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Information-tradeoff relations for finite-strength quantum measurements
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In this paper we describe a way to quantify the folkloric notion that quantum measurements bring a
disturbance to the system being measured. We consider two observers who initially assign identical mixed-
state density operators to a two-state quantum system. The question we address is to what extent one observer
can, by measurement, increase the purity of his density operator without affecting the purity of the other
observer’s. If there were no restrictions on the first observer’s measurements, then he could carry this out
trivially by measuring the initial density operator’s eigenbasis. If, however, the allowed measurements are
those of finite strength—i.e., those measurements strictly within the interior of the convex set of all
measurements—then the issue becomes significantly more complex. We find that for a large class of such
measurements the first observer’s purity increases the most precisely when there is some loss of purity for the
second observer. More generally the tradeoff between the two purities, when it exists, forms a monotonic
relation. This tradeoff has potential application to quantum state control and feedback.
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I. INTRODUCTION

Since the earliest days of quantum mechanics, a com
idea associated with the measurement process has bee
it necessarily disturbs or interferes with the system be
observed. For instance Bohr, in his reply to the Einste
Podolsky-Rosen paper@1#, wrote that the quantum descrip
tion ‘‘may be characterized as a rational utilization of
possibilities of unambiguous interpretation . . .compatible
with the finite and uncontrollable interaction between t
objects and the measuring instruments’’@2,3# ~also see Refs
@4,5#!. Or Pauli, on a much later occasion, wrote that ‘‘eve
act of observation is an interference, of undeterminable
tent, with the instruments of observation as well as with
system observed, and interrupts the causal connection
tween the phenomena preceding and succeeding it’’@6#. See
Refs.@7,8# for a more complete bibliographic account of th
issue.

Without question, it has also been apparent since the
liest days of the theory that these proclamations are so
what dubious. The question is this: What is it that is be
interfered with or disturbed in a measurement? If there w
a set of hidden variables underneath the statistical pre
tions of quantum theory, then the answer would be at ha
The act of measurement disturbs the hidden variables. In
absence of a hidden-variable explanation@9#, however, this
becomes a moot point. Measuringx cannot disturbp if p
does not have an independent existence before a mea
ment elicits its value@10#. In fact one has to wonder why th
word ‘‘measurement’’ is used at all in this context: If the
are no free-standing valuesx and p to disturb, then surely
there are no values to measure either.

Eschewing metaphysical concerns, one might try to giv
precise sense to the idea that measurements cause d
bance by focusing solely on the wave function itself. This
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because the wave function appears to be the simplest ter
the theory that would even allow a precise formulation of t
question. One might say for instance, that ‘‘the word me
surement is a misnomer for our experimental interventio
into the course of nature@11,12#. The unpredictable wave
function collapse is the quantitative signature of a dist
bance in quantum measurement. Since the state chan
random, the measurement causes an uncontrollable di
bance.’’ But this formulation too is not without problem. Th
quantum state resulting from a measurement depends
crucial way on the precise form of the measurement inter
tion @13#. In particular, if there is only a single quantum sta
under scrutiny—as was the case in the original Heisenb
uncertainty relation discussion@14#—or even an unknown
state drawn from a fixed orthogonal set@15#, then a measure
ment interaction can always be rigged forany observable so
that, upon completion of the process, the quantum stat
returned to its initial value@16#. It does not matter that the
measurement outcome is random and unpredictable: If
discussion is limited to a single quantum state or an ortho
nal set, then there need be no disturbance in the sense
necessarywave-function change.

What appears to be needed is a situation where more
one quantum state from within a nonorthogonal set ari
naturally into the considerations. Indeed, perhaps the
phenomenon to give a precise meaning to the idea
information-gathering measurements necessarily cause
accompanying disturbance is quantum cryptography@17,18#.
There it is essential that the systems are known to be
pared in one or another quantum state drawn from so
fixed nonorthogonalset@19–21#. These nonorthogonal state
are used to encode a potentially secret cryptographic ke
be shared between the sender and receiver. In this case
information an eavesdropper seeks is not about some no
istent hidden variable likex or p, but instead about which
quantum state was actually prepared in each individual tra
mission. What is novel here is that the encoding of the p
posed key into nonorthogonal states forces the informat
gathering process to induce a disturbance to the ove

m.
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setof states. That is, the presence of an active eavesdro
transforms the initial pure states into a set of mixed states
at the very least, into a set of pure states with larger over
than before. This action ultimately results in a loss of p
dictability for the sender over the outcomes of the receive
measurements and, so, is directly detectable by the rece
revealing some of those outcomes for the sender’s ins
tion. In fact, there is a direct connection between the sta
tical information gained by an eavesdropper and the con
quent disturbance she must induce to the quantum state
the process. As the information gathered increases, the
essary disturbance also increases in a precisely formaliz
way @22–24#.

Note the two ingredients that appear in this formulatio
First, the information gathering or measurement is groun
with respect to one observer~in this case, the eavesdroppe!,
while the disturbance is grounded with respect to anot
~here the sender!. In particular, the disturbance is a distu
bance to the sender’s previous information—this is measu
by his diminished ability to predict the outcomes of certa
measurements the legitimate receiver might perform. No
of any variable intrinsic to the system is made use of in t
formulation. In itself, this is already a break from the com
mon folklore of disturbance in measurement. As far as
can tell, all early literature on the subject refers the disc
sion of disturbance exclusively to the system and the in
sive measuring device, not to the perspective of various
servers@7#.

The second ingredient is another break with folklore. O
must consider at least two possible nonorthogonal prep
tions in order for the formulation to have any meaning. T
is because the information gathering is not about some c
sically defined observable—i.e., about some unknown h
den variable or reality intrinsic to the system—but is inste
about which of the unknown states the sender actually
pared. The lesson is this: Disregard the unknown prep
tion, and the random outcome of the quantum measurem
is information about nothing. It is simply ‘‘quantum noise
with no connection to any preexisting variable.

How crucial is this second ingredient, i.e., that there be
least two nonorthogonal states within the set under consi
ation? We can start to readdress its necessity by makin
slight shift in the account above. Divorcing the discuss
from a cryptographic protocol, one might say that the eav
dropper’s goal is not so much to uncover the identity of
unknown quantum state, but to sharpen her predictab
over the receiver’s measurement outcomes. In fact,
would like to do this at the same time as disturbing t
sender’s predictions as little as possible. Changing the
guage still further to the terminology of Ref.@12#, the eaves-
dropper’s actions serve to sharpen her information about
potential consequences of the receiver’s further intervent
upon the system.~Again, she would like to do this while
minimally diminishing the sender’s previous informatio
about those same consequences.! In the cryptographic con-
text, a by-product of this effort is that the eavesdropper u
mately comes to a more sound prediction of the secret k
From the present point of view, however, the importance
this change of language is that it leads to an almost Baye
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perspective on the information-disturbance problem@25#.
Within Bayesian probability theory, one of the overarc

ing themes is to identify the conditions under which a set
decision-making agents can come to a common belief
probability assignment for some specified random varia
even though the agents’ initial beliefs may differ@26#. One
might similarly view the process of quantum eavesdroppi
The sender and the eavesdropper start off initially with d
fering quantum state assignments for a single physical
tem. In this case it so happens that the sender can m
sharper predictions than the eavesdropper about the
comes of the receiver’s measurements. The eavesdrop
not satisfied with the situation, performs a measuremen
the system in an attempt to sharpen those predictions
particular, there is an attempt to come into something of
agreement with the sender, but without revealing the o
comes of her measurements or, indeed, her very presen

It is at this point that a distinctproperty of the quantum
world makes itself known. The eavesdropper’s attempt
surreptitiously come into alignment with the sender’s p
dictability is always shunted away from its goal. This shu
ing of various observer’s predictability~and perhaps only
this shunting@27#! is the subtle manner in which the qua
tum world is sensitive to our experimental interventions.

