byER

me (ER
ps) the Rènyi entanglement for a loca

maximally entangled input state~product stateu01&). We ob-
tain

ER
me~a!5

3

16
@322 cos~4a!2cos~4a!2#, ~28a!

ER
ps~a!5

1

2
@12cos~4a!2#. ~28b!

Comparing those two expressions, we find that; a,a0,
wherea05arccos(1/5)/4'0.109p, the local product state is
the best input state, and otherwise the local maximally
tangled state leads to the output state with the largest R`nyi
entanglement. In Fig. 1, we illustrate this result.

VI. CONCLUSIONS

We have shown which separable pure two-qubit sta
have to be used in order to create as much entangleme
possible by applying a general two-qubit gate. We ha
shown which unitary operators are able to create a m
mally entangled state. For all the other unitary operators,
have given the maximal amount of entanglement that can
created by them@Eq. ~21!#. Furthermore, we have shown th
by using ancillas one has to specify which is the measure
entanglement to be maximized. We have given two examp

FIG. 1. Rènyi entanglement for the local maximally entangle
input state (1) and for the product stateu01& (2).
9-5
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of unitary operations for which it is possible to determine t
maximal amount of some particular measure of entan
ment.

Note added in proof.Recently, J. Pachos informed us th
the result of Appendix A has been independently derived
N. Khaneja and S. J. Glaser~Ref. @20#!.
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APPENDIX A: DECOMPOSITION OF UNITARY
OPERATORS

In this appendix, we show that for any unitary opera
UAB acting on two qubits, there exist local unitary operato

UA ,UB ,VA ,VB and a nonlocal unitaryUd5e2 isA
TdsB (d di-

agonal! such that

UAB5UA^ UBUdVA^ VB . ~A1!

Our proof will be constructive. Let us call a basis consisti
of maximally entangled orthonormal states a maximally
tangled basis. In what follows, the use of the subscripk
implies that the definition or statement is true fork
51, . . . ,4 if notstated differently.

Lemma 1.For any maximally entangled basis$uCk&%,
there exist phaseszk and local unitariesUA ,UB such that

UA^ UBei zkuCk&5uFk&. ~A2!

Proof.According to the discussion in Sec. II C~i!, we can

always writeuCk&5egkuC̄k&, whereuC̄k& is real in the magic

basis. Let us consider two different statesuC̄k& and uC̄ l&.

Then 1/A2(uC̄k&2 i uC̄ l&)5ue, f & and 1/A2(uC̄k&1 i uC̄ l&)
5uẽ, f̃ &, where ue&,uẽ&PHA and u f &,u f̃ &PHB . Note that
ue, f & must be orthogonal touẽ, f̃ &. This immediately implies
that these vectors must give the Schmidt decomposition

both uC̄k,l&. Thus we can write

uC̄1&5
1

A2
~ ue, f &1ue', f'&), ~A3a!

uC̄2&5
2 i

A2
~ ue, f &2ue', f'&). ~A3b!

Using the same arguments foruC̄3,4&, it is easy to determine
that they can be written as

uC̄3&5
2 i

A2
~eidue, f'&1e2 idue', f &), ~A4a!
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uC̄4&56
1

A2
~eidue, f'&2e2 idue', f &) ~A4b!

for somed. In this case, choosing

UA5u0&^eu1u1&^e'ueid, ~A5a!

UB5u0&^ f u1u1&^ f'ue2 id, ~A5b!

and the phaseszk appropriately, we have Eq.~A2!.
Note that this first lemma implies that one can go fro

one maximally entangled basis to any other using only lo
unitaries, if one chooses the global phases appropriately

Lemma 2.Given a general unitary operator,U, there al-
ways exist phasesek and two maximally entangled base

$uCk&% and$uC̃k&% such that

UuCk&5ei ekuC̃k&. ~A6!

Proof. We give a constructive proof. Let us denote b
$uCk&% the eigenstates ofUTU, whereUT denotes the trans
pose ofU in the magic basis ande2i ek are the corresponding
eigenvalues. Note that the eigenvectors of the symmetric
erator UTU are orthonormal and real, except for glob
phases. Thus, since we are working in the magic basis,

build a maximally entangled basis. Now we defineuC̃k& as

uC̃k&[e2 i ekUuCk&. ~A7!

Since the set$uC̃k&% also forms an orthonormal basis,
remains to prove that its elements are real. In order to sh
that, let us consider the eigenvalue equation (UTU
2e2i ek1)uCk&50. Multiplying it by U* e2 i ek, we get that
(e2 i ekU2ei ekU* )uCk&50, which is true iffe2 i ekUuCk& is
real.

With all that, we are now in the position to show that a
unitary operator can be decomposed into local operators
Ud as in Eq. ~A1!. So let us now give the procedure t
determine the unitary operators that appear there.

~i! Calculate the eigensystem of the unitary, symme
operatorUTU. Let us denote the eigenvalues bye2i ek and the
eigenstates byuCk&. As proven in lemma 2, the set of thos
states is a maximally entangled basis.

~ii ! ChooseVA ,VB and the phasesjk , as explained in
lemma 1, such that

VA^ VBei jkuCk&5uFk&. ~A8!

~iii ! Calculate

uC̃k&5e2 i ekUuCk&. ~A9!

Note that according to lemma 2, the set of those states is
a maximally entangled basis.
9-6
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~iv! Choose the eigenvalues ofUd , eilk ~note that this is
equivalent to choosing the diagonal elements ofd) and the
unitary operatorsUA ,UB such that

UA
†

^ UB
†ei (lk1jk1ek)uC̃k&5uFk&, ~A10!

which, according to lemma 1, is always possible. It is sim
to check that with these definitions we obtain the decom
sition ~A1!.

