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Information-tradeoff relations for finite-strength quantum measurements
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In this paper we describe a way to quantify the folkloric notion that quantum measurements bring a
disturbance to the system being measured. We consider two observers who initially assign identical mixed-
state density operators to a two-state quantum system. The question we address is to what extent one observer
can, by measurement, increase the purity of his density operator without affecting the purity of the other
observer's. If there were no restrictions on the first observer's measurements, then he could carry this out
trivially by measuring the initial density operator’'s eigenbasis. If, however, the allowed measurements are
those of finite strength—i.e., those measurements strictly within the interior of the convex set of all
measurements—then the issue becomes significantly more complex. We find that for a large class of such
measurements the first observer’s purity increases the most precisely when there is some loss of purity for the
second observer. More generally the tradeoff between the two purities, when it exists, forms a monotonic
relation. This tradeoff has potential application to quantum state control and feedback.
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[. INTRODUCTION because the wave function appears to be the simplest term in
the theory that would even allow a precise formulation of the
Since the earliest days of quantum mechanics, a commoguestion. One might say for instance, that “the word mea-
idea associated with the measurement process has been tBatement is a misnomer for our experimental interventions
it necessarily disturbs or interferes with the system beingnto the course of naturgl1,12. The unpredictable wave-
observed. For instance Bohr, in his reply to the Einsteinfunction collapse is the quantitative signature of a distur-
Podolsky-Rosen pap¢f], wrote that the quantum descrip- bance in quantum measurement. Since the state change is
tion “may be characterized as a rational utilization of all random, the measurement causes an uncontrollable distur-
possibilities of unambiguous interpretatio. .compatible  bance.” But this formulation too is not without problem. The
with the finite and uncontrollable interaction between thequantum state resulting from a measurement depends in a
objects and the measuring instrumen{&,3] (also see Refs. crucial way on the precise form of the measurement interac-
[4,5]). Or Pauli, on a much later occasion, wrote that “everytion[13]. In particular, if there is only a single quantum state
act of observation is an interference, of undeterminable exunder scrutiny—as was the case in the original Heisenberg
tent, with the instruments of observation as well as with theuncertainty relation discussiofi4]—or even an unknown
system observed, and interrupts the causal connection betate drawn from a fixed orthogonal $&6], then a measure-
tween the phenomena preceding and succeedinffit’See  ment interaction can always be rigged fory observable so
Refs.[7,8] for a more complete bibliographic account of this that, upon completion of the process, the quantum state is
issue. returned to its initial valug¢16]. It does not matter that the
Without question, it has also been apparent since the eameasurement outcome is random and unpredictable: If the
liest days of the theory that these proclamations are someliscussion is limited to a single quantum state or an orthogo-
what dubious. The question is this: What is it that is beingnal set, then there need be no disturbance in the sense of a
interfered with or disturbed in a measurement? If there wer@ecessaryvave-function change.
a set of hidden variables underneath the statistical predic- What appears to be needed is a situation where more than
tions of quantum theory, then the answer would be at hancbne quantum state from within a nonorthogonal set arises
The act of measurement disturbs the hidden variables. In theaturally into the considerations. Indeed, perhaps the first
absence of a hidden-variable explanati@f however, this phenomenon to give a precise meaning to the idea that
becomes a moot point. Measuringcannot disturbp if p information-gathering measurements necessarily cause an
does not have an independent existence before a measuesecompanying disturbance is quantum cryptograiry18§|.
ment elicits its valu¢10]. In fact one has to wonder why the There it is essential that the systems are known to be pre-
word “measurement” is used at all in this context: If there pared in one or another quantum state drawn from some
are no free-standing valuesand p to disturb, then surely fixed nonorthogonabket[19-21]. These nonorthogonal states
there are no values to measure either. are used to encode a potentially secret cryptographic key to
Eschewing metaphysical concerns, one might try to give &e shared between the sender and receiver. In this case, the
precise sense to the idea that measurements cause distirformation an eavesdropper seeks is not about some nonex-
bance by focusing solely on the wave function itself. This isistent hidden variable likex or p, but instead about which
quantum state was actually prepared in each individual trans-
mission. What is novel here is that the encoding of the pro-
*Permanent address: Bell Laboratories, Lucent Technologies, Rnmposed key into nonorthogonal states forces the information-
2C-420, 600-700 Mountain Ave., Murray Hill, NJ 07974. gathering process to induce a disturbance to the overall
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setof states. That is, the presence of an active eavesdropper
transforms the initial pure states into a set of mixed states or,
at the very least, into a set of pure states with larger overlaps
than before. This action ultimately results in a loss of pre-
dictability for the sender over the outcomes of the receiver’s
measurements and, so, is directly detectable by the receiver
revealing some of those outcomes for the sender’s inspec-
tion. In fact, there is a direct connection between the statis-
tical information gained by an eavesdropper and the conse-
quent disturbance she must induce to the quantum states in FIG. 1. Here two observers both ascribe a density matiia a
the process. As the information gathered increases, the ne@uantum system. The observer inside the bilice) makes a mea-

essary disturbance also increases in a precisely formalizabfelrement on the system without telling the result to the observer
way [22—24. outside(Bob). Alice wishes to obtain as much knowledge about the

system as she can, while causing as little disturbance to Bob’s state
8f knowledge as possible.

Note the two ingredients that appear in this formulation.
First, the information gathering or measurement is grounde
with respect to one observén this case, the eavesdropper
while the disturbance is grounded with respect to anotheperspective on the information-disturbance prob[&f.

(here the sendgrin particular, the disturbance is a distur-  Within Bayesian probability theory, one of the overarch-
bance to the sender’s previous information—this is measureithg themes is to identify the conditions under which a set of
by his diminished ability to predict the outcomes of certaindecision-making agents can come to a common belief or
measurements the legitimate receiver might perform. No hinprobability assignment for some specified random variable
of any variable intrinsic to the system is made use of in thiseven though the agents’ initial beliefs may diff@6]. One
formulation. In itself, this is already a break from the com- might similarly view the process of quantum eavesdropping.
mon folklore of disturbance in measurement. As far as welhe sender and the eavesdropper start off initially with dif-
can tell, all early literature on the subject refers the discusfering quantum state assignments for a single physical sys-
sion of disturbance exclusively to the system and the invatem. In this case it so happens that the sender can make
sive measuring device, not to the perspective of various obsharper predictions than the eavesdropper about the out-
serverg 7]. comes of the receiver's measurements. The eavesdropper,

