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Bell inequalities for entangled kaons and their unitary time evolution
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We investigate Bell inequalities for neutral kaon systems fibnresonance decay to test local realism
versus quantum mechanics. We emphasize the unitary time evolution of the states, which means we also
include all decay product states, in contrast to other authors. Only this guarantees the use of the complete
Hilbert space. We develop a general formalism for Bell inequalities including both arbitrary “quasispin” states
and different times; finally, we analyze Wigner-type inequalities. They contain an additional term, a correction
functionh, as compared to the spin 1/2 or photon case, which changes considerably the possibility of quantum
mechanics to violate the Bell inequality. Examples for special “quasispin” states are given, especially those
that are sensitive to th€ P parameterg ande’.
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[. INTRODUCTION Frascati. The nonseparability of the neutral kaon system—
B created inpp collisions—has been analyzed by the authors
Schradinger in 1934 1] pointed to the peculiar features of [27_29
what he called entangled statgserschrankte Zustade” in
his original word$. It was Einstein, Podolsky, and Rosen
(EPR who, in their famous papdg], tried to show the in-
completeness of quantum mechani@M) by considering a
guantum system of two particles. Also, Furf$] empha-
sized, inspired by EPR and Schlinger, the differences be-

Similar systems are the entangIB8B® pairs produced at
theY (49 resonancésee, e.g., Ref$30—-35), which we do
not consider here.

Specific realistic theories have been constru¢8si-39,

which describe the(ofopairs, as tests versus quantum me-

tween the predictions of QM of nonfactorizable systems an&hanlcs: Howeye;r, the general test (.)f QM versus LRT r'elles
models with spontaneous factorization. on Bell inequalitiegBI), where the different kaon detection

Much later, in 1964, this subject was brought up again b>}imes play the role of the different angles in the photon or
John S. Bell[4] who reanalyzed the “EPR paradox.” He spin-1/2 case. On the other hand, the free choice of the kaon

discovered, via an inequality, that the predictions of QM.&Z?:' tiplr}eastt?folfskgl)sr?s?sf tgor—fﬁ;tc-gﬁ Zg;thri;r;:(;e.tan
differ from those of(all) local realistic theorieLRT); in- : stng 4 : vioiatl : )|

. ) . «o..yturns out that Bell inequalities imply bounds on the physical
gquahﬂg; of this type are now named, quite generally, BeIICP violation parameters ande’. In this connection also, a
Inelctll]lgllct;]zsﬁonlocalit the “spooky action at a distance.” bound on the degree of decoherence of the wave function can

o X o POOKY . ' ' be found[39], which turns out to be very strong for a dis-
which is the basic feature of quantum physics and is so COM: - ction of QM versus LRT
trary to our intuition, or more precise, the nonlocal correla- The important differencé of the kaon systems as com-
gﬁgstgiﬁgeel?amﬁrzp::g#y feerﬁga?ted EPR pair, which Occupgared to photons is their decay. Focusing, therefore, just on
q g : some particular “quasispin” states and not accounting for

theMZrz]i);s?seeantgm eép;grgeg]t)sbhavsnbe?hne Cear:trzlaend |Zl£e?q\€eEhe decay states restricts the investigation to a subset of the
y €, €.9., - y .u Ing the entangiem total Hilbert space and will limit the validity of the physical
of the polarization of two photons; all confirm impressively theories

ity, so it cannot )l/)e used for superluminal communication arbitrary ‘'quasispin” states and we emphasize the impor-
Y, P tance of includingall decay product states into the BI, in

nevertheless, itis the basis for such physics as guantum CWYRontrast to other authors, so we use a unitary time evolution.

quraphg[9t—12t]1 ar|1d quant#m _telepotrtatu_)[nfl3,1i]ﬁérllfa|t Only this guarantees the use of the complete Hilbert space. It
riggered a technology such as: guantum inform ' may very well happen that in a particular subspace, QM

Of course, it is of great interest to test the EPR-Bell cor- ;- o< indeed the BI for certain times-0 , and thus, con-
relations also for massive systems in particle physics. Al

) tradicts with the assumptions of reality and locality, but in
ready in 1960, L.ee and Yar[g?] and several oth_eor a.uthors the total Hilbert space the violation will disappear. We show
[18—20 emphasized the EPR-like features ok 3K pair in

b3 cases where this will happen. Note that for entangled spin-
aJ'v=1"" state. Indeed, many authdi21-26 suggested 12 particles or photon systems, all operations are already
an investigation the<°K°pairs that are produced at tiie  defined on the total Hilbert space, since the photon does not
resonance—for instance in theg e -machine DAD NE at  decay and its polarization is conserved, whereas in the kaon
systems, strangeness is not conserved due to the weak inter-
actions.
*Email address: hies@thp.univie.ac.at The paper is organized as follows. In Sec. Il we give an

1050-2947/2001/68)/06211211)/$20.00 63062112-1 ©2001 The American Physical Society



