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Entangling ions in arrays of microscopic traps
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We consider a system of particles in an array of microscopic traps, coupled to each other via electrostatic
interaction, and pushed by an external state-dependent force. We show how to implement a two-qubit quantum
gate between two such particles with a high fidelity.

DOI: 10.1103/PhysRevA.63.062304 PACS nuntper03.67—a, 42.50-p

[. INTRODUCTION tion may not be exactly the same as before. On the other
hand, the conditional phase shift will also depend on the
The possibilities offered by quantum mechanical systemexternal state: if this is mixed, only an imprecise phase de-
for efficient information processing have stimulated the risetermination will be possible. These facts affect the gate fi-
of an entire field of research in recent yeft$. Quantum  delity, which is defined by comparing the desired effect of
protocols for secure communication over long distances havthe gate with the actual evolution that can be obtained in the
been devised and demonstrated. Quantum algorithms for efaboratory. We have already proposed several schemes,
ficient solution of problems believed to be intractable onbased on different interactions—collisional interactions be-
classical computers have been developed. However, whilgveen neutral atoms in optical latticB4] and magnetic mi-
quantum communication is already approaching the stage afrotraps[5], or dipole-dipole interactions between Rydberg-
real-world applications, quantum computation still remainsexcited atomg6]. Here we describe in detail a scheme that
at a less advanced level, as far as physical implementation i8as earlier proposed ifi7]. It relies on ions stored in an
concerned. Different systems have been proposed as candirray of microscopic trapE8]. The idea is to displace the
dates for this purposg], but nobody can yet tell what will motional wave function of each ion by a small amount, con-
turn out to be a viable solution. Indeed, in a few cases quanditional on its internal state. This can be effected via external
tum computation building blocks—single- and two-qubit (e.g., laser fields. The electrostatic interaction energy thus
operations—have already been demonstrated experimentallgepends on the internal states of both ions, and a state-
In principle, these ingredients are universal—they are suffiselective two-particle phase shift can be obtained. This
cient to build an arbitrary unitary transformation owiqu-  scheme has a number of advantages with respect to the pre-
bits (i.e., any quantum computatiprBut in order to perform  vious ion trap proposdl], which we will discuss later.
useful computations in a real environment inducing decoher- According to the model described above, in this paper we
ence, fault tolerance is also required. This implies, e.g.deal with the conditional dynamics of two charged particles,
nested redundant coding for real-time error correc{i8ly  trapped in separate harmonic wells, interacting via electro-
and requires an error probability for elementary operationstatic repulsion and under the influence of an external state-
below a certain thresholef the order of 10%). Hence the dependent force, which can be generated, e.g., by an off-
need for proposals allowing for handling a bigger number ofresonant laser standing wald. The goal is to implement a
qubits at a lower decoherence rate and with faster and monghase gate between the two quitBec. 1), i.e., to transform
reliable gate operations—in a word, enabling scalability oftheir initial state by inducing a certain phase onto each of its
the system. components. The ideal transformed state so defined has to be
We propose to use quantum optical systems in periodicompared to the one that can be obtained by means of a
microscopic potentials. This is meant to combine the goodealistic Hamiltonian, coupling the particles’ internal and ex-
isolation and precise control by laser fields achievable irternal degrees of freedof®ec. Ill). With this aim, we con-
guantum optics, with the ability—usually associated withsider first a one-dimensional classical model for the motion
semiconductor technology—to manufacture periodic struc{Sec. I\). We solve the equations of motion for each com-
tures to generate modulated fields on a microscopic scal&ination of logical states separately, and define in each case a
The general concept of our proposal is to encode the logicalvo-particle phase as the integral over time of the interaction
states of each qubit into two internal states of a partickl-  energy. These phases define the evolved internal state, to be
tral atom or ion. Single-qubit operations are obtained ascompared eventually with the ideal state we aim to obtain.
Rabi rotations by applying resonant laser fields. Two-qubitThe fidelity of gate operation is evaluated, in this classical
gates are performed by inducing a state-dependent interamodel, as the overlap between the real and the ideal states,
tion over a certain time, making the particles acquire a conaveraged over different starting conditions according to a
ditional phase shift depending on their logical states. Thesehermal probability distribution for the initial oscillation en-
however, in a real situation are coupled to other externakrgies. The outcome is a series expansion for the temperature
degrees of freedom. This can lead to different kinds of im-dependence of the fidelity, of which we give the first terms
perfection. On one hand, the external state after gate operaxplicitly. The full three-dimensional quantum mechanical
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calculation follows the same patisec. V), except for two  we have to compare the case of an ideal gate, as given by Eq.
points. First, the two-particle phases are now given directly2.1), with the gate that can actually be realized by the physi-
by the Schrdinger equation and not definedi hocas be- cal process described by E@.4). The figure of merit is the
fore. Second, the fidelity is evaluated by tracing out the exminimum fidelity F, given by

ternal variables of a density matrix representing a mixed

thermal quantum state. We calculate perturbative corrections F=mintre{x'|o"|x"), 2.9
arising from multipole terms in the Coulomb potential, and X

show how to suppress lowest-order corrections to the fidelity

by means of an intermediate rotation on the qubits, thus where tg,; denotes the trace over the external degrees of

achieving an improvement by several orders of magnitude.freedon)'bozEaﬁcaﬁ|“>1|/,3>2 is a generic two-ion internal
state,|x') is the state obtained frofy) via the transforma-

tion Eq.(2.1), ando’ is the total density matrix, including

external degrees of freedom, after the evolution dictated by
We want to implement quantum logic between particlesthe Hamiltonian Eq(2.4), starting from an initial state

stored in an array of microscopic traps. The qubits’ logical

states|0) and |1) are encoded into the particles’ internal 0=p1(to) ® pa(to) ® | x){x|, (2.6

states. One basic building block toward multiqubit entangle- ] ) o

ment operations is the phase gate between two qubits—‘é(herepi(to) is the external state of particjeat the initial

transformation that rotates by a certain phase just one coniime to. Ideally, to achieve the optimal fidelitF =1, we
ponent of the logical states: need the external degrees of freedom to factorize after the

gate operation, and the evolution operator

II. A QUANTUM PHASE GATE

0/0)-10)0) -
0
(2.2
11)[0)—|1)[0), to have the sole effect of inducing a two-particle phasé
- depending on the internal state of both ions, plus single-
|1)[1)—€e""|1)|1). particle phases due to the kinetic energy associated with the

When o this is equivalent—up to single-qubit trap displacement. The latter can be undone by means of
:71' E— - . . . . . .