This motivates finally the following problem, which is th
subject of our paper. Suppose two players—let us call th
Alice and Bob from this point on—come to agree about t
way a quantum system will react to any measurement
other words, by Gleason’s theorem@28#, suppose they star
with an identical density operator assignmentr for the sys-
tem. The case we are interested in most is whenr is a mixed
state. Under what conditions can one player—Alice, say
surreptitiously increase her knowledge of the system with
forcing the other player’s knowledge to become less relev
~see Fig. 1!?

To move toward making this question precise, imag
that a third player will perform some measurement on
system in the future, but neither Alice nor Bob know whic
it will be. Depending upon which measurement is ultimate
performed, Alice and Bob will have varying degrees of pr
dictability for its outcomes. For instance, consider how th
predictability fares with respect to various simple von Ne
mann measurements. If the measurement happens to b

FIG. 1. Here two observers both ascribe a density matrixr to a
quantum system. The observer inside the box~Alice! makes a mea-
surement on the system without telling the result to the obse
outside~Bob!. Alice wishes to obtain as much knowledge about t
system as she can, while causing as little disturbance to Bob’s
of knowledge as possible.
5-2
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INFORMATION TRADEOFF RELATIONS FOR FINITE- . . . PHYSICAL REVIEW A 63 062305
eigenbasis ofr, the Shannon entropy of the outcomes
which is a good measure of predictability@29#—will be the
minimal value it can be@30#. This turns out to be the von
Neumann entropyS(r)52tr r logr. On the other hand, if
the measurement happens to be a ‘‘mutually unbiased’’ b
@31# to the eigenbasis, then all measurement outcomes
be equally probable, and the outcome entropy will be logd,
whered is the dimension of the system’s Hilbert space.

For the purpose at hand, we would like to capture in
single number something about how much Alice and B
can predict of the unknown measurement. As a simple
ample, we might average the Shannon entropy of the m
surement outcomes over the unique unitarily invariant m
sure~or ‘‘uniform’’ measure! on the space of von Neuman
measurements@32,33#. This would represent how well Alice
and Bob will fare on average with respect to a complet
random von Neumann measurement. Or we might sim
consider the entropy of the best case scenario, i.e., the
Neumann entropy ofr as above. Without getting specific—
all will be made precise later—we will generically call the
kinds of measuresmeasures of purity. The main intuition we
want to capture is that whenr5uc&^cu is a pure state, then
Alice and Bob should generally have the most predictabi
over the third party’s measurements. Whenr is the ‘‘com-
pletely mixed state’’—i.e., proportional to the identity oper
tor, r5(1/d)I—they should have the least predictability.

The precise question we want to address is, can A
secretly increase the purity of her quantum state assignm
at the same time as leaving the other player’s purity
scathed? If she cannot, then such a failure may hint at
other interesting way to quantify a quantum-information
disturbance tradeoff. The hallmark of this formulation wou
be that it works even in a case when there is only asingle
initial quantum state~albeit a mixed state!, while still captur-
ing the shift in language we used to reformulate the quan
eavesdropping process.

Unfortunately, the answer is trivial if we leave the que
tion posed in such a simplistic way. We need only supp
that Alice measures an eigenbasisPb5ub&^bu of r to negate
the whole program. Upon finding some resultb, Alice will
collapse her description of the system from the mixed star
to the pure state@34#,

rb5
1

pb
PbrPb , ~1!

wherepb5tr(rPb) is the probability of the particular out
come. The result is to make Alice’s final purity for the sy
tem maximal, while as far as Bob is concerned the syste
density operator will not be affected at all. This is becau
with respect to Bob’s state of knowledge, the quantum s
evolves simply to a mixture of Alice’s states, i.e.,

r→(
b

pbrb5r, ~2!

and so his purity and indeed his quantum state assignm
remain the same.
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The key to finding something interesting here is to a
what would happen in the case where there is a well-justi
restriction to the class of measurements Alice can perfo
For instance, suppose Alice has not yet reached the tec
logically advanced stage of being able to perform a tr
perfect von Neumann measurement. Maybe she is usin
Stern-Gerlach device to perform a spin measurement on
electron. Very commonly, the limitations of her laborato
will not allow her to place the particle detectors infinitely f
behind the magnets so that the particle beams’ overlap
be zero. Then, every now and then a spin will be registe
down when it should have registered a spin up. To put t
another way, instead of projectingr into the statesP0 and
P1 as Alice would like, the Stern-Gerlach device projectsr
according to a more general Lu¨der’s rule for positive opera-
tor valued measures~POVM’s! @35,36#,

r→rb5
1

pb
Eb

1/2rEb
1/2, ~3!

where, in this case,

E05kP01~12k!P1 , ~4!

E15~12k!P01kP1 , ~5!

and pb5tr(rEb). Similarly, the description of the stat
change from Bob’s perspective must be in accord with th
and so

r→ r̃5(
b

pbrb . ~6!

When k is a number strictly between 0 and 1, we will ca
this an instance of afinite-strengthquantum measuremen
~We use this suggestive terminology because we imag
that Alice can never really get to a perfect von Neuma
measurement without the expenditure of an infinite amo
of effort.! What can be said in a case like this?

Again, Alice will be able to generally increase the puri
of her state without causing any decrease to Bob’s pur
She does this, as before, simply by choosingP0 andP1 to
be eigenprojectors ofr. ThenE0 andE1 commute with the
initial density operator, and it is straightforward to check th
r̃5r. However, we can now ask whether this is the strate
that brings the greatest benefit to Alice. Might it be the ca
that Alice can increase her purity even more on averag
she choosesP0 andP1 to be noncommuting withr? More-
over if it does, what kind of effect will this have on Bob’
description of the system? What we are imagining here
the imagery of the Stern-Gerlach device is that though Al
may not be able to extend her laboratory so that her part
detector is infinitely far behind the magnets, she may be a
to adjust the magnets’ spatial orientation at will. Is this
freedom she should make use of?

