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Quantum Zeno and anti-Zeno effects in the Friedrichs model
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We analyze the short-time behavior of the survival probability in the frame of the Friedrichs model for
different form factors. We have shown that this probability is not necessarily analytic at the time origin. The
time when the quantum-Zeno effect could be observed is found to be much smaller than usually estimated. We
have also studied the anti-Zeno period and have estimated its duration.
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I. INTRODUCTION

Since the very beginning of quantum mechanics, the m
surement process has been a most fundamental issue
main characteristic feature of the quantum measuremen
that the measurement changes the dynamical evolution.
is the main difference in the quantum measurement c
pared to its classical analogue. In this framework, Misra a
Sudarshan pointed out@1# that repeated measurements c
prevent an unstable system from decaying. Indeed, as
survival probability is in most cases proportional to t
square of the time for short times~see, however, the discus
sion below!, the measurement effectively projects t
evolved state back to the initial state with such a high pr
ability that the sequence of the measurements ‘‘freezes’’
initial state. Led by analogy with the Zeno paradox, th
effect has been called the quantum-Zeno effect~QZE!.

Cook @2# suggested an experiment on the QZE that w
realized by Itanoet al. @3#. In this experiment, the Rabi os
cillations have been used in order to demonstrate that
repeated observations slow down the transition proc
However, the detailed analysis@4–6# has shown that the re
sults of this experiment could equally well be understo
using a density matrix approach for the whole system.
cently, an experiment similar to Ref.@3# has been performed
by Balzeret al. @7# on a single trapped ion. This experime
has removed some drawbacks usually associated with
experiment of Itanoet al. @3#, for example, dephasing a sy
tem’s wave function caused by a large ensemble and
nonrecording of the results of the intermediate measurem
pulses. We refer to recent reviews@8,9# for detailed discus-
sions of these and related questions.

Both experiments@3,7# demonstrate the perturbed evol
tion of a coherent dynamics, as opposed to spontaneous
cay. So, the demonstration of the QZE for an unstable s
tem with exponential decay, as originally proposed in R
@1#, is still an open question. The main problem in such
experimental observation of the Zeno effect is the very sh
time when the quadratic behavior of the transition amplitu
is valid @10,11#. On the other hand, the Zeno-type expe
ment could also reveal deviations from the exponential de
law and the magnitude of these deviations.
1050-2947/2001/63~6!/062110~10!/$20.00 63 0621
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The QZE has been discussed for many physical syst
including atomic physics@10–13#, radioactive decay@14#,
and mesoscopic physics@15–18#, and has even been pro
posed as a way to control decoherence for effective quan
computations@19#. Recently, however, a quantum anti-Zen
effect has been found@20,21#. Under some conditions the
repeated observations could speed up the decay of the q
tum system. The anti-Zeno effect has been further analy
in @18,22–25#.

We carefully analyze here the short-time behavior of
survival probability in the frame of the Friedrichs mod
@26#. We have shown that this probability is not necessa
analytic at zero time. Furthermore, the probability may n
even be quadratic for the short times while the QZE s
exists in such a case@20,27#. We have shown~see also Kof-
man and Kurizki@24#! that the time period within which the
QZE could be observed is much smaller than previously
lieved. Hence, we conclude that the experimen
observation/realization of the QZE is quite challenging.

We have also analyzed the anti-Zeno period. While
seems that most decaying systems exhibit anti-Zeno be
ior, our examples contradict the estimations of Lewenst
and Rzazewski@22#. We have studied the duration of th
anti-Zeno period and have estimated this duration when p
sible.

II. MODEL AND EXACT SOLUTION

The Hamiltonian of the second quantized formulation
the Friedrichs model@26# is

H5H01lV, ~1!

where the unperturbed Hamiltonian is defined as

H05v1a†a1E
0

`

dvvbv
† bv ,

and the interaction is

V5E
0

`

dv f ~v!~abv
† 1a†bv!. ~2!
©2001 The American Physical Society10-1
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Here,a†, a are creation and annihilation boson operators
the atom excitation,bv

† , bv are creation and annihilatio
boson operators of the photon with frequencyv, f (v) is the
form factor, l is the coupling parameter, and the vacuu
energy is chosen to be zero. The creation and annihila
operators satisfy the following commutation relations:

@a,a†#51, @bv ,bv8
†

#5d~v2v8!. ~3!

All other commutators vanish.
The HamiltonianH0 has continuous spectrum@0,̀ ) of

uniform multiplicity, and the discrete spectrumnv1 ~with
integern) is embedded in the continuum. The space of
wave functions is the direct sum of the Hilbert space of
oscillator and the Fock space of the field.

