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Bell inequalities for entangled kaons and their unitary time evolution
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We investigate Bell inequalities for neutral kaon systems fromF resonance decay to test local realism
versus quantum mechanics. We emphasize the unitary time evolution of the states, which means we also
include all decay product states, in contrast to other authors. Only this guarantees the use of the complete
Hilbert space. We develop a general formalism for Bell inequalities including both arbitrary ‘‘quasispin’’ states
and different times; finally, we analyze Wigner-type inequalities. They contain an additional term, a correction
functionh, as compared to the spin 1/2 or photon case, which changes considerably the possibility of quantum
mechanics to violate the Bell inequality. Examples for special ‘‘quasispin’’ states are given, especially those
that are sensitive to theCP parameters« and«8.
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I. INTRODUCTION

Schrödinger in 1935@1# pointed to the peculiar features o
what he called entangled states~‘‘verschränkte Zusta¨nde’’ in
his original words!. It was Einstein, Podolsky, and Rose
~EPR! who, in their famous paper@2#, tried to show the in-
completeness of quantum mechanics~QM! by considering a
quantum system of two particles. Also, Furry@3# empha-
sized, inspired by EPR and Schro¨dinger, the differences be
tween the predictions of QM of nonfactorizable systems a
models with spontaneous factorization.

Much later, in 1964, this subject was brought up again
John S. Bell@4# who reanalyzed the ‘‘EPR paradox.’’ H
discovered, via an inequality, that the predictions of Q
differ from those of~all! local realistic theories~LRT!; in-
equalities of this type are now named, quite generally, ‘‘B
inequalities.’’

It is the nonlocality, the ‘‘spooky action at a distance
which is the basic feature of quantum physics and is so c
trary to our intuition, or more precise, the nonlocal corre
tions between the spatially separated EPR pair, which oc
due to the quantum entanglement.

Many beautiful experiments have been carried out o
the years~see, e.g., Refs.@5–8#! by using the entanglemen
of the polarization of two photons; all confirm impressive
this very peculiar quantum feature.

The nonlocality does not conflict with Einstein’s relati
ity, so it cannot be used for superluminal communicati
nevertheless, it is the basis for such physics as quantum c
tography @9–12# and quantum teleportation@13,14#, and it
triggered a technology such as: quantum information@15,16#.

Of course, it is of great interest to test the EPR-Bell c
relations also for massive systems in particle physics.
ready in 1960, Lee and Yang@17# and several other author
@18–20# emphasized the EPR-like features of aK0K̄0pair in
a JPC5122 state. Indeed, many authors@21–26# suggested
an investigation theK0K̄0pairs that are produced at theF
resonance—for instance in thee1e2-machine DAF NE at
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Frascati. The nonseparability of the neutral kaon system

created inpp̄ collisions—has been analyzed by the autho
@27–29#.

Similar systems are the entangledB0B̄0 pairs produced at
theY ~4S! resonance~see, e.g., Refs.@30–35#!, which we do
not consider here.

Specific realistic theories have been constructed@36–38#,

which describe theK0K̄0pairs, as tests versus quantum m
chanics. However, the general test of QM versus LRT re
on Bell inequalities~BI!, where the different kaon detectio
times play the role of the different angles in the photon
spin-1/2 case. On the other hand, the free choice of the k
‘‘quasi spin’’ state is also of importance. Furthermore
interesting feature of kaons is theCP violation and indeed, it
turns out that Bell inequalities imply bounds on the physi
CP violation parameters« and«8. In this connection also, a
bound on the degree of decoherence of the wave function
be found@39#, which turns out to be very strong for a dis
tinction of QM versus LRT.

The important difference of the kaon systems as co
pared to photons is their decay. Focusing, therefore, jus
some particular ‘‘quasispin’’ states and not accounting
the decay states restricts the investigation to a subset o
total Hilbert space and will limit the validity of the physica
theories.

Therefore, we allow in our work the freedom of choosin
arbitrary ‘‘quasispin’’ states and we emphasize the imp
tance of includingall decay product states into the BI, i
contrast to other authors, so we use a unitary time evolut
Only this guarantees the use of the complete Hilbert spac
may very well happen that in a particular subspace, Q
violates indeed the BI for certain timest.0 , and thus, con-
tradicts with the assumptions of reality and locality, but
the total Hilbert space the violation will disappear. We sho
cases where this will happen. Note that for entangled sp
1/2 particles or photon systems, all operations are alre
defined on the total Hilbert space, since the photon does
decay and its polarization is conserved, whereas in the k
systems, strangeness is not conserved due to the weak
actions.

The paper is organized as follows. In Sec. II we give
©2001 The American Physical Society12-1
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introduction to neutral kaons and explain the ‘‘quasispi
picture. In Sec. III the unitary time evolution is worked o
in detail and it is shown how one has to calculate the pr
abilities in quantum mechanics. In Sec. IV we review brie
the Bell inequalities for spin-1/2 particles. Our main part
contained in Sec. V, there we derive the generalized B
inequalities for entangled kaons and analyze three diffe
examples that can be found in the literature. Section VI su
marizes our results and conclusions are drawn. Finally, s
useful formulas can be found in the Appendix.

II. NEUTRAL K MESONS

Let us start with a discussion of the properties of t
neutral kaons, which we need in the following. The neutraK
mesons are characterized by their strangeness quantum
ber S

SuK0&51uK0&,

SuK̄0&52uK̄0&. ~2.1!

As the K mesons are pseudoscalars, their parityP is minus
and charge conjugationC transformsK0 and K̄0 into each
other so that we have for the combined transformationCP
~in our choice of phases!

CPuK0&52uK̄0&,

CPuK̄0&52uK0&. ~2.2!

