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Entangling ions in arrays of microscopic traps
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We consider a system of particles in an array of microscopic traps, coupled to each other via electrostatic
interaction, and pushed by an external state-dependent force. We show how to implement a two-qubit quantum
gate between two such particles with a high fidelity.
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I. INTRODUCTION

The possibilities offered by quantum mechanical syste
for efficient information processing have stimulated the r
of an entire field of research in recent years@1#. Quantum
protocols for secure communication over long distances h
been devised and demonstrated. Quantum algorithms fo
ficient solution of problems believed to be intractable
classical computers have been developed. However, w
quantum communication is already approaching the stag
real-world applications, quantum computation still rema
at a less advanced level, as far as physical implementatio
concerned. Different systems have been proposed as c
dates for this purpose@2#, but nobody can yet tell what wil
turn out to be a viable solution. Indeed, in a few cases qu
tum computation building blocks—single- and two-qub
operations—have already been demonstrated experimen
In principle, these ingredients are universal—they are su
cient to build an arbitrary unitary transformation overN qu-
bits ~i.e., any quantum computation!. But in order to perform
useful computations in a real environment inducing decoh
ence, fault tolerance is also required. This implies, e
nested redundant coding for real-time error correction@3#,
and requires an error probability for elementary operati
below a certain threshold~of the order of 1024). Hence the
need for proposals allowing for handling a bigger number
qubits at a lower decoherence rate and with faster and m
reliable gate operations—in a word, enabling scalability
the system.

We propose to use quantum optical systems in perio
microscopic potentials. This is meant to combine the go
isolation and precise control by laser fields achievable
quantum optics, with the ability—usually associated w
semiconductor technology—to manufacture periodic str
tures to generate modulated fields on a microscopic sc
The general concept of our proposal is to encode the log
states of each qubit into two internal states of a particle~neu-
tral atom or ion!. Single-qubit operations are obtained
Rabi rotations by applying resonant laser fields. Two-qu
gates are performed by inducing a state-dependent inte
tion over a certain time, making the particles acquire a c
ditional phase shift depending on their logical states. The
however, in a real situation are coupled to other exter
degrees of freedom. This can lead to different kinds of i
perfection. On one hand, the external state after gate op
1050-2947/2001/63~6!/062304~16!/$20.00 63 0623
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tion may not be exactly the same as before. On the o
hand, the conditional phase shift will also depend on
external state: if this is mixed, only an imprecise phase
termination will be possible. These facts affect the gate
delity, which is defined by comparing the desired effect
the gate with the actual evolution that can be obtained in
laboratory. We have already proposed several schem
based on different interactions—collisional interactions b
tween neutral atoms in optical lattices@4# and magnetic mi-
crotraps@5#, or dipole-dipole interactions between Rydber
excited atoms@6#. Here we describe in detail a scheme th
was earlier proposed in@7#. It relies on ions stored in an
array of microscopic traps@8#. The idea is to displace the
motional wave function of each ion by a small amount, co
ditional on its internal state. This can be effected via exter
~e.g., laser! fields. The electrostatic interaction energy th
depends on the internal states of both ions, and a st
selective two-particle phase shift can be obtained. T
scheme has a number of advantages with respect to the
vious ion trap proposal@9#, which we will discuss later.

According to the model described above, in this paper
deal with the conditional dynamics of two charged particl
trapped in separate harmonic wells, interacting via elec
static repulsion and under the influence of an external st
dependent force, which can be generated, e.g., by an
resonant laser standing wave@7#. The goal is to implement a
phase gate between the two qubits~Sec. II!, i.e., to transform
their initial state by inducing a certain phase onto each of
components. The ideal transformed state so defined has
compared to the one that can be obtained by means
realistic Hamiltonian, coupling the particles’ internal and e
ternal degrees of freedom~Sec. III!. With this aim, we con-
sider first a one-dimensional classical model for the mot
~Sec. IV!. We solve the equations of motion for each com
bination of logical states separately, and define in each ca
two-particle phase as the integral over time of the interact
energy. These phases define the evolved internal state,
compared eventually with the ideal state we aim to obta
The fidelity of gate operation is evaluated, in this classi
model, as the overlap between the real and the ideal st
averaged over different starting conditions according to
thermal probability distribution for the initial oscillation en
ergies. The outcome is a series expansion for the tempera
dependence of the fidelity, of which we give the first term
explicitly. The full three-dimensional quantum mechanic
©2001 The American Physical Society04-1
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calculation follows the same path~Sec. V!, except for two
points. First, the two-particle phases are now given dire
by the Schro¨dinger equation and not definedad hocas be-
fore. Second, the fidelity is evaluated by tracing out the
ternal variables of a density matrix representing a mix
thermal quantum state. We calculate perturbative correct
arising from multipole terms in the Coulomb potential, a
show how to suppress lowest-order corrections to the fide
by means of an intermediatep rotation on the qubits, thus
achieving an improvement by several orders of magnitud

II. A QUANTUM PHASE GATE

We want to implement quantum logic between partic
stored in an array of microscopic traps. The qubits’ logi
statesu0& and u1& are encoded into the particles’ intern
states. One basic building block toward multiqubit entang
ment operations is the phase gate between two qubits
transformation that rotates by a certain phase just one c
ponent of the logical states:

u0&u0&→u0&u0&,

u0&u1&→u0&u1&,
~2.1!

u1&u0&→u1&u0&,

u1&u1&→eiqu1&u1&.

When q5p, this is equivalent—up to single-qub
rotations—to a controlled-NOT gate. Ideally, this would be
accomplished by means of a state-dependent interactio
the form

H int5DE~ t !u1&1^1u ^ u1&2^1u, ~2.2!

acting over a timet such that

E
0

t

DE~ t8!dt85q. ~2.3!

However, it is not straightforward to realize in practice
interaction between two particles that couples only their
ternal states—other degrees of freedom, for instance, the
tional ones, are likely to be affected. Therefore our goal is
approximate the ideal transformation Eq.~2.1! by means of a
conditional dynamics for two particles, making them acqu
the phaseq if and only if they are both in the internal sta
u1&, and eventually leaving the external degrees of freed
essentially unaffected. This is described by a Hamiltonian
the form

H~ t,x1 ,x2!5 (
a,b50

1

Hab~ t,x1 ,x2!ua&1^au ^ ub&2^bu,

~2.4!

wherexj denotes the external degrees of freedom of part
j, and the explicit time dependence indicates that we
switch on and off a suitable interaction in order to obtain
desired effect. To evaluate the performance of our sche
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we have to compare the case of an ideal gate, as given by
~2.1!, with the gate that can actually be realized by the phy
cal process described by Eq.~2.4!. The figure of merit is the
minimum fidelity F, given by

F5min
x

trext̂ x8us8ux8&, ~2.5!

where trext denotes the trace over the external degrees
freedom,ux&[(abcabua&1ub&2 is a generic two-ion interna
state,ux8& is the state obtained fromux& via the transforma-
tion Eq. ~2.1!, ands8 is the total density matrix, including
external degrees of freedom, after the evolution dictated
the Hamiltonian Eq.~2.4!, starting from an initial state

s[r1~ t0! ^ r2~ t0! ^ ux&^xu, ~2.6!

wherer j (t0) is the external state of particlej at the initial
time t0. Ideally, to achieve the optimal fidelityF51, we
need the external degrees of freedom to factorize after
gate operation, and the evolution operator

U~ t,t0![T expH 2
i

\Et0

t

H~ t8,x1 ,x2!dt8J ~2.7!

to have the sole effect of inducing a two-particle phasewab

depending on the internal state of both ions, plus sing
particle phases due to the kinetic energy associated with
trap displacement. The latter can be undone by mean
single-qubit rotations~see Appendix B 1!, leaving us with the
gate phase

q5w002w012w101w11. ~2.8!

In a real situation, the starting point will rather be a mix
state corresponding to a thermal distribution over the ex
nal energy eigenstates. In other words, at nonzero temp
tures there will be a finite probability that each particle sta
in an excited motional state, leading in general to differe
phases, which cannot be experimentally controlled and ea
undone by single-qubit rotations. Therefore the fidelity
expected to decrease with temperature, as we are goin
show quantitatively in the next sections, both in a classi
model for the particles’ motion and in a fully quantu
framework.