The second ingredient is another break with folklore. Onenot satisfied with the situation, performs a measurement on
must consider at least two possible nonorthogonal prepardhe system in an attempt to sharpen those predictions. In
tions in order for the formulation to have any meaning. Thisparticular, there is an attempt to come into something of an
is because the information gathering is not about some claggreement with the sender, but without revealing the out-
sically defined observable—i.e., about some unknown hideomes of her measurements or, indeed, her very presence.
den variable or reality intrinsic to the system—but is instead It is at this point that a distingbroperty of the quantum
about which of the unknown states the sender actually preworld makes itself known. The eavesdropper’s attempt to
pared. The lesson is this: Disregard the unknown preparesurreptitiously come into alignment with the sender’s pre-
tion, and the random outcome of the quantum measurementictability is always shunted away from its goal. This shunt-
is information about nothing. It is simply “quantum noise” ing of various observer’s predictabilittend perhaps only
with no connection to any preexisting variable. this shunting[27]) is the subtle manner in which the quan-

How crucial is this second ingredient, i.e., that there be atum world is sensitive to our experimental interventions.
least two nonorthogonal states within the set under consider- This motivates finally the following problem, which is the
ation? We can start to readdress its necessity by making subject of our paper. Suppose two players—let us call them
slight shift in the account above. Divorcing the discussionAlice and Bob from this point on—come to agree about the
from a cryptographic protocol, one might say that the eavesway a quantum system will react to any measurement. In
dropper’s goal is not so much to uncover the identity of theother words, by Gleason’s theor€28], suppose they start
unknown quantum state, but to sharpen her predictabilityvith an identical density operator assignmenfor the sys-
over the receiver's measurement outcomes. In fact, shtem. The case we are interested in most is whéna mixed
would like to do this at the same time as disturbing thestate. Under what conditions can one player—Alice, say—
sender’s predictions as little as possible. Changing the larsurreptitiously increase her knowledge of the system without
guage still further to the terminology of RéfL2], the eaves- forcing the other player's knowledge to become less relevant
dropper’s actions serve to sharpen her information about thesee Fig. 1?
potential consequences of the receiver’s further interventions To move toward making this question precise, imagine
upon the system(Again, she would like to do this while that a third player will perform some measurement on the
minimally diminishing the sender's previous information system in the future, but neither Alice nor Bob know which
about those same consequencés.the cryptographic con- it will be. Depending upon which measurement is ultimately
text, a by-product of this effort is that the eavesdropper ulti-performed, Alice and Bob will have varying degrees of pre-
mately comes to a more sound prediction of the secret keydictability for its outcomes. For instance, consider how their
From the present point of view, however, the importance ofpredictability fares with respect to various simple von Neu-
this change of language is that it leads to an almost Bayesiamann measurements. If the measurement happens to be the
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eigenbasis ofp, the Shannon entropy of the outcomes— The key to finding something interesting here is to ask
which is a good measure of predictabil{®9]—will be the ~ what would happen in the case where there is a well-justified
minimal value it can bd30]. This turns out to be the von restriction to the class of measurements Alice can perform.
Neumann entropy8(p) = —tr p logp. On the other hand, if For instance, suppose Alice has not yet reached the techno-
the measurement happens to be a “mutually unbiased” basi®gically advanced stage of being able to perform a truly
[31] to the eigenbasis, then all measurement outcomes wilperfect von Neumann measurement. Maybe she is using a
be equally probable, and the outcome entropy will bedog Stérn-Gerlach device to perform a spin measurement on an

whered is the dimension of the system’s Hilbert space.  €l€ctron. Very commonly, the limitations of her laboratory
will not allow her to place the particle detectors infinitely far

For the purpose at hand, we would like to capture in X . ! .
single numFt))erpsomething about how much Alicepand Bozl;ehmd the magnets so that the particle bear_ns overlgp will
can predict of the unknown measurement. As a simple exoe £€r0. The_n, every now and_then a spln_wnl be reg|stere_d
ample. we miaht average the Shannon eﬁtro of the meaown when it should have registered a spin up. To put this

P, 9 9 Py %nother way, instead of projectinginto the statedI, and

surement outcomes over the unique unitarily invariant mea : : : :
sure(or “uniform” measure on the space of von Neumann I, as Ahce would like, the S_tern,—GerIach dev[c.e projeets
according to a more general ter’s rule for positive opera-

measurement32,33. This would represent how well Alice 5 \alued measure®OVM's) [35,36]
and Bob will fare on average with respect to a completely T

random von Neumann measurement. Or we might simply 1 .5 i

consider the entropy of the best case scenario, i.e., the von p_’Pb:aEb PEy”, )
Neumann entropy of as above. Without getting specific— o

all will be made precise later—we will generically call these Where, in this case,

kinds of measuresieasures of purityThe main intuition we Eo= T+ (1— i), (4)
want to capture is that whep= |)( | is a pure state, then

Alice and Bob should generally have the most predictability Ei=(1— )+ «lly, (5)

over the third party’s measurements. Wheiis the “com- e .

pletely mixed state”—i.e., proportional to the identity opera- 21d Po=1r(pEyp). Similarly, the description of the state

tor, p=(1/d)I—they should have the least predictability. change from Bob’s perspective must be in accord with this,
The precise question we want to address is, can AIicé'jlnd S0

secretly increase the purity of her quantum state assignment -

at the same time as leaving the other player’s purity un- P—>P=E PbPp - (6)

scathed? If she cannot, then such a failure may hint at an- b

other interesting way to quantify a quantum-information—When « is a number strictly between 0 and 1, we will call

disturbance tradeoff. The hallmark of this formulation would this an instance of dinite-strengthquantum measurement.

be that it works even in a case when there is onlsirmgle  (We use this suggestive terminology because we imagine

initial quantum statéalbeit a mixed stade while still captur-  that Alice can never really get to a perfect von Neumann

ing the shift in language we used to reformulate the quantunmeasurement without the expenditure of an infinite amount

eavesdropping process. of effort.) What can be said in a case like this?
Unfortunately, the answer is trivial if we leave the ques- Again, Alice will be able to generally increase the purity

tion posed in such a simplistic way. We need only supposef her state without causing any decrease to Bob’s purity.

that Alice measures an eigenbaBig=|b)(b| of p to negate =~ She does this, as before, simply by choosifigandII; to

the whole program. Upon finding some reshyjtAlice will be eigenprojectors gi. ThenE, and E; commute with the
collapse her description of the system from the mixed state initial density operator, and it is straightforward to check that
to the pure staté34], p=p. However, we can now ask whether this is the strategy

that brings the greatest benefit to Alice. Might it be the case
that Alice can increase her purity even more on average if
she choosekl, andIl; to be noncommuting witlp? More-
over if it does, what kind of effect will this have on Bob’s
description of the system? What we are imagining here, in
the imagery of the Stern-Gerlach device is that though Alice
»may not be able to extend her laboratory so that her particle

density operator will not be affected at all. This is becaused€tector is infinitely far behind the magnets, she may be able

with respect to Bob's state of knowledge, the quantum stat%o adjust the magnets’ spatial orientation at will. Is this a
r

evolves simply to a mixture of Alice’s states, i.e., eedom she shc_)uld make use of? : .
Interestingly, it turns out that there is a tradeoff in the two

final purities. Whenevep is nonpure(so that there is actu-
p—>2 PbPbL= P> 2) ally something to be “learned’and 0<«x<1 (so that the
b measurement is of finite strengttlice’s final purity will be
the greatest on average precisely when Bob’s purity has de-
and so his purity and indeed his quantum state assignmegteased the most in turn. Moreover, varying through the class
remain the same. of measurements that lead from the least average final purity