. ' . single-qubit rotationgsee Appendix B}, leaving us with the

rotations—to a controlledioT gate. Ideally, this would be dgied & PP 1 g

. _ X te phase
accomplished by means of a state-dependent interaction gla P

the form 9= 00— o0l H104 S11 2.9
Hin=AE(D)[1)1(1]®[1)5(1], 22 a real situation, the starting point will rather be a mixed
state corresponding to a thermal distribution over the exter-
nal energy eigenstates. In other words, at nonzero tempera-
- tures there will be a finite probability that each particle starts
f AE(t)dt'= 1. (2.3 in an excited motional state, leading in general to different
0 phases, which cannot be experimentally controlled and easily
I . o . undone by single-qubit rotations. Therefore the fidelity is
However, it is not straightforward to realize in practice an . )
. X . . - expected to decrease with temperature, as we are going to
interaction between two particles that couples only their in- - . ) : .
) show quantitatively in the next sections, both in a classical
ternal states—other degrees of freedom, for instance, the mg- . , . ;
) . - . Mmodel for the particles’ motion and in a fully quantum
tional ones, are likely to be affected. Therefore our goal is tq
. . . ramework.
approximate the ideal transformation Eg.1) by means of a
conditional dynamics for two particles, making them acquire
the phasey if and only if they are both in the internal state IIl. CONDITIONAL DYNAMICS
|1), and eventually leaving the external degrees of freedom We considem ions, trapped at positions denoted hy (

essentially unaffected. This is described by a Hamiltonian Orﬁumberssr_i (1=i<N). For simplicity, we take the trapping

acting over a timer such that

the form . . . .
potentials for all ions to be harmonic, with the same fre-
1 quencyw along every spatial direction. Our results can be
H(t, X, %)= >, HB(t,x1,%p) | a)1{a|® | B) (B8], st_raight_forwar(_]lly ger_weralized to inhomogenequs trap arrays
a,p=0 with anisotropic confinement. Moreover, each ion is assumed

24 tobe subject to a time-varying fordg(t), depending on its

wherex; denotes the external degrees of freedom of particlénternal statey; € {0,1; as in Eq.(2.4). The Hamiltonian is

j, and the explicit time dependence indicates that we can N N
switch on and off a suitable interaction in order to obtain the H= E H'+E H. (3.1
desired effect. To evaluate the performance of our scheme, 5 e B
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where . )
2 1 . a) \\
_PFi 2 2 1
Hi=5,+ smes(ri—r) =F()-r, (3.29 )
!
! )
Hii= qﬁ ! (3.2b ' [g
W= dmeg r—r)|” ' @) 0
In the following, we will focus on two-particle dynamics. b) v \ Vo
We assume the external force to have the same strength on \ \ Y\
both ions, i.e., to depend only on the internal state of each 1 \ 1o
particle: / / ;)
/ ! 1o
1 ] ] ] [
Fi(t)= 20 |a)i{al@F(1). 3.3 |0}0) |01 |fo) D)
=
. L FIG. 1. Gate operation scheme in a classical picture. Above:
We can rewrite the Hamiltonian in E¢2.4) as selective trap displacement for the two different internal states. Be-
2 low: schematics of the four different Hamiltonians for each combi-
PP me? Fei(t)? nation of internal states
HO2(t, Xy %) = 2 | 5ot — [ = x“(0)]*= '

=112m 2
5 dictated by the state-dependent trapping potential and by the
Je 1 34 repulsive electrostatic force. Without loss of generality, we
4areg [d+X— X B4 can take thex axis parallel tod. We will study the one-
dimensional problem of the motion along that direction, de-
where we have defined,=r;+d/2, x,=r,—d/2, x*(t)  noting by italic letters the first Cartesian component of the
=F*(t)/(mw?), andd is the equilibrium interparticle sepa- vectors defined in the previous section. The initial state of

ration. We assume the external force to act along its directhe system is described by the internal quantum state
tion, and we choose the simple state dependdrtf)

=(ahwF(t)/a,,0,0). Herea,= JA/mw is the quantum har- 1
monic oscillator ground-state width. Hence the adimensional Ixa(to))= 2 . Ca5|a)1|ﬂ>2 4.1

quantity F(t) represents the displacement, in unitsagf,
induced by the force on the trap minimum for ignf it is in ] ) )
internal statd1); : indeed, we have(t) = ea,,(F(t),0,0). gnd by the external class_lcal.trajectorchég(t) of the two
With the above choice for the state dependence of the forcd?ns, dictated by the Hamiltonian E(®2.4). Here, bya=a,

the term in square brackets on the right-hand side of Eq(8=az) we mean the internal state of the firstecond
(3.4) will not contribute to the gate phase E@.8), since the  particle. To find the trajectories for all values @fand 8, we
Corresponding terms cancel each other in the Sunlilave to solve four distinct classical tWO-parUCIe equat|0n5 of
S 08— 1)**P %A Since the interaction depends only on themotion, each describing the dynamics for one of the possible
distance between the particles, it will affect only the relativecombinations of internal states, as depicted in Fig. 1. Once
motion. Therefore we can study the problem in the coordiWe have done that, we can evaluate the Coulomb interaction
nate system where the relative motion is decoupled from th€Nergy

center-of-mass degrees of freedom. The Hamiltonian can be

rewritten(see Appendix A LasH(t) =Hg(t) +H,(t), where qé 1

VeB(t)=
- (0= Zreo [a+x2Pt)—x2(0)
He(H)=H%—F(1)-| R+ 2], (3.5a = e «
RU=Hg _q xtP (1) —x3#(0]" 42
0  Ameod Sh d .
H (t)=HO—f(t)- (r+d)+H,. (3.5b

Here,H% andH? contain three-dimensional harmonic poten- We then define the evolved internal state as
tials, and describe also nonadiabatic effects arising when
w7~1. In particular H? incorporates terms arising from the — io2P

, t))= C.ola e, 4.3
interaction up to the ordera(,/d)?. H, entails the higher- [xal0) aEB “ﬁ| 1B) @3
order multipole contributions.

where
IV. A CLASSICAL MODEL
) . . . . 1t
We first treat the ions’ motion classically, i.e., we regard (Pglﬁz— —f VeB(t")dt'. (4.9
them as point particles following well-defined trajectories fltg
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Now we make the following assumption@) the force acts E, / / \ /
slowly over the harmonic oscillator time scale !, i.e., = k E,
| A<w; (i) it induces a displacement of the order of the "0 i

single-trap harmonic oscillator length, ; (iii) the latter is
much smaller than the distance between the traps,d.g., < e il ol
<d; (iv) the amplitude of the intrawell oscillatiorig any) is Ax[ (1) [ d x|'>(t)</| 'Axfz (1)
negligible with respect to the interwell distance, i.E,

<mw2d?/2. The first three conditions can be fulfilled by FIG. 2. Gate operation dynamics for two classical particles os-
construction; the last one in principle requires the motion tceillating with energiesg; . The state-selective trap displacements
be cooled. Assumptiotii) amounts to neglecting nonadia- X“(t) and the intrawell oscillationax;"(t) are shown.

batic terms in the trajectorig®.g., the sloshing motion ex-
cited by the trap displacemegnOn the other hand, when the
last three assumptions hold, we can consider, to a first ap- We can write the phases E@t.4) as

proximation, the intrawell motion to be essentially unaf-

fected by the higher-order multipole terms in the expansion i =i+ 60, (4.8)

of the Coulomb interaction, E@4.2). This approximation is p o )

not easy to check classically, since the exact trajectories cathere#g” is the ground-state contribution a@#*” is the
not be computed analytically. We will test its validity in correction du_e to motl_or_1aI excitations. To evaluate_the vari-
second-order perturbation theory, in the context of the quan@US contributions explicitly under the above approximations,

tum mechanical treatmeigee Appendix B # we now need only specify the time dependence of the trap
displacement. We choose the Gaussian form

B. Gate phases

A. Starting conditions ]-‘(t)zge‘(‘”)z. 4.9

The initial classical motional state, &tt,, can be either : ) _ ) _

the ground state, described by the initial condition&t,) L€t us first consider the case where both particles are in their
fmotional ground state. We insert Bg.7) for E;=0, through