For v1.0, the oscillator excitations are unstable due
the resonance between the oscillator energy levels and
energy of a photon. Therefore, the total evolution leads to
decay of a wave packet corresponding to the bare atomu1&.
Decay is described by the survival probabilityp(t) to find,
after timet, the bare atom evolving according to the evo
tion exp(2iHt) in its excited state@11#:

p~ t ![u^1ue2 iHt u1&u2. ~4!

The survival probability can be easily calculated in the s
ond quantized representation:

p~ t !5u^0ua~0!e2 iHta†~0!u0&u2

5u^0ue2 iHteiHta~0!e2 iHta†~0!u0&u2

5u^0ua~ t !a†~0!u0&u2,

wherea†(0)5a†. The time evolution ofa(t) in the Heisen-
berg representation is presented in Appendix A. Using
~A12! we obtain

p~ t !5uA~ t !u2,

where the survival amplitudeA(t) is given by Eq.~A14!.
Due to the dimension argument, we can write the fo

factor f (v) in the form

f 2~v!5LwS v

L D ,

wherew(x) is a dimensionless function. Here,L is a param-
eter with the dimension ofv. The survival amplitudeA(t) in
the dimensionless representation is

A~ t !5
1

2p i E2`

`

dy
eiyLt

hL
2~y!

, ~5!

where

hL
2~z!5vL2z2l2E

0

`

dx
w~x!

x2z1 i0
, ~6!

andvL5v1 /L.
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III. SHORT-TIME BEHAVIOR AND THE ZENO REGION

The short time evolution of the model~1! depends essen
tially on the form factor. In order to illustrate different type
of evolution, we shall consider two form factors, namely

f 1
2~v!5L

Av

L

11
v

L

, w1~x!5
Ax

11x
, ~7!

and

f 2
2~v!5L

v

L

F11S v

L D 2G2 , w2~x!5
x

~11x2!2 . ~8!

The form factor f 1 permits exact calculations@28,29#. It
turns out that the short-time behavior is not quadratic@20,27#
as anticipated by@22#. We shall also use, for comparison th
results presented in@10,11# for the form factor w3(x)
5x/(11x2)4 @30#. To get a first impression about the tim
scales, we associate with each form factor a physical sys
the photodetachement process forw1(x) @22,28,31#, the
quantum dot forw2(x) @32#, and the hydrogen atom fo
w3(x) @10#. The corresponding numerical values of the p
rametersL, v1, andl2 are listed in Table I. We would like
to emphasize that these values~as well as the model itself!
are approximate estimations of the corresponding effects

Let us discuss the short-time behavior of the survi
probability p(t). We shall assume here the existence of
necessary matrix elements, and denote^•&5^1u•u1&.

p~ t !5^e2 iHt&

5 K 12 iHt 2
1

2
H2t21

i

6
H3t31

1

24
H4t41O~ t5!L

5S 12
t2

2
^H2&1

t4

24
^H4& D 2

1S t^H&2
t3

6
^H3& D 2

1O~ t6!

512t2~^H2&2^H&2!1t4S 1

4
^H2&21

1

12
^H4&

2
1

3
^H&^H3& D1O~ t6!

512
t2

ta
2 1

t4

tb
4 1O~ t6!. ~9!

In order to calculate the parametersta and tb , we need to
calculate the averages of the powers ofH5H01lV:

^H&5v1 ,

^H2&5v1
21l2^V2&,
0-2
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TABLE I. The Zeno timetZ , the timeta , the decay timetd , and the timetep of the transition from the
exponential to power law decay for different model of interactions and for different physical sys
Numerical values are given in seconds and in units oftd .

Form factorw(x)

Ax

11x

x

~11x2!2

x

~11x2!4

tZ 32

9p

1

L

A6

LAU lnS2A6v1

L
D U

2A6

L

ta
S 3

4A2p
D 2/3

l4/3L

A2

lL

A6

lL

td

1

pl2ALṽ1

1

2pl2v1

1

2pl2v1

tep
2

5 lnSl4
L

ṽ1
D

4pl2ALṽ1

2
2 ln~2pl3!

p l2v1
2

2 ln~2pl3!

p l2v1

System Photodetachement Quantum dot Hydrogen atom

L(s21) 1.031010 1.6731016 8.49831018

v1(s21) 2.03104 7.2531012 1.5531016

l2 3.1831027 3.5831026 6.4331029

tZ(s) @ td# 1.1310210 @1.131029# 5.9310217 @9.731029# 5.76310219 @3.6310210#

ta(s) @ td# 9.631027 @9.631026# 4.5310214 @7.431026# 3.59310215 @2.231026#

td(s) @ td# 0.1 @1# 6.131029 @1# 1.6031029 @1#

tep(s) @ td# 1.7 @17# 4.231027 @69# 1.6931027 @110#
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^H3&5v1
312l2v1^V

2&1l2^VH0V&,

^H4&5v1
41l2~3v1

2^V2&12v1^VH0V&1^VH0
2V&!