REINHOLD A. BERTLMANN AND BEATRIX C. HIESMAYR PHYSICAL REVIEW A 63 062112

introduction to neutral kaons and explain the “quasispin” CP violating parametess=¢, =¢). They are eigenstates of

picture. In Sec. Ill the unitary time evolution is worked out the non-Hermitian “effective mass” Hamiltonian

in detail and it is shown how one has to calculate the prob-

abilities in quantum mechanics. In Sec. IV we review briefly _ i

the Bell inequalities for spin-1/2 particles. Our main part is H=M- EF’ (2.6

contained in Sec. V, there we derive the generalized Bell

inequalities for entangled kaons and analyze three differergatisfying

examples that can be found in the literature. Section VI sum-

marizes our results and conclusions are drawn. Finally, some H[Ks)=NsiIKsL), 2.7

useful formulas can be found in the Appendix. with
II. NEUTRAL K MESONS i

Let us start with a discussion of the properties of the MsL=MsL—5lsL- 28

neutral kaons, which we need in the following. The neukral

mesons are characterized by their strangeness quantum num-Both mesonsk® and K° have transitions to common

berS states(due toCP violation) therefore they mix, that means

K% = +|K9) they oscillate betweel® andK® before decaying. Since the
' decaying states evolve—according to the Wigner-Weisskopf
SK®) = — [K). 2.0 approximation—exponentially in time

— aigt
As the K mesons are pseudoscalars, their paftis minus [Ksi(t)=e""stKs, ), 2.9

and charge conjugatiof transformsk® and K° into each
other so that we have for the combined transformatd?
(in our choice of phases

the subsequent time evolution f&° andK® is given by

B K1) =g (]KY)+ ~ g_ (1)K,
CPIK%=—|KY), P

CPIK®)=~[K). (2.2 |R°<t>>=§g_<t>|K°>+g+<t>|E°>, (2.10

From this, it follows that the orthogonal linear combinations

|K2>=%{IK°>—|?°>}, g.(t)=3[+e st e i, (2.1

Supposing that at=0, a K® beam is produced, e.g., by

o 1 o 150 strong interactions, then the probability for finding<d or
[K2)= E“K )KL (23 KO in the beam is calculated by
; 1

are eigenstates @ P |<K0|KO(t)>|2:Z{e—FSt+e—FLt_l_Ze—Ft cogAmb)},

CPIKD)=+[K1),
0y _ 0 0|10 2 1|al? Tty oIt ~Tt

CPIK3)=—|K3), (2.9 [(KOIKO(t))] =2 W{e s+e 'L'—2e " TcogAmt)},

a quantum number conserved in strong interactions. (212

Due to weak interactions, which a@P violating, the
kaons decay and the physical states, having the massd
m_, are the short- and long-lived states

with Am=m_ —mgandl'=%(I" +I's). TheK® beam oscil-
lates with frequencyAm/2, the oscillation being clearly
visible at times of the order of a fews, before allKg have
1 0 — died out, leaving only th&<, in the beam. So, in_a beam
[Ke)= " {PIK?)—alKkD)}, which contains onlyK, mesons at the time=0, theK, will
appear far from the production source through its presence in
1 o — the K. meson with equal probability as_théo meson. A
(K= {pIK®) +alKO)}, (2.9 similar feature occurs when starting withk& beam.

In comparison with spin-1/2 particles, or with photons
with p=1+¢, q=1—¢, N2=|p|?2+]q|? ande being the having the polarization directions vertical and horizontal, it
complex CP violating parameter CPT invariance is as- is especially useful to work with the “quasispin” picture for
sumed; thus the short- and long-lived states contain the sank@ons introduced by Lee and Wd0] and Lipkin[20]. The
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two stategK?) and|K°) are regarded as the quasispin states

up |1y and down|{) and the operators acting in this qua-
sispin space are expressed by Pauli matrices. So the strange-
ness operatoB can be identified with the Pauli matrixs, with
the CP operator with (- o4) and CP violation is propor-

|K°>~a<t>|K°>+b(t)lK°>+Zcf<t)|f>, 3.0

tional to o,. In fact, the Hamiltonian2.6) can be written as q
o a(t)=g.(t) and b(t)= Bg,(t), (3.2
H=a-1+b-o, (2.13
with and the functiong..(t) are defined in Eq(2.11). Denoting
the amplitudes of the decays of th&,K" to a specific final
b;=bcosa, b,=bsina, b;=0, statef by
a=3(ALt\g), b=3(A\.—\g) (2.14 AKO—f)=A; and AK'—f)=A;, (3.3

(b3=0 due toCPT invariancé, and the phase is relatedto e have
the CP parameteg by
i, 1€

la

d 2 12
_ _ a|cf(t)| =|a(t)As+b(t) A2, (3.9
1+¢

(2.19

Now, what we are actually interested in are entangled”_‘nd for the probability of the decay(o—f at a certain

states olKOEOpairs, in analogy to the entangled spin-up and
spin-down pairs, or photon pairs. Such states are produced

- d
by e* e~ -machines through the reactiei e —®—K°K°, Pko_t(7)= fo &|Cf(t)|2dt- (3.9
in particular at DA® NE, or they are produced ipp colli-
sions such as, e.g., at LEAR. TherekK 2K pair is created in Since the statdk(t)) evolves according to a Schro

aJP¢=1"" quantum state, and thus, antisymmetric ur@er dinger equation with “effective mass” Hamiltonig@.6) the
and P, and is described at the timte=0 by the entangled decay amplitudes are related to thematrix by
state