=X;(tp)=0, or an excited state, described by oscillations o Eq. (4.2, into Eq. (4.4), and obtain

each ion inside its trap with an ener@y (i=1,2), i.e., by

the initial conditions " _(a_ﬁ)Z\/Eg%z,Ti [(a—B)éaz /d]" 2
c 2, . ¢ 8 = 2t
Xi(to) =AX;(tg)= FCOS{w(to—ti)], (4.53 (4.10
w
In the evaluation of the ground-state phas#® , Eq. (4.10),
) 2E, _ the complete Coulomb potential E¢..2) has been taken into
Xi(to) ==\ 7 sifw(to—t)] (4.5D  account. When we evaluate the correctidi*? instead, it

is not possible to find a general expression valid at all orders

. . n, which therefore have to be considered separately. We
(of course, the former is a particular case of the latter, for b y

-~ ; g choosety as an integer multiple of the oscillation period
El_EZ_O)' Here,w is a corre_cted trap frequency, taking , = (so that the motional state is left unchanged after gate
into account up to quadratic terms in the Coulomb

. . i ~ operation, and find
potential—i.e., up ton=2 in Eq. (4.2—namely, o

=w+1+€/2, where 53 )\/;§2 5 1 a; ( )(a;,)z
WP=3(a—pB —€&ewr— T t(a—PB)|
q2 8 \/Eg d d
e=——— e (4.6) 1 B
mEoMa xh—~{El+ E,+2\E E,cof w(t;—t,)]}
w

is essentially twice the ratio of the Coulomb energy s
g2/ (4meqd) and the energy of the second ion with respect to +o((ag/d)”), (411

the first trapmw?d?/2. Under the approximations discussed

. . B where it has been taken into account thet=>1. The two
above, we can write the trajectorigg”(t) as

terms in square brackets in E4.11) come from terms in the
wra » E Coulomb potential with=3 andn=4 in Eq.(4.2), respec-

X A ~x (D) +Ax () (4.7 tively. This means that no thermal correction is to be ex-

pected if only harmonic contributions to the potentiaé.,

at all times. The situation is depicted in Fig. 2. Note that wewith n<2) are included. Indeed, in this case the spurious
are treating classically the particle motion, but not the interinteraction phases, due to the oscillations in the ions’ posi-
nal state: so the ions are allowed to be in a superposition afons, are averaged out when integrating over a time much
the available logical states, i.e., to oscillate according to twdarger than the oscillation period. This explains intuitively
different trapping potentials, as seen in Fig. 2. why the phase does not depend on the motional state, in the
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approximation where only linear and quadratic terms in théNe will see that the very same structure for the corrections
Coulomb potential are taken into account, as will be showrto the lowest-order phase is obtained with the full quantum
analytically in Sec. VA. Now, the classical analog of the mechanical calculation.

gate phase E(2.8) can be written as

C. Gate fidelity

V=2, (—1)etPeak In order to obtain the desired phase gate Efl), we
«p require that((9¢))=m. So the reference state, representing
the ideal evolution, is chosen as
- \ﬁﬂum«fa /d4)?)
8 2 @ . ap
(2. /d) X =2y Copla)|)elee). (4.16
=6y+o((a;/d)?), (4.12 op

The real evolved state, E4.3), can be written agy(t))
=|x& +|8xe), whereby

— ™ 2~ . af . af
= \[gf ot (4.13 |6Xa) =2, Cagla)|B)(ei¥d —ellec™). (4.17)
ap

where Lj,(z2)==;_,z/k" is the polylogarithm function, and

Oc

From Egs.(4.12 and (4.13, we see that in our one- | oyr classical model, we are treating our particles’ external
dimensional classical model, up to first order in powers ofgegrees of freedom classically. Therefore, in the evaluation
ag/d, the gate phase is insensitive to motional excitationgf the fidelity Eq.(2.5), instead of tracing over the motional

inside each trap. Later dsee Sec. V E we will find that the  gjgenstates we should average over the possible classical tra-
very same expression for the gate phase can be obtaingdctories. Thus

under the same approximations, with the full three-
dimensional quantum formalism. Moreover, note that as- Fa=min{( el xa(OY xa(t] xa)))
sumption(ii) applied to Eq.(4.9) meansé~1, whence(i) X
implies w7>1. It follows that, if we want to obtairg, o 2
=, e<1. This means that the confinement has to be strong  — min({| 1+ (xa ()] oxe)| )
with respect to Coulomb interaction over the interwell sepa-
ration, which is in turn consistent with assumptigin). (4.17

We will now consider a more general initial condition = min<<
than the ones discussed so far, namely, a thermal state, de- {cap}
scribed by a probability distribution over the enerdgigsand (66 K T) 2

cIl"B

Caﬁ|2e_i(¢g|ﬁ_<<¢g'8>>)|2> > =1

1
>
a,f=0

~\2 ~
the oscillation phasest; . Assuming the energy distribution — i % —2<%
characteristic of a canonical ensemble and a uniform prob- fiw g2\ d d
ability distribution for wt; and wt,, we can compute the 4.18
thermally averaged phase

+o((a;/d)®),

as discussed in detail in Appendix A 2. Finally, let us con-
sider what would come out if we were able to suppress the
cubic anharmonic correction from the Coulomb potential,
i.e., to putk=0. We will show later(Sec. V D how this can

@B~ (Er+Ep)/kaT

dtldtz de Eld E2

B\ 27w
Wein= |

1 a—pld a;/ & 6kgT be done in practice—here we would like to give a classical
=—0 §+ T _~+F T+ — estimaterF, of the improved gate fidelity. The calculation is
2¢ |ag 3 o performed in Appendix A 2 as well, and the result is
~\2 2
az, I3 6kgT 2 2
—| | ==+ —=] { Sug+0((ag/d)3). , 30.ksgT )\ [ag
d (2\5 ho )] st ol ) Fd(T):l—(;—.. i +o((ag/d)®). (4.19
w
(4.19
This shows that, by suppressing one order of anharmonic
The mean gate phase turns out to be corrections, one obtains an improvement by two orders in
a,/d (several orders of magnitugen the fidelity, as is
<<ﬁcl>>52ﬁ (_1)a+/3<<(sz|,8>> shown in Fig. 3.
2/ .2 V. QUANTUM TREATMENT
ag\“[ & 6kgT 3
=0q 1+ r E = +o((ag/d)*), We want to describe quantum mechanically the three-

dimensional dynamics of the two particles. This means that,
(4.15 unlike in the previous section, their motional state is given
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1 - - = = = — — >a,, it follows that H;—containing only terms of
I-F o((a, /d)®—can be treated as a small perturbatioiinVe
1073 will first neglect it and solve exactly the three-dimensional
0.9 106 Schralinger equation, and then take it into account perturba-
F \ L tively, eventually checking our results with a numerical
107 s simulation.
0.8 10™ . Ve
5 - - A. Unperturbed forced oscillator
10° 10° 10™
When we putH;=0 and takeF(t) as in Eq.(4.9), the
0.7 solution to Eq.(B4) can be written explicith{10]. This is
0002 10004 0006 0-008 001 done in Appendix B 2. The gate phase turns out to be, in this
T (K) approximation,
FIG. 3. Fidelity Fy (solid line and improved fidelity F(, . @t B 1a 5
(dashed lingin the classical model as a function of temperafiire 0=a§;3 (—1) P P=28D(w) - P(w1+e)],

Inset: detail of the departure from unity of the same quantities, on a (5.2)
logarithmic scale. We assumed use of'dans and chose the pa- '
rameterso=27X1 MHz, d=20 um. where
by a wave function(see Fig. 4 which evolves according to ; dK* (s,to)

the Hamiltonian Eq(2.4). To better understand its structure, d(w)=— |m[f dsK(s,to)—’O}, (5.3a
it is useful to write to ds