1l4^V4&. ~10!

These expressions are valid in our model because of the
cial structure of the potentialV ~2!. Now we can find

1

ta
2 5l2^V2&5l2L2I 0 ,

1

tb
4 5l2S v1

2

12
L2I 02

v1

6
L3I 11

L4

12
I 2D

1l4L4S I 0
2

4
1

E
0

`

w2~x!dx

12
D , ~11!

where

I k5E
0

`

xkw~x!dx.
06211
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In the weak-coupling models, the following inequalities a
satisfied~see Table I!:

l2!1 and L@v1 . ~12!

In this approximation we can simplify the expression fortb :

1

tb
4 '

l2L4

12
I 2 . ~13!

The parameterta has been called Zeno time@10,11# because
it has been conjectured to be related to the Zeno region,
the region where the decay is slower than the exponen
one and the Zeno effect can manifest. On the other han
more precise estimation reveals that the Zeno region is
fact, orders of magnitude shorter thanta . We illustrate this
in Fig. 1 where the survival probabilities for the form facto
w1(x) and w2(x) are plotted. The corresponding analytic
expressions and the numerical values for different ti
scales are presented in Table I. We see thatp(t) is not con-
vex, already at times much shorter than the timeta .

In view of this fact, we propose another definition for th
Zeno time. As one refers in discussions about the Zeno ef
on the expansion of survival probability for small times, a
specifically on the second term, we shall define the Ze
time tZ as corresponding to the region where the second t
0-3
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dominates. Hence, the introduced timetZ is a natural bound-
ary where the second and third terms have the same am
tude:

tZ
2

ta
2 5

tZ
4

tb
4 , so tZ5tb

2/ta . ~14!

In the weak-coupling models,

tZ5
1

L
A12I 0

I 2
,

that agrees with the estimation in@24#. This time is much
shorter thanta;1/lL and agrees much better with the n
merical estimations. For example, for the interactionw3(x)
we find tZ52A6/L'5.8310219 s while ta5A6/lL'3.6
310216 s @10#.

Our conclusions are in fact valid for a rather wide class
interactions. Namely, they are valid if the matrix eleme
~10! exist and conditions~12! are satisfied. For example, an
bounded locally integrable interactionw(x) decreasing as
w(x);C/x1.51e, e.0 atx→`, gives finite matrix elements
~10!. Furthermore, we show below that the relationtR!tZ
may be valid even when the matrix elements~10! do not
exist.

For the form factorw1, already the matrix element^V2&
does not exist, and the short time expansion is written~see
Appendix B! as

p~ t !512S t

ta
D 1.5

1S t

tb
D 2

1O~ t5/2!,

where ta5(3/(4A2p))2/3/(l4/3L), and tb51/(AplL). In
fact, from the representation~10! one can easily deduce tha
for any form factor decreasing according to the power l
whenx→`, p(t) is not analytic att50. Specifically, if the

FIG. 1. The survival probabilityp(t) for the photodetachemen
model @w1(x)5Ax/(11x), the dashed line#, and for the quantum
dot model@w2(x)5x/(11x2)2, the solid line#. The Zeno timetZ is
indicated. Time is in units of the decay timetd .
06211
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form factor decreases asw(x);xa when x→`, only the
Taylor coefficients up totn with n,11uau can be defined.

Following the previous discussion, for the form fact
w1(x) the Zeno timetZ can be estimated by the condition

S tZ

ta
D 1.5

5S tZ

tb
D 2

, so tZ5
32

9pL
.

For this case, one can see that the timeta has scaling prop-
erties which differ from Eq.~11! while the Zeno timetZ has
a value similar to Eq.~14!.

For w2, the matrix element̂V2& exists so the usual time
ta can be introduced:ta5A2/lL. However,^VH0

2V& does
not exist and the asymptotic behavior ofp(t) is ~see Appen-
dix C!

p~ t !512S t

ta
D 2

2
l2

12
ln~2v1t !L4t41O~ t4!.