III. CONDITIONAL DYNAMICS

We considerN ions, trapped at positions denoted byc
numbers! r̄ i (1< i<N). For simplicity, we take the trapping
potentials for all ions to be harmonic, with the same fr
quencyv along every spatial direction. Our results can
straightforwardly generalized to inhomogeneous trap arr
with anisotropic confinement. Moreover, each ion is assum
to be subject to a time-varying forceFi(t), depending on its
internal statea iP$0,1% as in Eq.~2.4!. The Hamiltonian is

H5(
i 51

N

Hi1(
i , j

N

Hi j , ~3.1!
4-2
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where

Hi[
pi

2

2m
1

1

2
mv2~r i2 r̄ i !

22Fi~ t !•r i , ~3.2a!

Hi j [
qe

2

4p«0

1

ur i2r j u
. ~3.2b!

In the following, we will focus on two-particle dynamics
We assume the external force to have the same strengt
both ions, i.e., to depend only on the internal state of e
particle:

Fi~ t !5 (
a50

1

ua& i^au ^ Fa~ t !. ~3.3!

We can rewrite the Hamiltonian in Eq.~2.4! as

Ha1a2~ t,x1 ,x2!5(
i 51

2 H pi
2

2m
1

mv2

2
@xi2xa i~ t !#22

Fa i~ t !2

2 J
1

qe
2

4p«0

1

ud1x22x1u
, ~3.4!

where we have definedx1[r11d/2, x2[r22d/2, xa(t)
[Fa(t)/(mv2), andd is the equilibrium interparticle sepa
ration. We assume the external force to act along its dir
tion, and we choose the simple state dependenceFa(t)
[„a\vF(t)/av,0,0…. Hereav[A\/mv is the quantum har-
monic oscillator ground-state width. Hence the adimensio
quantity F(t) represents the displacement, in units ofav ,
induced by the force on the trap minimum for ioni, if it is in
internal stateu1& i : indeed, we havexa(t)5aav„F(t),0,0….
With the above choice for the state dependence of the fo
the term in square brackets on the right-hand side of
~3.4! will not contribute to the gate phase Eq.~2.8!, since the
corresponding terms cancel each other in the s
(a,b(21)a1bwab. Since the interaction depends only on t
distance between the particles, it will affect only the relat
motion. Therefore we can study the problem in the coor
nate system where the relative motion is decoupled from
center-of-mass degrees of freedom. The Hamiltonian can
rewritten~see Appendix A 1! asH(t)5HR(t)1Hr(t), where

HR~ t !5HR
02F~ t !•S R1

r̄11 r̄2

2
D , ~3.5a!

Hr~ t !5Hr
02f~ t !•~r1d!1H1 . ~3.5b!

Here,HR
0 andHr

0 contain three-dimensional harmonic pote
tials, and describe also nonadiabatic effects arising w
vt;1. In particular,Hr

0 incorporates terms arising from th
interaction up to the order (av /d)2. H1 entails the higher-
order multipole contributions.

IV. A CLASSICAL MODEL

We first treat the ions’ motion classically, i.e., we rega
them as point particles following well-defined trajectori
06230
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dictated by the state-dependent trapping potential and by
repulsive electrostatic force. Without loss of generality,
can take thex axis parallel tod. We will study the one-
dimensional problem of the motion along that direction, d
noting by italic letters the first Cartesian component of t
vectors defined in the previous section. The initial state
the system is described by the internal quantum state

uxcl~ t0!&[ (
a,b50

1

cabua&1ub&2 ~4.1!

and by the external classical trajectoriesxi
ab(t) of the two

ions, dictated by the Hamiltonian Eq.~2.4!. Here, bya
a1
(b
a2) we mean the internal state of the first~second!
particle. To find the trajectories for all values ofa andb, we
have to solve four distinct classical two-particle equations
motion, each describing the dynamics for one of the poss
combinations of internal states, as depicted in Fig. 1. O
we have done that, we can evaluate the Coulomb interac
energy

Vab~ t ![
qe

2

4p«0

1

ud1x2
ab~ t !2x1

ab~ t !u

5
qe

2

4p«0d (
n50

` Fx1
ab~ t !2x2

ab~ t !

d Gn

. ~4.2!

We then define the evolved internal state as

uxcl~ t !&[(
ab

cabua&ub&eiwcl
ab

, ~4.3!

where

wcl
ab[2

1

\Et0

t

Vab~ t8!dt8. ~4.4!

FIG. 1. Gate operation scheme in a classical picture. Abo
selective trap displacement for the two different internal states.
low: schematics of the four different Hamiltonians for each com
nation of internal states.
4-3
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Now we make the following assumptions:~i! the force acts
slowly over the harmonic oscillator time scalev21, i.e.,
uḞu!v; ~ii ! it induces a displacement of the order of t
single-trap harmonic oscillator lengthav ; ~iii ! the latter is
much smaller than the distance between the traps, i.e.av

!d; ~iv! the amplitude of the intrawell oscillations~if any! is
negligible with respect to the interwell distance, i.e.,Ei
!mv2d2/2. The first three conditions can be fulfilled b
construction; the last one in principle requires the motion
be cooled. Assumption~i! amounts to neglecting nonadia
batic terms in the trajectories~e.g., the sloshing motion ex
cited by the trap displacement!. On the other hand, when th
last three assumptions hold, we can consider, to a first
proximation, the intrawell motion to be essentially una
fected by the higher-order multipole terms in the expans
of the Coulomb interaction, Eq.~4.2!. This approximation is
not easy to check classically, since the exact trajectories
not be computed analytically. We will test its validity i
second-order perturbation theory, in the context of the qu
tum mechanical treatment~see Appendix B 4!.

A. Starting conditions

The initial classical motional state, att5t0, can be either
the ground state, described by the initial conditionsxi(t0)
5 ẋi(t0)50, or an excited state, described by oscillations
each ion inside its trap with an energyEi ( i 51,2), i.e., by
the initial conditions

xi~ t0!5Dxi
Ei~ t0![A 2Ei

mṽ2
cos@ṽ~ t02t i !#, ~4.5a!

ẋi~ t0!52A2Ei

m
sin@ṽ~ t02t i !# ~4.5b!

~of course, the former is a particular case of the latter,
E15E250). Here,ṽ is a corrected trap frequency, takin
into account up to quadratic terms in the Coulom
potential—i.e., up to n52 in Eq. ~4.2!—namely, ṽ
[vA11e/2, where

e[
qe

2

p«0mv2d3
~4.6!

is essentially twice the ratio of the Coulomb ener
qe

2/(4p«0d) and the energy of the second ion with respec
the first trapmv2d2/2. Under the approximations discuss
above, we can write the trajectoriesxi

ab(t) as

xi
a1a2~ t !'xi

a i~ t !1Dxi
Ei~ t ! ~4.7!

at all times. The situation is depicted in Fig. 2. Note that
are treating classically the particle motion, but not the int
nal state: so the ions are allowed to be in a superpositio
the available logical states, i.e., to oscillate according to
different trapping potentials, as seen in Fig. 2.
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B. Gate phases

We can write the phases Eq.~4.4! as

wcl
ab5fcl

ab1dfab, ~4.8!

wherefcl
ab is the ground-state contribution anddfab is the

correction due to motional excitations. To evaluate the va
ous contributions explicitly under the above approximatio
we now need only specify the time dependence of the t
displacement. We choose the Gaussian form

F~ t ![je2(t/t)2
. ~4.9!

Let us first consider the case where both particles are in t
motional ground state. We insert Eq.~4.7! for Ei50, through
Eq. ~4.2!, into Eq. ~4.4!, and obtain

fcl
ab52~a2b!2Ap

8
j2eṽt (

n50

`
@~a2b!jaṽ /d#n21

A2~n11!
.

~4.10!