HB(t,Xq ,X0)=HP(1,x%(t),xB(t)) + H¥B(t,%1,X5). 1 [t .
(tx1,%2) (XA XAD) + R 2)(5 0 K(t,to)= ——| dt’At)et’ o (53p
) VmhwJtg

Here thex; are the ion position operators, and theumbers  gypicit expressions fors®# and ford (w) are given in Egs.
x%i(t) denote the centers of the initial motional wave func'(BlZa)—(BlZd). In the limit w1, we obtain ®(w)~

tions as determined by the trapee Sec. I)l. To second — /32w 7. By expanding Eq(5.2) up to first order ine,

order in the expansion E@4.2), the first term on the right- tri - : bv Ea(4.13. The oh
hand side of Eq(5.1) gives rise to the same contribution to %v]e retrieved~ fq as given by £q(4.13. The phase can

i : ~ be adjusted to the desired valae by tuning the displace-
the phase already calculated in lowest order in the classic J y 9 b

del Vo ai in Eq.(4.13. C . o thi ent £ and/or the interaction time. Moreover, 6 is inde-
model, namely,d; given in Eq.(4.13. Corrections to this o qqent of the ions’ motional state. This means that the
phase are due, as before, ta) thermal excitations;(b)

hiah d tinole t i th ; f the C phase remains the same even if we start with a mixed exter-
Igher-or ergmu ipole) erms In the expansion ot the LOU~ 1,5 gtate, described by a density matrix
lomb potential;(c) nonadiabaticity. Motional effects of the

kinds (a) and(c) are accounted for bylgﬁ, while multipole H(tg)/keT 6
- ibuti B(t y@ B .
corrections g_et_a_contnbunon aIS(_) frof = (t,x4(t),x"(t)). pr(to)= > ~1-980 > yM[ninil,
In order to minimize such corrections, we choose to operate =1 ni=1
in the adiabatic regime, given by conditiGnin Sec. IV, i.e., (5.4

we assumeo>1. We study the dynamics in the center-of-
mass and relative coordinate systems, as given by(Bds  corresponding to a thermal distribution at temperatiire
and (3.5b. In both coordinate systems, the motion alongHere the canonical partition function=tr{e H(t0/keT} =
different axes decouples: the transverse directions contribute exp(~#w/kgT), {ni}i_1... ={nx.ny,n;,Nx ,Ny,Nz}, and
just an overall phase, whereas the relevant state-dependept IN)x.v.z (In)xy.2) are the eigenstates bfg (H?) along
dynamics takes place along theaxis. Since we assumetl  each direction. To optimize the gate fideligee Sec. )| we
need one thing more—that the external degrees of freedom
are not entangled with the internal ones after gate operation,
, i.e., that the final motional state does not depend on the logi-
cal states of the qubits. This indeed happens, under the adia-
’ batic assumptior(i) of Sec. IV. In fact, in this case, the
overlapO{Mi(t,t,) between the initial and final spatial wave-
functions for a system starting in a motional eigenstate along
all degrees of freedom, defined by E&14), is close to 1.
To be more precis&) {"!(t,t,) formally depends on the mo-
FIG. 4. Gate operation scheme in the quantum regime. Tra[_f)iona| state; however, if the adiabatic condition is satisfied
parameters are defined as in the classical case; the harmonic osd@nd|t|,|to| are large enough® (Mi(t,t,) tends exponentially
lator ground-state widtl,, is also shown. to 1, as can be seen from E@B158 and(B15b).
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1

the cubic corrections cancel each other, and that the quartic
corrections have the same order of magnitude as predicted by
Eq. (5.7). From Eq.(5.2 we obtainf= 7 with w=27X1
MHz, X,—x;=20 um, £=0.7, and7=41.1069 us. These
results were confirmed by a numerical computation including
up to 40 initial excitations in each direction, always giving
unity overlap of the final motional state with the initial one.
0 ) ) . Indeed, witht=—t,=150 us, even starting, e.g., with the
1 -05 0 0.5 1 (10Yth oscillator excited state, EqB14) still predicts

t (s) < 10° O(t,tp)>1—10"19 With these parameters, the perturbative

estimate derived within the classical model in Sec. IV turns

FIG. 5. Gate phas@/ (circles, and projection of the initial  OUt t0 befg~1.047.
motional ground state over the evolved one for ions in states
|0)1]1), (stars, as induced by the external forg&t) (dashed ling D. Gate fidelity

The results of the numerical calculation, performed with the param- The gate phas® cannot be measured directly, since the
. ) . . s ,
eters qUOte.d n the text 'nCIU.d'ng corrections Upo((@a“‘).)’ are -higher-order corrections arising from the Coulomb potential
shown. Solid lines are analytical results in the harmonic appmx'_depend both on the internal and on the motional state of each
mation of Sec. VA. . . ;
ion, and cannot be undone by means of single-qubit opera-
tions, unless the logical state is measured. However, the cor-
_ _ o rections of ordek have a simple internal-state dependence of
We will now take into account the contribution &f;.  the kind («— )%, as shown by Eq(B22a. This implies that
This does not affect the center-of-mass motion. Thereforg js possible to obtain a cancellation of the odd-order cor-
from now on we will study only the relative motion. Allittle  yections, by applying ar pulse R=|0)(1]|+|1)(0| to both
care is needed since, unlike in the most common timegybits in the middle of gate operation. Indeed Uifis the

dependent perturbation theory, in our case the unperturbeglolution operator giving the dynamics described in the pre-
Hamiltonian depends on time, while the perturbation doesjious sections, we find

not. The calculation is carried out in Appendix B 3. In the

0.5}

B. Including higher-order terms

adiabatic limit and foft|,|to| > 7, first-order corrections sim- RU RU
ply amount to a relatively small additional phase shift: |0)|0)—e'¢ ]1)|1)—e(¢ " F¢)|0)|0),
iraaB ’ . .
(U(t,tg))=(Uq(t,tg))e' A 47, (5.5 10Y[1)— el ¢*]1)|0) —el™+ 90| 1),

Thus, to this order, (5.8

|1)|0)—€'¢"0)| 1) — el (" ¢*| 1) 0),
0P~ p P+ AP+ A", (5.6

. |11)|1)—€'¢7]0)|0)— el (¢ 1) 1),
Hence we findd= 6+ 86+ o[ (a, /d)®], where

5 Here an adiabatic approximation is understood, according to

a, which the final and initial motional states are identical. We
80=8_3 bl V282+32n—ny—n)l, (B0 0w define
and it is understood that we started from a pure state with A6=356-((56)) (5.9

Nyy., €Xcitations along the various directions of the relative
motion. As already anticipated, E5.7) has the same struc- (@S before{(-)) denotes the thermal averggend the gate
ture as the classical correction to the phase expressed by EQperator

(4.15, except for a different overall factor related to the - 2

dimensionality of the problem we are now considering. In- G=S(RU), (5.10
deed, the first term in square brackets comes from the higher
multipoles k=3) in H, while the second one is due to the W"€re
thermal excitations.