Interestingly, it turns out that there is a tradeoff in the tw
final purities. Wheneverr is nonpure~so that there is actu
ally something to be ‘‘learned’’! and 0,k,1 ~so that the
measurement is of finite strength!, Alice’s final purity will be
the greatest on average precisely when Bob’s purity has
creased the most in turn. Moreover, varying through the c
of measurements that lead from the least average final pu
5-3
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CHRISTOPHER A. FUCHS AND KURT JACOBS PHYSICAL REVIEW A63 062305
to the most~with respect to Alice!, we find that Bob’s purity
goes down monotonically as Alice’s goes up. As we w
show, this is an example of a more general phenome
where the measurement operators are not so restricted
Eqs.~4! and ~5!: for a large class of finite-strength quantu
measurements, a nontrivial tradeoff relation always exist

The plan of the remainder of the paper is as follows.
Sec. II, we give a precise formulation of the problem in t
widest setting, including definitions of various measures
purity and also a definition of the general notion of a fin
strength quantum measurement~without feedback!. In Sec.
III, we work out an analytic form for the changes of puri
for both Alice and Bob under the assumption of a partic
larly simple measure of purityand the restriction that Alice’s
quantum measurements have only two outcomes. We
explore the various regimes of the convex set of meas
ments, and exhibit the general information tradeoff relat
where it exists. We close in Sec. IV with a few concludi
remarks about the significance of this result. In Appendix
we prove that any efficient measurement~POVM! will in-
crease Alice’s purity on average~for any measure of purity
that is a convex function of the density operato
eigenvalues!—this result is essentially identical to on
proven recently in Ref.@37# and builds upon the significan
early work of Lindblad@38#. In Appendix B, for comparison
with the main result here, we consider a variation of t
problem where we vary over all measurements of a gi
finite strength instead of only those on the unitary orbits o
given fiducial measurement.

II. FORMULATION

Our problem concerns two agents, Alice and Bob, w
initially ascribe a single density operatorr to a quantum
system in which they have some interest. The most impor
case for us is whenr is a mixed state, i.e., trr2,1. For
generality in the formulation, let us assume thatr is a den-
sity operator over ad-dimensional Hilbert spaceHd . De-
tailed considerations begin when Alice tries to surreptitiou
increase her ‘‘knowledge’’ of the system—that is, to obtain
new density operator that is closer to being a pure state
her initial ascription. The only way she can do this is
performing a quantum measurement behind Bob’s back.
be as generous as we can be without trivializing the probl
let us assume that Bob knows everything of Alice’splan,
even her precise measurement interaction. The only infor
tion barred from Bob is the precise outcome of Alice’s me
surement.

The formalism for treating the most general kind of qua
tum measurement is that of the POVM@39#. In this formal-
ism a measurement corresponds to a sequence of oper
on Hd—denoted byE5(Eb)b51

` —with a finite number of
nonvanishingEb , such that each element of the sequence
a positive semidefinite operator, i.e.,

^cuEbuc&>0 ;uc&, ~7!

and, together, the elements form a resolution of the iden
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Eb5I . ~8!

The outcomes of the measurement are specified by the in
b, and occur with probabilitiespb5tr rEb .

Upon finding an outcomeb, the laws of quantum mechan
ics specify that Alice’s state can evolve into any other de
sity operator of the form@16#

r→rb5
1

pb
(

i
AbirAbi

† , ~9!

where

(
i

Abi
† Abi5Eb . ~10!

Since Bob knows nothing of Alice’s outcome, as far as he
concerned the state of the quantum system will evolve
cording to

r→ r̃5(
b

pbrb ~11!

5(
b,i

AbirAbi
† . ~12!

Note that the decomposition of eachEb into the operators
Abi in Eqs.~9! and ~10! depends crucially upon the interac
tion Alice chooses for carrying out the measurementE.
Whenever the range of the indexi is restricted to a single
value, we say that Alice’s measurement is anefficientone
@40#.

Efficient quantum measurements~with respect to a given
E) correspond to holding on to as much information as p
sible in the measurement process. That is to say, such m
surements do not break quantum coherence more than is
essary for the given POVM. In the subsequent developm
we will consider only efficient measurements for just th
reason. Hence, in the language of equations, we will o
consider conditional state changes of the form

r→rb5
1

pb
AbrAb

† , ~13!

whereAb
†Ab5Eb .

By the polar decomposition theorem for operators@41#,
we can always write

Ab5UbEb
1/2, ~14!

whereUb is a unitary operator. This decomposition can
endowed with a physical meaning if one thinks of the me
surement process as allowing for a sort offeedbackto the
quantum system. The raw measurement causes a ‘‘collap

r→sb5
1

pb
Eb

1/2rEb
1/2 ~15!
5-4
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INFORMATION TRADEOFF RELATIONS FOR FINITE- . . . PHYSICAL REVIEW A 63 062305
in one’s description of the system. But then, condition
upon the outcome, one can think of the interaction as cau
the system to unitarily evolve further to

sb→rb5UbsbUb
† . ~16!

This split, of course, is a conceptual one: it may or may
correspond to the actual workings of the device carrying
the measurementE. Nevertheless, it can be quite useful f
classifying different kinds of measurement interaction.

Efficient measurementswithout feedback hold a specia
place in our considerations. These are measurement inte
tions for whichUb5I , so that Alice’s state change is ult
mately of the simple form:

r→rb5
1

pb
Eb

1/2rEb
1/2. ~17!

These hold a special place for us first and foremost beca
they correspond to the ‘‘rawest’’ kind of measurement int
action allowed for a given POVM. Therefore, they are wo
thy of study in their own right@36#. Second, however, ther
are other problems for which they correspond to the le
perturbing implementation of a POVM. That is, if one co
templates performing the measurement on a system init
prepared in a completely random pure state, then the m
input-output fidelity will be the greatest if the measureme
has no feedback@42,43#. Finally, it stands to reason that
we can delineate the tradeoff between information and
turbance for such a special case, we will be better prepa
for understanding the more general one of an arbitrary e
cient measurement. We will also be better prepared to un
stand the precise role of feedback for controlling quant
systems@44#.

Our focus hereafter will be on efficient measureme
without feedback. What is thestrengthof such a measure
ment? This issue is explored in Ref.@44#, where a more
refined notion of the concept is given a quantitative form
lation. For the purposes here, we will only need the rawes
distinctions: finite vs infinite measurement strength. An e
cient measurementE is said to be of finite strength as long a
each nonvanishingEb has support on the whole Hilbe
spaceHd—that is, as long as

rank Eb5d for all b such thatEbÞ0. ~18!

A measurement is of infinite strength any time one of
nonvanishingEb’s has a rank strictly less thand.

The utility of this notion comes about from noting that th
set of all POVM’s is a convex set. This follows from the fa
that one can invent a notion of convex addition operation
POVM’s: simply take@45#

pE1~12p!F[@pEb1~12p!Fb# b51
` . ~19!

By a similar consideration, it is also true that the set of
POVM’s with a fixed numbern of nonvanishing elementsEb
is a convex set. Thinking of this set as embedded in a sp
of length-n sequences of all Hermitian operators, one h
that the boundary of such a set is given by precisely what
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are calling the infinite strength measurements~with n out-
comes!. The finite strength measurements lie strictly with
the interior of the set. Making this identification in termino
ogy is an attempt to capture the idea that an experime
would need to expend an infinite amount of effort to wo
his way out to the boundary. This is because, if he could
all the way to the edge, there would be some preparation
the system for which he could predict withabsolutecertainty
that some outcomes of the measurement would not oc
That strikes us as an insurmountable task. As technol
advances, we can imagine experimentalists getting e
closer to the boundary, but never quite reaching it.