Repeating the arguments concerning the Zeno region,
find tZ5A6/LAu ln(2A6v1 /L)u. In this case one can se
again that the Zeno timetZ has a value similar to Eq.~14!,
and the inequalitytZ!ta is satisfied.

IV. ZENO AND ANTI-ZENO EFFECTS

The probability that the stateu1& after N equally spaced
measurements during the time interval@0,T# has not de-
cayed, is given by@1#

pN~T!5^1u~ u1&^1ue2 iHT/N!Nu1&

5pN~T/N!^1u1&5pN~T/N!. ~15!

Expression~15! is only correct for the ideal von Neuman
measurements@1#. We are interested in the behavior o
pN(T) asN→` or, equally, when the time interval betwee
the measurementst5T/N goes to zero:

lim
t→0

pN~T!5 lim
t→0

p~t!T/t

5F lim
t→0S 12

12p~t!

t

1

t

D 1/tG T

5H 0, when p8~0!52`,

e2cT, when p8~0!52c,

1, when p8~0!50.

~16!

Hence, for the casep(t)512cta one has the Zeno effec
for all a.1 @20,27#. We should notice that in case of th
linear asymptotics ofp(t) at short times~in particular, for
the purely exponential decay! there is no Zeno effect, and th
probability to find the system in the initial stateu1& decreases
exponentially with the time of observation. The results~16!
are found in case of continuously ongoing measureme
during the entire time interval@0,T#. Obviously, this is an
idealization. In practice, we have a manifestation of the Ze
0-4
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effect, if the probability~15! increases as the time intervalt
between measurements decreases. Formula~16! may be ac-
cepted as an approximation for a very short time intervat
!tZ . For longer times, we cannot use the Taylor expans
therefore Eq.~16! is not valid. It appears that in order t
analyze longer time behavior, the long time asymptotics
the p(t) are more convenient. These asymptotics can
summarized as follows~see Appendicies B, C!:

p~ t !'uA1u2e24gAv1Lt1
pl4L

4v1
4t3 h1

2~ t !

2
Apl2L1/2

v1
2t3/2

uA1uh1~ t !e22gAv1Lt cos~v1t2p/4!,

~17!

when t@24/v1 for the w1(x), and

p~ t !'uA2u2e2g1Lt1
l4

v1
4t4 h2

2~ t !

2
2l2e2g1Lt/2

v1
2t2

uA2uh2~ t ! cos~v1t !, ~18!

when t@4/v1 for the w2(x). Here, the constantsA1 , A2
satisfy the inequalityu12uAku2u!1, k51,2. The functions
h1 , h2 have the following asymptotic properties:

lim
t→`

h1~ t !51; lim
t→0

h1~ t !

t3/2
5const;

lim
t→`

h2~ t !51; lim
t→0

h2~ t !

t2 5const.

In paper @10#, an expression very similar to Eq.~18! was
found for the form factorw3(x). Expressions~17!,~18! are
analytically established only in the regiont@C/v1. How-
ever, the numerical investigation shows that for our choice
parameters, we can use Eqs.~17!,~18! for a qualitative de-
scription already in the regiont;1/v1. Then one can see
that the oscillation with the frequencyv1 starts always with
the negative cosine wave. Therefore, the survival probab
~4! turns out to be less than purely exponential, and one
expect decreasing of the probabilitypN(T) as well. We illus-
trate this effect in Fig. 2 for both the photodetachement p
cess and the quantum dot. The anti-Zeno region~AZ region!,
i.e., the region where the probabilitypN(T) is less than
purely exponential, is clearly seen for both systems. Fot
→0, pN(T) approaches 1 according to Eq.~16!.

We should stress that the above-described behavior sh
that the initial quadratic behavior is not just a beginning
the first wave of oscillation as stated in Ref.@10#. This is true
because the timeta is actually not the time within whichp(t)
has quadratic behavior. In fact, the quadratic behavior is o
valid for t!tZ and has nothing in common with the oscill
tions in Eqs.~17!,~18!.
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On the basis of Fig. 2 we would like to make some ad
tional remarks. First of all, for lager observation timeT, the
AZ region is wider and the probabilitypN(T) in the AZ
region is lower. This is natural: the bigger the time of obs
vation is, the harder to restore the initial state of the syst
Second, one can see that the valuetZ describes very well a
minimum of the probability in the AZ region. For shorte
times, pN(T) increases, but it still may be much less com
pared to thepN(T) in the purely exponential region. Henc
the classical Zeno effect@1# could be observed only whent
!tZ . Finally, we also notice that one can sometimes obse
the second wave of oscillation in Eqs.~17,18! @see Fig. 2~a!#.
However, its amplitude is much less than the amplitude
the first wave.