1
po=—"pplly, 1)
Pp

where p,=tr(pll,) is the probability of the particular out-
come. The result is to make Alice’s final purity for the sys-
tem maximal, while as far as Bob is concerned the system
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to the most(with respect to Alicg we find that Bob’s purity

goes down monotonically as Alice’'s goes up. As we will 2 Ep=1. (8)
show, this is an example of a more general phenomenon
where the measurement operators are not so restricted asa outcomes of the measurement are specified by the index
Egs.(4) and(5): for a large class of finite-strength quantum b, and occur with probabilitiep,, =tr pE, .

measurements, a nontrivial tradeoff relation always exists. Upon finding an outcomb, the laws of quantum mechan-

The plan of the remainder of the paper is as follows. INjcg gpacify that Alice’s state can evolve into any other den-
Sec. I, we give a precise formulation of the problem in thesity operator of the fornfi16]

widest setting, including definitions of various measures of
purity and also a definition of the general notion of a finite 1
strength quantum measuremeéntithout feedback In Sec. p—pPp="" 2 AnipAl;, 9
Ill, we work out an analytic form for the changes of purity Po i
for both Alice and Bob under the assumption of a particu-Where
larly simple measure of puritgndthe restriction that Alice’s
guantum measurements have only two outcomes. We then
explore the various regimes of the convex set of measure- 2 AgiAbizEb. (10
ments, and exhibit the general information tradeoff relation !
where it exists. We close in Sec. IV with a few concluding
remarks about the significance of this result. In Appendix A
we prove that any efficient measuremeéROVM) will in-
crease Alice’s purity on averadéor any measure of purity
that is a convex function of the density operator's 5
eigenvalues—this result is essentially identical to one pﬂp=2 PbPb (17
proven recently in Refl37] and builds upon the significant b
early work of Lindblad 38]. In Appendix B, for comparison
with the main result here, we consider a variation of _the :2 AbiPAgi- (12)
problem where we vary over all measurements of a given b,i
finite strength instead of only those on the unitary orbits of a
given fiducial measurement. Note that the decomposition of eaEly into the operators
Api in Egs.(9) and (10) depends crucially upon the interac-
tion Alice chooses for carrying out the measuremént
Whenever the range of the indéxs restricted to a single
) value, we say that Alice’s measurement is efficientone

Our problem concerns two agents, Alice and Bob, Who[40]_
initially ascribe a single density operatprto a quantum Efficient quantum measuremer(isith respect to a given
system in Wh_ich they h_ave some interest._The most importarg) correspond to holding on to as much information as pos-
case for us is whem is a mixed state, i.e., p*<1. For  gjhle in the measurement process. That is to say, such mea-
generality in the formulation, let us assume tpat a den-  syrements do not break quantum coherence more than is nec-
sity operator over al-dimensional Hilbert spacé(y. De-  egssary for the given POVM. In the subsequent development
increase hel’ “knOWIedge” Of the System—that iS, to Obtain areason_ Hence, in the |anguage of equationS, we will On'y

new density operator that is closer to being a pure state thagynsider conditional state changes of the form
her initial ascription. The only way she can do this is by

performing a quantum measurement behind Bob’s back. To 1
be as generous as we can be without trivializing the problem, Pﬂpb=p—
let us assume that Bob knows everything of Alicglan, b
even her precise mea;urement |.nteract|on. The only ,'”form%hereAf;Ab: Ey.
tion barred from Bob is the precise outcome of Alice’s mea-
surement.

The formalism for treating the most general kind of quan-
tum measurement is that of the POMI9]. In this formal- A= UbEélz. (14)
ism a measurement corresponds to a sequence of operators
on Hq—denoted bye=(Ey),-,—with a finite number of  \hereU, is a unitary operator. This decomposition can be
nonvanishinge,, such that each element of the sequence indowed with a physical meaning if one thinks of the mea-
a positive semidefinite operator, i.e., surement process as allowing for a sortfeédbackto the

guantum system. The raw measurement causes a “collapse”

Since Bob knows nothing of Alice’s outcome, as far as he is
'‘concerned the state of the quantum system will evolve ac-
cording to

II. FORMULATION

AppAl, (13

By the polar decomposition theorem for operatptd],
we can always write

(YEp|9)=0 V[4h), @)

1 1/2 1/2
: N p—op="—Ep"pEj (15
and, together, the elements form a resolution of the identity: Po
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in one’s description of the system. But then, conditionedare calling the infinite strength measuremefvsth n out-
upon the outcome, one can think of the interaction as causingomes. The finite strength measurements lie strictly within

the system to unitarily evolve further to the interior of the set. Making this identification in terminol-
. ogy is an attempt to capture the idea that an experimenter
op— pp=UpopUy. (16)  would need to expend an infinite amount of effort to work

) . ] ) his way out to the boundary. This is because, if he could get
This split, of course, is a conc_eptual one: it may or may noly|| the way to the edge, there would be some preparations of
correspond to the actual workings of the device carrying outne system for which he could predict widibsolutecertainty
the measuremerdl. Nevertheless, it can be quite useful for that some outcomes of the measurement would not occur.
classifying different kinds of measurement interaction. ~  That strikes us as an insurmountable task. As technology

Efficient measurementwithout feedback hold a special agyances, we can imagine experimentalists getting ever
place in our considerations. These are measurement interagnser to the boundary, but never quite reaching it.

tions for whichUp=1, so that Alice’s state change is ulti- | et us now start applying these distinctions of measure-
mately of the simple form: ment to the problem at hand—namely, to that of an Alice
trying to surreptitiously increase her “knowledge” of a sys-

1 . . , . .
p—>pb=—E%’2pEﬁ’2. (17) tem while affecting Bob’s k_nowledge of it as Iit_tle as pos-
Po sible. How shall we quantify knowledge in this context?

There are at least three canonical ways.