Let us now start applying these distinctions of measu
ment to the problem at hand—namely, to that of an Ali
trying to surreptitiously increase her ‘‘knowledge’’ of a sy
tem while affecting Bob’s knowledge of it as little as po
sible. How shall we quantify knowledge in this contex
There are at least three canonical ways.

The first has to do with the von Neumann entropy of
density operatorr,

S~r!52tr r logr52 (
k51

d

lk loglk , ~20!

where thelk signify the eigenvalues ofr. @We evaluate all
logarithms in base 2, so that information is measured in b
rather than nats or hartleys@46#. Also, we use the convention
that l logl50 wheneverl50, so thatS(r) is always well
defined.#

The intuitive meaning of the von Neumann entropy c
be found by first thinking about the Shannon entropy. Co
sider any von Neumann measurementP consisting ofd one-
dimensional orthogonal projectorsP i . The Shannon entropy
for the outcomes of this measurement is given by

H~P!52(
i 51

d

~ tr rP i !log~ tr rP i !. ~21!

This number is bounded between 0 and logd, and there are
several reasons to think of it as a good measure ofimpredict-
ability over the outcomes of a measurementP. Perhaps the
most important of these is that it quantifies the number
yes-noquestions one can expect to ask per measuremen
one’s only means to ascertain the measurement outcom
from a colleague who knows the actual result@29#. Under
this quantification, the lower the Shannon entropy the m
predictable a measurement’s outcomes.

A natural question to ask is the following: With respect
a given density operatorr, which measurementP will give
the most predictability over its outcomes? As it turns out,
answer is anyP that forms a set of eigenprojectors forr
@30#. When this is the case, the Shannon entropy of the m
surement outcomes reduces simply to the von Neumann
tropy of the density operator. The von Neumann entro
then, signifies the amount of impredictability one achiev
by way of a standard measurement in a best case scen
Indeed, true to one’s intuition, one has the most knowled
by this account whenr is a pure state—for thenS(r)50.
Alternatively, one has the least knowledge whenr is propor-
5-5
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tional to the identity operator—for then any measuremenP
will have outcomes that are all equally likely.

The best case scenario for predictability, however, i
very limited case, and not so very informative about the d
sity operator as a whole. Since the density operator conta
in principle, all that can be said about every possible m
surement@28#, it seems a shame to throw away the vast p
of that information in our considerations.

This issue leads to our next quantification of ‘‘know
edge’’ of a quantum system. For this, we again rely on
Shannon information as our basic notion of predictabili
The difference is that we evaluate it with respect to a ‘‘ty
cal’’ measurement rather than the best possible one. H
ever with this, a new question arises: Typical with respec
what? The notion of typical is only defined with respect to
given measureon the set of measurements.

Luckily, there is a fairly canonical answer. There is
unique measuredVP on the space of one-dimensional pr
jectors that is invariant with respect to all unitary operatio
This in turn naturally induces a canonical measuredVP on
the space of von Neumann measurementsP @32,33#. Using
this measure gives rise to the quantity

H̄~r!5E H~P!dVP ~22!

52dE ~ tr rP!log~ tr rP!dVP , ~23!

which is intimately connected to the so-called quant
‘‘subentropy’’ of Ref. @47#. Interestingly, this mean entrop
can be evaluated explicitly in terms of the eigenvalues or
and takes on the expression

H̄~r!5
1

ln 2 S 1

2
1

1

3
1•••1

1

dD1Q~r!, ~24!

where the subentropyQ(r) is defined by

Q~r!52 (
k51

d S )
iÞk

lk

lk2l i
D lk loglk. ~25!

In the case wherer has degenerate eigenvalues,l l5lm for
lÞm, one need only reset them tol l1e and lm2e and
consider the limit ase→0. The limit is convergent, and
henceQ(r) is finite for all r. With this, one can also see th
for a pure stater, Q(r) vanishes. Furthermore, sinceH̄(r)
is bounded above by logd, we know that

0<Q~r!< logd2
1

ln 2 S 1

2
1•••1

1

dD<
12g

ln 2
, ~26!

whereg is Euler’s constant. This means that for anyr, Q(r)
never exceeds 0.60995 bits.

The interpretation of this result is the following. Eve
when one has the maximal knowledge about a system
can have under the laws of quantum mechanics—i.e., w
one has a pure state—one can predict almost nothing a
the outcome of a typical measurement@48#. In the limit of
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large d, the outcome entropy for a typical measurement
just a little over a half bit away from its maximal value
Having a mixed state for a system reduces one’s predicta
ity even further, but indeed not by that much: The sm
deviation is captured by the function in Eq.~25!, which be-
comes a quantification of ‘‘knowledge’’ in its own right.

The two quantifications of knowledge about a quantu
system given by Eqs.~20! and~25! are without doubt two of
the most well-motivated such quantities. However, beca
of their particular mathematical structures~involving loga-
rithms and ratios of eigenvalues, etc.!, they are often difficult
to work with. It is therefore useful to consider quantitie
F(r) that may not have the strictest of interpretations
terms of ‘‘knowledge’’ or ‘‘information,’’ but nevertheless
carry some of the properties essential to the explorations
would like to make. The two properties that appear to be
most important for us is that a functionF from density op-
erators to real numbers be~1! unitarily invariant, so that it
only depends upon the eigenvalues of the density opera
and ~2! concave in its argument. That is, one should hav

F@pr01~12p!r1#>pF~r0!1~12p!F~r1! ~27!

for each pair of density operatorsr0 and r1, and each real
numberp in the range@0,1#.

A common way of simplifying problems to do with th
Shannon entropy is to consider instead a function tha
merely quadratic in the probabilities@49,50#. In quantum-
mechanical terms, this translates to a function we shall
the impurity of a quantum state:

P~r!512tr~r2!512 (
k51

d

lk
2 . ~28!

This function, of course, has our two desired properties@30#.
Moreover, it attains its minimum value of 0 whenr is a pure
state~just asSandQ do!, and it attains its maximum value o
(d21)/d whenr is the completely mixed state.

What makes unitarily invariant functions like theF(r) in
Eq. ~27! special is that one can prove an interesting theor
for them in the measurement context. Consider any effic
measurement of a POVM,E5$Eb%. Upon finding an out-
comeb, the observer will update his quantum state for t
system from the originalr to somerb of the form in Eq.
~13!. What does this say about his expected change
knowledge? Well, one can prove that, whateverF is,

F~r!>(
b

pbF~rb!. ~29!

In particular, it follows that

S~r!>(
b

pbS~rb!, ~30!

Q~r!>(
b

pbQ~rb!, ~31!
5-6
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INFORMATION TRADEOFF RELATIONS FOR FINITE- . . . PHYSICAL REVIEW A 63 062305
P~r!>(
b

pbP~rb!. ~32!