1 _ _ F“:Z |-Af|21 szEf |-Zf|2 F12:§f: -A?-Zf
[9t=0))= (K [K) K3 Ky} 59

2.1
(219 These are the Bell-Steinberger unitarity relatipag]; they
which can be rewritten in th& K, -basis are a consequence of probability conservation, and play an
N important role.
SL For our purpose, the formalism used by Ghirardi, Grassi,
|'f/’(tzo)>zﬁ{|KS>'®|KL>f_|KL>'®|K5>f}' and Webelf42] is quite convenient, and we generalize it to
(2.17) arbitrary quasispin states. So we describe the complete evo-
lution of the mass eigenstates by a unitary operatfr,0)
with Ng, =N?/2pg. Then the neutral kaons fly apart and will whose effect can be written as
be detected on the left) and right(r) side of the source. Of A
course, during their propagation, th€°KC°oscillate and U(t,0)[Ks ) =e s Ks ) +|Qs (1), (3.7)
Kg,K_ decays will take place. This is an important differ-

ence to the case of spin-1/2 particles or photons. where|Qg (t)) denotes the state of all decay products. For

the transition amplitudes of the decay product states, we then

Ill. TIME EVOLUTION—UNITARITY have

Now let us discuss more closely the time evolution of the (Qg)]Qg(t))y=1-e" "5, (3.8
kaon state§41] . At any instant, the stat¢K(t)) decays to
a specific final statéf) with a probability proportional to the (QU]Q)y=1—e Y, (3.9
absolute squared of the transition-matrix element. Because of .
unitarity of the time evolution, the norm of the total state (QL()]Qg())=(K_ |Kg)(1—€e2Me I (3.10
must be conserved. This means that the decrease in the norm
of the statdK°(t)) must be compensated by the increase in (KsL|Qs(t))=(Kg|Q.(t))=0. (3.1
the norm of the final states. So, startingtatO with a K°
meson, the state we have to consider for a completelu- Note that the mass eigenstatgs5) are normalized but
tion is given by due toCP violation not orthogonal

062112-3



REINHOLD A. BERTLMANN AND BEATRIX C. HIESMAYR PHYSICAL REVIEW A 63 062112

2 Re e} which corresponds to a factorization of the time into an
(K |Kg)= — =10. (3.12  eigentimet, on the left side and into an eigentinheon the
1+]el right side.

) ) Then we can calculate the quantum-mechanical probabil-
Now we consider entangled states of kaon_ pairs, and Why P, (Y,t:Y,t,) for finding ak, att; on the left sideand
start at tlmazo_from the entangled stat@.16 giveninthe 4 km’ at t, on the right side and the probability
KK, basis choice Pnm(N,t ;N,t) for finding no such kaons by the following
N2 norms; and similarly, the probabilit®, ,(Y,t;;N,t;) when
| p(t=0))= 2\/§pq{|KS>I®|KL>r_|KL>I®|KS>r}- ak, att| is detected on the left butok,, att, on the right

(3.13  Pam(Y,15Y.t)
=||P(kn) P (Km) U, (100U, (t,,0)|(t=0))||2, (3.2D)

Then we get the state at timidrom Eq. (3.13 by applying
the unitary operator Prm(Not N, )
V(L0 =Ui(LOU(1.0), (314 =[] Qi(kn) Qe (k) Uy (t1,0U, (t,,0)| ¢(t=0))[|?,  (3.22

where the operators(t,0) andU,(t,0) act on the space of p (Y.t :N,t,)

the left and of the right mesons according to the time evolu- ™™ 7"

tion (3.7). = |[Pi(kn) Q: (k) Uy (1,00 U, (£, 0)[ (1 =0))||2.  (3.23
What we are finally interested in are the quantum me-

chanical probabilities for detecting, or not detecting, a spe-

cific quasispin state on the left sifle,), and on the right side

|k,), of the source. For that we need the projection operators In this section, we will review briefly the well-known

P ((ky) on the left, right quasi-spin staték,) , together  derivation of Bell inequalitie$43]. Our intention is to draw

with the projection operators that act onto the orthogonathe readers attention to the analogies, but more importantly

IV. BELL INEQUALITIES FOR SPIN-1 /2 PARTICLES

statesQ, ,(kn) to the differences of the spin/photon correlations as com-
pared to the quasispin correlations discussed in the following
Pl(kn):|kn>ll<kn| and Pr(kn):|kn>rr<kn|a sections.
(3.19 We want to start with the derivation a general Bell in-
equality, the CHSH inequality, named after Clauser, Horne,
Qi(ky)=1=Py(ky) and Q(k,)=1—P.(ky). Shimony, and Holt[44], and then we derive from that

(3.16  inequality—with two further assumptions—the original Bell
. o _ . inequality and the Wigner-type inequality.
Sq, starting fr_om the initial stai(é%._lB) the unitary time evo- Let A(n,\) and B(m,\) be the definite values of two
lution (3.14 gives the state at a timie quantum observablea®M(n) andB*M(m), A denoting the
hidden variables that are not accessible to an experimenter
[ #(t))=U (1,0 ¢(t=0))=U,(t,0U,(t,,0)[(t=0)). but carry the additional information needed in a LpRT. The
(3.177  measurement result of one observablé\{®,\)=*1 cor-
responding to the spin measurement “spin up” and “spin