These hold a special place for us first and foremost because The first has to do with the von Neumann entropy of a
they correspond to the “rawest” kind of measurement i”ter'density operatop,

action allowed for a given POVM. Therefore, they are wor-

thy of study in their own righf36]. Second, however, there d

are other problems for which they correspond to the least S(p)=—trplogp=— >, Aloghy, (20)
perturbing implementation of a POVM. That is, if one con- k=1

templates.performing the measurement on a system initially, o re the\, signify the eigenvalues gf. [We evaluate all
prepared in a completely random pure state, then the meggqa ithms in base 2, so that information is measured in bits,

input-output fidelity will be the greatest if the measurementiher than nats or hartlej46]. Also, we use the convention
has no feeqlback42,43}. Finally, it stands_ to reason that if_ that A log\=0 wheneven =0, so thatS(p) is always well
we can delineate the tradeoff between information and d'sdefined]

turbance for such a special case, we will be better prepared The intuitive meaning of the von Neumann entropy can

for understanding the more general one of an arbitrary effipg ond by first thinking about the Shannon entropy. Con-
cient measurement. We will also be better prepared to undeg—lder any von Neumann measurem@ntonsisting ofd one-

stand the precise role of feedback for controlling quantumy; ansional orthogonal projectofk . The Shannon entropy

systemg 44]. . - for the outcomes of this measurement is given by
Our focus hereafter will be on efficient measurements
without feedback. What is thstrengthof such a measure- d
ment? This issue is explored in Rd#4], where a more H(P)=— >, (trpIlI;)log(tr pII,). (21
i=1

refined notion of the concept is given a quantitative formu-
lation. For the purposes here, we will only need the rawest oﬁ_
distinctions: finite vs infinite measurement strength. An effi-
cient measuremeidtis said to be of finite strength as long as
each nonvanishinge, has support on the whole Hilbert
spaceH—that is, as long as

his number is bounded between 0 anddp@nd there are

several reasons to think of it as a good measutiempfedict-

ability over the outcomes of a measureméhtPerhaps the

most important of these is that it quantifies the number of

yes-noquestions one can expect to ask per measurement, if
rankE,=d for all b such thaE,#0. (18) one’s only means to ascertain the measurement outcome is

from a colleague who knows the actual req@8]. Under
A measurement is of infinite strength any time one of thethis quantification, the lower the Shannon entropy the more
nonvanishingg,’s has a rank strictly less thah predictable a measurement's outcomes. _
The utility of this notion comes about from noting that the A natural question to ask is the following: With respect to
set of all POVM's is a convex set. This follows from the fact & given density operatqs, which measuremere will give
that one can invent a notion of convex addition operation fothe most predictability over its outcomes? As it turns out, the

POVM's: simply take[45] answer is anyP that forms a set of eigenprojectors fpr
[30]. When this is the case, the Shannon entropy of the mea-
pE+(1—p)F=[pEp+(1-p)Fplp-1- (199  surement outcomes reduces simply to the von Neumann en-

tropy of the density operator. The von Neumann entropy,
By a similar consideration, it is also true that the set of allthen, signifies the amount of impredictability one achieves
POVM'’s with a fixed numben of nonvanishing elements,, by way of a standard measurement in a best case scenario.
is a convex set. Thinking of this set as embedded in a spadadeed, true to one’s intuition, one has the most knowledge
of lengthn sequences of all Hermitian operators, one hasy this account whem is a pure state—for the§(p)=0.
that the boundary of such a set is given by precisely what wé\lternatively, one has the least knowledge wheis propor-
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tional to the identity operator—for then any measurenyent large d, the outcome entropy for a typical measurement is
will have outcomes that are all equally likely. just a little over a half bit away from its maximal value.
The best case scenario for predictability, however, is dlaving a mixed state for a system reduces one’s predictabil-
very limited case, and not so very informative about the denity even further, but indeed not by that much: The small
sity operator as a whole. Since the density operator containgeviation is captured by the function in E@5), which be-
in principle, all that can be said about every possible meacomes a quantification of “knowledge™ in its own right.
suremen{28], it seems a shame to throw away the vast part The two quantifications of knowledge about a quantum
of that information in our considerations. system given by Eq$20) and(25) are without doubt two of
This issue leads to our next quantification of “knowl- the most well-motivated such quantities. However, because
edge” of a quantum system. For this, we again rely on theof their particular mathematical structuréavolving loga-
Shannon information as our basic notion of predictability.fithms and ratios of eigenvalues, eft¢hey are often difficult
The difference is that we evaluate it with respect to a “typi-t0 work with. It is therefore useful to consider quantities
cal” measurement rather than the best possible one. HowF(p) that may not have the strictest of interpretations in
ever with this, a new question arises: Typical with respect tderms of “knowledge” or “information,” but nevertheless
what? The notion of typical is only defined with respect to acarry some of the properties essential to the explorations we
given measureon the set of measurements. would like to make. The two properties that appear to be the
Luckily, there is a fairly canonical answer. There is amost important for us is that a functidh from density op-
unique measure();; on the space of one-dimensional pro- €rators to real numbers k&) unitarily invariant, so that it
jectors that is invariant with respect to all unitary operationsonly depends upon the eigenvalues of the density operator;
This in turn naturally induces a canonical measdfe, on  and(2) concave in its argument. That is, one should have
the space of von Neumann measuremén{82,33. Using

this measure gives rise to the quantity Flppot(1=p)p1]=pF(po) +(1=p)F(p1) (27
Ay IR for each pair of density operatops andp4, and each real
Hip) f HIDdOp (22) numberp in the rangq 0,1].

A common way of simplifying problems to do with the
_ Shannon entropy is to consider instead a function that is
__dJ (trpIDlog(tr pID)d 1, (23) merely quadratic in the probabiliti€gt9,50. In quantum-
mechanical terms, this translates to a function we shall call
which is intimately connected to the so-called quantumtheimpurity of a quantum state:
“subentropy” of Ref.[47]. Interestingly, this mean entropy

can be evaluated explicitly in terms of the eigenvaluegp of d
and takes on the expression P(p)=1-tr(p)=1—>, A2, (28
k=1
_ 1 /1 1
H(p)= ﬁ(i tgt+ g/ TR, (24 This function, of course, has our two desired properftaes.
Moreover, it attains its minimum value of 0 whens a pure
where the subentrop®(p) is defined by state(just asSandQ do), and it attains its maximum value of

g (d—1)/d whenp is the completely mixed state.
Nk What makes unitarily invariant functions like ti& p) in

Q(p)= —kgl il;[k Y A logAy. (25 Eq.(27) special is that one can prove an interesting theorem
for them in the measurement context. Consider any efficient

In the case wherp has degenerate eigenvalugs=\, for ~ Measurement of a POVMg={E}. Upon finding an out-
|#m, one need only reset them tq+e and \,,—e and comeb, the observer will update his quantum state for the

consider the limit ase—0. The limit is convergent, and System from the originap to somepy, of the form in Eq.
henceQ(p) is finite for all p. With this, one can also see that (13). What does this say about his expected change of

for a pure state, Q(p) vanishes. Furthermore, sine_ﬂp) knowledge? Well, one can prove that, whatekes,
is bounded above by lay we know that

1 1 F(p)=2 PoF(pp). (29
b
§+ coet g

1_
<7 (26)

1
0=Q(p)=<logd—— R

In2

In particular, it follows that

wherevy is Euler's constant. This means that for anyQ(p)
never exceeds 0.60995 bits.