From this, it follows that the orthogonal linear combinatio

uK1
0&5

1

A2
$uK0&2uK̄0&%,

uK2
0&5

1

A2
$uK0&1uK̄0&%, ~2.3!

are eigenstates ofCP

CPuK1
0&51uK1

0&,

CPuK2
0&52uK2

0&, ~2.4!

a quantum number conserved in strong interactions.
Due to weak interactions, which areCP violating, the

kaons decay and the physical states, having the massmS and
mL , are the short- and long-lived states

uKS&5
1

N
$puK0&2quK̄0&%,

uKL&5
1

N
$puK0&1quK̄0&%, ~2.5!

with p511«, q512«, N25upu21uqu2, and « being the
complex CP violating parameter (CPT invariance is as-
sumed; thus the short- and long-lived states contain the s
06211
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CP violating parameter«S5«L5«). They are eigenstates o
the non-Hermitian ‘‘effective mass’’ Hamiltonian

H5M2
i

2
G, ~2.6!

satisfying

HuKS,L&5lS,LuKS,L&, ~2.7!

with

lS,L5mS,L2
i

2
GS,L . ~2.8!

Both mesonsK0 and K̄0 have transitions to common
states~due toCP violation! therefore they mix, that mean
they oscillate betweenK0 andK̄0 before decaying. Since th
decaying states evolve—according to the Wigner-Weissk
approximation—exponentially in time

uKS,L~ t !&5e2 ilS,LtuKS,L&, ~2.9!

the subsequent time evolution forK0 and K̄0 is given by

uK0~ t !&5g1~ t !uK0&1
q

p
g2~ t !uK̄0&,

uK̄0~ t !&5
p

q
g2~ t !uK0&1g1~ t !uK̄0&, ~2.10!

with

g6~ t !5 1
2 @6e2 ilSt1e2 ilLt#. ~2.11!

Supposing that att50, a K0 beam is produced, e.g., b
strong interactions, then the probability for finding aK0 or
K̄0 in the beam is calculated by

u^K0uK0~ t !&u25
1

4
$e2GSt1e2GLt12e2Gt cos~Dmt!%,

u^K̄0uK0~ t !&u25
1

4

uqu2

upu2
$e2GSt1e2GLt22e2Gt cos~Dmt!%,

~2.12!

with Dm5mL2mS andG5 1
2 (GL1GS). TheK0 beam oscil-

lates with frequencyDm/2p, the oscillation being clearly
visible at times of the order of a fewtS , before allKS have
died out, leaving only theKL in the beam. So, in a beam
which contains onlyK0 mesons at the timet50, theK̄0 will
appear far from the production source through its presenc
the KL meson with equal probability as theK0 meson. A
similar feature occurs when starting with aK̄0 beam.

In comparison with spin-1/2 particles, or with photon
having the polarization directions vertical and horizontal
is especially useful to work with the ‘‘quasispin’’ picture fo
kaons introduced by Lee and Wu@40# and Lipkin @20#. The
2-2
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BELL INEQUALITIES FOR ENTANGLED KAONS AND . . . PHYSICAL REVIEW A63 062112
two statesuK0& anduK̄0& are regarded as the quasispin sta
up u⇑& and downu⇓& and the operators acting in this qu
sispin space are expressed by Pauli matrices. So the stra
ness operatorS can be identified with the Pauli matrixs3,
the CP operator with (2s1) and CP violation is propor-
tional to s2. In fact, the Hamiltonian~2.6! can be written as

H5a•11bW •sW , ~2.13!

with

b15b cosa, b25b sina, b350,

a5 1
2 ~lL1lS!, b5 1

2 ~lL2lS! ~2.14!

(b350 due toCPT invariance!, and the phasea is related to
the CP parameter« by

eia5
12«

11«
. ~2.15!

Now, what we are actually interested in are entang
states ofK0K̄0pairs, in analogy to the entangled spin-up a
spin-down pairs, or photon pairs. Such states are produ
by e1e2-machines through the reactione1e2→F→K0K̄0,
in particular at DAF NE, or they are produced inpp̄ colli-
sions such as, e.g., at LEAR. There, aK0K̄0pair is created in
a JPC5122 quantum state, and thus, antisymmetric undeC
and P, and is described at the timet50 by the entangled
state

uc~ t50!&5
1

A2
$uK0& l ^ uK̄0& r2uK̄0& l ^ uK0& r%,

~2.16!

which can be rewritten in theKSKL-basis

uc~ t50!&5
NSL

A2
$uKS& l ^ uKL& r2uKL& l ^ uKS& r%,

~2.17!

with NSL5N2/2pq. Then the neutral kaons fly apart and w
be detected on the left~l! and right~r! side of the source. O
course, during their propagation, theK0K̄0oscillate and
KS ,KL decays will take place. This is an important diffe
ence to the case of spin-1/2 particles or photons.

III. TIME EVOLUTION—UNITARITY

Now let us discuss more closely the time evolution of t
kaon states@41# . At any instantt, the stateuK0(t)& decays to
a specific final stateu f & with a probability proportional to the
absolute squared of the transition-matrix element. Becaus
unitarity of the time evolution, the norm of the total sta
must be conserved. This means that the decrease in the
of the stateuK0(t)& must be compensated by the increase
the norm of the final states. So, starting att50 with a K0

meson, the state we have to consider for a completet evolu-
tion is given by
06211
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uK0&→a~ t !uK0&1b~ t !uK̄0&1(
f

cf~ t !u f &, ~3.1!

with

a~ t !5g1~ t ! and b~ t !5
q

p
g2~ t !, ~3.2!

and the functionsg6(t) are defined in Eq.~2.11!. Denoting
the amplitudes of the decays of theK0,K̄0 to a specific final
statef by

A~K0→ f ![Af and A~K̄0→ f ![Āf , ~3.3!

we have

d

dt
ucf~ t !u25ua~ t !Af1b~ t !Āf u2, ~3.4!

and for the probability of the decayK0→ f at a certain
time t

PK0→ f~t!5E
0

t d

dt
ucf~ t !u2dt. ~3.5!