If we now measure &, att, on the right side, that means we down” along the quantization direction of particle 1; and

project onto the state A(n,\)=0 if no particle was detected at all. The analogue
holds for the resulB(m,\) of particle 2.
|B(t,)) =P, (K | (t,)). (3.18 Assuming now Bell's locality hypothesifA(n,\) de-

pends only on the direction, but not onm, the analogue
This state, which is now a one-particle state of the left-N0lds forB(m,\)]—which is the crucial point—we have for
moving particle, evolves unt, when we measure k, on the combined spin measurement the following expectation
the left side and we get value

[Pty 1)) =Pi(kn) Uy ()t P (k) [4(t,)). (3.19 M(n,m):fdkp()\)A(n,)\)B(m,)\), 4.1

The probability of the joint measurement is given by the
squared norm of the sta{8.19. It coincides(due to unitar-
ity, composition laws, and commutation properties ,ofop-
eratorg with the state f dAp(\)=1. 4.2

=P,(ky) P, (k -
[#(t1.t)) = Pi (k) Pe (k) Ui (5,0 U (8, 0)[ (= 0)), This quantity M(n,m) correspond to the quantum-
(3.20  mechanical mean valud " (n,m)=(AM(n)B°M(m)).

with the normalized probability distribution
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Finally, we rewrite the expectation value for two spin-1/2

gives the estimate of the absolut value of the difference oparticles in terms of probabilities

two mean values

|M(n,m)—M(n,m’)|$f dAp(M{1=A(N',\)B(m’,\)}

+f dxp(M){1=A(N ,N)B(m,N)},

4.3
and using normalizatiofd.2) we get

IM(n,m)=M(n,m")|<2=|M(n",m")+M(n’,m)|,
(4.9

and more symmetrically

[M(n,m)—M(n,m")|+|M(n",m")+M(n’,m)|<2.
(4.9

This is the familiar CHSH inequality, derived by Clauser,
Horne, Shimony, and Ho[@44] in 1969. Every local realistic
hidden variable theory must obey that inequality.

Inserting the quantum-mechanical expectation value
MM (n,m) for M(n,m), we get, with¢, ,, being the angle
between the two quantization directiongandm,

S(naman’rm,):|Cos(¢n,m)_cos(¢n,m’)|

+ |Cos¢n’,m')+001¢n’,m)|$21
(4.6

which is for some choices of the anglgsviolated; the maxi-
mal value of the left-hand side is\2, with for instance
¢nm=3m/4 and ¢y = bnr mr = dn m= /4. Experimen-
tally, for entangled photon pairs inequali#.6) is violated
under strict Einstein locality conditions in an impressive
way, with a result close in agreement with @B, confirm-

ing such previous experimental results on similar inequalities

[5-7].
In order to come to the original Bell inequality or to the

M (n,m)=P(nf;;mf)+ P(nl;ml)—P(nf;ml)

—P(nl;mM)=—1+4P(nf;mM), (4.8
where we use@P=1. Then Bell's original inequality4.7)
provides the Wigner inequality
P(n;m)<P(n;n’)+P(n’;m), (4.9

where theP can be the measurement of all spins up or spins
down on both sides, or spin up on one side and spin down on
the other side, or vice versa. Note, that the Wigner inequality
has been originally derived by a set-theoretical approach.

V. GENERALIZED BELL INEQUALITIES
FOR K MESONS

Let us consider again the entangled stat@ =0)) (2.16

of a KK pair and its time evolutiot (t,0)|#(0)), then we
find the following situation: Performing two measurements

Yo detect the kaons at the same time at the left side and at the

right side of the source the probability of finding two mesons
with the same strangene$8K° or K°K? is zero. If we mea-
sure at timet a K meson on the left side, we will find with

certainty at the same timenoK® on the right side. This is
an EPR-Bell correlation analogously to the spin 1/2 or pho-
ton (e.g., with polarization vertical horizonjakase. The
analogy would be perfect, if the kaons were stablg (
=I"_ =0); then the quantum probabilities become

P(Y,t;Y,t)=P(N,t;;N,t,)
=i{1-cogAm(t,—t,)1},
P(Y,t;N,t) =P(N ;Y t,)

=3{l+co§Am(t,—t)]}. (5.0

Wigner inequality we make two assumptions, first we as-They coincide with the probabilities of finding simulta-

sume always perfect anticorrelatidm(n,n)=—1, and sec-
ond, the measurement of the state of the particles has to
perfect, so there are no omitted events that were interpret
in the CHSH derivation as 0 results.