The interpretation of this result is the following. Even S(P)Zg PuS(pb), (30
when one has the maximal knowledge about a system one
can have under the laws of quantum mechanics—i.e., when
one has a pure state—one can predict almost nothing about -
the outcome of a typical measurem¢as]. In the limit of Q(p)/% PoQlpy). 31
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referring to a change of knowledge from the outside point of
P(P)B% PuP(pp)- (32)  view. (The interested reader can find a proof th3t=0 in
Ref.[52].)
These statements—and in fact a stronger statement to do We must emphasize that this resultaisnostdual to Eqg.
with a majorization relation between the eigenvaluespof (29), for it certainly depends upon the assumption that the
and those of the,—will be proven in Appendix A[See Mmeasurement is without feedback. Let us show this by way
Nielsen[37] for an earlier proof of this result and also Lind- Of @ quick counterexample. Tak&to be a complete set of
blad[38] for a proof of Eq.(30) specialized to von Neumann Orthogonal projectorsEy=|b)(b|, b=1,... d. One pos-
measurementk. sible measurement with feedback that is consistent with this
The fact that Eq(29) holds for all concave functions ~ POVM is given by EraklngAb=|z,//><b|_ for some fixed unit
expresses what is meant by the phrase “the obsdeans  vector|). Clearly AjA,=Ey, as required. However,
something from a quantum measuremeffi1]. Note in par-
ticular that this need not necessarily be the case that the

~_ T_
purity, etc., be nondecreasing in amydividual trial of a p_% AopAp=)¥, (38)
measurement. A simple counterexample suffices for illustra-
tion. Take completely independently of what the initial statés. So it

1/1 0 can certainly be the case thafp) <F(p) if one allows feed-

p= —( ) (33 back into the picture.

310 2 The conclusion to draw is that we are right on track in
and consider a two-outcome efficient measurement Withou(fonsIderlng the quantities;, an.dAOUtm the context of mea-
feedbacke= (E,| — E) where surements without feedback: in a sense, they are compensa-

' tory of each other. What we would like to do now is sharpen

1(2 0 this idea. Just because Alice’s knowledge of the system can

= §( 0 1). (34 only increase through her measurements and Bob’s can only

decrease, it does not follow that there is necessarily a mono-
tonic relation between these adjustments.

Here is how we will tackle the problem explicitly. As has
been the case since the beginning, we imagine the initial
1/1 0 state of knowledge for Alice and Bob to be fixed to some
( ) (35 density operatop. Now, however, we introduce fiducial
01 guantum measuremem{=(M,) that will also be fixed
ethroughout our considerations. The freedom we give Alice is
that she may perform any measurement without feedback

Note that if outcomeE occurs, the updated density operator
for the system will be the completely mixed state

PEZE

which is certainly less pure than the initial state. Thus on
can only expect one’s “knowledge” to increase average . 2 . :
y exp g g that is unitarily equivalent toV. That is to say, we shall

during a measurement. consider measurement operators for Alice that are necessar
Going back to our target scenario with Alice and Bob, one. P

can see that this result insures that Alice comes away ollny of the form
average with more information than she started with. More-
over, this holds independently of the particular way in which

we choose to quantify her “information.” To make some ) ) i ) i
notation, this means that the quantities whereU is any unitary operation. Each differedtdefines a

consequent change in both Alice and Bob’s total information
. which we denote bAf,(U) andAF (U), respectively(This
AinEF(P)_Eb: PuF (pp) (36) notation makes no reference poand M, because they are
fixed background information for the problemwhat we
will all be nonnegative for any efficient measurement. Thewould like to know is the following: Under what conditions
subscript onAF denotes that this refers to the change ofis there a nontrivial monotone relation betwekfj(U) and
knowledge from the “inside” point of view of the measurer. Ag,(U) as we varyU? In the cases where such a monotone
An almost dual result is that from Bob’s point of view— relation exists, that will be the tradeoff we have been seek-
the outside point of view—whenevet is not only an effi-  ing.
cient measurement, but also a measurenvattiout feed- This completes the formulation of our problem. Unfortu-
back his information can never increase from Alice’s nately, as opposed to the formulation, we have not settled the
actions. That is to say, using notation from Hal), the issue of a tradeoff relation in complete generality. Study of
quantity the two-dimensional Hilbert-space case, however, already
turns out to be of significant interest. In Sec. Ill, we report a
AP =F(p)—F(p) (37)  careful study of the case whete=2 and M contains two
outcome operatorsl; andM . Even in this restricted class,
is nonnegative for all concave unitarily invariant functidhs there is a large regime of measurements with a nontrivial
[52]. Again, the subscript iA[, makes explicit that we are information tradeoff relation.

E,=UM,UT, (39
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Ill. 2D TWO-OUTCOME PROBLEM

1
p—)pﬁE:m\ |—Ep\/|—E. (41)

In this section, we assume explicitly thdt=2, so that
Alice and Bob’s information is about a single qubit. The h ) int of Vi ¢ it is simol
canonical measuremen that sets Alice’s standard is taken FTOM the outside point of view of Bob, it is simply

to consist of only two elementd ; andM 4, but is otherwise ~
completely general. Alice now has the freedom to choose p—p=\EpVE+I-Ep\I-E. (42

any unitary operatiotJ, and consequently perform any mea- R =] : )
surement€ consisting of element&,=UM,U" and E; Ereaesilg%;nﬂr]ryd that/E and VI —E commute, a litle alge
=UM,U". The question we should like to address is how
Af(U) andAf(U) change with respect to each other as a A =1r p2—trp? (43)
function of U. o

Note that because there are only two outcomes to the =2ty p2E—tr pEpE—tr[ pVE(I —E)pVE(I—E)}.
measurement, andE; must commute. There is, therefore, (44)
only one diagonalizing basis required in specifying this mea-
surement. Let us relabel the measurement to make this mof@milarly,
explicit: We shall simply denote the two outcomesbyand

_ 2 _ 2 .2
| —E. With our previous definitions, this measurement is of2in=t PE W pg+irp(I—E) trpZg—trp (45)
finite strength when neithdf nor | — E is a rank-1 operator. 1
We haye performe.d e;xtensive numerica! vyork that shows _ [trpEpE+trp2trpE—2 trpEtrsz]
the following whenp is impure and¢ is of finite strength. trpE(1—tr pE)

For the three concave functios§p), Q(p), andP(p) con- ~trp? (46)
sidered in Sec. ll, there are significant regions in POVM

space where&ﬁ,(u) achieves its maximum value precisely 1

when A} (U) is nonminimal. That is to say, Alice cannot U OE(1—troE)

learn the most unless she also disturbs Bob’s information in wpE(1=1rpE)
the process. In this situation, the optimal measurement op-  +tr p?(tr pE)?]. 47
erator E does not commute witlp. Alternatively, whenE

commutes withp, the differenceAl (U) achieves its mini- Note immediately that i€ and p commute, them\,,; van-
mum value, namely, 0—so that Bob’s information is notishes as one would expect.