S=| o><o|e—2i§2@(w) + 1)1 e—i[2§2(1’(m\f1+ €)= {(d0)]
C. Numerical computation (5.1

In order to check the validity of the perturbative expres-If we choose the gate operation tinréin such a way that
sion Eg.(5.7), we solved the Schrdinger equation for the
relative motion numerically, taking into account cubic and !
quartic interaction terms, explicitly given by Eq#\6a) and T=4E[D(w)— P(wV1+e)]—-2((56)), (5.12
(A6b) respectively. The calculation is described in Appendix
B 5, and results are shown in Fig. 5. In particular we find thatwe obtain
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E. One-dimensional calculation for many ions

G
|0)|0)—€'®|0)|0), We now assume we hawions, trapped in a linear array
S of equally spaced traps, i.e., we take
0)[1)—e~'4%?[0)[1), -
o (5.13 ri=(xj,y;,z)=jd (5.17)
11)[0)—e~'2’e'®|1)|0), . . . . o
in Eqg. (3.23. Expanding the interaction Hamiltonia;;

11)]1)— €' el ©| 1)[1). Efq. ((?.szai)r;)powefr_s&)f the; andr;, and neglecting terms
of o((a, , we fin
The global(thus irrelevant phase® is given in Appendix 5( N 2
B 6. Note that the single-qubit rotatidhis the same for both Mo D &(x- —X%)2+y2+ 72—,
qubits, and therefore single-ion addressability is not required. 2 |Z |2 o

The fidelity of the gate operation is defined by comparing the

ideal gate operation Ed2.1) with the actual dynamics ob- — N XiX;
tained in our scheme, E¢6.13), at a given temperatufgfor =23, F(1)[1)i(1](x+x)) ez =i
the motion in all three dimensions. The result, derived in : J
Appendix B 6, is (5.18
0.kaT\2/a |4 where the various quantities are defined in Appendix B 7.
F(T)~1—63( C;Lj Fw (5.19 Equation(5.18 describes a set of independent forced har-

monic oscillators, like the ones we solve in Appendix B 2,
plus a coupling term multiplied by. If e<1, we can treat

The. fidelity turns ou.t .to be independent ofand ¢ which, this term as a small perturbation, in the very same way we
subject to the conditiongo7>1 and é~1, can be freely develop in Appendix B 3. We take as initial state
chosen to obtain the desired gate phase. The dependence of

the fidelity on the various parameters is the same as in the N

classical model discussed in the previous section. As already (Wit =11 In)ilai, (5.19
anticipated in the previous section, the intermediatpulse =1
R allows us to get rid of the((a,, /d)?) term, thus obtaining
a much better gate performance. Indeed, the only differen
between the corrected classical fideliy, and the quantum
fidelity F is the numerical prefactor multiplying the
temperature-dependent part, which is bigger in the latter case 1 N

due to the mcluspn of all the spaual degrges of_ freedom, |‘PN(t)>~§H (elrb“'H el¢a'al)|\PN(to)>, (5.20
whereas our classical model was just one dimensional. Any- i=1 j#i

way, with the parameters quoted above, at temperatures be- ) _

low 2 mK, corresponding to an average number of harmoni¢vhere (calculating the two-particle phases™“i perturba-

oscillator excitationsi~ 6, the fidelity turns out to be bigger tively)
than 1- 10 °. We can also evaluate how the fidelity scales
when the gate is repeatedly applied, gatimes. It is clear

C\é/hereai denotes the internal state of thia ion andn; its
motional state in the well corresponding to flile term of the
first sum on the right-hand side of E¢.18. We obtain

i~ ai2§2q)(wi) +a; \/;unf;i/aw

from Eq.(5.13 that in this case, apart again from an overall gt (ny - elt-ty), (5.2
phase,
%~ e N(Tg olt, - - 0 1o n(to
10)]0)~10)[0). to li—j|?
0)|1)—e~1949|0) 1), _ \/E @ Eewr e
_ (5.195 8 |i_j|3(1+677i)(1+€77]) ISIE el
|1)|0)—e719%41)|0), (5.218
DD = (=DIDIL). the last line following frome<1 and Eq.(B40). Again, the

result to this order turns out to be independent of the mo-
The excitation-dependent phadé is just multiplied byg.  tional state of any one of the ions. In the case of two ions,
Thus, under the same approximations as above, the fidelitgq. (5.21h gives back Eq(4.13.
of the g-fold gate operation is
FO(T)=1- g2 1—F(T)]. (5.16 VI. CONCLUSIONS
We analyzed in detail a recent propo$d] for scalable
i.e., it scales with the square of the number of gates. guantum computation with ions in an array of microtraps.
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This scheme has important advantages over the previous pro- f_l +r_2 o

posal[9], based on trapped ions as well. In that case many Ro= 5 do=|r,—r4/=(dg,0,0), (A20)
ions, lying in a single trap minimum, exchange information

via collective motional excitations; ground-state cooling is

an absolute need, and any perturbation on each ion can affect P=p,+p,, p= P2~ P1 (A2d)
the performance of the whole system. Here, instead, each ion ' 2

is confined to a single minimum of a periodic microscopic

potential, and interacts with other ions via the Coulomb FO=Fi(0)+Fy(D), ()= Fa(t) —F4(t)

force. Under the conditions discussed in the textiabaticity L 2h 2 ’
of the trap displacement, strong confinement with respect to
the distance between ions, intermediate symmetrizing m
pulse, the phase shift is insensitive, to a high accuracy, to Mx=2m, u==, A= : (A2f)

the motional state of each ion inside each trap, and therefore 0

the fidelity turns out to be essentially independent of temqp the aboved=(d,0,0) is the equilibrium separation be-
perature. Moreover, trapping frequencies can be much highejyeen the two particles in the absence of the pushing force.
than in the previous case, leading to much shorter gate opyye to the repulsive Coulomb interactiofd|=d will be
eration times. As long as we take into account purely mogjgger than the distance, between the centers of the two

than 1- 10" ° for a two-qubit phase gate operating on a time sx=d—d, is the solution of the equation

scale of a few tens of microseconds. Furthermore, with the

(A2e)

improved scheme presented here, single-qubit addressability 91 A A
is not required for any of the various control operations. To 0=— E,uwzx2+ T do) =po’x————— (A3)
sum up, the present proposal constitutes a really good candi- 0 (x+do)

date for a scalable implementation of a quantum computer. . .
(assumingdy+x>0), and can be written as
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APPENDIX A: CLASSICAL CALCULATION N N 5

In this appendix we give a detailed account of the calcu- m”a 1-
lations leading to the results obtained in the classical model

X x> 1y? 1722 & Puxy,2)

E+¥ 292 292 &

for our two-qubit phase gate. (A5)
N o where each of the multipole tern#% is a polynomial ofkth

1. Rewriting the Hamiltonian degree inx, y, andz for instance,

In this section we give the explicit form of the various 3
terms in Eqs(3.58 and(3.5b), describing the Hamiltonian Pa(x,y,2) = — x| X2— = (y2+29) |, (A6a)

Eq. (3.1 for two ions, in the center-of-mass and relative 2

motion coordinate systems. The Hamiltonian, with the num-

; — ; — 3
ber of ionsN=2, may be rewritten abl=Hg+H,, where Pa(X.y.2) = X*— 3x2(y2+ 22) + §(y2+22)2' (A6b)

2

1
Hr=5—+5sMw?R?—F(1)- (R+Ry), (Ala)

2M 2 By virtue of Eq.(A3), the linear term in the expansion Eq.