Since the stateuK0(t)& evolves according to a Schro¨-
dinger equation with ‘‘effective mass’’ Hamiltonian~2.6! the
decay amplitudes are related to theG matrix by

G115(
f

uA f u2, G225(
f

uĀf u2, G125(
f

Af* Āf .

~3.6!

These are the Bell-Steinberger unitarity relations@41#; they
are a consequence of probability conservation, and play
important role.

For our purpose, the formalism used by Ghirardi, Gras
and Weber@42# is quite convenient, and we generalize it
arbitrary quasispin states. So we describe the complete
lution of the mass eigenstates by a unitary operatorU(t,0)
whose effect can be written as

U~ t,0!uKS,L&5e2 ilS,LtuKS,L&1uVS,L~ t !&, ~3.7!

whereuVS,L(t)& denotes the state of all decay products. F
the transition amplitudes of the decay product states, we t
have

^VS~ t !uVS~ t !&512e2GSt, ~3.8!

^VL~ t !uVL~ t !&512e2GLt, ~3.9!

^VL~ t !uVS~ t !&5^KLuKS&~12eiDmte2Gt!, ~3.10!

^KS,LuVS~ t !&5^KS,LuVL~ t !&50. ~3.11!

Note that the mass eigenstates~2.5! are normalized but
due toCP violation not orthogonal
2-3



w

f
lu

e
pe

to

na

e

ft

he

an

bil-

y

ntly
m-
ing

n-
ne,
t
ll

nter
he

in

ue

r
tion

-

REINHOLD A. BERTLMANN AND BEATRIX C. HIESMAYR PHYSICAL REVIEW A 63 062112
^KLuKS&5
2 Re$«%

11u«u2
5:d. ~3.12!

Now we consider entangled states of kaon pairs, and
start at timet50 from the entangled state~2.16! given in the
KSKL basis choice

uc~ t50!&5
N2

2A2pq
$uKS& l ^ uKL& r2uKL& l ^ uKS& r%.

~3.13!

Then we get the state at timet from Eq. ~3.13! by applying
the unitary operator

U~ t,0!5Ul~ t,0!Ur~ t,0!, ~3.14!

where the operatorsUl(t,0) andUr(t,0) act on the space o
the left and of the right mesons according to the time evo
tion ~3.7!.

What we are finally interested in are the quantum m
chanical probabilities for detecting, or not detecting, a s
cific quasispin state on the left sideukn& l and on the right side
ukn& r of the source. For that we need the projection opera
Pl ,r(kn) on the left, right quasi-spin statesukn& l ,r together
with the projection operators that act onto the orthogo
statesQl ,r(kn)

Pl~kn!5ukn& l l ^knu and Pr~kn!5ukn& rr ^knu,
~3.15!

Ql~kn!512Pl~kn! and Qr~kn!512Pr~kn!.
~3.16!

So, starting from the initial state~3.13! the unitary time evo-
lution ~3.14! gives the state at a timet r

uc~ t r !&5U~ t r ,0!uc~ t50!&5Ul~ t r ,0!Ur~ t r ,0!uc~ t50!&.

~3.17!

If we now measure akm at t r on the right side, that means w
project onto the state

uc̃~ t r !&5Pr~km!uc~ t r !&. ~3.18!

This state, which is now a one-particle state of the le
moving particle, evolves untilt l when we measure akn on
the left side and we get

uc̃~ t l ,t r !&5Pl~kn!Ul~ t l ,t r !Pr~km!uc~ t r !&. ~3.19!

The probability of the joint measurement is given by t
squared norm of the state~3.19!. It coincides~due to unitar-
ity, composition laws, and commutation properties ofl ,r op-
erators! with the state

uc~ t l ,t r !&5Pl~kn!Pr~km!Ul~ t l ,0!Ur~ t r ,0!uc~ t50!&,

~3.20!
06211
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which corresponds to a factorization of the time into
eigentimet l on the left side and into an eigentimet r on the
right side.

Then we can calculate the quantum-mechanical proba
ity Pn,m(Y,t l ;Y,t r) for finding akn at t l on the left sideand
a km at t r on the right side and the probabilit
Pn,m(N,t l ;N,t l) for finding no such kaons by the following
norms; and similarly, the probabilityPn,m(Y,t l ;N,t r) when
a kn at t l is detected on the left butnokm at t r on the right

Pn,m~Y,t l ;Y,t r !

5uuPl~kn!Pr~km!Ul~ t l ,0!Ur~ t r ,0!uc~ t50!&uu2, ~3.21!

Pn,m~N,t l ;N,t r !

5uuQl~kn!Qr~km!Ul~ t l ,0!Ur~ t r ,0!uc~ t50!&uu2, ~3.22!

Pn,m~Y,t l ;N,t r !

5uuPl~kn!Qr~km!Ul~ t l ,0!Ur~ t r ,0!uc~ t50!&uu2. ~3.23!

IV. BELL INEQUALITIES FOR SPIN-1 Õ2 PARTICLES

In this section, we will review briefly the well-known
derivation of Bell inequalities@43#. Our intention is to draw
the readers attention to the analogies, but more importa
to the differences of the spin/photon correlations as co
pared to the quasispin correlations discussed in the follow
sections.

We want to start with the derivation a general Bell i
equality, the CHSH inequality, named after Clauser, Hor
Shimony, and Holt@44#, and then we derive from tha
inequality—with two further assumptions—the original Be
inequality and the Wigner-type inequality.