disturbed at all—but them\[(U) achieves its minimum Since we are dealing with a two-dimensional Hilbert
value too—so that Alice has learned the least amount posiPace, it is most convenient at this point to switch to a kind
sible. In general, the functional relationshif, (AF) is a of Bloch-sphere notation for all operators. Then we may
monotonic one aa’. ranges from its minimum to its maxi- Wrte
mum value. In those regions of POVM space where there is

no nontrivial tradeoff relation, the curve farf (AF) is sim-
plyvcagt we shall do herein is focus on quantifying thewhereaz(ax,ay,az) is some vector of real numbers with
tradeoff explicitly for the case in which “knowledge” is modu]usa$1 ando is the vector of Pauli operators. Simi-
identified with the impurity functioP(p) of Eq. (28). Inthis ~ larly, if a=trE, then the operator

case, all calculations can be done analytically and one can

obtain a feel for the exact form of thingdn the other cases B= EE (49)

of F=S or F=Q, things are not terribly worse, but because o

the binary Shannon entropy function cannot be inverted ana- . .

lytically, there is no way to get an analytic expression for the'S & density operator, and we may write

function AL (AT).] With this restriction, we will hereafter
drop the superscripfE from our notation and write simply
ér%tga.mdAm for the "information” changes we are consid- whereb also has a lengtlh no greater }han Ljnity. In this
Let us start the calculations straight away. From the insidd'otation,E andp commute if and only it anda lie within

point of view of Alice, the two possible state changes are ofhe same ray.
the forms Since O<E=<I, we must have &a<2. Moreover, we

must insure that the larger eigenvaluekois no greater than
unity. Using the fact that the eigenvalues Bfin Bloch-

[tr pPEpE—2 trpE tr p°E

p=3%(l+a- o), (48)

B=1(1+b-0), (50)

1 sphere notation are given bya(1*Db), it follows that we
pHpE=trpE\/Ep\/E (40 must require
< —2 51
and 1¥p (52)
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One can se& becomes an infinite strength measurement

wheneverb=1 ande« is any value, or whenevdy<<1 but

a=2/(1+b). The parameterr to some extent captures the
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-1 -
r=4—r0a(1—a)b. (63)

amount of symmetry between the two measurement operapith this, we can finally calculate

torsE andl —E. It is therefore natural to call the case where

a=1 thesymmetric case
With the notations of Eqs(49) and (50), it becomes a
tractable task to calculate the various operators in E4b.

tr yGp\Gp=L[1+a%+c?+2(a-c)2—ac?+4a-c],
(64)

and (47). Using the law of multiplication for Pauli matrices, where the vectot and its magnitude are defined by

ie.,
(m-a)(n-a)=(m-n)l+ig-(mxn), (52)
one finds fairly easily that
1
trp?=>(1+a?), (53)
o
trpE=§(1+abz), (54)
o
trp2E=Z(1+a2+ 2ab2), (55)

az
tr pEpE= §[1+a2+ b2+ a’b?(2z2—1)+4abz,

(56)

wherez=cos#, and# is the angle between the vectarsind
b

_or
c=—. (65)

o

Putting all these ingredients together, we finally arrive at
our sought-after expressions:

_ab’(1-a%)(1-a’7)
Ai“_2(1+abz)(2—a—aabz) (66)

and

2

! [(1—a)?+4r3)(1-2).

out™ i

aab

A 2rg

(67)

These two equations contain everything needed for a com-
plete analysis of the information tradeoff question. Let us
first see how this plays out for the simple case described in
Egs.(4) and(5) of Sec. .

A. Symmetric case

In this case the measurement operatdrs and M ; take

The only really daunting term that we must calculate isthe form

the quantity

tpVE(I-E)pE(I-E)]. (57)
To make some headway, let
G=E(I-E)=g,l +g- 0, (58)
where
go=7a(2—a—ab?), (59
g=3a(l—a)b. (60)
We need to find am andr such that
JG=rgl+r1-0. (61)

The method for this is simple: We just need calcul&e
=/G\/G and set the resultant equal to E&8). Carrying

this procedure to its conclusion, we arrive at the following

identifications:

r3=5{2- a—ab?+ (1-D)[4—da+ (1-b)a’]}
(62)

MO:KH0+(1_K)H1, (68)

Mlz(l_K)Ho+KH1, (69)
where 0< xk<1, andIl, andII, are the projectors onto some
orthonormal basis. Measurement operators of this form come
up quite naturally in the theory of continuous quantum mea-
surementd44]. In our Bloch sphere notation of Eq&9)
and (50), this case corresponds to takiag=1 andb=2«
-1.

Pluggingae=1 into Egs.(66) and (67), we find the sig-
nificantly simpler expressions

A —ib2(1-at 2’z (70
2 1—a%b?z?
and
Aout:%bzaz(l— z%). (71)

Clearly, A is minimized wherz=1 or — 1 (so thatE com-
mutes withp) as we have noted before. Moreovér, is
maximized wherz=0—that is to say, when the operatois
diagonal in a basis complementary or mutually unbiased to
the diagonal ofp. On the other hand, sinde<1, A;, is a
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strictly decreasing function im?. This givesA, the same Information vs. Disturbance

qualitative behavior ad ,; and ultimately leads precisely to
our tradeoff relation: Eliminating? from Eqgs.(70) and(71), 0.5
we obtain

02

_2(1-a’h?)Aj—b¥(1-a%)?
ot 2(1—a2-2A,) '

(72

.,50.15
o

This example is something of an extreme for the phenom-<1
ena we have been hoping for. As long as the fiducial mea- ;|
surementM is of finite strengthi.e.,b#1), Eq.(72) traces
out a nontrivial monotone curve as we go fradfi" to A{p?*.

But more than thisA;, is maximized at precisely the same %%
value of z for which A, is also maximized. In common
language, this means that if Alice wishes to gather the mos
information, she must reciprocally cause Bob to lose the A
most information that her class of measurements will allow. "

The only means for Alice to lessen the impact of this effectis  FiG. 2. The tradeoff between informatiaki, and disturbance
to develop her technology, so that the linbit-=1 can be A _,is plotted here forw=1, b=0.9, and three values @ Solid
approached asymptotically. line: a=0.8; dotted linea=0.79; dot-dashed linea=0.78.

This behavior, at first sight, appears to be quite deep. It
helps lend credence to the idea that measurements withoghd
feedback are always somewhat destructive by their nature—

" 1 L 1 L
0.11 0.12 0.13 0.14 0.15 0.16

that is, as long as one’s aim is to increase one’s information b(1+a?) —2a
as much as possible under the constraint of having less than a|20:71: b(1+a) —a(1+b?) (79
“infinitely powerful” measurement devices.