In the evaluation of the ground-state phasefcl
ab , Eq. ~4.10!,

the complete Coulomb potential Eq.~4.2! has been taken into
account. When we evaluate the correctionsdfab instead, it
is not possible to find a general expression valid at all ord
n, which therefore have to be considered separately.
chooset0 as an integer multiple of the oscillation perio
2p/ṽ ~so that the motional state is left unchanged after g
operation!, and find

dfab53~a2b!Ap

8
j2eṽtF 1

A2j

aṽ

d
1~a2b!S aṽ

d D 2G
3

1

\ṽ
$E11E212AE1E2 cos@ṽ~ t12t2!#%

1o„~aṽ /d!3
…, ~4.11!

where it has been taken into account thatvt@1. The two
terms in square brackets in Eq.~4.11! come from terms in the
Coulomb potential withn53 andn54 in Eq. ~4.2!, respec-
tively. This means that no thermal correction is to be e
pected if only harmonic contributions to the potential~i.e.,
with n<2) are included. Indeed, in this case the spurio
interaction phases, due to the oscillations in the ions’ po
tions, are averaged out when integrating over a time m
larger than the oscillation period. This explains intuitive
why the phase does not depend on the motional state, in

FIG. 2. Gate operation dynamics for two classical particles
cillating with energiesEi . The state-selective trap displacemen
xa i(t) and the intrawell oscillationsDxi

Ei(t) are shown.
4-4
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approximation where only linear and quadratic terms in
Coulomb potential are taken into account, as will be sho
analytically in Sec. V A. Now, the classical analog of th
gate phase Eq.~2.8! can be written as

qcl[(
a,b

~21!a1bwcl
ab

5Ap

8

evt

~av /d!2
Li 1/2„~jav /d!2

…

5ucl1o„~aṽ /d!2
…, ~4.12!

where Lin(z)[(k51
` zk/kn is the polylogarithm function, and

ucl[Ap

8
j2eṽt. ~4.13!

From Eqs. ~4.12! and ~4.13!, we see that in our one
dimensional classical model, up to first order in powers
aṽ /d, the gate phase is insensitive to motional excitatio
inside each trap. Later on~see Sec. V E!, we will find that the
very same expression for the gate phase can be obta
under the same approximations, with the full thre
dimensional quantum formalism. Moreover, note that
sumption~ii ! applied to Eq.~4.9! meansj'1, whence~i!
implies vt@1. It follows that, if we want to obtainucl
5p, e!1. This means that the confinement has to be str
with respect to Coulomb interaction over the interwell se
ration, which is in turn consistent with assumption~iii !.

We will now consider a more general initial conditio
than the ones discussed so far, namely, a thermal state
scribed by a probability distribution over the energiesEi and
the oscillation phasesṽt i . Assuming the energy distributio
characteristic of a canonical ensemble and a uniform pr
ability distribution for vt1 and vt2, we can compute the
thermally averaged phase

^^wcl
ab&&[E

0

2p/v dt1dt2

~2p/v!2E0

`dE1dE2

~kBT!2
wcl

abe2(E11E2)/kBT

52uclH 1

2
1

a2b

A2j
F d

aṽ

1
aṽ

d S j2

A3
1

6kBT

\ṽ
D G

1S aṽ

d D 2S j2

2A2
1

6kBT

\ṽ
D J dab1o„~aṽ /d!3

….

~4.14!

The mean gate phase turns out to be

^^qcl&&[(
a,b

~21!a1b^^wcl
ab&&

5uclF11S aṽ

d D 2S j2

&
1

6kBT

\ṽ
D G1o„~aṽ /d!3

…,

~4.15!
06230
e
n

f
s

ed,
-
-

g
-

de-

b-

We will see that the very same structure for the correctio
to the lowest-order phase is obtained with the full quant
mechanical calculation.

C. Gate fidelity

In order to obtain the desired phase gate Eq.~2.1!, we
require that̂ ^qcl&&5p. So the reference state, representi
the ideal evolution, is chosen as

uxcl8 &[(
ab

cabua&ub&ei ^^wcl
ab&&. ~4.16!

The real evolved state, Eq.~4.3!, can be written asuxcl(t)&
5uxcl8 &1udxcl&, whereby

udxcl&[(
ab

cabua&ub&~eiwcl
ab

2ei ^^wcl
ab&&!. ~4.17!

In our classical model, we are treating our particles’ exter
degrees of freedom classically. Therefore, in the evalua
of the fidelity Eq.~2.5!, instead of tracing over the motiona
eigenstates we should average over the possible classica
jectories. Thus

Fcl[min
x

^^^xcl8 uxcl~ t !&^xcl~ t !uxcl8 &&&

5min
x

^^u11^xcl~ t !udxcl&u2&&

5
~4.17!

min
$cab%

K K U (
a,b50

1 Ucabu2e2 i (wcl
ab

2^^wcl
ab&&)u2L L 51

2S 6uclkBT

\ṽ
D 2F 1

j2 S aṽ

d D 2

22S aṽ

d D 4G1o„~aṽ /d!5
…,

~4.18!

as discussed in detail in Appendix A 2. Finally, let us co
sider what would come out if we were able to suppress
cubic anharmonic correction from the Coulomb potenti
i.e., to putk50. We will show later~Sec. V D! how this can
be done in practice—here we would like to give a classi
estimateFcl8 of the improved gate fidelity. The calculation
performed in Appendix A 2 as well, and the result is

Fcl8 ~T!512S 3uclkBT

\ṽ
D 2S aṽ

d D 4

1o„~aṽ /d!5
…. ~4.19!

This shows that, by suppressing one order of anharmo
corrections, one obtains an improvement by two orders
av /d ~several orders of magnitude! in the fidelity, as is
shown in Fig. 3.

V. QUANTUM TREATMENT

We want to describe quantum mechanically the thr
dimensional dynamics of the two particles. This means th
unlike in the previous section, their motional state is giv
4-5
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by a wave function~see Fig. 4! which evolves according to
the Hamiltonian Eq.~2.4!. To better understand its structur
it is useful to write

Hab~ t,x̂1 ,x̂2![Hab~ t,xa~ t !,xb~ t !!1He
ab~ t,x̂1 ,x̂2!.

~5.1!

Here thex̂j are the ion position operators, and thec numbers
xa j(t) denote the centers of the initial motional wave fun
tions as determined by the trap~see Sec. III!. To second
order in the expansion Eq.~4.2!, the first term on the right-
hand side of Eq.~5.1! gives rise to the same contribution
the phase already calculated in lowest order in the class
model, namely,ucl given in Eq.~4.13!. Corrections to this
phase are due, as before, to~a! thermal excitations;~b!
higher-order~multipole! terms in the expansion of the Cou
lomb potential;~c! nonadiabaticity. Motional effects of th
kinds ~a! and~c! are accounted for byHe

ab , while multipole
corrections get a contribution also fromHab(t,xa(t),xb(t)).
In order to minimize such corrections, we choose to ope
in the adiabatic regime, given by condition~i! in Sec. IV, i.e.,
we assumevt@1. We study the dynamics in the center-o
mass and relative coordinate systems, as given by Eqs.~3.5a!
and ~3.5b!. In both coordinate systems, the motion alo
different axes decouples: the transverse directions contri
just an overall phase, whereas the relevant state-depen
dynamics takes place along thex axis. Since we assumedd

FIG. 3. Fidelity Fcl ~solid line! and improved fidelityFcl8
~dashed line! in the classical model as a function of temperatureT.
Inset: detail of the departure from unity of the same quantities, o
logarithmic scale. We assumed use of Ca1 ions and chose the pa
rametersv52p31 MHz, d520 mm.

FIG. 4. Gate operation scheme in the quantum regime. T
parameters are defined as in the classical case; the harmonic
lator ground-state widthav is also shown.
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@av , it follows that H1—containing only terms of
o„(av /d)3

…—can be treated as a small perturbation inH. We
will first neglect it and solve exactly the three-dimension
Schrödinger equation, and then take it into account pertur
tively, eventually checking our results with a numeric
simulation.