Considering now just three different quantization direc-
tions, choosing, e.gn’=m’, inequality (4.4) gives

M (n,m)—M(n,n")|<2+{M(n',n")+M(n',m)},
————
—1Vn'

or

[M(n,m)—M(n,n")|<1+M(n’,m). 4.7

This is the famous original inequality derived by J.S. B4l
in 1964. Note, that this derivation is already true for the

neously two entangled spin-1/2 particles in spin directions
or 1} along two chosen directions andm

P(n,1;m,M=P(n,l;m,|)=2%{1—cosé},

P(n,m;m,)=P(n,I;m,M)=2%{1+cosh}. (5.2

The time difference2Am(t,—t,) in the kaon case play the
role of the angle differenceg in the spin-1/2 case.
Nevertheless, there are important physical differences be-
tween kaon and spin-1/2 statéer an experimenter’'s point
of view, see Ref[47)).
(1) While in the spin-1/2 or photon case one can test
whether a system is in an arbitrary spin stat¢)+ 8|!}) one

cannot test it for an arbitrary superpositiafik®) + 8|K°).
(2) For entangled spin-1/2 particles or photons it is suffi-

entangled kaon system where the different kaon quasispigient to consider the direct product spablépm@) H;pin.

eigenstates on the left and right side, measured at equ
times, play the role of the different angles, see Sec. V C.

Abwever, this is not so for kaons. The unitary time evolution
of a kaon state also involves the decay product sta&tes
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Sec. ll), therefore one has to include the decay producfTaking the absolute values of differences and sums of such
spaces which are orthogonal to the product spege,, averages and inserting relatidb.4), we obtain the Bell-
®H|kaon- CHSH inequality for the expectation values

So by measuring &° at the left side we can predict with
certainty to find at the same timeoK® at the right side. In
any LRT, this propertynokK® must be present at the right +IM(Kyr te K tg) + MKy te sk t) [<2.
side independent of having the measurement performed or (5.6)
not. In order to discriminate between QM and LRT, we set
up a Bell inequality for the kaon system where now the dif-|f e identify M (k,, ,t. Ky ,tp) =M (n,m) we are back at the
ferent times play the role of the different angles in the spinjnequality (4.5) for the spin-1/2 case.

1/2 case. But, in addition, we use the freedom of choosing a
particular quasispin state of the kaon, the strangeness eigen-
state, the mass eigenstate, or @B eigenstate.

|M(kn :ta;kmltb)_ M(kn ata;km’ !td)l

B. Probabilities

Now we consider the expectation val(&e5) for the series
of identical measurements in terms of the probabilities,
where we denote by, (Y,t,;Y,ty,) the probability for
As discussed before in kaon systems, we have the fredinding ak, att, on the left side and finding la,, att,, on the
dom of choosing the time, when a measurement takes plagght side and by, (N,t;;N,t,) the probability for finding
and the freedom to choose which particular quasispin stat@o such kaons; similarlyP, (Y,t,;N,t,) denotes the case
we want to measure. when ak, att, is detected on the left butok, att, on the
The locality hypothesis then requires that the results ofight. Then we can re-express the expectation value by the
measurement on the left side are completely independent déllowing linear combination
the chosen time and chosen quasispin state in the measure-

A. Expectation values and locality

ment on the right side. M (K ta:Km,th) =Pnm(Y.ta: Y, th) + Pom(N,ta N ty)

Let us consider an observab®(k,,t,) on each side of P (Yt Nt —P. (N.t.-Y.t
the source, which gets the valdel if in a measurement at nm(YotaiN to) = Pom(N,ta ¥ to).
time t, the quasispin statk, is found, and the value-1 if (5.7

not. Then we can define a correlation function o

O(K, ,ta;km,ty) Which gets the value- 1, both when at the Since the sum of the probab|llt|es for(Y), (N,N), (Y,N),
left side, ak, att, was detected and at the right sidé,aat ~ and (N,Y) must be unity we get

t, was, or whemok, andnok,, was found. In the case when

only one of the desired quasispin eigenstates has been found, M(kn,ta Km,ty) = =14 2{Pnm(Y,ta;Y,ty)
ngl rgattfr at which side, the correlation function has the +Pom(N,ta ;N tp) ) (5.9
value —1.

Locality hypothesisiLocality in the sense of Bell means \gte that relation(5.7) between the expectation value and
that the correlation functio®(ky,ta;km,tp) is equal to the  the probabilities is satisfied for QM and LRT as well.

product of the observables on each side Setting this expression into the Bell-CHSH inequality
(5.6) we finally arrive at the following inequality for the

O(Kp taiKm ts) = O'(Ky t) O (K ty). (5.3  Probabilities
|Pn,m(Yrta ;thb) + Pn,m(Nata ; N!tb) - Pn,m’(tha ;Yitd)

Then the following relation holds
—Ppm (Nt N tg) |

|O(kn ’ta;kmatb)_o(kn 1ta;km’ atd)l Sli{—l—l— Pn’,m(Yatc;Yatb)+ Pn’,m(Nytc;Nytb)
+10(Kn/ e Kmr o tg) + O(Kyr te 1Ko tp) | =2, + P (Yote: Yotg+ P (NSt NSt ) (5.9

54

with k,, ,kn,K, andk, being arbitrary quasispin eigenstates S(ky, ,Km,Kn Kmr ita,th te  tq)
of the meson andl,, t,, t., andty four different times.
Now we consider a series & identical measurements =[Pnm(Yita; Y tp) + P (N, ta s N, tp)
and we deno'ge bpi the value ofO in the ith experiment. P (Y.ta: Yt = Po (Nt N tg) |
The average is given by
=14+ Ph (Y, te; Y, tp) + P (NSt N )