Let A(n,l) and B(m,l) be the definite values of two
quantum observablesAQM(n) andBQM(m), l denoting the
hidden variables that are not accessible to an experime
but carry the additional information needed in a LRT. T
measurement result of one observable isA(n,l)561 cor-
responding to the spin measurement ‘‘spin up’’ and ‘‘sp
down’’ along the quantization directionn of particle 1; and
A(n,l)50 if no particle was detected at all. The analog
holds for the resultB(m,l) of particle 2.

Assuming now Bell’s locality hypothesis@A(n,l) de-
pends only on the directionn, but not onm, the analogue
holds forB(m,l)]—which is the crucial point—we have fo
the combined spin measurement the following expecta
value

M ~n,m!5E dlr~l!A~n,l!B~m,l!, ~4.1!

with the normalized probability distribution

E dlr~l!51. ~4.2!

This quantity M (n,m) correspond to the quantum
mechanical mean valueMQM(n,m)5^AQM(n)BQM(m)&.
2-4
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A straight forward calculation~for example@44,45,46#!
gives the estimate of the absolut value of the difference
two mean values

uM ~n,m!2M ~n,m8!u<E dlr~l!$16A~n8,l!B~m8,l!%

1E dlr~l!$16A~n8,l!B~m,l!%,

~4.3!

and using normalization~4.2! we get

uM ~n,m!2M ~n,m8!u<26uM ~n8,m8!1M ~n8,m!u,
~4.4!

and more symmetrically

uM ~n,m!2M ~n,m8!u1uM ~n8,m8!1M ~n8,m!u<2.
~4.5!

This is the familiar CHSH inequality, derived by Clause
Horne, Shimony, and Holt@44# in 1969. Every local realistic
hidden variable theory must obey that inequality.

Inserting the quantum-mechanical expectation val
MQM(n,m) for M (n,m), we get, withfn,m being the angle
between the two quantization directionsn andm,

S~n,m,n8,m8!5ucos~fn,m!2cos~fn,m8!u

1ucos~fn8,m8!1cos~fn8,m!u<2,

~4.6!

which is for some choices of the anglesf violated; the maxi-
mal value of the left-hand side is 2A2, with for instance
fn,m853p/4 and fn,m5fn8,m85fn8,m5p/4. Experimen-
tally, for entangled photon pairs inequality~4.6! is violated
under strict Einstein locality conditions in an impressi
way, with a result close in agreement with QM@8#, confirm-
ing such previous experimental results on similar inequali
@5–7#.

In order to come to the original Bell inequality or to th
Wigner inequality we make two assumptions, first we
sume always perfect anticorrelationM (n,n)521, and sec-
ond, the measurement of the state of the particles has t
perfect, so there are no omitted events that were interpr
in the CHSH derivation as 0 results.

Considering now just three different quantization dire
tions, choosing, e.g.,n85m8, inequality~4.4! gives

or

uM ~n,m!2M ~n,n8!u<11M ~n8,m!. ~4.7!

This is the famous original inequality derived by J.S. Bell@4#
in 1964. Note, that this derivation is already true for t
entangled kaon system where the different kaon quasi
eigenstates on the left and right side, measured at e
times, play the role of the different angles, see Sec. V C
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Finally, we rewrite the expectation value for two spin-1
particles in terms of probabilities

M ~n,m!5P~nW⇑;mW ⇑ !1P~nW⇓;mW ⇓ !2P~nW⇑;mW ⇓ !

2P~nW⇓;mW ⇑ !52114P~nW⇑;mW ⇑ !, ~4.8!

where we used(P51. Then Bell’s original inequality~4.7!
provides the Wigner inequality

P~nW ;mW !<P~nW ;nW 8!1P~nW 8;mW !, ~4.9!

where theP can be the measurement of all spins up or sp
down on both sides, or spin up on one side and spin down
the other side, or vice versa. Note, that the Wigner inequa
has been originally derived by a set-theoretical approach

V. GENERALIZED BELL INEQUALITIES
FOR K MESONS

Let us consider again the entangled stateuc(t50)& ~2.16!
of a K0K̄0pair and its time evolutionU(t,0)uc(0)&, then we
find the following situation: Performing two measuremen
to detect the kaons at the same time at the left side and a
right side of the source the probability of finding two meso
with the same strangenessK0K0 or K̄0K̄0 is zero. If we mea-
sure at timet a K̄0 meson on the left side, we will find with
certainty at the same timet noK̄0 on the right side. This is
an EPR-Bell correlation analogously to the spin 1/2 or ph
ton ~e.g., with polarization vertical horizontal! case. The
analogy would be perfect, if the kaons were stable (GS
5GL50); then the quantum probabilities become

P~Y,t l ;Y,t r !5P~N,t l ;N,t r !

5 1
4 $12cos@Dm~ t l2t r !#%,

P~Y,t l ;N,t r !5P~N,t l ;Y,t r !

5 1
4 $11cos@Dm~ t l2t r !#%. ~5.1!

They coincide with the probabilities of finding simulta
neously two entangled spin-1/2 particles in spin directio
⇑⇑ or ⇑⇓ along two chosen directionsnW andmW

P~nW ,⇑;mW ,⇑ !5P~nW ,⇓;mW ,⇓ !5 1
4 $12cosu%,

P~nW ,⇑;mW ,⇓ !5P~nW ,⇓;mW ,⇑ !5 1
4 $11cosu%. ~5.2!

The time differencesDm(t l2t r) in the kaon case play the
role of the angle differencesu in the spin-1/2 case.

Nevertheless, there are important physical differences
tween kaon and spin-1/2 states~for an experimenter’s poin
of view, see Ref.@47#!.