(A5) cancels exactly with the one arising from the harmonic

p> 1, X A potentialuw?(r+d—dy)?/2 in Eq.(Alb). We define the un-
Hi=g, T are (r+d=do)"=f(t)-(r+d)+ r+d’ perturbed Hamiltonians
(A1b) ,
o= IMw?R?, HO=H,+H (A7)
and R™ oM 2 ' r X 1
ry+r where
R=(X,Y,Z)= =5~ R, (A2a)

2
Px 1
242

HxEﬂ—F E,LLV

r=(xy,z)=rp—ry—d, (A2b) (A8a)
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2 2
_Pytp; 2,021 2.
H = 2 +§,U,VJ_(y +2z°); (A8b)
the higher-multipole contribution
N o Puxy.2)
Hl:Est d< (A9
the force terms
F _ﬁwﬁ i ‘ _ﬁwﬁz—ﬂl
(t)_a_w( 1HIL) AL, (t)—a—m > F(1),
(A10)

Wheref[i“ is the projector onto the internal stateof particle
i!

1:[1§|1>1<1|®121 I1,= L®[1)x(1]; (A11)
the rescaled frequencies
r=o\lte, v =0Vl-€?2; (A12)
and the shifted coordinate and energy scales
Xo=Ry-(1,0,0), EOE%+ %szaxz. (A13)

Shifting the coordinate system bigy,—d and the energy
scale byE,, we finally obtain Eqs(3.53 and (3.5h.

2. Fidelity

The goal of this section is to show the derivation of the

analytical temperature dependence of the fidelity, (BdL9.
We begin by writing the two-particle phase as

2P —((@2P)) = 8apl(—1)PK+1]e +0((a; /d)®),

(A14)
where
d (A153)
K= ,
V2¢a;
3HC| ay, 2 ~
E—= ﬁ~ F {E1+E2—2\/E1E2COS{w(tl—tz)]—ZkBT}.
w
(A15b)
We define

E(a,b)=[xalxa(t)P
=2(af{l—cod(k—1)e]}—bcog(xk—1)e])
X(a+b—1)+(b—1)2+b[b+2acog2«e)],
(A16)

PHYSICAL REVIEW A63 062304

wherea=|cg,|?, b=|c,¢?, and the normalization df), in
the form 1=3, g|c,z4|%, has been taken into account. From
Eq. (4.18 it follows that

Fg=min((E(a,b)))=((min}Z(a,b))),  (A17)
{a,b} {a,b

which is a constrained minimization problem, with con-
straints Gsa<1, O<b=<1. The solution cannot be found by
simply equating the partial derivatives &(a,b) to zero,
since—as will be seen at the end of this section—the mini-
mum turns out to be located at the border of the region of
allowed parameters. Therefore we must take a closer look at
the problem to find the analytical solution. To this end, we
evaluate

9.2 (a,b)=—2¢? —12bK+1+}— +0(e%)
a=(a,b)=—-2e%(k—1)%| b-—7+5—al+o(e),
(A18a
E(ab)=—2e%(k+1)? K;1_|_l_b+ (%
p=(a,b)=—2e%(k+1) aK+1 5 o(e?).

(A18b)

While looking for the minimum, we will neglecb(s?)
«(a,/d)®; then, to evaluate it, we will use the exact form of
E(a,b). According to Eq.(A18a), in the region of the pa-
rameter plane defined by the condition

1
872

k—1

< -
b k+1’

(A19)

dp=(a,b)<—2k(x+1)<0. Sincex>1, the inequality Eq.
(A19) also impliesb<<1/2. Therefore the minimum must be
found outside the region defined by E&19), i.e., for

(A20)

The latter, by Eq(A18b), implies d,=2(a,b)<0. Summing
up, the minimum is reached for the values,(by) of the
parameters, where

1xk—1
2 k+1

ap=1, <by=1. (A21)

The problem is therefore reduced to a one-dimensional con-
strained minimization: We have to study the equation
0=4d,2(ag,b)
=2(cog2ke)—cog(k—1)e]—2b{cod(x+1)e]—1}),
(A22)
which has the solution

— 1sin(3x—1)e/2]

=2 si(kr)e2] (A23)

Since the constrairty=<1 has to be fulfilled, we obtaib,
=min{b,1}. Indeed, it isb<1 only fore=f (&), where
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sin(3xe/2) — 2 sin( ks) particles are in their external ground state, we can undo the
f.(e)=2arcsi . (A24) kinetic phases and other inessential phases through single-bit
V5+4 cog2ke) operations of the form
4 . L a
Hence, too((a,/d)"), Sj:eﬂ@jz |a,>j<a|e|sj , (B1)
1
E o 11+ ((cod(3x—1)el))}, e=f.(e) whereg; has to be equal to the kinetic phase acquired after
cl ) the gate operation by particjeand we choose
1-4(({coq ke)[coge)—cogke)])) otherwise.
(A25) $9=—¢%2, si=—+s);
B2
Now, f/ (0)=«/3>1 (the inequality following froma, 9=g0, sl — 0yl (B2

<d). Hence for smallT—such that{(¢))<1, i.e., kgT

<ho(dla,)?>—we haves<f,(e) and the form ofFy is  Under these conditions, the compound operator

given by the second row on the right-hand side of @®5),

which we can expand in a Taylor series arodn«0, taking U =(S,®S,)U(t,tg) (B3)
the thermal average to finally obtain EGL.18. When «

=0, i.e., the third-order anharmonic correction is suppressedmplements the transformation E(.1, with & given by

Eqg.(2.9.
E(a,b)|.—o=1+2(a+b—1)(a+b)[1—coge)].
(A26) 2. Unperturbed solution

As explained in the text, since we assud®ea, we can

The function to be minimized depends now only on the sum : . )
a+b. Therefore the minimum can be searched for by fixing reat the higher-multipole terrh , as a small pgrturbgﬂon
) with respect to the rest of the Hamiltonian. In this section we

one of the two parameters and varying only the other Ones',olve the unperturbed problem exactly, i.e., we calculate the
We can choos&,=1 as before, and minimize EgA26) P P Y, 1.€.

with respect tob. Equation(A25) gives the solution in this t|me-dependent__e\_/olut|0n d'Ct.atEd b(t) ~H.1. So we want
. . o . to solve the Schidinger equation
case also. In particular, sinée_y(e)=0<eVe, the analyti-

cal expression for the fidelity is now given by the first row 21 _ THOH) — (1) - (1 +
on the right-hand side of EgA25), which for k=0 becomes I (0)=[Ha(D)+H (O =0 (r+ D][¥ (D), (B4)
simply

with the initial condition

1
o= Fal-0=5[1+(({coge)))]. (A27) W (1)) = ¥m(to))rl U (to))r @)1 B)2.  (BS)

The same procedure can also be used for the minimizatiof;

he subscripR(r) denotes the center-of-magslative) mo-
lon, as defined in Appendix A 1. The solution[0]

over the possible internal states in the quantum case, as i

done in Appendix B 6. By expanding EGA27) to lowest . ;
nonzero order in powers aod,/d, we finally obtain Eq. |¢R(t)>R:eiHR(tto)/ﬁex;{ixof F(t’)dt’/h)
(4.19. to
t KE(s,to)
APPENDIX B: QUANTUM CALCULATION xXexpg — ft dsKr(S,to) 45—
0
In this appendix we compute both analytically and nu- KAl KR (1A
merically the evolution of the two-ion system, evaluate the x e R0 Are T RILIOAR Y (1) ),
resulting phase shifts, and derive an accurate expression for (B6a)

the fidelity, giving also the explicit expression of some quan-
tities used in the text.