A. Unperturbed forced oscillator

When we putH150 and takeF(t) as in Eq.~4.9!, the
solution to Eq.~B4! can be written explicitly@10#. This is
done in Appendix B 2. The gate phase turns out to be, in
approximation,

u[(
a,b

~21!a1bfab52j2@F~v!2F~vA11e!#,

~5.2!

where

F~v![2ImF E
t0

t

dsK~s,t0!
dK* ~s,t0!

ds G , ~5.3a!

K~ t,t0![
1

Am\v
E

t0

t

dt8F~ t8!eiv(t82t0). ~5.3b!

Explicit expressions forfab and forF(v) are given in Eqs.
~B12a!–~B12d!. In the limit vt@1, we obtain F(v)'
2Ap/32vt. By expanding Eq.~5.2! up to first order ine,
we retrieveu'ucl as given by Eq.~4.13!. The phaseu can
be adjusted to the desired valuep by tuning the displace-
ment j and/or the interaction timet. Moreover,u is inde-
pendent of the ions’ motional state. This means that
phase remains the same even if we start with a mixed ex
nal state, described by a density matrix

rT~ t0![
e2H(t0)/kBT

Z
'~12g!6

^

i 51

6

(
ni51

`

gniuni& i^ni u,

~5.4!

corresponding to a thermal distribution at temperatureT.
Here the canonical partition functionZ[tr$e2H(t0)/kBT%, g
[exp(2\v/kBT), $ni% i 51,•••,6[$nx ,ny ,nz ,NX ,NY ,NZ%, and
the uN&X,Y,Z (un&x,y,z) are the eigenstates ofHR

0 (Hr
0) along

each direction. To optimize the gate fidelity~see Sec. II!, we
need one thing more—that the external degrees of freed
are not entangled with the internal ones after gate operat
i.e., that the final motional state does not depend on the l
cal states of the qubits. This indeed happens, under the a
batic assumption~i! of Sec. IV. In fact, in this case, the
overlapO $ni %(t,t0) between the initial and final spatial wave
functions for a system starting in a motional eigenstate al
all degrees of freedom, defined by Eq.~B14!, is close to 1.
To be more precise,O $ni %(t,t0) formally depends on the mo
tional state; however, if the adiabatic condition is satisfi
andutu,ut0u are large enough,O $ni %(t,t0) tends exponentially
to 1, as can be seen from Eqs.~B15a! and ~B15b!.
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B. Including higher-order terms

We will now take into account the contribution ofH1.
This does not affect the center-of-mass motion. Theref
from now on we will study only the relative motion. A little
care is needed since, unlike in the most common tim
dependent perturbation theory, in our case the unpertu
Hamiltonian depends on time, while the perturbation do
not. The calculation is carried out in Appendix B 3. In th
adiabatic limit and forutu,ut0u.t, first-order corrections sim
ply amount to a relatively small additional phase shift:

^U~ t,t0!&'^U0~ t,t0!&ei (Dab1D8). ~5.5!

Thus, to this order,

wab'fab1Dab1D8. ~5.6!

Hence we findq5u1du1o@(av /d)6#, where

du58
av

2

d2
ucl@A2j213~2nx2ny2nz!#, ~5.7!

and it is understood that we started from a pure state w
nx,y,z excitations along the various directions of the relat
motion. As already anticipated, Eq.~5.7! has the same struc
ture as the classical correction to the phase expressed b
~4.15!, except for a different overall factor related to th
dimensionality of the problem we are now considering.
deed, the first term in square brackets comes from the hig
multipoles (k53) in H1, while the second one is due to th
thermal excitations.

C. Numerical computation

In order to check the validity of the perturbative expre
sion Eq. ~5.7!, we solved the Schro¨dinger equation for the
relative motion numerically, taking into account cubic a
quartic interaction terms, explicitly given by Eqs.~A6a! and
~A6b! respectively. The calculation is described in Append
B 5, and results are shown in Fig. 5. In particular we find t

FIG. 5. Gate phaseq/p ~circles!, and projection of the initial
motional ground state over the evolved one for ions in sta
u0&1u1&2 ~stars!, as induced by the external forceF(t) ~dashed line!.
The results of the numerical calculation, performed with the para
eters quoted in the text including corrections up too„(av)5

…, are
shown. Solid lines are analytical results in the harmonic appro
mation of Sec. V A.
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the cubic corrections cancel each other, and that the qu
corrections have the same order of magnitude as predicte
Eq. ~5.7!. From Eq.~5.2! we obtainu5p with v52p31
MHz, x̄22 x̄1520 mm, j50.7, andt541.1069ms. These
results were confirmed by a numerical computation includ
up to 40 initial excitations in each direction, always givin
unity overlap of the final motional state with the initial on
Indeed, witht52t05150 ms, even starting, e.g., with th
(104)th oscillator excited state, Eq.~B14! still predicts
O(t,t0).1210210. With these parameters, the perturbati
estimate derived within the classical model in Sec. IV tur
out to beucl'1.04p.

D. Gate fidelity

The gate phaseq cannot be measured directly, since t
higher-order corrections arising from the Coulomb poten
depend both on the internal and on the motional state of e
ion, and cannot be undone by means of single-qubit op
tions, unless the logical state is measured. However, the
rections of orderk have a simple internal-state dependence
the kind (a2b)k, as shown by Eq.~B22a!. This implies that
it is possible to obtain a cancellation of the odd-order c
rections, by applying ap pulseR[u0&^1u1u1&^0u to both
qubits in the middle of gate operation. Indeed, ifU is the
evolution operator giving the dynamics described in the p
vious sections, we find

u0&u0&→
RU

eiw00
u1&u1&→

RU

ei (w001w11)u0&u0&,

u0&u1&→eiw01
u1&u0&→ei (w011w10)u0&u1&,

~5.8!
u1&u0&→eiw10

u0&u1&→ei (w101w01)u1&u0&,

u1&u1&→eiw11
u0&u0&→ei (w111w00)u1&u1&.

Here an adiabatic approximation is understood, accordin
which the final and initial motional states are identical. W
now define

Du[du2^^du&& ~5.9!

~as before,̂ ^•&& denotes the thermal average!, and the gate
operator

G[S~RU!2, ~5.10!

where

S[u0&^0ue22i j2F(v)1u1&^1ue2 i [2j2F(vA11e)2^^du&&] .
~5.11!

If we choose the gate operation timet in such a way that

p5
!

4j2@F~v!2F~vA11e!#22^^du&&, ~5.12!

we obtain

s

-

i-
4-7
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u0&u0&→
G

eiQu0&u0&,

u0&u1&→e2 iDueiQu0&u1&,
~5.13!

u1&u0&→e2 iDueiQu1&u0&,

u1&u1&→eipeiQu1&u1&.

The global~thus irrelevant! phaseQ is given in Appendix
B 6. Note that the single-qubit rotationS is the same for both
qubits, and therefore single-ion addressability is not requi
The fidelity of the gate operation is defined by comparing
ideal gate operation Eq.~2.1! with the actual dynamics ob
tained in our scheme, Eq.~5.13!, at a given temperatureT for
the motion in all three dimensions. The result, derived
Appendix B 6, is

F~T!'1263S uclkBT

\v D 2S av

d D 4

. ~5.14!

The fidelity turns out to be independent oft and j which,
subject to the conditionsvt@1 and j;1, can be freely
chosen to obtain the desired gate phase. The dependen
the fidelity on the various parameters is the same as in
classical model discussed in the previous section. As alre
anticipated in the previous section, the intermediatep pulse
R allows us to get rid of theo„(av /d)2

… term, thus obtaining
a much better gate performance. Indeed, the only differe
between the corrected classical fidelityFcl8 and the quantum
fidelity F is the numerical prefactor multiplying th
temperature-dependent part, which is bigger in the latter c
due to the inclusion of all the spatial degrees of freedo
whereas our classical model was just one dimensional. A
way, with the parameters quoted above, at temperatures
low 2 mK, corresponding to an average number of harmo
oscillator excitationsn̄;6, the fidelity turns out to be bigge
than 121026. We can also evaluate how the fidelity scal
when the gate is repeatedly applied, sayg times. It is clear
from Eq. ~5.13! that in this case, apart again from an over
phase,

u0&u0&→
Gg

u0&u0&,

u0&u1&→e2 igDuu0&u1&,
~5.15!

u1&u0&→e2 igDuu1&u0&,

u1&u1&→~21!gu1&u1&.