A general consideration of the AZ region is presented

FIG. 2. The probabilitypN(T) @Eq. ~15!# as a function of the
durationt between measurements. From above, the curves co
spond to the time of observationT51024, 1023, 1022, and 1021,
respectively.T andt are in units of the decay timetd . The photo-
detachement model@w1(x)5Ax/(11x)# @Fig. 2~a!# and the quan-
tum dot model@w2(x)5x/(11x2)2# @Fig. 2~b!# are presented.
0-5
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Ref. @22#. The authors conclude that the AZ region exists
all generic weakly coupled decaying systems. Under so
assumptions, they have found that

uAku2,1, ~19!

and use this condition for the explanation of the existence
the AZ region. However, some assumptions made in R
@22# for the derivation of Eq.~19! are not always valid. For
example, for the modelw1(x) ~the form factor used in Ref
@22#! one calculatesuA1u2'111.131026.1 for our choice
of the parameters. For the modelw2(x) we haveuA2u2'1
1l2(312 logvL),1, but this effect is of the second orde
in the coupling while in Ref.@22# the fourth order was found
Hence, the above-mentioned results cannot be considere
a proof of the existence of the AZ region.

Indeed, our results show that there exist two differe
types of the AZ region. The first case takes place as
amplitude of oscillations in Eqs.~17,18! is less thanu1
2uAu2u, and uAu2,1. This corresponds to the arguments
Ref. @22#. In this situation, the survival probability is alway
less than the ‘‘ideal’’ one corresponding to the pure exp
nential decay~except for the very short timest!tZ). The
second case arises when the amplitude of oscillations in
~17,18! is bigger thanu12uAu2u ~for any uA2u), or when
uA2u.1. In this case, the survival probability may be low
or higher than the ‘‘ideal’’ one, that may result in oscillation
of the probabilitypN(T). This is exactly the situation in Fig
2~a!.

It would be very interesting to find an estimation for th
duration of the AZ region. We have found that the minimu
of the pN(T) is reached attZ , however the whole region is
much wider. Unfortunately, we can present this estimat
only for the second type of the AZ region. In order to illu
trate this, we plot in Fig. 3 the valueN«(T) defined as

pN«(T)~T!5~12«!p1~T!. ~20!

This value gives the maximum number of repeated obse
tion such that the probabilitypN(T) would not be less than
p(T) with accuracy«. The difference between two types o
the AZ region is very pronounced. For the first type@w2(x)
interaction# N«(T);C« and is almost independent of th
time T of observation. It means that the anti-Zeno regiontAZ
should be described astAZ;cT/«. So the duration depend
critically on the time of observation and the accuracy, a
cannot be attributed to the properties of the system itsel

For the second type@w1(x) interaction# N«(T);CT and
is almost independent of the accuracy«. This means thattAZ
is independent of the time of the observation and the ac
racy, so it can be correctly introduced. In fact, in this ca
tAZ is defined by the oscillations of the survival probabili
and can be estimated as 1/v1.

The estimationtAZ!1/v1 was given by Kofman and Kur
izki @24#. While this estimation obviously holds, it is nece
sary to establish more precise boundaries fortAZ . We have
found the boundarytAZ;1/v1 for the w1(x) interaction.
However, from the results presented in Fig. 3, one can
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that for the interactionsw2(x) andw3(x) the estimation 1/v1
can hardly be used, contrary to the results of@24#.

We would like to mention that the estimationtDC51/v1
has been obtained by Petrosky and Barsegov@33# as an up-
per boundary of the decoherence time marking the onse
the exponential era. As the Zeno effect cannot be realized
times larger thantDC , Petrosky and Barsegov calledtDC the
Zeno time. In fact, this is a rough estimation of the real Ze
time tZ .

V. CONCLUSION

Let us summarize the short-time behavior of the survi
probability. We introduce two regions: the very short Ze
region tZ with the scale 1/L and the much longer anti-Zen
regiontAZ . If one performs a Zeno-type experiment, and t
time between measurements is much shorter thantZ , then
the Zeno effect – increasing of the survival probability – c
be observed. In the time range betweentZ andtAZ , the anti-
Zeno effect exists, i.e., decay is accelerated by repeated m
surements. That is why the Zeno time cannot be longer t
tZ . The previous estimations of the Zeno timeta @10,11# and
tDC @33# are much longer than our estimationtZ for physi-
cally relevant systems~12!.