These statements—and in fact a stronger statement to
with a majorization relation between the eigenvalues or
and those of therb—will be proven in Appendix A.@See
Nielsen@37# for an earlier proof of this result and also Lind
blad @38# for a proof of Eq.~30! specialized to von Neuman
measurements.#

The fact that Eq.~29! holds for all concave functionsF
expresses what is meant by the phrase ‘‘the observerlearns
something from a quantum measurement’’@51#. Note in par-
ticular that this need not necessarily be the case that
purity, etc., be nondecreasing in anyindividual trial of a
measurement. A simple counterexample suffices for illus
tion. Take

r5
1

3 S 1 0

0 2D , ~33!

and consider a two-outcome efficient measurement with
feedbackE5(E,I 2E) where

E5
1

3 S 2 0

0 1D . ~34!

Note that if outcomeE occurs, the updated density operat
for the system will be the completely mixed state

rE5
1

2 S 1 0

0 1D , ~35!

which is certainly less pure than the initial state. Thus o
can only expect one’s ‘‘knowledge’’ to increaseon average
during a measurement.

Going back to our target scenario with Alice and Bob, o
can see that this result insures that Alice comes away
average with more information than she started with. Mo
over, this holds independently of the particular way in whi
we choose to quantify her ‘‘information.’’ To make som
notation, this means that the quantities

D in
F[F~r!2(

b
pbF~rb! ~36!

will all be nonnegative for any efficient measurement. T
subscript onD in

F denotes that this refers to the change
knowledge from the ‘‘inside’’ point of view of the measure

An almost dual result is that from Bob’s point of view—
the outside point of view—wheneverE is not only an effi-
cient measurement, but also a measurementwithout feed-
back, his information can never increase from Alice
actions. That is to say, using notation from Eq.~11!, the
quantity

Dout
F [F~ r̃ !2F~r! ~37!

is nonnegative for all concave unitarily invariant functionsF
@52#. Again, the subscript inDout

F makes explicit that we are
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referring to a change of knowledge from the outside point
view. ~The interested reader can find a proof thatDout

F >0 in
Ref. @52#.!

We must emphasize that this result isalmostdual to Eq.
~29!, for it certainly depends upon the assumption that
measurement is without feedback. Let us show this by w
of a quick counterexample. TakeE to be a complete set o
orthogonal projectorsEb5ub&^bu, b51, . . . ,d. One pos-
sible measurement with feedback that is consistent with
POVM is given by takingAb5uc&^bu for some fixed unit
vector uc&. ClearlyAb

†Ab5Eb as required. However,

r̃5(
b

AbrAb
†5uc&^cu, ~38!

completely independently of what the initial stater is. So it
can certainly be the case thatF( r̃)<F(r) if one allows feed-
back into the picture.

The conclusion to draw is that we are right on track
considering the quantitiesD in

F andDout
F in the context of mea-

surements without feedback: in a sense, they are compe
tory of each other. What we would like to do now is sharp
this idea. Just because Alice’s knowledge of the system
only increase through her measurements and Bob’s can
decrease, it does not follow that there is necessarily a mo
tonic relation between these adjustments.

Here is how we will tackle the problem explicitly. As ha
been the case since the beginning, we imagine the in
state of knowledge for Alice and Bob to be fixed to som
density operatorr. Now, however, we introduce afiducial
quantum measurementM5(Mb) that will also be fixed
throughout our considerations. The freedom we give Alice
that she may perform any measurement without feedb
that is unitarily equivalent toM. That is to say, we shal
consider measurement operators for Alice that are neces
ily of the form

Eb5UMbU†, ~39!

whereU is any unitary operation. Each differentU defines a
consequent change in both Alice and Bob’s total informat
which we denote byD in

F (U) andDout
F (U), respectively.~This

notation makes no reference tor andM, because they are
fixed background information for the problem.! What we
would like to know is the following: Under what condition
is there a nontrivial monotone relation betweenD in

F (U) and
Dout

F (U) as we varyU? In the cases where such a monoto
relation exists, that will be the tradeoff we have been se
ing.

This completes the formulation of our problem. Unfort
nately, as opposed to the formulation, we have not settled
issue of a tradeoff relation in complete generality. Study
the two-dimensional Hilbert-space case, however, alre
turns out to be of significant interest. In Sec. III, we repor
careful study of the case whered52 andM contains two
outcome operatorsM0 andM1. Even in this restricted class
there is a large regime of measurements with a nontri
information tradeoff relation.
5-7
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III. 2D TWO-OUTCOME PROBLEM

In this section, we assume explicitly thatd52, so that
Alice and Bob’s information is about a single qubit. Th
canonical measurementM that sets Alice’s standard is take
to consist of only two elementsM0 andM1, but is otherwise
completely general. Alice now has the freedom to cho
any unitary operationU, and consequently perform any me
surementE consisting of elementsE05UM0U† and E1
5UM1U†. The question we should like to address is ho
D in

F (U) andDout
F (U) change with respect to each other as

function of U.
Note that because there are only two outcomes to

measurement,E0 andE1 must commute. There is, therefor
only one diagonalizing basis required in specifying this m
surement. Let us relabel the measurement to make this m
explicit: We shall simply denote the two outcomes byE and
I 2E. With our previous definitions, this measurement is
finite strength when neitherE nor I 2E is a rank-1 operator

We have performed extensive numerical work that sho
the following whenr is impure andE is of finite strength.
For the three concave functionsS(r), Q(r), andP(r) con-
sidered in Sec. II, there are significant regions in POV
space whereD in

F (U) achieves its maximum value precise
when Dout

F (U) is nonminimal. That is to say, Alice canno
learn the most unless she also disturbs Bob’s informatio
the process. In this situation, the optimal measurement
erator E does not commute withr. Alternatively, whenE
commutes withr, the differenceDout

F (U) achieves its mini-
mum value, namely, 0—so that Bob’s information is n
disturbed at all—but thenD in

F (U) achieves its minimum
value too—so that Alice has learned the least amount p
sible. In general, the functional relationshipDout

F (D in
F ) is a

monotonic one asD in
F ranges from its minimum to its maxi

mum value. In those regions of POVM space where ther
no nontrivial tradeoff relation, the curve forDout

F (D in
F ) is sim-

ply flat.
What we shall do herein is focus on quantifying t

tradeoff explicitly for the case in which ‘‘knowledge’’ is
identified with the impurity functionP(r) of Eq. ~28!. In this
case, all calculations can be done analytically and one
obtain a feel for the exact form of things.@In the other cases
of F5S or F5Q, things are not terribly worse, but becau
the binary Shannon entropy function cannot be inverted a
lytically, there is no way to get an analytic expression for t
function Dout

F (D in
F ).# With this restriction, we will hereafter

drop the superscriptF from our notation and write simply
Dout andD in for the ‘‘information’’ changes we are consid
ering.