The excitation-dependent phaseDu is just multiplied byg.
Thus, under the same approximations as above, the fid
of the g-fold gate operation is

F (g)~T!512g2@12F~T!#, ~5.16!

i.e., it scales with the square of the number of gates.
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E. One-dimensional calculation for many ions

We now assume we haveN ions, trapped in a linear arra
of equally spaced traps, i.e., we take

r̄ j[~ x̄ j ,ȳ j ,z̄j !5 j d ~5.17!

in Eq. ~3.2a!. Expanding the interaction HamiltonianHi j ,
Eq. ~3.2b!, in powers of ther i and r j , and neglecting terms
of o„(av /d)3

…, we find

H'
mv2

2 H (
i 51

N Fv i
2

v2
~xi2 x̃i !

21yi
21zi

22« i

22avF~ t !u1& i^1u~xi1 x̄i !G1e(
i , j

N
xixj

u i 2 j u3J ,

~5.18!

where the various quantities are defined in Appendix B
Equation~5.18! describes a set of independent forced h
monic oscillators, like the ones we solve in Appendix B
plus a coupling term multiplied bye. If e!1, we can treat
this term as a small perturbation, in the very same way
develop in Appendix B 3. We take as initial state

uCN~ t0!&5)
i 51

N

uni& i ua i& i , ~5.19!

wherea i denotes the internal state of thei th ion andni its
motional state in the well corresponding to thei th term of the
first sum on the right-hand side of Eq.~5.18!. We obtain

uCN~ t !&'
1

2)i 51

N S eifa i)
j 5” i

eifa ia j D uCN~ t0!&, ~5.20!

where ~calculating the two-particle phasesfa ia j perturba-
tively!

fa i'a i
2j2F~v i !1a iApvtj x̄i /av

2@nx,iv i1~ny,i1nz,i !v#~ t2t0!, ~5.21a!

fa ia j'eE
t0

t

^CN~ t0!uU0~ t,t8!
xixj

u i 2 j u3
U0~ t8,t0!uCN~ t0!&dt8

5Ap

8

a ia j

u i 2 j u3

j2evt

~11eh i !~11eh j !
'

a ia j

u i 2 j u3
ucl ,

~5.21b!

the last line following frome!1 and Eq.~B40!. Again, the
result to this order turns out to be independent of the m
tional state of any one of the ions. In the case of two io
Eq. ~5.21b! gives back Eq.~4.13!.

VI. CONCLUSIONS

We analyzed in detail a recent proposal@7# for scalable
quantum computation with ions in an array of microtrap
4-8
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This scheme has important advantages over the previous
posal@9#, based on trapped ions as well. In that case m
ions, lying in a single trap minimum, exchange informati
via collective motional excitations; ground-state cooling
an absolute need, and any perturbation on each ion can a
the performance of the whole system. Here, instead, each
is confined to a single minimum of a periodic microscop
potential, and interacts with other ions via the Coulom
force. Under the conditions discussed in the text~adiabaticity
of the trap displacement, strong confinement with respec
the distance between ions, intermediate symmetrizingp
pulse!, the phase shift is insensitive, to a high accuracy,
the motional state of each ion inside each trap, and there
the fidelity turns out to be essentially independent of te
perature. Moreover, trapping frequencies can be much hig
than in the previous case, leading to much shorter gate
eration times. As long as we take into account purely m
tional decoherence mechanisms, we find a fidelity big
than 121026 for a two-qubit phase gate operating on a tim
scale of a few tens of microseconds. Furthermore, with
improved scheme presented here, single-qubit addressa
is not required for any of the various control operations.
sum up, the present proposal constitutes a really good ca
date for a scalable implementation of a quantum comput
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APPENDIX A: CLASSICAL CALCULATION

In this appendix we give a detailed account of the cal
lations leading to the results obtained in the classical mo
for our two-qubit phase gate.

1. Rewriting the Hamiltonian

In this section we give the explicit form of the variou
terms in Eqs.~3.5a! and ~3.5b!, describing the Hamiltonian
Eq. ~3.1! for two ions, in the center-of-mass and relati
motion coordinate systems. The Hamiltonian, with the nu
ber of ionsN52, may be rewritten asH5HR1Hr , where

HR5
P2

2M
1

1

2
Mv2R22F~ t !•~R1R0!, ~A1a!

Hr5
p2

2m
1

1

2
mv2~r1d2d0!22f~ t !•~r1d!1

l

ur1du
,

~A1b!

and

R[~X,Y,Z![
r11r2

2
2R0 , ~A2a!

r[~x,y,z![r22r12d, ~A2b!
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R0[
r̄11 r̄2

2
, d0[u r̄22 r̄1u5~d0,0,0!, ~A2c!

P[p11p2 , p[
p22p1

2
, ~A2d!

F~ t ![F1~ t !1F2~ t !, f~ t ![
F2~ t !2F1~ t !

2
, ~A2e!

Mx[2m, m[
m

2
, l[

qe
2

4p«0
. ~A2f!

In the above,d[(d,0,0) is the equilibrium separation be
tween the two particles in the absence of the pushing fo
Due to the repulsive Coulomb interaction,udu[d will be
bigger than the distanced0 between the centers of the tw
bare harmonic traps, defined in Eq.~A2c!. The correction
dx[d2d0 is the solution of the equation

05
]

]x S 1

2
mv2x21

l

ux1d0u D5mv2x2
l

~x1d0!2
~A3!

~assumingd01x.0), and can be written as

dx5
4d0

3
sinh2H 1

6
ln@h111Ah~h12!#J ~A4!

with h[l/@2mv2(d0/3)3#. Expanding to first order ine, we
find dx'ed0/2. Taking into account that, if the traps a
sufficiently far apart, the relevant coordinate range isx2
.x1, one obtains the multipole expansion

l

ur1du
'

l

d F12
x

d
1

x2

d2
2

1

2

y2

d2
2

1

2

z2

d2
1 (

k53

`
Pk~x,y,z!

dk G ,

~A5!

where each of the multipole termsPk is a polynomial ofkth
degree inx, y, andz; for instance,

P3~x,y,z!52xFx22
3

2
~y21z2!G , ~A6a!

P4~x,y,z!5x423x2~y21z2!1
3

8
~y21z2!2. ~A6b!

By virtue of Eq. ~A3!, the linear term in the expansion Eq
~A5! cancels exactly with the one arising from the harmo
potentialmv2(r1d2d0)2/2 in Eq.~A1b!. We define the un-
perturbed Hamiltonians

HR
0[

P2

2M
1

1

2
Mv2R2, Hr

0[Hx1H' , ~A7!

where

Hx[
px

2

2m
1

1

2
mn2x2, ~A8a!
4-9
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H'[
py

21pz
2

2m
1

1

2
mn'

2 ~y21z2!; ~A8b!

the higher-multipole contribution

H1[
l

d (
k53

`
Pk~x,y,z!

dk
; ~A9!

the force terms

F~ t !5
\v

av
~P̂11P̂2!F~ t !, f ~ t !5

\v

av

P̂22P̂1

2
F~ t !,

~A10!

whereP̂ i
a is the projector onto the internal statea of particle

i,

P̂1[u1&1^1u ^ 12 , P̂2[11^ u1&2^1u; ~A11!

the rescaled frequencies

n[vA11e, n'[vA12e/2; ~A12!

and the shifted coordinate and energy scales

X0[R0•~1,0,0!, E0[
l

d
1

1

2
mv2dx2. ~A13!

Shifting the coordinate system byR02d and the energy
scale byE0, we finally obtain Eqs.~3.5a! and ~3.5b!.