~1! While in the spin-1/2 or photon case one can t
whether a system is in an arbitrary spin stateau⇑&1bu⇓& one
cannot test it for an arbitrary superpositionauK0&1buK̄0&.

~2! For entangled spin-1/2 particles or photons it is su
cient to consider the direct product spaceHspin

l
^ Hspin

r ,
however, this is not so for kaons. The unitary time evoluti
of a kaon state also involves the decay product states~see
2-5
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Sec. III!, therefore one has to include the decay prod
spaces which are orthogonal to the product spaceHkaon

r

^ Hkaon
l .

So by measuring aK̄0 at the left side we can predict wit
certainty to find at the same timenoK̄0 at the right side. In
any LRT, this propertynoK̄0 must be present at the righ
side independent of having the measurement performe
not. In order to discriminate between QM and LRT, we
up a Bell inequality for the kaon system where now the d
ferent times play the role of the different angles in the sp
1/2 case. But, in addition, we use the freedom of choosin
particular quasispin state of the kaon, the strangeness e
state, the mass eigenstate, or theCP eigenstate.

A. Expectation values and locality

As discussed before in kaon systems, we have the f
dom of choosing the time, when a measurement takes p
and the freedom to choose which particular quasispin s
we want to measure.

The locality hypothesis then requires that the results
measurement on the left side are completely independen
the chosen time and chosen quasispin state in the mea
ment on the right side.

Let us consider an observableO(kn ,ta) on each side of
the source, which gets the value11 if in a measurement a
time ta the quasispin statekn is found, and the value21 if
not. Then we can define a correlation functio
O(kn ,ta ;km ,tb) which gets the value11, both when at the
left side, akn at ta was detected and at the right side, akm at
tb was, or whennokn andnokm was found. In the case whe
only one of the desired quasispin eigenstates has been fo
no matter at which side, the correlation function has
value21.

Locality hypothesis:Locality in the sense of Bell mean
that the correlation functionO(kn ,ta ;km ,tb) is equal to the
product of the observables on each side

O~kn ,ta ;km ,tb!5Ol~kn ,ta!Or~km ,tb!. ~5.3!

Then the following relation holds

uO~kn ,ta ;km ,tb!2O~kn ,ta ;km8 ,td!u

1uO~kn8 ,tc ;km8 ,td!1O~kn8 ,tc ;km ,tb!u52,

~5.4!

with kn ,km ,kn8 andkm8 being arbitrary quasispin eigenstat
of the meson andta , tb , tc , andtd four different times.

Now we consider a series ofN identical measurement
and we denote byOi the value ofO in the i th experiment.
The average is given by

M ~kn ,ta ;km ,tb!5
1

N (
i 51

N

Oi~kn ,ta ;km ,tb!. ~5.5!
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Taking the absolute values of differences and sums of s
averages and inserting relation~5.4!, we obtain the Bell-
CHSH inequality for the expectation values

uM ~kn ,ta ;km ,tb!2M ~kn ,ta ;km8 ,td!u

1uM ~kn8 ,tc ;km8 ,td!1M ~kn8 ,tc ;km ,tb!u<2.

~5.6!

If we identify M (kn ,ta ;km ,tb)[M (n,m) we are back at the
inequality ~4.5! for the spin-1/2 case.

B. Probabilities

Now we consider the expectation value~5.5! for the series
of identical measurements in terms of the probabiliti
where we denote byPn,m(Y,ta ;Y,tb) the probability for
finding akn at ta on the left side and finding akm at tb on the
right side and byPn,m(N,ta ;N,tb) the probability for finding
no such kaons; similarly,Pn,m(Y,ta ;N,tb) denotes the case
when akn at ta is detected on the left butnokm at tb on the
right. Then we can re-express the expectation value by
following linear combination

M ~kn ,ta ;km ,tb!5Pn,m~Y,ta ;Y,tb!1Pn,m~N,ta ;N,tb!

2Pn,m~Y,ta ;N,tb!2Pn,m~N,ta ;Y,tb!.

~5.7!

Since the sum of the probabilities for (Y,Y), (N,N), (Y,N),
and (N,Y) must be unity we get

M ~kn ,ta ;km ,tb!52112$Pn,m~Y,ta ;Y,tb!

1Pn,m~N,ta ;N,tb!%. ~5.8!

Note that relation~5.7! between the expectation value an
the probabilities is satisfied for QM and LRT as well.

Setting this expression into the Bell-CHSH inequal
~5.6! we finally arrive at the following inequality for the
probabilities

uPn,m~Y,ta ;Y,tb!1Pn,m~N,ta ;N,tb!2Pn,m8~Y,ta ;Y,td!

2Pn,m8~N,ta ;N,td!u

<16$211Pn8,m~Y,tc ;Y,tb!1Pn8,m~N,tc ;N,tb!

1Pn8,m8~Y,tc ;Y,td1Pn8,m8~N,tc ;N,td!%, ~5.9!

or

S~kn ,km ,kn8 ,km8 ;ta ,tb ,tc ,td!

5uPn,m~Y,ta ;Y,tb!1Pn,m~N,ta ;N,tb!

2Pn,m8~Y,ta ;Y,td!2Pn,m8~N,ta ;N,td!u

1u211Pn8,m~Y,tc ;Y,tb!1Pn8,m~N,tc ;N,tb!

1Pn8,m8~Y,tc ;Y,td!1Pn8,m8~N,tc ;N,td!u<1.

~5.10!
2-6
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C. Wigner-type inequalities

What we aim is to find Wigner-type inequalities. Th
most general one we get from above inequality~5.9! by
choosing the upper sign1

Pn,m~Y,ta ;Y,tb!<Pn,m8~Y,ta ;Y,td!1Pm8,n8~Y,td ;Y,tc!

1Pn8,m~Y,tc ;Y,tb!