Let us start the calculations straight away. From the ins
point of view of Alice, the two possible state changes are
the forms

r→rE5
1

tr rE
AErAE ~40!

and
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r→r¬E5
1

12tr rE
AI 2ErAI 2E. ~41!

From the outside point of view of Bob, it is simply

r→ r̃5AErAE1AI 2ErAI 2E. ~42!

Keeping in mind thatAE andAI 2E commute, a little alge-
bra yields that

Dout5tr r22tr r̃2 ~43!

52$tr r2E2tr rErE2tr@rAE~ I 2E!rAE~ I 2E!#%.
~44!

Similarly,

D in5tr rE tr rE
21tr r~ I 2E! tr r¬E

2 2tr r2 ~45!

5
1

tr rE~12tr rE!
@ tr rErE1tr r2 tr rE22 trrE tr r2E#

2 tr r2 ~46!

5
1

tr rE~12tr rE!
@ tr rErE22 trrE tr r2E

1tr r2~ tr rE!2#. ~47!

Note immediately that ifE and r commute, thenDout van-
ishes as one would expect.

Since we are dealing with a two-dimensional Hilbe
space, it is most convenient at this point to switch to a k
of Bloch-sphere notation for all operators. Then we m
write

r5 1
2 ~ I 1aW •sW !, ~48!

whereaW 5(ax ,ay ,az) is some vector of real numbers wit
modulusa<1 andsW is the vector of Pauli operators. Sim
larly, if a5tr E, then the operator

B5
1

a
E ~49!

is a density operator, and we may write

B5 1
2 ~ I 1bW •sW !, ~50!

where bW also has a lengthb no greater than unity. In this
notation,E andr commute if and only ifbW andaW lie within
the same ray.

Since 0<E<I , we must have 0<a<2. Moreover, we
must insure that the larger eigenvalue ofE is no greater than
unity. Using the fact that the eigenvalues ofE in Bloch-
sphere notation are given by12 a(16b), it follows that we
must require

a<
2

11b
. ~51!
5-8
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One can seeE becomes an infinite strength measurem
wheneverb51 anda is any value, or wheneverb,1 but
a52/(11b). The parametera to some extent captures th
amount of symmetry between the two measurement op
torsE andI 2E. It is therefore natural to call the case whe
a51 thesymmetric case.

With the notations of Eqs.~49! and ~50!, it becomes a
tractable task to calculate the various operators in Eqs.~44!
and~47!. Using the law of multiplication for Pauli matrices
i.e.,

~mW •sW !~nW •sW !5~mW •nW !I 1 isW •~mW 3nW !, ~52!

one finds fairly easily that

tr r25
1

2
~11a2!, ~53!

tr rE5
a

2
~11abz!, ~54!

tr r2E5
a

4
~11a212abz!, ~55!

tr rErE5
a2

8
@11a21b21a2b2~2z221!14abz#,

~56!

wherez5cosu, andu is the angle between the vectorsaW and
bW .

The only really daunting term that we must calculate
the quantity

tr@rAE~ I 2E!rAE~ I 2E!#. ~57!

To make some headway, let

G[E~ I 2E!5g0I 1gW •sW , ~58!

where

g05 1
4 a~22a2ab2!, ~59!

gW 5 1
2 a~12a!bW . ~60!

We need to find anr 0 and rW such that

AG5r 0I 1rW•s. ~61!

The method for this is simple: We just need calculateG
5AGAG and set the resultant equal to Eq.~58!. Carrying
this procedure to its conclusion, we arrive at the followi
identifications:

r 0
25

a

8
$22a2ab21A~12b2!@424a1~12b2!a2#%

~62!
06230
t
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rW5
1

4r 0
a~12a!bW . ~63!

With this, we can finally calculate

tr AGrAGr5 1
2 @11a21c212~aW •cW !22a2c214aW •cW #,

~64!

where the vectorcW and its magnitudec are defined by

cW5
rW

r 0
. ~65!

Putting all these ingredients together, we finally arrive
our sought-after expressions:

D in5
ab2~12a2!~12a2z2!

2~11abz!~22a2aabz!
~66!

and

Dout5
1

2 S aab

2r 0
D 2

@~12a!214r 0
2#~12z2!. ~67!

These two equations contain everything needed for a c
plete analysis of the information tradeoff question. Let
first see how this plays out for the simple case described
Eqs.~4! and ~5! of Sec. I.

A. Symmetric case

In this case the measurement operatorsM0 and M1 take
the form

M05kP01~12k!P1 , ~68!

M15~12k!P01kP1 , ~69!

where 0,k,1, andP0 andP1 are the projectors onto som
orthonormal basis. Measurement operators of this form co
up quite naturally in the theory of continuous quantum m
surements@44#. In our Bloch sphere notation of Eqs.~49!
and ~50!, this case corresponds to takinga51 andb52k
21.

Plugginga51 into Eqs.~66! and ~67!, we find the sig-
nificantly simpler expressions

D in5
1

2
b2~12a2!

12a2z2

12a2b2z2
~70!

and

Dout5
1

2
b2a2~12z2!. ~71!

Clearly,Dout is minimized whenz51 or 21 ~so thatE com-
mutes withr) as we have noted before. Moreover,Dout is
maximized whenz50—that is to say, when the operatorE is
diagonal in a basis complementary or mutually unbiased
the diagonal ofr. On the other hand, sinceb<1, D in is a
5-9
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strictly decreasing function inz2. This givesD in the same
qualitative behavior asDout and ultimately leads precisely t
our tradeoff relation: Eliminatingz2 from Eqs.~70! and~71!,
we obtain

Dout5
2~12a2b2!D in2b2~12a2!2

2~12a222D in!
. ~72!

This example is something of an extreme for the pheno
ena we have been hoping for. As long as the fiducial m
surementM is of finite strength~i.e., bÞ1), Eq.~72! traces
out a nontrivial monotone curve as we go fromD in

min to D in
max.

But more than this,D in is maximized at precisely the sam
value of z for which Dout is also maximized. In common
language, this means that if Alice wishes to gather the m
information, she must reciprocally cause Bob to lose
most information that her class of measurements will allo
The only means for Alice to lessen the impact of this effec
to develop her technology, so that the limitb→1 can be
approached asymptotically.

This behavior, at first sight, appears to be quite deep
helps lend credence to the idea that measurements wit
feedback are always somewhat destructive by their natu
that is, as long as one’s aim is to increase one’s informa
as much as possible under the constraint of having less
‘‘infinitely powerful’’ measurement devices.

Interestingly, however, this type of behavior is not co
pletely generic. There are some fiducial measurementsM of
finite strength for which the tradeoff effect disappears.
see this, we must turn back to our base equations~66! and
~67!.

B. General case

Let us now assume strictly that none of the variablesa, b,
or a happen to equal unity. Then, as in the symmetric ca
the quantityDout is clearly minimized whenz251. Similarly,
the disturbance to Bob’s knowledge is largest whenz50, so
that E is diagonal in a basis mutually unbiased with resp
to the diagonal ofr.