2. Fidelity

The goal of this section is to show the derivation of t
analytical temperature dependence of the fidelity, Eq.~4.19!.
We begin by writing the two-particle phase as

wcl
ab2^^wcl

ab&&5dab@~21!bk11#«1o„~aṽ /d!3
…,
~A14!

where

k[
d

A2jaṽ

, ~A15a!

«5
3ucl

\ṽ
S aṽ

d D 2

$E11E222AE1E2 cos@ṽ~ t12t2!#22kBT%.

~A15b!

We define

J~a,b![ z^xcl8 uxcl~ t !& z2

52~a$12cos@~k21!«#%2b cos@~k21!«#!

3~a1b21!1~b21!21b@b12a cos~2k«!#,

~A16!
06230
wherea[uc01u2, b[uc10u2, and the normalization ofuxcl&, in
the form 15(a,bucabu2, has been taken into account. Fro
Eq. ~4.18! it follows that

Fcl5min
$a,b%

^^J~a,b!&&5^^min
$a,b

%J~a,b!&&, ~A17!

which is a constrained minimization problem, with co
straints 0<a<1, 0<b<1. The solution cannot be found b
simply equating the partial derivatives ofJ(a,b) to zero,
since—as will be seen at the end of this section—the m
mum turns out to be located at the border of the region
allowed parameters. Therefore we must take a closer loo
the problem to find the analytical solution. To this end, w
evaluate

]aJ~a,b!522«2~k21!2S b
k11

k21
1

1

2
2aD1o„«4

…,

~A18a!

]bJ~a,b!522«2~k11!2S a
k21

k11
1

1

2
2bD1o„«4

….

~A18b!

While looking for the minimum, we will neglecto„«4
…

}(av /d)8; then, to evaluate it, we will use the exact form
J(a,b). According to Eq.~A18a!, in the region of the pa-
rameter plane defined by the condition

b<S a2
1

2D k21

k11
, ~A19!

]bJ(a,b)<22k(k11),0. Sincek.1, the inequality Eq.
~A19! also impliesb,1/2. Therefore the minimum must b
found outside the region defined by Eq.~A19!, i.e., for

a,b
k11

k21
1

1

2
. ~A20!

The latter, by Eq.~A18b!, implies ]aJ(a,b),0. Summing
up, the minimum is reached for the values (a0 ,b0) of the
parameters, where

a051,
1

2

k21

k11
,b0<1. ~A21!

The problem is therefore reduced to a one-dimensional c
strained minimization: We have to study the equation

05]bJ~a0 ,b!

52~cos~2k«!2cos@~k21!«#22b$cos@~k11!«#21%!,

~A22!

which has the solution

b̄[
1

2

sin@~3k21!«/2#

sin@~k11!«/2#
. ~A23!

Since the constraintb0<1 has to be fulfilled, we obtainb0

5min$b̄,1%. Indeed, it isb̄<1 only for «> f k(«), where
4-10
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f k~«![2 arcsinFsin~3k«/2!22 sin~k«!

A514 cos~2k«!
G . ~A24!

Hence, too„(av /d)4
…,

Fcl'H 1

2
$11^^cos@~3k21!«#&&%, «> f k~«!

124^^cos~k«!@cos~«!2cos~k«!#&& otherwise.
~A25!

Now, f k8(0)5k/3.1 ~the inequality following from av

!d). Hence for smallT—such that ^^«&&!1, i.e., kBT
!\v(d/av)2—we have«, f k(«) and the form ofFcl is
given by the second row on the right-hand side of Eq.~A25!,
which we can expand in a Taylor series aroundT50, taking
the thermal average to finally obtain Eq.~4.18!. When k
50, i.e., the third-order anharmonic correction is suppress

J~a,b!uk505112~a1b21!~a1b!@12cos~«!#.
~A26!

The function to be minimized depends now only on the s
a1b. Therefore the minimum can be searched for by fixi
one of the two parameters and varying only the other o
We can choosea051 as before, and minimize Eq.~A26!
with respect tob. Equation~A25! gives the solution in this
case also. In particular, sincef k50(«)[0,«;«, the analyti-
cal expression for the fidelity is now given by the first ro
on the right-hand side of Eq.~A25!, which fork50 becomes
simply

Fcl8[Fcluk50'
1

2
@11^^cos~«!&&#. ~A27!

The same procedure can also be used for the minimiza
over the possible internal states in the quantum case, a
done in Appendix B 6. By expanding Eq.~A27! to lowest
nonzero order in powers ofav /d, we finally obtain Eq.
~4.19!.

APPENDIX B: QUANTUM CALCULATION

In this appendix we compute both analytically and n
merically the evolution of the two-ion system, evaluate t
resulting phase shifts, and derive an accurate expressio
the fidelity, giving also the explicit expression of some qua
tities used in the text.

1. Undoing single-particle phases

In this section we show how to get rid of the spurio
phases accumulated during gate operation, in order to be
with the gate phase Eq.~2.8!. In the ideal case where th
external degrees of freedom factorize out at the end of
computation, the evolution operator Eq.~2.7! induces both
two-particle conditional phases and single-particle kine
phases, depending on each ion’s external state. When
06230
d,

e.

n
is

-
e
for
-

eft

e

c
oth

particles are in their external ground state, we can undo
kinetic phases and other inessential phases through singl
operations of the form

Sj5e2 iw j(
a

ua& j^aueisj
a
, ~B1!

wherew j has to be equal to the kinetic phase acquired a
the gate operation by particlej, and we choose

s1
052w00/2, s1

152w101s1
0 ;

~B2!
s2

05s1
0 , s2

152w011s1
0 .

Under these conditions, the compound operator

U~ t ![~S1^ S2!U~ t,t0! ~B3!

implements the transformation Eq.~2.1!, with q given by
Eq. ~2.8!.

2. Unperturbed solution

As explained in the text, since we assumed@av we can
treat the higher-multipole termH1 as a small perturbation
with respect to the rest of the Hamiltonian. In this section
solve the unperturbed problem exactly, i.e., we calculate
time-dependent evolution dictated byH(t)2H1. So we want
to solve the Schro¨dinger equation

i\uĊ~ t !&5@HR~ t !1Hr
0~ t !2f~ t !•~r1d!#uC~ t !&,

~B4!

with the initial condition

uC~ t0!&[ucR~ t0!&Ruc r~ t0!& r ua&1ub&2 . ~B5!

The subscriptR(r ) denotes the center-of-mass~relative! mo-
tion, as defined in Appendix A 1. The solution is@10#

ucR~ t !&R5e2 iH R
0(t2t0)/\expS iX0E

t0

t

F~ t8!dt8/\ D
3expF2E

t0

t

dsKR~s,t0!
dKR* ~s,t0!

ds G
3e2 iK R(t,t0)âR

†
e2 iK R* (t,t0)âRucR~ t0!&R ,

~B6a!

uc r~ t !& r5e2 iH r
0(t2t0)/\expS idE

t0

t

f ~ t8!dt8/\ D
3expF2E

t0

t

dsKr~s,t0!
dKr* ~s,t0!

ds G
3e2 iK r (t,t0)âr

†
e2 iK r* (t,t0)âruc r~ t0!& r , ~B6b!

whereâR (âr) is the annihilation operator for thex compo-
nent of the center-of-mass~relative! motion, and
4-11
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KR~ t,t0![
1

A2M\v
E

t0

t

dt8F~ t8!eiv(t82t0), ~B7a!

Kr~ t,t0![
1

A2m\n
E

t0

t

dt8 f ~ t8!ein(t82t0). ~B7b!

Now the explicit form of the force term, Eq.~4.9!, can be
inserted into Eqs.~B7a! and ~B7b! through Eq.~A13!, to
yield

KR~ t,t0!5~P̂11P̂2!K~v,t,t0!, ~B8a!

Kr~ t,t0!5~P̂22P̂1!K~n,t,t0!, ~B8b!

where

K~v,t,t0![
Ap

4
vtje2(vt/2)2I ~v,t8!u t0

t , ~B9a!