While the acceleration of decay is clearly seen in
cases, it is not always possible to introduce the valuetAZ .
The reason is the possible dependence oftAZ on the moment
of the observation and on the accuracy of the observat
When this dependence is absent, one findstAZ;1/v1. Hence,
the anti-Zeno region is, for typical values of parameters
few orders of magnitude longer than the Zeno region.
would be very important from the experimental point
view, to find an estimation for the anti-Zeno region in term

FIG. 3. The valueN«(T) @Eq. ~20!# as a function of observation
time T. From above, the curves correspond to the accurac«
51022, 331023, and 1023, respectively. The solid lines are fo
the photodetachement model@w1(x)5Ax/(11x)#, and the dashed
lines are for the quantum dot model@w2(x)5x/(11x2)2#. T is in
units of the decay timetd .
0-6
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of the initial parameters without any reference to the cons
Ak .

It is possible, in principle, that the oscillations in Eq
~17,18! may give a few successive Zeno and anti-Zeno
gions. However, as the amplitude of the oscillations
creases exponentially with time, these regions are hardly
ible. After the anti-Zeno region, the system deca
exponentially up to the timetep when the long-tail asymp
totics substitutes the exponential decay.

In accordance with this picture, the experimental obser
tion of the Zeno effect is very difficult. Indeed, the Zen
region appears to be considerably shorter than previo
believed. The acceleration of the decay should be obse
before the deceleration will be possible. In this connecti
the proposals for using the Zeno effect for increasing of
decoherence time@19# should be critically analyzed. We con
clude that the Zeno effect may not be very appropriate
decoherence control desired for quantum computations.

There seems to be no place for the usual estimation
the Zeno time byta . There are no physical effects that ca
be associated with this time scale. In our opinion, the wi
spread expectation that the timeta describes the Zeno region
is based on a naive perturbation theory. One could ass
that p(t)512(k52

` ck(lt)k, whereck is defined in terms of
the matrix elements of the interactions and are indepen
of l. In this case, all terms in the series forp(t) have the
same order atta . However, this assumption is not true asH0
andV do not commute, hencê1ue2 iHt u1&Þ^1ue2 ilVtu1&.

We would like to mention a few interesting problems r
lated to the Zeno effect.~1! A better characterization of th
anti-Zeno region. This problem is relevant to the experim
tal demonstration of the~anti-! Zeno behavior of the surviva
probability. ~2! How the nonideal measurements influen
the Zeno effect?~3! Is the asymptotic quantum-Zeno dynam
ics limN→`pN(T) governed by a unitary group or a sem
group of isometries or contractions@34#? This question de-
fines if the quantum-Zeno dynamics introduces irreversibi
in the evolution of a system.
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APPENDIX A: TIME EVOLUTION IN THE HEISENBERG
REPRESENTATION

The second quantized form of the well-known Friedric
model @26# is given by the Hamiltonian~1!. For v1.0, the
oscillator excitations are unstable due to the resonance
tween the oscillator energy levels and the energy of a pho
Strong interaction, however, may lead to the emergence
bound state. In weak-coupling cases discussed here, b
states do not arise@see Eq.~A5! below#.

The solution of the eigenvalue problem
06211
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@H,Bv
† #5vBv

† and @H,Bv#52vBv , ~A1!

obtained with the usual procedure of the Bogolubov trans
mation @35,36# is

~Bv
† !out

in
5bv

† 1
l f ~v!

h6~v!
E

0

`

dv8l f ~v8!S bv8
†

v82v7 i0
2a†D ,

~A2!

~Bv!out
in

5bv1
l f ~v!

h7~v!
E

0

`

dv8l f ~v8!S bv8

v82v6 i0
2aD .

~A3!

In Eqs. ~A2!, ~A3! we used the notation 1/h6(v)[1/h(v
6 i0) where the functionh(z) of the complex argumentz is

h~z!5v12z2E
0

`

dv
l2f 2~v!

v2z
. ~A4!

The following condition on the form factorf (v)

v12E
0

`

dv
l2f 2~v!

v
.0, ~A5!

guarantees that the function 1/h(z) is analytic everywhere on
the first sheet of the Riemann manifold except for the
@0,̀ ). Therefore, the total HamiltonianH has no discrete
spectrum and there are no bound states.