The analysis of the generalD in is significantly more dif-
ficult. One can show that the quantity is minimized atz2

51, but whether that occurs atz51 or z521 now depends
upon the size ofa. The way to see this is by checking th
D in is concave as a function ofz: The calculation is tedious
but it can be done analytically. The point where the cu
changes from a positive slope to a negative slope, i.e., w
the function attains its maximum, is given by

z5z05
1

a~12a!ab
@4r 0

22a~22a2ab2!#. ~73!

This expression is quite revealing. For a fixed value
bÞ0, one can check for those values ofa that forcez051 or
z0521. These are

auz0515
b~11a2!12a

b~11a2!1a~11b2!
~74!
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auz05215
b~11a2!22a

b~11a2!2a~11b2!
. ~75!

This means that fora in the ranges

0<a<maxH 0,
b~11a2!22a

b~11a2!2a~11b2!
J ~76!

and

b~11a2!12a

b~11a2!1a~11b2!
<a<

2

11b
~77!

D in will always be maximized by choosingz51 or z521.
However, fora outside of either of those ranges, there w
always be a nontrivial tradeoff relation: When Alice’s info
mation gainD in is maximized, Bob’s information lossDout
will be strictly greater than its minimal value.

The general tradeoff relation, when it exists, is found si
ply enough by eliminating the variablez from the simulta-
neous equations~66! and ~67!. ~Two examples of the
tradeoff relation are given in Figs. 2 and 3.! This time—in
contrast to what we did in Eq.~72!, however—we leave find-
ing the explicit expression as an exercise for the reader: S
ing it explicitly adds little to the analysis already given.

IV. DISCUSSION

Our conclusion is straightforward: There are regions
the space of finite-strength efficient measurements with
feedback for which a nontrivial information tradeoff relatio
exists as one unitarily varies around any given fiducial m
surementM. In a way, it is a shame that we could not ma
a more unqualified assertion—for instance, that a nontriv
tradeoff relation held forall finite-strength quantum mea

FIG. 2. The tradeoff between informationD in and disturbance
Dout is plotted here fora51, b50.9, and three values ofa. Solid
line: a50.8; dotted line:a50.79; dot-dashed line:a50.78.
5-10
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surements without feedback. Indeed the hope that s
would be the case was a large part of the motivation for
work.

The question now arises as to the significance of
rather complicated regions defined by Eqs.~76! and ~77!.
What trenchant physical property is implied of a measu
mentM that sits in the information-disturbance region of
given density operatorr?

A toy idea is that the key distinction lies not in finit
versus infinite measurement strength, but in whether
measurement sits above or below a certain finite-stren
threshold. That is to say, in carrying out the program of t
paper, we would imagine not only varying over unitary o
bits for defining a tradeoff relation, but rather over any
gion of POVM space so long as a certain constraint on
measurement strength is obeyed. Unfortunately, if this is
ing to be the case, it is going to require some thinking m
subtle than we have carried out so far. This is because fo
least one natural definition of measurement strength
again find no nontrivial tradeoff relation. The failure of th
program is described in Appendix B. But the question
mains. In general, this paper forms part of a larger effor
fully delimit the information-disturbance tradeoff properti
of quantum mechanics.
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APPENDIX A: EFFICIENT MEASUREMENTS INCREASE
ALICE’S INFORMATION

In this appendix, we prove that for any efficient quantu
measurement, an observer aware of the outcomes wil
average increase his ‘‘knowledge’’ of the measured quan

FIG. 3. The tradeoff between informationD in and disturbance
Dout is plotted here fora51, b50.1 and three values ofa. Solid
line: a50.8; dotted line:a50.79; dot-dashed line:a50.78.
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system. More precisely, when a measurement causes the
server to update his density operator fromr to rb—as in Eq.
~13!—it holds for any concave unitarily invariant functionF
that

F~r!>(
b

pbF~rb!. ~A1!

Along the way, and as something of an aside, we will a
prove a stronger result that deals directly with relations
tween the eigenvalues ofr and all therb . This result is most
conveniently couched in terms of the mathematical theory
majorization @53#, and will require some notation for its
statement.

Let us definelW (O) to be the vector of eigenvalues of
Hermitian operatorO on Hd , with the components arrange
in terms of decreasing magnitude. That is to say, let
numbersl i(O) obey the ordering

l1~O!>l2~O!>•••>ld~O!. ~A2!

We say that a vectorlW (O) is majorizedby a vectorlW (N),
and write

lW ~O!alW ~N! ~A3!

when

(
i 51

k

l i~O!<(
i 51

k

l i~N! ~A4!

for all k51,2, . . . ,d, and

(
i 51

d

l i~O!5(
i 51

d

l i~N!. ~A5!

One can also say that a Hermitian operatorO is majorizedby
a Hermitian operatorN, and write OaN, when lW (O)
alW (N), but we will not have any need for that terminolog
in this development.

Our main result is this:

lW ~r!a(
b

pblW ~rb!. ~A6!

~As pointed out above, this result has also been obtai
recently in Ref.@37#.! The proof of this statement is not to
difficult if we rely on some results from the mathematic
literature@53#, and a method of thought promoted by Sch
macher on several occasions to great result—see R
@54,55#, to name only a few.

The trick of Schumacher is this. Whenever we have
quantum systemQ and we say that it is in a~mixed! stater,
there is nothing to prevent us from thinking that the situat
has come about becauseQ is part of a larger systemRQ,
which we happen to describe via some pure stateucRQ&. The
5-11
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stater then is just a partial trace over the larger pure sta

r5trRucRQ&^cRQu. ~A7!

There are times when such a conception can be quite us
for simplifying the mathematics of a problem. The proble
at hand is one of them.

Let us now describe the measurement process on a sy
Q from such a point of view. It will be useful to make ex
plicit precisely which system we are referring to at any giv
time: therefore, we shall add superscripts or subscripts,R, Q,
or RQ to all density operators to make that clear. In the
new terms, the state change under measurement that w
interested in is given by

rQ→rb
Q5

1

pb
UbEb

1/2rQEb
1/2Ub

† ~A8!

after an outcomeb is found. That same measurement, on
other hand, changes the state of theRQ system according to

ucRQ&→ucb
RQ&5A 1

pb
~ I R^ Ab!ucRQ&, ~A9!

where

Ab5UbEb
1/2. ~A10!

~Recall that pure states remain pure under an efficient m
surement.! The operatorI R in this equation, of course, sign
fies the identity operator on theR system.

Note that the initial density operatorsrR andrQ for theR
andQ systems are unitarily equivalent, i.e.,

rR5trQucRQ&^cRQu5VrQV†, ~A11!

for some unitary operatorV. In particular, it follows thatrR

andrQ have the same eigenvalues. We can also note, h
ever, that since a measurement onQ can have no overal
effect onR, it must be the case that

rR5trQS (
b

pbucb
RQ&^cb

RQu D . ~A12!

One can see this more formally by choosing a Schmidt
composition forucRQ&:

ucRQ&5 (
k51

d

Alkur k&uqk&. ~A13!

Then

trQS (
b

pbucb
RQ&^cb

RQu D ~A14!

5(
lb

^ql u~ I R^ Ab!ucRQ&^cRQu~ I R^ Ab
†!uql& ~A15!