I ~v,t ![ErfS t

t
2

ivt

2 D . ~B9b!

We take as initial state

ucR~ t0!&R[uN&R[uNX&XuNY&YuNZ&Z , ~B10a!

uc r~ t0!& r[un& r[unx&xuny&yunz&z . ~B10b!

During time evolution, the two ions will acquire a stat
dependent phase shift

^C~ t !uC~ t0!&[ z^C~ t !uC~ t0!& zeifab
, ~B11!

which turns out to be given by

fab5fR
ab1f r

ab , ~B12a!

fR
ab'~a1b!2j2F~v!1~a1b!ApvtjX0 /av

2~NX1NY1NZ!v~ t2t0!, ~B12b!

f r
ab'~a2b!2j2F~n!2~a2b!Apvtjd/av

2@nxn1~ny1nz!n'#~ t2t0!, ~B12c!

F~v![2pv2t
A2

8C
D~ t8!u t0

t e(B/C)22(vt/2)2, ~B12d!

with

A[Im@ I ~v,t0!#2 i I * ~v,0!,

B[v Re@ I ~v,t0!#,

C[2AA2S v2

2
1

1

t2D 2
Av

Apt
e(vt/2)21

B2

4
,

D~ t ![ErfS B

C
1

C

2A
t D . ~B13!
06230
The equality in Eqs.~B12b! and~B12c! is approximate since
the integrals in the exponent of Eqs.~B6a! and ~B6b! have
been evaluated by means of a saddle-point approximat
giving a very good agreement~relative difference less than
1025 with typical parameters as used here! with the exact
result, which cannot be evaluated analytically. Finally, fro
Eqs.~B6a! and ~B6b! we obtain

O $ni %~ t,t0![ z^C~ t !uC~ t0!& z5O R
$ni %O r

$ni % , ~B14!

where

O R
$ni %5M ~2NX,1,uKR~ t,t0!u2!e2uKR(t,t0)u2/2, ~B15a!

O r
$ni %5M ~2nx,1,uKr~ t,t0!u2!e2uKr (t,t0)u2/2, ~B15b!

andM (a,b,z) is the confluent hypergeometric function.

3. First-order perturbation theory

Now we want to evaluate the lowest-order corrections t
appear when the higher-multipole contributions in t
Hamiltonian are taken into account. Following@10#, we ex-
pand the evolution operator as

U~ t,t0!5U0~ t,t0!1(
j 51

`

U j~ t,t0!, ~B16!

whereU0(t,t0) is the operator of the unperturbed evolutio
already calculated in Appendix B 2, and

U j~ t,t0![
1

~ i\! jEt0

t

dtjE
t0

t j
dtj 21•••E

t0

t2
dt1U0~ t,t j !

3H1U0~ t j ,t j 21!H1U0~ t j 21 ,t j 22!•••U0~ t2 ,t1!

3H1U0~ t1 ,t0!. ~B17!

We are interested in evaluating the diagonal matrix eleme
^C(t0)uU(t,t0)uC(t0)& to first order, according to Eq
~B16!. Since^U0(t,t0)& is given by Eq.~B11!, we just need
to compute

^U1~ t,t0!&5
1

i\Et0

t

dt8O 1
ab~ t,t8,t0!ei [fr

ab(t,t8)1fr
ab(t8,t0)]

5
eifr

ab(t,t0)

i\ E
t0

t

dt8O 1
ab~ t,t8,t0! ~B18!

where the unperturbed phase factorizes, since~as shown in
Sec. V A! it does not depend on the initial state, and we ha
defined

O 1
ab~ t,t8,t0![ z^C~ t0!uU0~ t,t8!H1U0~ t8,t0!uC~ t0!& z.

~B19!

The exact result, given by Eqs.~B6a! and ~B6b!, cannot be
integrated analytically over time. Instead we adopt the ad
batic approximation, i.e., we assume that the condition~i! of
Sec. IV is satisfied. The Hamiltonian then changes slow
4-12
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enough so that the system, being in a motional eigensta
t5t0, follows the changes, being in the corresponding eig
state at every subsequent timet. This means in our case tha
if t0,0, t.0, and their absolute values are large enough,
will have uC(t)&'uC(t0)&. The relative motion wave func
tion of the evolved state is then

z^c r~ t0!uU0~ t,t8!ur & z' z^r uU0~ t8,t0!uc r~ t0!& z

'cnx
„x2 f ~ t !/mn2

…cny
~y!cnz

~z!,

~B20!

where, e.g.,cnx
(x)[^xunx&xPR. Finally we obtain

^U1~ t,t0!&' ieifr
ab

~Dab1D8!, ~B21!

where

Dab[2
Apt

\

l

d (
k53

` Fan

d
j̃~a2b!Gk

dk , ~B22a!

D8[2
t2t0

\

l

d (
k53

` S an

d D k

dk8 , ~B22b!

dk[
1

Apt~anj̃ !kEt0

t

dt8^nuF PkS x1
v2

n2
avF~ t !,y,zD

2Pk~x,y,z!G un& r , ~B22c!

dk8[
^nuPk~x,y,z!un& r

an
k

, ~B22d!

j̃[j
an

av

v

n
5

A2j

~12e!3/4
, an[A\/mn. ~B22e!

From Eqs.~B16! and ~B21! it follows that, to first order,

^U~ t,t0!&'^U0~ t,t0!1U1~ t,t0!&

5^U0~ t,t0!&F11 i
Dab1D8

u^U0~ t,t0!&uG , ~B23!

which is equivalent to Eq.~5.5!, given that uDab1D8u
5u^U1(t,t0)&u!u^U0(t,t0)&u'1. The internal-state-
independent partD8 cancels out when computing the ga
phase Eq.~2.8!, as well as the terms of oddk in Dab, due to
the summation over the internal states. The adimensio
quantitiesdk anddk8 do not depend either on the internal sta
or on time, but just on the relative motional state. We w
now calculate them fork53,4. To be precise, we should no
use the eigenstatesun& r of Hr

0 , as is done in Eq.~B22d!, but
rather those of the full HamiltonianHr . However, as we will
demonstrate in the next section, the corrections are
o„(av /d)3

… and therefore we will consistently not take the
into account in the present calculation. The relevant ma
elements are
06230
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^nuxun8&5
an

A2
~dn8,n21An1dn8,n11An11!, ~B24a!

^nux2un8&5
an

2

2
@dn8,n22An~n21!1dn8,n~2n11!

1dn8,n12A~n11!~n12!#, ~B24b!

^nux3un8&5
an

3

23/2
@dn8,n23An~n21!~n22!13dn8,n21n

13dn8,n11~n11!3/2

1dn8,n13A~n11!~n12!~n13!#, ~B24c!

^nux4un8&5
an

4

4
$dn8,n24An~n21!~n22!~n23!12dn8,n22

3~2n11!An~n21!13dn8,n@2n~n11!11#

12dn8,n12~2n13!A~n11!~n12!

1dn8,n14A~n11!~n12!~n13!~n14!%.

~B24d!

Hence

d352
1

A3
2

3

2j̃2
@2nx112 ñ~ny1nz11!#, ~B25a!

d45
1

2
1

3

A2j̃2
@2nx112 ñ~ny1nz11!#, ~B25b!

d3850, ~B25c!

d485
3

4
@2nx~nx11!11#2

3

2
ñ~2nx11!~ny1nz11!

1
3

16
ñ2@ny~3ny15!1nz~nz15!14~11nynz!#,

~B25d!

whereñ[n/n' .

4. Perturbative corrections to the eigenstates

Since in our case the perturbationH1 is static, its effect on
the initial eigenstates of the system must be taken into
count. In this section we show how to do that in secon
order perturbation theory. Our problem is to compute
eigenstates of the initial relative motion Hamiltonian

Hr~ t0!5Hr
01H15Hr

01eHr
1 , ~B26!

whereby the external force is vanishing at the initial tim
and
4-13



a

e

tio
n

o

of
for
m-
ys

ne.

f

T. CALARCO, J. I. CIRAC, AND P. ZOLLER PHYSICAL REVIEW A63 062304
Hr
1[

\v

2

d2

av
2 (

k53

`
Pk~x,y,z!

dk
. ~B27!