. t
|lr/fr(t)>r — eIH?(ttO)/heX[( |d J; f(t’)dt’/ﬁ)
0

1. Undoing single-particle phases

In this section we show how to get rid of the spurious xexr{—jtdsK,(s,to) 5
t S

phases accumulated during gate operation, in order to be left
with the gate phase Ed2.9). In the ideal case where the . Stk .
external degrees of freedom factorize out at the end of the x e~ Krlttoarg=iKr (Lloar]y, (ty)),, (B6h)
computation, the evolution operator E®.7) induces both o

two-particle conditional phases and single-particle kinetiowhereag (a,) is the annihilation operator for thecompo-
phases, depending on each ion’s external state. When bottent of the center-of-magselative motion, and

dK:‘(s,to)}
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1 t o
KR(t,tO)Em : dt!F(tr)elw('[ 710)1 (B?a)
0
1 t S
Kr(tltO)E m ¢ dt’f(t,)elv(t _to)- (B?b)
0

Now the explicit form of the force term, Eq4.9), can be
inserted into Eqs(B7a) and (B7b) through Eq.(A13), to
yield

Kr(t,to) = (I, +TI,)K(w,t,to), (B8a)
Ki(t,to) = (I, T1)K(1,t,to), (B8b)
where

K(w,t,to)ngTﬁe(‘”le)zl(w,t')ﬂo, (B9a)
I(w,t)EErf<£T— %) (B9b)

We take as initial state
|r(t0))r=IN)r=INx)xINy)vINz)z,  (B10a
[ (to))r=[n)r=[NyxNy)yINz) . (B10b)

During time evolution, the two ions will acquire a state-
dependent phase shift

(WP (te))=[(W(O)| (L) *”,  (B1Y
which turns out to be given by
dP= PP+ P, (B123

P~ (a+ B)2E2D(w) + (a+ B)NmwTEX,la,

P~ (a—B)2E20(v)— (a— B)Jmwrédla,

—[nyw+(ny+n,)v, [(t—to), (B12¢

A2
®(w)= - mw?rg=D(t)]; e® @72, (B129

with

A=Im[1(w,te)]—il * (w,0),

(:Ez\/A2

D(t)=Erf

B=wRdl(w,t)],

w2+
2

1

72

B C
c2al

|

(B13)

PHYSICAL REVIEW A63 062304

The equality in Eqs(B12b) and(B12¢) is approximate since
the integrals in the exponent of Eq®6a) and (B6b) have
been evaluated by means of a saddle-point approximation,
giving a very good agreemelftelative difference less than
10" ° with typical parameters as used hewmith the exact
result, which cannot be evaluated analytically. Finally, from
Egs.(B6a) and(B6b) we obtain

Ot to) =T (V[ ¥ (to)=0F O™, (B14)

where

O =M (= Ny 1/Kr(t,to)|2)e ket 02 (B15

O =M(=n 1 [K (L t)[P)e 0?2 (B15h
andM (a,b,z) is the confluent hypergeometric function.

3. First-order perturbation theory

Now we want to evaluate the lowest-order corrections that
appear when the higher-multipole contributions in the
Hamiltonian are taken into account. Followihf0], we ex-
pand the evolution operator as

o

U(t,t0)=U0(t,to)+j21 Uj(t,to), (B16)

whereU(t,ty) is the operator of the unperturbed evolution,
already calculated in Appendix B 2, and

1 [t f t,
Uj(t,to)smﬁodt,ftodq1..~Lodtluo(t,tj)
XHUo(t),tj1)H1Uo(t) 1,8 2) - - - Ug(ty,ty)
(B17)

We are interested in evaluating the diagonal matrix elements
(W(tg)|U(t,to)|W(ty)) to first order, according to Eg.
(B16). Since(Uq(t,tp)) is given by Eq.B11), we just need

to compute

XHUp(ty,tp).

1 t H (43 ! (23 ’
<Ul(t,t0)>= EJ dt/ogﬁ(t't/'to)el[qﬁr B(t,t )+ by B(t to)]
to

e 3Pt to)

=— (B18)

t
f dt’ O F8(1,t" to)
to

where the unperturbed phase factorizes, si@seshown in
Sec. VA it does not depend on the initial state, and we have
defined

OFP(t,t to) =KW (to) |Uo(t,t" ) H 1 Ug(t’,te) [ W (to))].
(B19)
The exact result, given by Eq&86a) and (B6b), cannot be
integrated analytically over time. Instead we adopt the adia-

batic approximation, i.e., we assume that the conditipof
Sec. IV is satisfied. The Hamiltonian then changes slowly
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enough so that the system, being in a motional eigenstate at
t=ty, follows the changes, being in the corresponding eigen-
state at every subsequent titnd his means in our case that,

PHYSICAL REVIEW A3 062304

aV
(n|x|n’)zﬁ(5n,’n,l\/ﬁ+ S nrVn+1), (B24a

if t5<0, t>0, and their absolute values are large enough, we

will have | W (t))~|W¥(to)). The relative motion wave func-

tion of the evolved state is then

(e (to) |[Uo(t,t")[r)|=[Kr[Uo(t",to)] ¢ (to))]
~ wnx(x_ f(t)/,u,vz)(ﬂny(y) lﬁnz(Z),

2

aV
(n|x?n"y= 5 [0 n-2Vn(n=1)+ &y n(2n+1)
+ Onr nr2V(N+1)(N+2)],

(B24b)

3
aV
(n|x3n"y= ZTIZ[én,’n,g\/n(n— 1)(n—2)+38, n—1n

(B20)
where, e.g.;//nx(x)z(x|nx>xeR. Finally we obtain +35n'.n+1(”+1)3/2
(Uy(tto))~iel " (A®F+ A", (B21) + 6y mia(nFD(N+2)(n+3)],  (B249
where 4
<n|x4|n’>=i{5 D n—ayn(n=1)(n—2)(n—3)+26,,
Aaﬁz_ﬂ@g [a_vg( - )}ka (B229 o o
=T % da&|afeTh)) % X(2n+1)yn(n—1)+ 38, J[2n(n+1)+1]
t—to A — [a,\k 260 n+2(2n+3)V(n+1)(n+2)
Al=———=> || &, (B22b)
i di=sd + 80 neaV(n+1)(n+2)(n+3)(n+4)}.
1 t W2 (B24d)
5k= mﬁodt <n| Pk X+ ?aw}"(t),y,z> Hence
—Pk(x,y.Z)lln%, (B229 53=—i—i[2n +1-7(n,+n,+1)], (B253
V3 2e T
<n|Pk(vaiz)|n>r
S=—-"T—7", (B22d) 1 3 ~
k a]k} 54=§+ \/E._—gz[ZnX+l—v(ny+nZ+1)], (B25b)
LA e 2 Ty 5,=0 (B250)
§=§a—w;—m, a,= //.LV. (8229 3 )

From Egs.(B16) and(B21) it follows that, to first order,

(U(t,to))~=(Uo(t,to) + Uy (t,tg))
ABL A’

[{Uo(t,t0))

which is equivalent to Eq(5.5), given that|A*?+A’]
=[{U(t, 1)) <[{Uo(t 1))~ 1. The internal-state-
independent parA’ cancels out when computing the gate
phase Eq(2.9), as well as the terms of oddin A%?, due to 4. Perturbative corrections to the eigenstates

the summation over the internal states. The adimensional giyce in our case the perturbatibh is static, its effect on
quantitiesd, and 5y do not depend either on the internal stateg jnjtial eigenstates of the system must be taken into ac-
or on time, but just on the relative motional state. We will ;o nt. In this section we show how to do that in second-
now calculate them fok=3,4. To be precise, we should not orger perturbation theory. Our problem is to compute the

: 0 e - : e . \ ) 0
use the eigenstates), of H', as is done in EqB22d), but  gjgenstates of the initial relative motion Hamiltonian
rather those of the full Hamiltoniad, . However, as we will

demonstrate in the next section, the corrections are of
o((a,/d)®) and therefore we will consistently not take them
into account in the present calculation. The relevant matrixvhereby the external force is vanishing at the initial time,
elements are and

3 3~
5L’1=Z[2nx(nx+ D+1]= vt (ny+n,+1)

3~
+ 1—6v2[ny(3ny+ 5)+n,(n,+5)+4(1+nyn,)],

=(Ug(t,to))| 1+i

}, (B23)

(B250)

wherev=v/v, .