N
1 +Po e (Yot Yot + P (Nt N ) [ < 1.
= > Oi(kn,ta;kmity). (5.5 ' '

M (K, ,t5 K tp) =
(n ar»itm b) Ni:1 (5.10)
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C. Wigner-type inequalities h(n,m,n";t,,ty,te)

What we aim is to find Wigner-type inequalities. The
most general one we get from above inequali®/9 by

choosing the upper sigft +Phr m(Nte N tp) + P (NGt N ). (5.17

= =P m(N,t5;N,tp) + P o (N, 15 N, te)

Pom(Y ta; Y th) <Pp e (Yita; Yitg) + P nr (Yitg; Yote) Again, in the limit of zero timegs—0, we arrive at the fa-
+Por m(YotesYoty) miliar Wigner-type inequality
(5.1]) Pn,m(YaY)|t:0$ Pn,n’(YaY)|t:0+Pn’,m(Y:Y)|t:O-
(5.18
We certainly can also achieve Bell's original cdde?),

which is more restrictive since we have to require perfect
anticorrelation

+h(n,m,n",m’;t,,t,,tec,tq),
where

h(n,m,n’,m’;t, ty ,tc,tg)
=—Pnm(N,ta;N,tp) + P (N1 N tg)
+ P m(Nte N t) + Prr (Nt N tg), (5.12

M (K, t:ky,t) = —1. (5.19

Then the general CHSH relation, E&.6), implies the spe-

is a correction function to the usual set-theoretical result, s;e(éIfIC inequality of Bell

Section IV. It arises because for a unitary time evolution we | Mk, t;ky,t) =M (K, t;Ky )] <1+M Kyt K, t).

also have to include the decay staftese Eq(3.7)], contrib-

uting to theno kaonstates, thus, the decay product spaces (5.20

that are orthogonal to the product SPAt, on® Hiaon- Converting it into a Wigner-type we come back to inequality
For zero timest, ,—0, when we have no decays, the (516, put with a smaller correction function

probabilities for (N,N) become the ones forY(Y)

hgen(t) =hcus(t) = Pnr n (NN, D), (5.21
Pn,m(Nata ; Nvtb)| 'b:OE Pn,m(Y!ta ;Y-tb)|ta'b:0!

ta which is more restrictive.

(5.13

the correction function(for t,=t,=t,=ty=t=0) is then D. The choice sensitive to th&cP parameter &

equal to Choosing the quasispin states
h(n,m,n’,m’;t=0)= =P, (Y,Y)|i=0+Pnm (Y,Y)|t=0 [kn)=[Ks),
+Por (Y, Vli=ot Prrmr (Y, Y0, [k =[K®),

(5.14 Iy ) =KD, (5.22

and just adds up to the inequalitg.11) in such a way that and  denoting the probabilities PKS,EO(Y1Y)|t=o

we obtain the usual set-theoretical result — . .
=P(Kg,KP) etc., we recover Uchiyama’s inequalit$8]

Pom(Y: V) lt=0=<Pnm (Y,Y)|t=0+ P o (Y, Y)]i=0 P(KS,EO)SP(KS,K&))-FP(KO,EO), (5.23
+Py m(Y,Y)i=0- 51 . . . .
" ml M=o (519 which he derived by a set-theoretical approach. The interest-
ing point here is its connection to a physical parameter, the
tp violating parametee. As Uchiyama has shown, his in-
equality can be turned into an inequality for

Of course, the case we are interested in contains onl
three different states, so we put=m’ andt.=ty, then the
probability for (Y,Y) vanishesP . (Y,t.;Y,t;)=0 due to

the EPR-Bell anticorrelation, but certainly not the probability Re(s}<|e|?, (5.24
for (N,N), Pq n/(N,te;N,t)#0 (it vanishes only fort,
—0). which is obviously violated by the experimental valueeof
So we obtain the following Wigner-type inequality for having an absolute value of about f0and a phase of about
three different quasispin states 45° [49].
Another meaningful choice would be the replacement of
Pom(Y 12 Y, 1) <Pp 0 (Y, 155, 1)+ Po (Yot Y ) the short-lived statfK s) by the long-lived staté ) and the
CP eigenstatgK,) by |K,) in Eq. (5.22 then we arrive at
+h(n,m,n";ta,ty,t0), (5.16  the same inequality5.24).
Our Wigner-type inequality5.16) differs from the ones
with the correction function discussed in the literature24,25,26,47,50,91 in the sense
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that we have an additional term(5.17) due to the unitary [kn)=|K®),
time evolution of the considered states. Sihds positive, it
worsens the possibility for quantum mechanics to violate the [km) =Ko,
Bell inequality.
This can be clearly seen in case of equal timgst, Ky =K, ), (5.29

=t.=t, when the exponentidldependence factorizes in the
(Y,Y) probabilities but not in theN,N) ones. Then we have and we get the following Wigner-type inequality fox0
for the choice(5.22 the following Wigner-type inequality

P(KO,KOO)$P(KO,K+_)+P(K+_ IKOO)' (529)

—2T't w0 < —2I't 0 + —2T't 0 1£0 i . . .
e P(Ks,K")<e P(Ks,Ky)+e P(K1.KY) The calculation of the probabilities gives an inequality