Therefore we make a perturbative expansion in the sm
parametere. So we write the eigenstates ofHr ~omitting
throughout this section the subscriptr! as

un~e!&5(
i 50

`

e i un( i )&, ~B28!

where the first terms are

un(1)&5 (
m5” n

^m(0)uHr
1un(0)&

En
(0)2Em

(0)
um(0)&, ~B29a!

un(2)&5 (
l,m5” n

^m(0)uHr
1u l(0)&^ l(0)uHr

1un(0)&

~En
(0)2Em

(0)!~En
(0)2El

(0)!
um(0)&,

~B29b!

andun(0)& are the eigenstates ofHr
0 , with eigenenergiesEn

(0) .
The kth term in Hr

1 gives a contribution of order;(\v/2)
3(av /d)k22. Since we want to neglect corrections of ord
o„(av /d)3

…, we need to go up tok54 in the expansion of
Hr

1 . But from Eqs.~A6a! and ~A6b! it is straightforward to
see that̂ m(0)uP3,4(x,y,z)un(0)& for m5” n. It follows that

un~e!&5un(0)&1o„~av /d!3
…, ~B30!

and therefore, as already anticipated in the previous sec
for the purpose of the present calculation we can consiste
use the eigenstates of the unperturbed HamiltonianHr

0 .

5. Numerical computation

The goal of this section is to transform the Schro¨dinger
equation for the two-particle wave function into a system
06230
ll

r

n,
tly

f

first-order differential equations for the time dependence
its projections over the initial eigenstates, better suitable
numerical handling. Since the problem has cylindrical sy
metry around thex axis, the transverse coordinates alwa
appear as powers ofr[Ay21z2. Thus the original three-
dimensional problem is equivalent to a two-dimensional o
We expand the wave function~omitting for simplicity the
subscriptr ) as

uc~ t !&5 (
n,l 50

`

cnl~ t !

3expH i

\ FdE
t0

t

f ~ t8!dt8

2\~nn1 ln'11!tG J unl&, ~B31!

where unl&[un&xu l &' ; the un&x(u l &') are the eigenstates o
Hx(H'). From Eq.~B4! it follows that

ċnl5
i

\ (
n8,l 850

`

cn8 l 8~ t !ei [(n2n8)n1( l 2 l 8)n'] t

3^nlu@ f ~ t !x2H1#un8l 8&

5
i

\ F an

A2
f ~ t !~Aneintcn21,l1An11e2 intcn11,l !

1
l

d (
k53

` S an

A2d
D k

Cnl
(k)G , ~B32!

where the coefficientsCnl
(k) correspond to thekth term in Eq.

~A9!; in particular,
Cnl
(3)5An~n21!~n22!ei3ntcn23,l13n3/2eintcn21,l13~n11!3/2e2 intcn11,l1A~n11!~n12!~n13!e2 i3ntcn13,l

2
3ñ

2
@Anl~ l 21!ei (n12n')tcn21,l 221An~ l 11!~ l 12!ei (n22n')tcn21,l 121~2l 11!~Aneintcn21,l

1An11e2 intcn11,l !1A~n11!l ~ l 21!e2 i (n22n')tcn11,l 221A~n11!~ l 11!~ l 12!e2 i (n12n')tcn11,l 12#,

~B33a!

Cnl
(4)52An~n21!~n22!~n23!e4intcn24,l1An~n21!e2int$3ñ@Al ~ l 21!e2in'tcn22,l 221A~ l 11!~ l 12!e22in'tcn22,l 12

1~2l 11!cn22,l #22~2n21!cn22,l%2
3ñ2

8
Al ~ l 21!~ l 22!~ l 23!e4in'tcn,l 2413ñAl ~ l 21!

3F ~2n11!2
ñ

4
~2l 21!Ge2in'tcn,l 222H 9ñ2

8
@2l ~ l 11!11#23ñ~2n11!~2l 11!13@2n~n11!11#J cnl

2
3

4
ñA~ l 11!~ l 12!@ ñ~2l 13!24~2n11!#e22in'tcn,l 122

3ñ2

8
A~ l 11!~ l 12!~ l 13!~ l 14!e24in'tcn,l 14
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1A~n11!~n12!e22int$3ñ@~2l 11!cn12,l1A~ l 11!~ l 12!e22in'tcn12,l 12Al ~ l 21!e2in'tcn12,l 22#22~2n13!cn12,l%

2A~n11!~n12!~n13!~n14!e24intcn14,l . ~B33b!
t

tio
a

o

a

to

ia
un

la-

d

r

a-

-

Excitations higher than a certain level should be absen
long as we are in an adiabatic regime. Thus in Eq.~B32! we
neglect the coefficients above a certainN. We have checked
that the result is independent of the cutoff.

6. Fidelity

The goal of this section is to evaluate the gate opera
fidelity in the full three-dimensional quantum-mechanic
framework. The overall phaseQ appearing in Eq.~5.13! can
be computed from Eqs.~B12a!–~B12d! and~B22a!–~B22d!,
as

Q'2vHApjt
X0

av
2F(

i 51

6

ni1e(
k53

` S av

d D k

dk8G ~ t2t0!J ,

~B34!

whered48 is defined in Eq.~B25d!, and it has been taken int
account thate!1. In the ideal case, according to Eq.~2.1!
for q5p, the gate operation transforms the initial intern
stateux& into

ux8&5 (
a,b50

1

~21!abcabua&1ub&2 . ~B35!

In a more realistic situation the initial total density opera
sT at a temperatureT is given by

sT5rT~ t0! ^ ux&^xu, ~B36!

whererT(t0) is defined in Eq.~5.4!, and we recall thatv
'n'n' . After the gate operation we have

sT85 (
a,b,a8,b8

cabca8b8
* Gab rT~ t0!Ga8b8

† ua&1

3^a8u ^ ub&2^b8u, ~B37!

whereGab[^abuGuab&, and the gate operatorG is defined
in Eq. ~5.13!. As already stated in Sec. V A, because of ad
baticity, the motional state after the gate operation is
changed, i.e.,GabrT(t0)Ga8b8

† 'rT(t0). If u5p, the mini-
mum fidelity F(T), given by Eq.~2.5!, is

F~T!5 min
$cab%

~12g!6)
i 51

6

(
ni51

`

gni^ni u@~ uc00u21uc11u2!2

12~ uc00u21uc11u2!~ uc01u21uc10u2!cos~Du!

1~ uc01u21uc10u2!2#uni&
06230
as

n
l

l

r

-
-

5
~12g!3

2 )
i 51

3

(
ni51

`

gni^ni u@11cos~Du!#uni&

'12
63ucl

2

~11e5!~12e2/4!
S av

d D 4 e2\n/kBT

~12e2\n/kBT!2
,

~B38!

where the minimization over the coefficients$cab% has been
carried out exactly as in Appendix A 2. Here, only the re
tive motion comes into play becauseDu is independent of
the center-of-mass motion, and cos(Du) has been expande
up to o(Du3). Hence Eq.~5.14! follows, by taking into ac-
count thate!1 anducl'u5p, and expanding in a Taylo
series for\v!kBT.

7. Many-ion calculation

In this section we simply give the definitions of the p
rameters appearing in Eq.~5.18!:

« i[
v i

2

v2
x̃i

22
e

2
d2Hn2 i , ~B39a!

v i[vA11eh i , x̃i[
d

2

eh i8

11eh i
, ~B39b!

h i[
1

2 (
j 51

N
12d i j

u i 2 j u3
5

1

4
@c (2)~ i !1c (2)~N112 i !1z~3!#,

~B39c!

h i8[
1

2 (
j 51

N
i 2 j

u i 2 j u3
5

1

2
@c (1)~N112 i !2c (1)~ i !#,

~B39d!

whereHk is the harmonic number andc (k)(z) the polyga-
mma function of orderk, andz(s) the Riemann zeta func
tion. It is

max
i ,n

uh i u5z~3!'1.2, max
i ,n

uh i8u5
p2

12
'0.82. ~B40!
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