Interestingly, however, this type of behavior is not com-Thjs means that fow in the ranges
pletely generic. There are some fiducial measureméifitsf
finite strength for which the tradeoff effect disappears. To b(1+a?) —2a
see this, we must turn back to our base equati@s and Os<a=max 0, 2 2 (76)
(67). b(l1+a%)—a(l+b°)

and
B. General case

Let us now assume strictly that none of the varialales, b(1+a®)+2a _ w2 7

or « happen to equal unity. Then, as in the symmetric case, b(1+a® +a(1+b?) ~ " T 1+b

the quantityA . is clearly minimized whem?=1. Similarly,

the disturbance to Bob’s knowledge is largest whetD, so Ay, will always be maximized by choosing=1 orz=-1.

that E is diagonal in a basis mutually unbiased with respectHowever, fora outside of either of those ranges, there will

to the diagonal op. always be a nontrivial tradeoff relation: When Alice’s infor-
The analysis of the general,, is significantly more dif- mation gainA;, is maximized, Bob’s information los4,

ficult. One can show that the quantity is minimizedzat  Wwill be strictly greater than its minimal value.

=1, but whether that occurs at 1 or z= —1 now depends The general tradeoff relation, when it exists, is found sim-

upon the size ofr. The way to see this is by checking that ply enough by eliminating the variablefrom the simulta-

A;, is concave as a function af The calculation is tedious, neous equationg66) and (67). (Two examples of the

but it can be done analytically. The point where the curvetradeoff relation are given in Figs. 2 and Jhis time—in

changes from a positive slope to a negative slope, i.e., wheontrast to what we did in E¢72), however—we leave find-
the function attains its maximum, is given by ing the explicit expression as an exercise for the reader: See-

ing it explicitly adds little to the analysis already given.

Z:ZO

1
- - 2_ o 2
~a(l—a)apl o @(2-a=ab)]. (73 IV. DISCUSSION

a(l

This expression is quite revealing. For a fixed value of Our conclusion is straightforward: There are regions in

b+0, one can check for those valuescothat forcezo=1 or "€ Space of finite-strength efficient measurements without
zo=—1. These are feedback for which a nontrivial information tradeoff relation

exists as one unitarily varies around any given fiducial mea-
b(1+a?)+2a surementM. In a way, it is_a shamg that we could not ma_lk_e
a|, 1= (74 @ more unqualified assertion—for instance, that a nontrivial
0 b(1+a?)+a(1+b?) tradeoff relation held forall finite-strength quantum mea-
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C16° Information vs. Disturbance system. More precisely, when a measurement causes the ob-
58 ' ' ' ' ' ' server to update his density operator frprto p,—as in Eq.
. (13)—it holds for any concave unitarily invariant functién
i 771 that
25} /’/ -
F(p)= 2 PoF(pn). (A1)
2t e
£ ‘,,«'”// Along the way, and as something of an aside, we will also
150 ,,.*"// 1 prove a stronger result that deals directly with relations be-
7 tween the eigenvalues pfand all thepy, . This result is most
1t ,_.."'/'// 1 conveniently couched in terms of the mathematical theory of
":/ majorization [53], and will require some notation for its
osl T ] statement.
gl Let us defineX(O) to be the vector of eigenvalues of a
o Eral . . . . . Hermitian operato© on H,4, with the components arranged
0e o8 ! Yoa M 18 - in terms of decreasing magnitude. That is to say, let the

numbers\;(O) obey the ordering
FIG. 3. The tradeoff between informatiaky, and disturbance
Ay is plotted here fore=1, b=0.1 and three values @ Solid N (O)=N,(0)=---=N\y4(0). (A2)
line: a=0.8; dotted linea=0.79; dot-dashed linea=0.78.

that tox (O) is majorizedb tork (),
surements without feedback. Indeed the hope that sucl/;ve say that a vectak(0) is majorizedby a vectori (N)

would be the case was a large part of the motivation for this nd write
work. - -
The question now arises as to the significance of the MO)<MN)
rather complicated regions defined by E¢&6) and (77).
What trenchant physical property is implied of a measure—When
ment M that sits in the information-disturbance region of a K K
given density operatgs?

A toy idea is that the key distinction lies not in finite ,:El )\i(O)S;l Ni(N) (Ad)
versus infinite measurement strength, but in whether the
measurement sits above or below a certain finite-strengtfpr all k=1,2, ... d, and
threshold. That is to say, in carrying out the program of this
paper, we would imagine not only varying over unitary or- d d
bits for defining a tradeoff relation, but rather over any re- 2 M(O):E Ni(N). (AB)
gion of POVM space so long as a certain constraint on the i=1 i=1
measurement strength is obeyed. Unfortunately, if this is go-
ing to be the case, it is going to require some thinking moréOne can also say that a Hermitian oper&dds majorizedby
subtle than we have carried out so far. This is because for at Hermitian operator\, and write O<A, when X(O)

least one natural definition of measurement strength we: (A9, but we will not have any need for that terminology
again find no nontrivial tradeoff relation. The failure of this i, this development.

program is described in Appendix B. But the question re-  oyr main result is this:

mains. In general, this paper forms part of a larger effort to

fully delimit the information-disturbance tradeoff properties R _

of quantum mechanics. )\(p)<% PuN(Pb) . (A6)

(A3)
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The trick of Schumacher is this. Whenever we have a
guantum systen® and we say that it is in énixed statep,

In this appendix, we prove that for any efficient quantumthere is nothing to prevent us from thinking that the situation
measurement, an observer aware of the outcomes will ochas come about becau§eis part of a larger systerRQ,
average increase his “knowledge” of the measured quanturwhich we happen to describe via some pure gtafe?). The

APPENDIX A: EFFICIENT MEASUREMENTS INCREASE
ALICE’S INFORMATION
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statep then is just a partial trace over the larger pure state:

= k%b NNl F(E l €Al Al ) | Apl i) (A17)

p=rRl YR (YR (A7)
There are times when such a conception can be quite useful +
for simplifying the mathematics of a problem. The problem _%b ‘/)\_k\/)‘_m“erm|<qm|AbAb|qk> (A18)

at hand is one of them.

Let us now describe the measurement process on a system
Q from such a point of view. It will be useful to make ex- ZKE VMl il i (A19)
plicit precisely which system we are referring to at any given "
time: therefore, we shall add superscripts or subscripte,
or RQ to all density operators to make that clear. In these =, Ndrid(rd (A20)
new terms, the state change under measurement that we are K
interested in is given by

=pR. (A21)
1
pQ—)pgzp—bUbEglszEglzug (A8) It follows from Eq.(A12) and the statement preceding it that
after an outcome is found. That same measurement, on the X(pQ)=X(pR) =X trQ( > pb|¢bRQ><¢EQ|) . (A22)
other hand, changes the state of B® system according to b
o |¢RQ> 1 oA 47 no) But try is a linear mapping. So, defining
Py =y )=\ IR®A) |47),
Po ph=trol (w3, (A23)
where we have
Ap=UEL?. (A10) ) )
| ) MpQ>=x<E pbpff)- (A24)
(Recall that pure states remain pure under an efficient mea- b

suremen). The operatoi i in this equation, of course, signi-
fies the identity operator on the system.