1h~n,m,n8,m8;ta ,tb ,tc ,td!, ~5.11!

where

h~n,m,n8,m8;ta ,tb ,tc ,td!

52Pn,m~N,ta ;N,tb!1Pn,m8~N,ta ;N,td!

1Pn8,m~N,tc ;N,tb!1Pn8,m8~N,tc ;N,td!, ~5.12!

is a correction function to the usual set-theoretical result,
Section IV. It arises because for a unitary time evolution
also have to include the decay states@see Eq.~3.7!#, contrib-
uting to theno kaonstates, thus, the decay product spa
that are orthogonal to the product spaceHkaon

l
^ Hkaon

r .
For zero timesta,b→0, when we have no decays, th

probabilities for (N,N) become the ones for (Y,Y)

Pn,m~N,ta ;N,tb!u ta,b50[Pn,m~Y,ta ;Y,tb!u ta,b50 ,
~5.13!

the correction function~for ta5tb5tc5td5t50) is then
equal to

h~n,m,n8,m8;t50!52Pn,m~Y,Y!u t501Pn,m8~Y,Y!u t50

1Pn8,m~Y,Y!u t501Pn8,m8~Y,Y!u t50 ,

~5.14!

and just adds up to the inequality~5.11! in such a way that
we obtain the usual set-theoretical result

Pn,m~Y,Y!u t50<Pn,m8~Y,Y!u t501Pm8,n8~Y,Y!u t50

1Pn8,m~Y,Y,!u t50 . ~5.15!

Of course, the case we are interested in contains o
three different states, so we putn85m8 andtc5td , then the
probability for (Y,Y) vanishesPn8,n8(Y,tc ;Y,tc)50 due to
the EPR-Bell anticorrelation, but certainly not the probabil
for (N,N), Pn8,n8(N,tc ;N,tc)5” 0 ~it vanishes only fortc
→0).

So we obtain the following Wigner-type inequality fo
three different quasispin states

Pn,m~Y,ta ;Y,tb!<Pn,n8~Y,ta ;Y,tc!1Pn8,m~Y,tc ;Y,tb!

1h~n,m,n8;ta ,tb ,tc!, ~5.16!

with the correction function
06211
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h~n,m,n8;ta ,tb ,tc!

52Pn,m~N,ta ;N,tb!1Pn,n8~N,ta ;N,tc!

1Pn8,m~N,tc ;N,tb!1Pn8,n8~N,tc ;N,tc!. ~5.17!

Again, in the limit of zero timest→0, we arrive at the fa-
miliar Wigner-type inequality

Pn,m~Y,Y!u t50<Pn,n8~Y,Y!u t501Pn8,m~Y,Y!u t50 .

~5.18!

We certainly can also achieve Bell’s original case~4.7!,
which is more restrictive since we have to require perf
anticorrelation

M ~kn ,t;kn ,t !521. ~5.19!

Then the general CHSH relation, Eq.~5.6!, implies the spe-
cific inequality of Bell

uM ~kn ,t;km ,t !2M ~kn ,t;kn8 ,t !u<11M ~kn8 ,t;km ,t !.

~5.20!

Converting it into a Wigner-type we come back to inequal
~5.16!, but with a smaller correction function

hBell~ t !5hCHSH~ t !2Pn8,n8~N,t;N,t !, ~5.21!

which is more restrictive.

D. The choice sensitive to theCP parameter «

Choosing the quasispin states

ukn&5uKS&,

ukm&5uK̄0&,

ukn8&5uK1
0&, ~5.22!

and denoting the probabilities PKS ,K̄0(Y,Y)u t50

[P(KS ,K̄0) etc., we recover Uchiyama’s inequality@48#

P~KS ,K̄0!<P~KS ,K1
0!1P~K1

0 ,K̄0!, ~5.23!

which he derived by a set-theoretical approach. The inter
ing point here is its connection to a physical parameter,
CP violating parameter«. As Uchiyama has shown, his in
equality can be turned into an inequality for«

Re$«%<u«u2, ~5.24!

which is obviously violated by the experimental value of«,
having an absolute value of about 1023 and a phase of abou
45 ° @49#.

Another meaningful choice would be the replacement
the short-lived stateuKS& by the long-lived stateuKL& and the
CP eigenstateuK1& by uK2& in Eq. ~5.22! then we arrive at
the same inequality~5.24!.

Our Wigner-type inequality~5.16! differs from the ones
discussed in the literature@24,25,26,47,50,51#; in the sense
2-7
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that we have an additional termh ~5.17! due to the unitary
time evolution of the considered states. Sinceh is positive, it
worsens the possibility for quantum mechanics to violate
Bell inequality.

This can be clearly seen in case of equal timesta5tb
5tc5t, when the exponentialt dependence factorizes in th
(Y,Y) probabilities but not in the (N,N) ones. Then we have
for the choice~5.22! the following Wigner-type inequality

e22GtP~KS ,K̄0!<e22GtP~KS ,K1
0!1e22GtP~K1

0 ,K̄0!

1h~KS ,K̄0,K1
0 ;t !, ~5.25!

where the probabilities and the correction functionh can be
found explicitly in the Appendix . As we can see, due to t
fast damping of the probabilities~and h→2) a violation of
inequality ~5.25! by QM is only possible for very smal
times, in fact, only for timest<8•1024tS .

But fortunately there exist certain cases where the si
tion is better. We can avoid a fast increase of the correc
function h by taking the timesta5tc and ta<tb . Then a
violation of the Wigner-type inequality~5.16! occurs, which
is strongest forta'0; and in this case,tb can be chosen up to
tb<4tS , which is already quite large.