The incoming and outgoing operators (Bv
† ) in

out
, (Bv) in

outsatisfy the following commutation relation

@~Bv! in
out

,~Bv8
†

! in
out

#5d~v2v8!. ~A6!

The other commutators vanish. The bare vacuum stateu0&
satisfying

a1u0&5bvu0&50,

is also the vacuum state for the new operators:

~Bv! in
out

u0&50.

Therefore, the new operators diagonalize the total Ham
tonian ~1! as

H5E
0

`

dvv~Bv
† ! in

out
~Bv! in

out
. ~A7!

Using the inverse relations

bv
† 5~Bv

† ! in2l f ~v!E
0

`

dv8
l f ~v8!

h2~v8!

~Bv8
†

! in

v82v2 i0
,

~A8!

bv5~Bv! in2l f ~v!E
0

`

dv8
l f ~v8!

h1~v8!

~Bv8! in

v82v1 i0
,

~A9!
0-7
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a†52E
0

`

dv
l f ~v!

h2~v!
~Bv

† ! in , ~A10!

a52E
0

`

dv
l f ~v!

h1~v!
~Bv! in , ~A11!

we obtain the time evolution of the bare creation and an
hilation operators in the Heisenberg representation:

bv
† ~ t !5bv

† eivt1l f ~v!H E
0

`

dv8l f ~v8!

3
g~v8,t !2g~v,t !

v82v
bv8

†
2g~v,t !a†J ,

bv~ t !5bve2 ivt1l f ~v!H E
0

`

dv8l f ~v8!

3
g* ~v8,t !2g* ~v,t !

v82v
bv82g* ~v,t !aJ ,

a†~ t !5E
0

`

dvl f ~v!g~v8,t !bv8
†

1A~ t !a†,

a~ t !5E
0

`

dvl f ~v!g* ~v8,t !bv81A* ~ t !a. ~A12!

Except for the oscillating exponent, all time dependence
the field operators is described by the functionsg(v,t) and
A(t):

g~v,t !52
1

2p i E2`

`

dv8
1

h2~v8!

eiv8t

v82v2 i0
,

~A13!

A~ t !5S i
]

]t
1v Dg~v,t !5

1

2p i E2`

`

dv8
eiv8t

h2~v8!
.

~A14!

APPENDIX B: TYPE 1 FORM FACTOR

For the form factorw1(x)5Ax/(11x), we have:

hL~z!5vL2z2
pl2

12 iAz
, ~B1!

where the first sheet of the complexz plane corresponds to
the upper half of the complexAz plane. The exact expressio
for the survival amplitude is known@28,29,37#:
06211
i-

f

A~ t !5
ig1AṽL

2gAṽL

pl2

z32z2

eiz2Lt

1peip/4l2(
k51

3 S )
mÞk
m51

3 1

zk2zmD
3Aizke

izkLt@211erf~AizkLt !#. ~B2!

Here,zk is the root ofhL(z) on the second sheet ofz plane,
and ṽL , g are expressed in terms ofzk . If conditions ~12!
are satisfied, we have the following approximate expr
sions:

g'
p

2
l2, ṽL'vL . ~B3!

In order to analyze the survival probability for large time
we need the asymptotics of theA(t) as t→`:

A~ t !5
2i t 23/2

z1z2z3
F12

12

t (
k51

3
1

izk
1O~1/t2!G .

In the last expression, we can use the first term only wh
t@12u(k51

3 1/izku'24/v1. We have in fact checked numer
cally, that this is valid even on shorter times.

Using Eq.~B3!, we can now calculate the survival prob
ability:

p~ t !'e24gtAv1L1
pl4L

4v1
4t3 2

Apl2L1/2

v1
2t3/2

3e22gtAv1Lcos~v1t2p/4!

when t@
24

v1
. ~B4!

One can see that the survival probability decays expon
tially for intermediate times, while for large times, there is
power law. We can calculate the transition timetep when the
exponential decay is replaced by the power law. This h
pens when these two terms in the expression forp(t) are
equal. This condition leads to a transcendental equation
can be approximately solved

tep'2

5 lnF ~2p4!0.4l4
L

v1
G

4pl2ALv1

.

We should notice that in the vicinity oftep , the survival
probability oscillates with the frequencyv1.

Let us now discuss the asymptotics of Eq.~B2! for small
times t;0. From the definition of the survival probabilit
p(t) we know thatuA(0)u51. As the evolution is unitary,
we know that a linear term in the expansion ofp(t) vanishes
in the vicinity of t50. Expanding Eq.~B2! at small times,
we find for the survival probability
0-8



h

d

it

nd

in
o-
fast,

es
-
en-
o

re-

he

p-

ex-
y.