Note that the initial density operatop& andp® for theR
andQ systems are unitarily equivalent, i.e.,

Now comes the point where we rely on the mathematical
literature ever so slightly by using Ky Fan’s dominance theo-
rem[53]. One can show that for any Hermitian operafr

k
R_ R RQ = \/,QyT
pR=tro| yRAY(YRY=VpVT, (A11) S \(O)=maxtr PO, (A25)
i=1
for some unitary operatov. In particular, it follows thapR ' P

Q i L .
andp™ have the same eigenvalues. We can also note, hoWghere the maximization is taken over all raklprojectors. It
ever, that since a measurement Qncan have no overall  ¢510ws from this almost immediately that

effect onR, it must be the case that
MO+ AN <X(O)+X(N) (A26)

R_ RQy//RQ
p =g Eb Pol 5 ) (41 |- (A12) since

One can see this more formally by choosing a Schmidt de- maxtr P(O+ N)<maxtrPO+ maxtr PN. (A27)
composition for| $R<): P P P

d It follows from this that
IwRQ>=k§1 VArlaw)- (A13)
N(pD <2 X(Ppp) =2 Puh(pp).  (A29)
Then b b

R RO since):(cO)=c>:(O) for any positive numbec.
trq Eb: Pol 5 H(¥H (A14) Noting finally that the eigenvalue spectrum gff is the
same as that g5, we have, ultimately,

:% (Al (1r@ AR (1r@ A |a) (A15) X(PQ)<Eb o (p).- (A29)

_ NP A Al A16 Stripping off the superscrip, we have the desired result
k%b VNVl (T @ Al i) (aml Aglar) (A16) Eq. (A6), and the theorem is proved.
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It comes about as a corollary to EG\6), through some  which means thap ?E,p'? and A,pA] have the same ei-
theorems in Ref[52] that our most desired result—namely genvalues. Using this, E¢AG) follows immediately.
Eq. (Al)—holds for any concave unitarily invariant function
F. However, there is a more direct way to see this, and it
seems worthwhile to take that route. We need only back up
to Eq. (A24). From this it follows that

APPENDIX B: FULL VARIATION OVER
MEASUREMENTS OF A GIVEN STRENGTH

For this appendix, we drop the distinction of finite vs

F(pQ)=F( 2 PbeR)- (A30) infinite measurement _st_rength, and attempt to grade_all mea-
b surements via a singl@nite number. One possible notion of

such a measurement strength is the amount by which Alice’s

However,F is concave and so purity would change ifp happened to be the maximally
mixed state}|—that is, the measurement strength would be
F(pQ)Zg PLF (p) (A31)  her change of knowledge if she starts out completely igno-

rant of the system. We can do this with respect to any of the
functionsF in Eq. (27), but for convenience we will again
adopt the impurityP to be the main function of interest. Also
for convenience, we will actually adopt two times the said

_ o ) ) ) quantity above, i.e., &,(31). This choice of prefactor
Again, stripping off the superscrii@, we obtain the desired 5,565 our notion of measurement strength to range in the

result. ;
. _ . i full interval [ 0,1].
Instructive though it is to derive E§A6) by first extend- Thus, using Eq(66) and takinga=0, a given measure-

ing the problem to an ancillary Hilbert space, there is an .. strengttk for a two-outcome measuremert,{ —E) is

= Eb: PoF (pg)- (A32)

even shorter route to the result that is worth recording. Th%lefined by
trick to note is this: With each efficient measuremeht
=(Eb)=(A[§Ab), we can associate a canonical decomposi- 2
tion of the density operator starting from the fact that e k= ab _ (B1)
form a resolution of the identity. Starting from the equation, 2-a
1=> E,, (A33) The question we shall pose in this appgndix is the following.
b For a given quantum statp and a fixed measurement

strengthk, what is the maximum value ok;,, and what
one simply multiplies it from the left and right by"* to  values ofz achieve that maximum? In particular, can we
obtain show that the optimal values far? in this problem are
strictly less than 1? Unfortunately, we will have to answer
P=> Py, (A34) the_lgtter questi_on in the _n_egative, r_egardless of the value
b defining the purity of the initial density operator.
This is seen as follows. Fik anywhere in the range be-
where tween 0 and 1. For a fixel this means that must take on
1 the value

wp=r P Epp™ (A35)
b 2k
andp,=tr pE, as always. Y
Using the Ky Fan dominance theorem as before, but now
on Eq.(A34), we have straight away that

(B2)

Note that for a fixed value d we are not allowed to choose

freely b as we wish. This is because for a fixedhe variable

N(p)<> pPph(wp). (A36) b cannot be too small or we would never be able to satisfy
b Eqg. (B1). The valid range fob turns out to be

However, it is an easy matter to see that the operators
pE pY? and AypA/ have precisely the same eigenvalue
structure. We start off with the eigenvalue equation

ksb=<1. (B3)

The consideration leading to this is simple. The function
(pY2AL A D)|i) = wili). (A37)  al(2—a) is monotonically increasing im. So to find our
smallest value ofb, we should place the largest allowed

Y2 and regrouping value of « [Eqg. (51)] into the right-hand side of EqB2).

Multiplying this from the left by Ayp

terms, one obtains Doing this gives Eq(B3).
) ) Inserting Eq.(B2) into Eq. (66) gives a surprisingly
AppAL(Aop ™)) = wi(App™i)), (A38)  simple expression:
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_k(1-a%)(1-a’Z)b
N 2(1+azb(b—ak2) "

1+alz|
1+ak|z|”

(B4) Al(z)= %k(l—az) (B6)

Let us now examine the behavior of this as a functior.of
Taking the partial derivative with respect Iip we obtain

The functionA{}®(z) in Eq. (B6) is increasing inz| since

k=1. Hence it finally follows that the very best strategy on
Alice’s part for a given measurement strengitfs to takez

_ 2
2 9Ain S a(b"+k)z ] =1 or —1. Doing so gives her an absolute maximum purity
k(1—a?)(1—a%z?) db (1+azb?(b—akz)? change of
(B5)
ThereforeA;,(b) switches between being an increasing and A_malek(l_az)u_a, (B7)
decreasing function depending upon the signzofThus mo2 1+ak

max,Ai(b) takes on a piecewise form. #=0, we should
chooseb=k; if z<0, we should choose=1. The resultant and that purity change is accompanied by a purity change of
of these choices is conveniently summarized as follows: A,,=0 for Bob.
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