E. The choice sensitive to the directCP parameter «8

As shown by Benatti and Floreanini in Refs.@50,51#, the
case has been also discussed carefully in Refs.@25,26#, some
decay end products can be identified with the quasis
eigenstates. For example, the two neutral pions or the
charged pions can be associated with the quasispin ei
states:

uK00&5
1

A11u«00u
$uK1

0&1«00uK2
0&% → up0p0&,

uK12&5
1

A11u«12u
$uK1

0&1«12uK2
0&% → up1p2&,

~5.26!

with

«00522«81 i
Im $A0%

Re$A0%
,

«125«81 i
Im $A0%

Re$A0%
. ~5.27!

Here, A0[^pp,I 50uHwuK0& is the weak decay ampli
tude with I being the isospin~for further information, see
Refs.@52–54#! and«8 being the directCP violation param-
eter; the third order and higher orders in« and«00,«12 are
already neglected.

We choose—analogously to previous section—the q
sispin states
06211
e
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ukn&5uK0&,

ukm&5uK00&,

ukn8&5uK12&, ~5.28!

and we get the following Wigner-type inequality fort50

P~K0,K00!<P~K0,K12!1P~K12 ,K00!. ~5.29!

The calculation of the probabilities gives an inequality

u2Re$«00%~11u«12u2!1Re$«12%~11u«00u2!u

<u«00u21u«12u222Re$«00* «12%, ~5.30!

which, when the results~5.27! for «00 and«12 are inserted,
turns into an inequality in the directCP violating parameter
«8 ~third-order terms neglected!

Re$«8%<3u«8u2, ~5.31!

the inequality of Refs.@50,51#.
This inequality is clearly violated by the experiment

value of«8, u«8u&1026 and has a phase of about 45 °@49#.
Again, for timest.0, we have to include the correctio

function h. Choosing all four times equalta5tb5tc5td5t,
the inequality~5.16! with the choice~5.28! cannot be vio-
lated for times larger thant53.7•1026tS .

Varying all four times, unfortunately, does not improv
the test QM versus LRT, we only find a violation in th
region where all times are smaller than 1026tS .

F. The choice of the strangeness eigenstate

Finally, we also can reproduce the case of Ghirar
Grassi, and Weber@42#, we just have to consider the sam
quasispin states

kn5km5kn85km85K̄0. ~5.32!

Evaluating the Bell-CHSH inequality~5.6! by the quantum-
mechanical probabilities, neglectingCP violation, the result
is @42#

ue2~GS/2!(ta1tc)cos@Dm~ ta2tc!#2e2~GS/2!(ta1td)

3cos@Dm~ ta2td!#u1ue2~GS/2!(tb1tc)cos@Dm~ tb2tc!#

1e2~GS/2!(tb1td)cos@Dm~ tb2td!#u<2. ~5.33!

Unfortunately, inequality~5.33! cannot be violated@42,55#
for any choice of the four~positive! timesta ,tb ,tc ,td due to
the interplay between the kaon decay and strangeness o
lations. As demonstrated in Ref.@56#, a possible violation
depends very much on the kaon parameterx5Dm/G; if we
had x54.3 instead of the experimentalx'1, this Bell-
CHSH inequality~5.33! would be broken. Note, that in thi
case, the CHSH inequality maximizes at different time v
ues than expected from the corresponding photon CHSH
equality ~4.6!.
2-8



m
ca

ue
e
to

um
ry
il
lu

ra

ch
al
x
a

l
c

f
a

l
er
r
e

he
h
es

e

c
ub
t b

s
a

ity
m

at
f

ispin
on-
g

hs,

m-

eck

.C.
the

F
lic

BELL INEQUALITIES FOR ENTANGLED KAONS AND . . . PHYSICAL REVIEW A63 062112
VI. SUMMARY AND CONCLUSIONS

A. Quantum theory

We consider the time evolution of neutral kaons and e
phasize the unitary time evolution that includes the de
states. Starting att50, with aK0, after a certain timet, one
gets a superposition of the strangeness eigenstates d
strangeness oscillationsand the decay states. In this way w
consider the total Hilbert space—analogously to the pho
case.

Then we treat entangled states and derive their quant
mechanical probabilities of finding or not finding arbitra
quasispin states at arbitrary times. With these QM probab
ties we calculate the quantum-mechanical expectation va

B. LRT

We derive the general Bell-CHSH inequality~5.6! based
on a local realistic hidden variable theory. From this gene
Bell inequality follows a Wigner-type inequality~5.11! and
an inequality analogously to Bell’s original version.

C. QM versus LRT

Next we compare the quantum theory with LRT, whi
means we insert the quantum-mechanical expectation v
into the general Bell-CHSH inequality. Expressing the e
pectation value in terms of probabilities we arrive at
Wigner-type inequality~5.11! that contains an additiona
term due to the unitary time evolution, the correction fun
tion h ~5.12!.This functionh is missing in the inequalities o
other authors@24,50,51# since they restrict themselves to
subset of the Hilbert space.

D. Results

This correction functionh makes it rather difficult for QM
to violate the Bell inequality~in order to show the nonloca
character of QM!. In case of Ghirardi, Grassi, and Web
@42#, where onlyK̄0 or no K̄0 is detected, it is impossible fo
any choice of the times that QM violates the BI. On the oth
hand, if we consider, in addition to the choice of time, t
freedom of choosing particular quasispin eigenstates, t
we find cases were QM does violate the BI for certain tim
For example, in the choice~5.22!, the Bell inequality is vio-
lated forta5tc'0 andtb<4tS . Considering another choic
~5.28! we find no violation at all, except fort50.

E. Comments

The authors of Refs.@24,50,51,47# restrict their analysis
to a subset of the Hilbert space; tests on such subspa
however, probe only a restricted class of LRT. In such s
spaces Bell inequalities may be violated, but this need no
the case in the total Hilbert space.