5 (
kmlb

AlkAlmur k&^r mu^ql uAbuqk&^qmuAb
†uql& ~A16!
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5 (
kmlb

AlkAlmur k&^r mu^qmuAb
†uql&^ql uAbuqk& ~A17!

5(
kmb

AlkAlmur k&^r mu^qmuAb
†Abuqk& ~A18!

5(
km

AlkAlmur k&^r mudmk ~A19!

5(
k

lkur k&^r ku ~A20!

5rR. ~A21!

It follows from Eq.~A12! and the statement preceding it th

lW ~rQ!5lW ~rR!5lW F trQS (
b

pbucb
RQ&^cb

RQu D G . ~A22!

But trQ is a linear mapping. So, defining

rb
R5trQucb

RQ&^cb
RQu, ~A23!

we have

lW ~rQ!5lW S (
b

pbrb
RD . ~A24!

Now comes the point where we rely on the mathemati
literature ever so slightly by using Ky Fan’s dominance the
rem @53#. One can show that for any Hermitian operatorO,

(
i 51

k

l i~O!5max
P

tr PO, ~A25!

where the maximization is taken over all rank-k projectors. It
follows from this almost immediately that

lW ~O1N!alW ~O!1lW ~N! ~A26!

since

max
P

tr P~O1N!<max
P

trPO1max
P

tr PN. ~A27!

It follows from this that

lW ~rQ!a(
b

lW ~pbrb
R!5(

b
pblW ~rb

R!, ~A28!

sincelW (cO)5clW (O) for any positive numberc.
Noting finally that the eigenvalue spectrum ofrb

R is the
same as that ofrb

Q , we have, ultimately,

lW ~rQ!a(
b

pblW ~rb
Q!. ~A29!

Stripping off the superscriptQ, we have the desired resu
Eq. ~A6!, and the theorem is proved.
5-12
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It comes about as a corollary to Eq.~A6!, through some
theorems in Ref.@52# that our most desired result—name
Eq. ~A1!—holds for any concave unitarily invariant functio
F. However, there is a more direct way to see this, an
seems worthwhile to take that route. We need only back
to Eq. ~A24!. From this it follows that

F~rQ!5FS (
b

pbrb
RD . ~A30!

However,F is concave and so

F~rQ!>(
b

pbF~rb
R! ~A31!

5(
b

pbF~rb
Q!. ~A32!

Again, stripping off the superscriptQ, we obtain the desired
result.

Instructive though it is to derive Eq.~A6! by first extend-
ing the problem to an ancillary Hilbert space, there is
even shorter route to the result that is worth recording. T
trick to note is this: With each efficient measurementE
5(Eb)5(Ab

†Ab), we can associate a canonical decompo
tion of the density operator starting from the fact that theEb
form a resolution of the identity. Starting from the equatio

I 5(
b

Eb , ~A33!

one simply multiplies it from the left and right byr1/2 to
obtain

r5(
b

pbvb , ~A34!

where

vb5
1

pb
r1/2Ebr1/2, ~A35!

andpb5tr rEb as always.
Using the Ky Fan dominance theorem as before, but n

on Eq.~A34!, we have straight away that

lW ~r!a(
b

pblW ~vb!. ~A36!

However, it is an easy matter to see that the opera
r1/2Ebr1/2 and AbrAb

† have precisely the same eigenval
structure. We start off with the eigenvalue equation

~r1/2Ab
†Abr1/2!u i &5m i u i &. ~A37!

Multiplying this from the left by Abr1/2 and regrouping
terms, one obtains

AbrAb
†~Abr1/2u i &)5m i~Abr1/2u i &), ~A38!
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which means thatr1/2Ebr1/2 and AbrAb
† have the same ei

genvalues. Using this, Eq.~A6! follows immediately.

APPENDIX B: FULL VARIATION OVER
MEASUREMENTS OF A GIVEN STRENGTH

For this appendix, we drop the distinction of finite v
infinite measurement strength, and attempt to grade all m
surements via a singlefinite number. One possible notion o
such a measurement strength is the amount by which Alic
purity would change ifr happened to be the maximall
mixed state1

2 I—that is, the measurement strength would
her change of knowledge if she starts out completely ig
rant of the system. We can do this with respect to any of
functionsF in Eq. ~27!, but for convenience we will again
adopt the impurityP to be the main function of interest. Als
for convenience, we will actually adopt two times the sa

quantity above, i.e., 2D in(
1
2 I ). This choice of prefactor

causes our notion of measurement strength to range in
full interval @0,1#.

Thus, using Eq.~66! and takinga50, a given measure
ment strengthk for a two-outcome measurement (E,I 2E) is
defined by

k5
ab2

22a
. ~B1!

The question we shall pose in this appendix is the followin
For a given quantum stater and a fixed measuremen
strengthk, what is the maximum value ofD in , and what
values of z achieve that maximum? In particular, can w
show that the optimal values forz2 in this problem are
strictly less than 1? Unfortunately, we will have to answ
the latter question in the negative, regardless of the valua
defining the purity of the initial density operator.

This is seen as follows. Fixk anywhere in the range be
tween 0 and 1. For a fixedb this means thata must take on
the value

a5
2k

b21k
. ~B2!

Note that for a fixed value ofk we are not allowed to choos
freelyb as we wish. This is because for a fixedk, the variable
b cannot be too small or we would never be able to sati
Eq. ~B1!. The valid range forb turns out to be

k<b<1. ~B3!

The consideration leading to this is simple. The functi
a/(22a) is monotonically increasing ina. So to find our
smallest value ofb, we should place the largest allowe
value of a @Eq. ~51!# into the right-hand side of Eq.~B2!.
Doing this gives Eq.~B3!.

Inserting Eq. ~B2! into Eq. ~66! gives a surprisingly
simple expression:
5-13
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D in5
k~12a2!~12a2z2!b

2~11azb!~b2akz!
. ~B4!

Let us now examine the behavior of this as a function ofb.
Taking the partial derivative with respect tob, we obtain

2

k~12a2!~12a2z2!

]D in

]b
52

a~b21k!z

~11azb!2~b2akz!2
.

~B5!

ThereforeD in(b) switches between being an increasing a
decreasing function depending upon the sign ofz. Thus
maxbDin(b) takes on a piecewise form. Ifz>0, we should
chooseb5k; if z<0, we should chooseb51. The resultant
of these choices is conveniently summarized as follows:
t
in

d
. A

lin
o
th
on
idu

in
om
en
e

n-
ive

n

h
ar

ro

06230
d

D in
max~z!5

1

2
k~12a2!

11auzu
11akuzu

. ~B6!

The functionD in
max(z) in Eq. ~B6! is increasing inuzu since

k<1. Hence it finally follows that the very best strategy o
Alice’s part for a given measurement strengthk is to takez
51 or 21. Doing so gives her an absolute maximum pur
change of

D in
max5

1

2
k~12a2!

11a

11ak
, ~B7!

and that purity change is accompanied by a purity chang
Dout50 for Bob.
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