QUANTUM ZENO AND ANTI-ZENO EFFECTS IN THE . . . PHYSICAL REVIEW A 63 062110
p~ t !512S t

ta
D 1.5

1S t

tb
D 2

1O~ t5/2!. ~B5!

whereta5@3/(4A2p)#2/3/(l4/3L), andtb51/(AplL).

APPENDIX C: TYPE 2 FORM FACTOR

For the form factorw2(x)5x/(11x2)2 the dimensionless
function hL(z) is

hL~z!5vL2z2l2
p22z

4~11z2!
1l2

pz212z~ ln z2 ip!

2~11z2!2
.

~C1!

This function has no roots on the first Riemann sheet. T
roots on the second sheet are defined by the equation

hL~z!1
2p izl2

~11z2!2 50. ~C2!

Inserting Eq.~C1! into Eq.~5!, we can see that the integran
vanishes at infinity at the upper half of the complexz plane
and we can change the contour of the integration as
shown in Fig. 4. Hence, only two roots of Eq.~C2! contrib-
ute toA(t):

z15v11 i
g1

2
'vL1 ipl2vL ,

z2'
Ap

2
l1 i .

It is interesting to notice that the rootz2 does not approach
the continuous spectrum whenl→0. Instead,z2 ‘‘annihi-
lates’’ with the rootz3'2Apl/21 i , which, however, does
not contribute to the survival amplitude.

Combining the pole contributions with the backgrou
integral, we have for the survival amplitude

FIG. 4. The contour of integration.
06211
e

is

A~ t !5 (
k51

2

R~zk!e
izkLt

1l2E
0

`

dx
x~12x2!2e2xLt

@Q~x!1 1
2 l2px#~Q~x!2 3

2 l2px!

5 (
k51

2

R~zk!e
izkLt1l2I ~ t !, ~C3!

where

Q~x!5~vL2 ix !~12x2!22
l2

4
~p22ix !~12x2!

2
l2

2
~px222ix ln x!,

and

R~z!52F12
l2

2 S 32z212pz

~11z2!2
1

123z2

~11z2!3

3~pz12 lnz12ip!D G21

.

It is worth noticing that we have two exponential terms
representation~C3!. The first corresponds to the usual exp
nential decay of the system. The second decays very
with the time constant 1/2L. However, this term is very im-
portant for the description of the survival amplitude at tim
t;1/L. As shown in Sec. IV, in this region, the Taylor ex
pansion att50 already cannot be used, hence the repres
tation ~C3! is the only way to get results. We would like t
notice that for the interactionw(x)5x/(11x2)4 there are
three roots contributing to the survival amplitude:z1'vL

1 ipl2vL , z2' i (12A4 lp/8ep i /8, and z3' i (12A4 lp/8
e5p i /8. Hence, the expressions for the survival amplitude p
viously obtained@10,11# cannot be used for arbitrary timet
and should be corrected fort;1/L by adding two additional
exponential terms.

Let us calculate first the long-time asymptotics. For t
integral term in theA(t) we have

I ~ t !5
1

Q2~0!L2t2F11
4i

tLQ~0!
1O~1/~Lt !2!G .

As in Appendix B, we can use only one term of the asym
totics whent@4/v1. In this region, the survival probability
can be written as

p~ t !'e2g1Lt1
l4

Q4~0!L4t4 2
2l2e2g1Lt/2

Q2~0!L2t2
cos~v1t !.

~C4!

Here, again, we can see two regions: intermediate with
ponential behavior and long tail with the power-law deca
The transition timetep can also be calculated:
0-9
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tep52
4

g1
ln

lg1

Q~0!L
.

In order to calculate the short-time asymptotics we
pandI (t) into the series att50:

I ~ t !'C01C1t1C2t21C3t3

1E
0

`

dx
x~2xL!4~12x2!2e2xLt

@Q~x!2 1
2 l2px#@Q~x!1 3

2 l2px#
,

~C5!
d

A

he

ys

06211
-

whereCi are constants. The asymptotics of the integral te
in the last expression can be easily found@38#:

I (4)~ t !'2L4E
0

`

dx
e2xLt

x12ivL
5L4ln~2ivLt !1O~1!.

Combining these results with Eq.~9!, we get

p~ t !512S t

ta
D 2

2
l2

12
ln~2v1t !L4t41O~ t4!, ~C6!

whereta5A2/lL.
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