H (tg)=H+H;=H’+eH?, (B26)
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1 fiw d?
Hl=— —
r 2 a2

Therefore we make a perturbative expansion in the sma
parametere. So we write the eigenstates 6f, (omitting

Pu(x,y,2)

k=3 gk

throughout this section the subscriptas

In(e)y=2,
i=0

where the first terms are

(0)

m

oy >
m

Hy[n(®)
0 0
In EQ-g

(mOTHFION IO HF (@)

e[n®),

|m(0)>’

|n(2)>=

and|n®) are the eigenstates B’ , with eigenenergieg(? .
The kth term in Hrl gives a contribution of order (% w/2)

X (a, /d)* 2. Since we want to neglect corrections of order
o((a,/d)®), we need to go up t&=4 in the expansion of
Hrl. But from Egs.(A6a) and (A6b) it is straightforward to
see thatm(|P 4(x,y,2)|n(?) for m#n. It follows that

wmin (P -ERN(EP—E()

In(e))=|n®)+0((a,/d)3),

and therefore, as already anticipated in the previous section,
for the purpose of the present calculation we can consistently
use the eigenstates of the unperturbed Hamiltohi&n

5. Numerical computation

The goal of this section is to transform the Salirger

|m(°)),

PHYSICAL REVIEW A63 062304

first-order differential equations for the time dependence of
its projections over the initial eigenstates, better suitable for
numerical handling. Since the problem has cylindrical sym-
rnetry around thex axis, the transverse coordinates always
éppear as powers gf=.y?+72. Thus the original three-
dimensional problem is equivalent to a two-dimensional one.
We expand the wave functiofomitting for simplicity the
subscriptr) as

oo

|w<t>>=n20 Cri(t)

i t
xexp‘ﬂd f(t")dt

to

—h(nv+ly, +1)t

}|n|>, (B31)

where [nl)=|n),|1), ; the [n),(|I),) are the eigenstates of
H,(H,). From Eq.(B4) it follows that

A - '
CnI:% 2 cnq,(t)e'[(“‘” Yyv+(=1")v, ]t
n’,I’=0

(il f(tx—Hy]ln'l")

ila, . .
=5 ﬁfm(ﬁe'“cn_m n+le'cy,q)
NS a, |k

where the coefficient€¥) correspond to th&th term in Eq.

equation for the two-particle wave function into a system of(A9); in particular,

C®=n(n—1)(n—2)€'*"'c,_5,+3n%%"'c, 1, +3(n+1)%% "¢, 1, +(n+1)(n+2)(n+3)e ¥c, 4,

37 . . .
— - [nld —1)er2te, L+ n(I+1)(1+2)e 2 o+ (21+1)(Vnee,_y,

+yn+le e ) +FV(n+ DI -1)e T2 o+ (n+1)(1+1)(1+2)e ' F2te o],

(B33a

Cil=—Vn(n—1)(n—2)(n—=3)e*"'c, 4+ n(n—=1)e?"Y3u[I(I-1)ed " 'c,_,; o+ J(I+1)(1+2)e 2 lc, 54

2
+(21+1)c, o ]—2(2n—1)c, ot — %Jm —1)(1-2)(1-3)e* ", _4+3v/I(1-1)

x| (2n+1)— %(m —1

2

eziVﬁcn‘,z—[g%[Zl(l +1)+1]-3v(2n+1)(21+1)+3[2n(n+1)+1] Cnl

2
- 43—17;\/ [+1)(1+2)[»(21+3)—4(2n+1)Je 2"l |, ,— %Ju +1)(1+2)(1+3)(1+4)e 4mle, |,
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(n+1)(n+2)e 2"Y3[ (21 +1)Cpy g+ V(I + 1) (1+2)e 2o I(1=1)eP 7 ie o) 5] = 2(2n+3)Chy )}
—VJ(n+1)(n+2)(n+3)(n+4)e” "¢, 4. (B33h)

Excitations higher than a certain level should be absent as 3
long as we are in an adiabatic regime. Thus in B82) we _ - 7)3 2
neglect the coefficients above a certAinWe have checked =1 s
that the result is independent of the cutoff.

y"(ni|[1+cogA0)]|n;)

4 ~hivlkgT

e
(1_ e—fw/kBT)Z !

(B38)

6365
6. Fidelity 1- (1+ 51— )
The goal of this section is to evaluate the gate operation
fidelity in the full three-dimensional quantum-mechanical
framework. The overall phad® appearing in Eq(5.13 can
be computed from Eq$B123-(B12d and(B229—(B22d),  where the minimization over the coefficierts, ;} has been

a'(x)

as carried out exactly as in Appendix A 2. Here, only the rela-
6 . . tive motion comes into play becauas) is independent of
aul the center-of-mass motion, and cog] has been expanded
O~ 2“’[ ‘/—57__{2 +6|(23 (F) 54“40)]’ up to o(A 6%). Hence Eq(5.14 follows, by taking into ac-

count thate<1 and 6.~ 6=, and expanding in a Taylor

(B34 series forh w<<kgT.

whered, is defined in Eq(B25d), and it has been taken into
account thate<1. In the ideal case, according to E.1)

for 9=, the gate operation transforms the initial internal 7. Many-ion calculation
state[x) into In this section we simply give the definitions of the pa-
1 rameters appearing in E¢.18:
X')= 2 (~DPeagla)lp. (B39 Wl
“h 8i=—x; ——dan . (B393
CU

In a more realistic situation the initial total density operator
ot at a temperatur@ is given by
d ey

or=pr(to)® [ x)(xl, (B36) o=o\Tten, %=51
€7

(B39b)

where p1(tg) is defined in Eq.(5.4), and we recall that

~yp=~vp, . After the gate operation we have "

1
, =5 = —[A(i)+ BN+ 1-i)+(3)
o1= 2 Caﬁczfﬂ’GaBpT(tO)GL’ﬁ’|a>l 231 |I—J|3 [l’b ( v (31,
a,B,a',,B' (B39C)
xX(a'|®[B)AB'], (B37)
N . .
whereG ;= (aB|G|ap), and the gate operat@ is defined , 1 i—j " (1)
in Eq. (5.13. As already stated in Sec. VA, because of adia- i 2521 |I_J|3__[‘/’ (N+1=D)=¢(0)],
baticity, the motional state after the gate operation is un- (B39d)

changed, i.e. GaﬁpT(tO)Ga g ~p1(ty). If 8=, the mini-

mum fidelity F(T), given by Eq.(2.5), is
yF(T). 9 y Ea.2.9 whereH, is the harmonic number ang¥(z) the polyga-

. 6 = ) - mma function of ordek, and {(s) the Riemann zeta func-
F=min(1=y°L1 > ¥™nil(lcod®+lew® tion. It is
{caﬁ} i
+2(|cod*+ [e11?) (|coul*+ |10/ *) cog A §) 2

v
maxX 7|=¢(3)~1.2, maky/|=-5~0.82. (B40)
+(|coil®+]c10®) 2Ny in in 12
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