APPENDIX B: PERIODICITY AND SYMMETRY OF THE
MAXIMAL AMOUNT OF ENTANGLEMENT

Let us start out by proving the periodicity of the entang
ment created byUd . We defined (d8) as a matrix whose
diagonal elements areax ,ay ,az (ax1p/2,ay ,az), respec-
tively. It is simple to verify thatUd52 iSxUd8 . SinceSx is
a tensor product of two local unitary operators, the entan
ment created byUd is the same as the one created byUd8 .
The same argumentation holds foray andaz , and therefore
the amount of entanglement created byUd is p/2 periodic in
ax ,ay , andaz .

To prove the symmetry aroundp/4 in ax ,ay ,az of the
maximal amount of entanglement, we use the following d
nition: d (d8) is a matrix whose diagonal elements arep/4
1ax ,ay ,az (p/42ax ,ay ,az). It is straightforward to show
thatUd52 isx

AUd8
* sx

B , whereUd8
* denotes the complex con

jugate of Ud8 in the standard basis. And so we have th
E(UduC&)5E(Ud8

* sx
BuC&), where we used the fact that lo

cal unitary operators do not change the entanglement. N
we use the fact that for any measure of entanglementE,
E(uC&)5E„uC* &…. This is obvious, since all the measur
are determined by the Schmidt coefficients and they are r
Thus, we have thatE(UduC&)5E(Ud8(sx

BuC&)* ). It is clear
that the maximal amount of entanglement created byUd is
the same as the one created byUd8 . Again the same argu
mentation holds for the other angles, which proves the st
ment.

APPENDIX C: TWO-QUBIT GATES THAT CREATE
MAXIMALLY ENTANGLED STATES

We are going to prove here that there exists a normali
product stateuf&uc& such thatuF&5Uduf&uc& is a maxi-
mally entangled state iffax1ay>p/4 and ay1az<p/4.
According to our discussions in Sec. II C and Sec. IV, this
equivalent to fulfilling the conditions~c1! and ~c2!, where
mk

25umku2e2 ig. Multiplying condition ~c2! by e2 i (g12l3),
we obtain

um3u21um1u2eia21um2u2eia31um4u2eia150, ~C1!

where we have defineda154(ax1ay), a254(ax1az),
and a354(ay1az). Note that sincep/4>ax>ay>az>0,
we have that 2p>a1>a2>a3>0.

Let us distinguish the following two cases now.
~i! a1,p ~or a3.p). In this case, all the imaginary par

appearing in Eq.~C1! are positive~negative! and therefore
the sum can never vanish.
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~ii ! a1>p and a3<p. Here the imaginary part o
um4u2eia1 is negative, whereas that ofum2u2eia3 is positive,
and therefore it is always possible to find a solution to E
~C1!. In particular, we can choosem150. Then writing the
real and imaginary part of Eq.~C1! and the normalization
condition ~c1!, we simply have to solve

sin~a3!um2u21sin~a1!um4u250, ~C2!

um3u21cos~a3!um2u21cos~a1!um4u250, ~C3!

um2u21um3u21um4u251. ~C4!

Note that since we have found the solution for themk’s, it is
easy to determine the input state by using the formulawk
5mke

ilk.

APPENDIX D: BEST INPUT STATE FOR EXAMPLE 2

Here we prove that the input state that leads to the m
entangled output state can be written as

uf&5cau00&1sau11&, ~D1a!

uc&5sbu00&1cbu11&, ~D1b!

where sa
21ca

25sb
21cb

251. We will use that@snW
A

^ snW
B,Ud#

50, wheresnW5sW •nW . This can be easily verified using th
commutation relations of the Pauli operators.

Let us now recall that the input state in systemAA8 can
be written asuf&5cauf0&Au0&A81sauf0

'&Au1&A8 , whereca
2

1sa
251. It is clear that there exists a vectornW such that

snW uf0&5uf0& andsnW uf0
'&52uf0

'&. Note thatuf& is invari-

ant undersnW
A

^ sz
A8 , i.e.,

snW
A

^ sz
A8uf&5uf&. ~D2!

Using the fact thatUd commutes withsnW
A

^ snW
B and with local

operators acting on the auxiliary systems together with

~D2!, we have that snW
A

^ sz
A8^ snW

B
^ VB8Uduf&uc&

5Uduf&snW
B

^ VB8uc& for any unitary operatorVB8 .
Let us now introduce a new auxiliary system, which w

denote byC. Then, using the property~a! of any measure of
entanglement,E, we have that

E~UABuf&AA8uc̃&BB8C)>E~UABuf&AA8uc&BB8), ~D3!

where

uc̃&BB8C5~1/A2!~ uc&BB8u0&C1snW
B

^ VB8uc&BB8u1&C).
~D4!

Now choosingVB85sz
B8 and requiring thatsnW

B
^ VB8uc&BB8

5uc&BB8 , which implies thatuc&5sbuf00&1cbuf0
'1&, we

get that E(UABuf&AA8uc&BB8)>E(UABuf̃&AA8uc̃&BB8),
;uf̃&,uc̃&, where bothuf& and uc& are invariant under the
9-7
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operationsnW ^ sz . Using the same argumentation as befo
we can apply the local operatorsnW 8^ snW 8 , wherenW 8 is de-
fined assnW 8uf0&5u0& and snW 8uf0

'&52u1&. Combining all
that, we have that
, a

i

u,

v.

06230
, E~UABuf&uc&)<E$UAB@~cau00&1sau11&!~sbu00&

1cbu11&)] %, ~D5!

; uf&,uc&.
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