We, on the other hand, aim to exclude the largest clas
LRT, therefore we work with a unitary time evolution,
point of view we share with Refs.@42,55#.

F. Outlook

In cases where QM does not violate the Bell inequal
we trace it back to the specific value of the internal para
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eterx5Dm/G, given by nature. And it does not indicate th
these massive systemshave real properties independent o
the act of measurement. However, some of these quas
eigenstates are difficult to detect experimentally, in this c
nection, the idea of the ‘‘quasispin rotations,’’ introducin
appropriate kaon ‘‘regenerators’’ along the kaon flight pat
and the resulting Bell inequalities is of special interest~see,
e.g., Refs.@25,26#!.

An interesting feature of the neutral kaon systems in co
parison with photon is that this system hasCP violation.
Although the Bell inequalities themselves are hard to ch
experimentally, they imply an inequality on the physicalCP
violation parameter« or «8, which is experimentally test-
able.
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APPENDIX

1. Formula for the choice sensitive to theCP parameter «

The (Y,Y) probabilities:

PKS ,K̄0~Y,t l ;Y,t r !5NSL
2 1

4
~12d!$e2GStl2GLtr

1d2e2GLtl2GStr

12d cos~DmDt !e2G(t l1tr )%,

~A1!

PKS ,K
1
0~Y,t l ;Y,t r !5NSL

2 1

2

1

11u«u2
$u«u2e2GStl2GLtr

1d2e2GStr2GLtl

22d Re$«* e2 iDmDt%eG(t l1tr )%,

~A2!

PK
1
0 ,K̄0~Y,t l ;Y,t r !5NSL

2 1

4

12d

11u«u2
$e2GStl2GLtr

1u«u2e2GLtl2GStr

12 Re$«e2 iDmDt%e2G(t l1tr )%,

~A3!

PK
1
0 ,K

1
0~Y,t l ;Y,t r !5NSL

2 1

2

u«u2

~11u«u2!2
$e2GStl2GLtr

1e2GLtl2GStr

22cos~DmDt !e2G(t l1tr )%, ~A4!
2-9



REINHOLD A. BERTLMANN AND BEATRIX C. HIESMAYR PHYSICAL REVIEW A 63 062112
The correction function:

h~KS ,ta ;K̄0,tb ;K1
0 ,tc ;K1

0 ,td!

52PKS ,K̄0~Y,ta ;Y,tb!1PKS ,K
1
0~Y,ta ;Y,tc!

1PK
1
0 ,K

1
0~Y,td ;Y,tb!1PK

1
0 ,K̄0~Y,td ;Y,tc!13

2NSL
2 H e2GSta1d2e2GLta22d2 cos~Dmta!e2Gta

1
1

11u«u2
~e2GStd1u«u2e2GLtd

22d Re$«e2 iDmtd%e2Gtd!1
12d

2
~e2GStb1e2GLtb

12d cos~Dmtb!e2Gtb!1
1

11u«u2
~e2GStc1u«u2e2GLtc

22d Re$«e2 iDmtc%e2Gtc!J . ~A5!

2. Formula for the choice sensitive
to the direct CP parameter «8

The (Y,Y) probabilities:

PK0,K00
~Y,t l ;Y,t r !5

NSL

2

11d

2

1

11u«u2
1

11ur 00u2

3$u«00* 1«u2e2GStl2GLtr1u11««00* u2

3e2GLtl2GStr22 Re$~«001«* !
06211
3~11««00* !e2 iDmDt%e2G(t l1tr )%,

~A6!

PK0,K12
~Y,t l ;Y,t r !5

NSL

2

11d

2

1

11u«u2

1

11ur 12u2
$u«12*

1«u2e2GStl2GLtr1u11««12* u2

3e2GLtl2GStr22 Re$~«121«* !

3~11««12* !e2 iDmDt%e2G(t l1tr )%, ~A7!

PK12 ,K00
~Y,t l ;Y,t r !5

NSL

2

1

~11u«u2!2

1

11ur 00u2
1

11ur 12u2

3$u11««12* u2u«00* 1«u2e2GStl2GLtr

1u«12* 1«u2u11««00* u2e2GLtl2GStr

22 Re$~11«* «12!~«001«* !

3~«12* 1«!~11««00* !e2 iDmDt%

3e2G(t l1tr )%, ~A8!

PK12 ,K12
~Y,t l ;Y,t r !5

NSL

2

1

~11u«u2!2

1

~11ur 12u2!2

3u11««12* u2u«12* 1«u2

3$e2GStl2GLtr1e2GLtl2GStr

22 cos~DmDt !e2G(t l1tr )%.

~A9!

The correction function:
h~K0,ta ;K00,tb ;K12 ,tc ;K12 ,td!

52PK0,K00
~Y,ta ;Y,tb!1PK0,K12

~Y,ta ;Y,tc!1PK12 ,K12
~Y,td ;Y,tb!1PK12 ,K00

~Y,td ;Y,tc!13

2NSL
2 H 11d

2
@e2GSta1e2GLta22d cos~Dmta!e2Gta#1

1

11u«u2
1

11u«12u2
@ u11«12* «u2e2GStd1u«1«12* u2e2GLtd

22d Re$~11«12«* !~«1«12* !e2 iDmtd%e2Gtd#1
1

11u«u2
1

11u«00u2
@ u11«00* «u2e2GStb1u«1«00* u2e2GLtb

22d Re$~11«00«* !~«1«00* !e2 iDmtb%e2Gtb#1
1

11u«u2
1

11u«12u2
@ u11«12* «u2e2GStc1u«1«12* u2e2GLtc

22d Re$~11«12«* !~«1«12* !e2 iDmtc%e2Gtc#J . ~A10!
2-10
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