+h(Kg,KOK;t), 5.2
(Ks ) 529 | Refoog(1+]s. [ +Refe . }(1+[sed?)

where the probabilities and the correction functiooan be <|egd?®+|es _|>—2Relede, _}, (5.30

found explicitly in the Appendix . As we can see, due to the

fast damping of the probabilitie&@nd h—2) a violation of ~ which, when the result€5.27) for o ande . _ are inserted,

inequality (5.25 by QM is only possible for very small turns into an inequality in the dire€@P violating parameter

times, in fact, only for time$¢<8-10 *rg. ¢’ (third-order terms neglected
But fortunately there exist certain cases where the situa- , '
tion is better. We can avoid a fast increase of the correction Re(e'}<3le'|%, (5.3D

function h by taking the timeg,=t. andt,<t,. Then a ) )
violation of the Wigner-type inequalit{5.16) occurs, which ~ the inequality of Refs|50,51. _
is strongest fot,~0; and in this case, can be chosen up to This inequality is clearly violated by the experimental

t,<47s, which is already quite large. value ofe’, |¢'|=10 ° and has a phase of about 4549].
Again, for timest>0, we have to include the correction

function h. Choosing all four times equa}=t,=t.=ty=t,

the inequality(5.16 with the choice(5.28 cannot be vio-
As shown by Benatti and Floreanini in Ref§0,51], the  lated for times larger that=3.7-10 67g.

case has been also discussed carefully in R2f26, some Varying all four times, unfortunately, does not improve

decay end products can be identified with the quasispithe test QM versus LRT, we only find a violation in the

eigenstates. For example, the two neutral pions or the tweegion where all times are smaller than £8s.

charged pions can be associated with the quasispin eigen-

E. The choice sensitive to the direcCP parameter &’

states: F. The choice of the strangeness eigenstate
1 Finally, we also can reproduce the case of Ghirardi,
Kooy = ——={|KD) +eqd K} — | 7070, Grassi, and Webdr2], we just have to consider the same
V1+|eq quasispin states
1 . . K= K=K =Ky = K. (5.32
[Kio)= —=——=AIKD+e. KD} = |77 77), _ _ .
Vi+|e, | Evaluating the Bell-CHSH inequalit{s.6) by the quantum-
(5.26  mechanical probabilities, neglecti@P violation, the result
is [42]

with
le (FSIZ)(ta+tC)COE{A m(t,—te)]— e~ T'g2)(tattq)

Im{.A, _
bom — 26"+ Reiﬁ | X co§ Am(ta—tg)]|+ e~ T2 cog Am(t,—t,) ]
0
+e I ttdcog Am(t,—ty)]|<2. (5.33
e, =¢' +i|m{A0}. (5.27) Unfortunately, inequality5.33 cannotbe violated[42,55
Re{Ao} for any choice of the fou(positive timest,,t,,t.,ty due to

the interplay between the kaon decay and strangeness oscil-
Here, Ay=(mm,1 =0[H,|K°) is the weak decay ampli- lations. As demonstrated in R€6], a possible violation
tude with | being the isospirfor further information, see depends very much on the kaon parameterAm/T'; if we
Refs.[52-54]) ande’ being the direcCP violation param- had x=4.3 instead of the experimental~1, this Bell-
eter; the third order and higher ordersdgrandeqg,e. - are ~ CHSH inequality(5.33 would be broken. Note, that in this

already neglected. case, the CHSH inequality maximizes at different time val-
We choose—analogously to previous section—the quaues than expected from the corresponding photon CHSH in-
sispin states equality (4.6).
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VI. SUMMARY AND CONCLUSIONS eterx=Am/I", given by nature. And it does not indicate that

these massive systenmave real properties independent of
the act of measurement. However, some of these quasispin
We consider the time evolution of neutral kaons and emeijgenstates are difficult to detect experimentally, in this con-
phasize the unitary time evolution that includes the decayection, the idea of the “quasispin rotations,” introducing
states. Starting &t=0, with aK", after a certain time¢, one  appropriate kaon “regenerators” along the kaon flight paths,

gets a superposition of the strangeness eigenstates due 4gq the resulting Bell inequalities is of special intereste,
strangeness oscillatiomd the decay states. In this way we e.g., Refs[25,26).

consider the total Hilbert space—analogously to the photon
case.

Then we treat entangled states and derive their quantu
mechanical probabilities of finding or not finding arbitrary
guasispin states at arbitrary times. With these QM probabili-";
ties we calculate the quantum-mechanical expectation valué{.'tc)’I

a

A. Quantum theory

An interesting feature of the neutral kaon systems in com-
arison with photon is that this system h@#$ violation.
\lthough the Bell inequalities themselves are hard to check
experimentally, they imply an inequality on the physi€dP
lation parametek or &', which is experimentally test-
e.

B. LRT

We derive the general Bell-CHSH inequality.6) based
on a local realistic hidden variable theory. From this general The authors want to thank W. Grimus, N. Gisin, and G.C.
Bell inequality follows a Wigner-type inequalit$.11) and  Ghirardi for fruitful discussions and suggestions. One of the
an inequality analogously to Bell’s original version. authors, B.C. Hiesmayr, was supported by Austrian FWF
Project No. P14143-PHY and the Austrian-Czech Republic
C. QM versus LRT Scientific Collaboration, Project No. KONTAKT 2001-11.

Next we compare the quantum theory with LRT, which
means we insert the quantum-mechanical expectation value APPENDIX
into the general Bell-CHSH inequality. Expressing the ex-
pectation value in terms of probabilities we arrive at a
Wigner-type inequality(5.11) that contains an additional The (Y,Y) probabilities:
term due to the unitary time evolution, the correction func-
tion h (5.12.This functionh is missing in the inequalities of B _ , 1 Crti_Tit
other authorg24,50,5] since they restrict themselves to a PKS,KO(Y'tI ’Y’tr):NSLZ(l_g){e stoLr
subset of the Hilbert space.
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1. Formula for the choice sensitive to theCP parameter &

+ 62e* FLt| - FStI'

D. Results +25COquAt)e7F(tl+tr)},
This correction functiot makes it rather difficult for QM
to violate the Bell inequalityin order to show the nonlocal (A1)

character of QN In case of Ghirardi, Grassi, and Weber

[42], where onlyK® or no K° is detected, it is impossible for
any choice of the times that QM violates the Bl. On the other
hand, if we consider, in addition to the choice of time, the
freedom of choosing particular quasispin eigenstates, then + 8% Tt =Ty
we find cases were QM does violate the BI for certain times. )

For example, in the choicé.22), the Bell inequality is vio- —25Refe*e 1AMt el it}
lated fort,=t.~0 andt,=<4rg. Considering another choice (A2)
(5.28 we find no violation at all, except far=0.

PKS,Kg(Y!tI ,Y,tr):N {|8|29_F5t|_FLtr

2 —_——
st2 1+|e|?

1-6

E. Comments

The authors of Refd.24,50,51,47 restrict their analysis
to a subset of the Hilbert space; tests on such subspaces,
however, probe only a restricted class of LRT. In such sub-
spaces Bell inequalities may be violated, but this need not be
the case in the total Hilbert space.

We, on the other hand, aim to exclude the largest class of
LRT, therefore we work with a unitary time evolution, a
point of view we share with Ref$42,55|.

F. Outlook

In cases where QM does not violate the Bell inequality,
we trace it back to the specific value of the internal param-
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The correction function:

h(Kg,ta; Koty KO te ;K ty)
= PKS,EO(tha vatb) + PKS,KE(tha 1Y1tc)

+ PK?,K?(YItd lYltb) + PK?,EO(YItd 1Y1tc) + 3

—NZ,{ e 'stat s%e ta— 252 cogAmt)e Ma

+ e st |g|2e Ll
1+|8|2( |

: 1-6
—26Re{ee AMde Ta)+ ——(e T re L

+285cogAmty)e o)+

—I'gt 2T t
e Istet|g|?e Ll
1+|s|2( e

—25Re{se AMele Ty b, (A5)

2. Formula for the choice sensitive
to the direct CP parameter &’

The (Y,Y) probabilities:

o Ngl+s 1 1
Pk YUY 1) =57 1+|e]2 1+|rog?

x{|eg,te|2e T T+ |1+ 682

XeiFLtlirstr_Z Re{(800+ 8*)

h(KO,ta;Koo,tb;K+_ 1tC;K+— !td)

= — PKO,KOO(Ylta ,Y,tb) + PKO,K+7(YIta ,Y,tc) + PK+7 K

1+6

—N3, — e darea—25cogAmt)e e+
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X (1+ Ssgo)e—iAmAt}e—I‘(q-%—tr)},

(A6)
Pros (Y,t|;Y,tr)=N—SL1+6 ! ! {le* _
K, 22 14|el21+|r, |2
+8|29—Fst|—FLtr+|1+8817|2
xe T-Tsh—2 Re{(e, _+&*)
X(Lbeet jerimaerTi), 0
pK+7’KOO(Y,t|;Y,tr):% : : l

(1+]e]?)? 1+(rod? 1+[r |2
X{|1+ee* _|?ef,+e|2e Tsi— Tl
+)e* _+el?1+eel?e i Tsh
—2Rg(1+e*e, )(eggote*)
X(e*_+e)(l+eeh)e Aman

Xe_r(t|+tf)}, (A8)

P (Yt-Yt)—NSL x :
N S L 17, 2 (1+|8|2)2 (1+|r+_|2)2

X|1+ee* _|?|e* _+¢l?
X{eiFS“iFLtr—i—eiFLt|7FStr
—2 cogAmAt)e Mttt

(A9)

The correction function:

+7(Y,td ;Y,tb)+ PK+7 'KOO(Y’td ;Y,tc)+3

[|[1+&* _e|?e Tsa+|e+e* _|2e Ll

1+]|el? 1+]|e, _|?

—26Re{(1+&,_e*)(e+e* _)e AMdle Ta]+

1+|8|2 1+|800|2

—25Re{(1+800e*) (e +egge ' AMble ]+

[11+ efor[Ze "o+ o+ ef2e 1t

[|[1+&* _g|?e Tse+|e+e* _|2e MLl

_25Re{(1+8+,s*)(s+si,)e*mmtc}e*rtc] )

1+]|el? 1+]e,_|?

(A10)
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