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Quantum Zeno and anti-Zeno effects in the Friedrichs model
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We analyze the short-time behavior of the survival probability in the frame of the Friedrichs model for
different form factors. We have shown that this probability is not necessarily analytic at the time origin. The
time when the quantum-Zeno effect could be observed is found to be much smaller than usually estimated. We
have also studied the anti-Zeno period and have estimated its duration.
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[. INTRODUCTION The QZE has been discussed for many physical systems
including atomic physic§10-13, radioactive decay14],
Since the very beginning of quantum mechanics, the meaand mesoscopic physidd5-18, and has even been pro-
surement process has been a most fundamental issue. Thesed as a way to control decoherence for effective quantum
main characteristic feature of the quantum measurement gomputationg19]. Recently, however, a quantum anti-Zeno
that the measurement changes the dynamical evolution. Thffect has been founf0,21]. Under some conditions the
is the main difference in the quantum measurement comtépeated observations could speed up the decay of the quan-
pared to its classical analogue. In this framework, Misra andum system. The anti-Zeno effect has been further analyzed
Sudarshan pointed o{it] that repeated measurements canin [18,22-25.
prevent an unstable system from decaying_ |ndeed, as the We CarEfully analyze here the short-time behavior of the
survival probability is in most cases proportional to theSurvival probability in the frame of the Friedrichs model
square of the time for short timésee, however, the discus- [26]. We have shown that this probability is not necessarily
sion below, the measurement effectively projects theanalytic at zero time. Furthermore, the probability may not
evolved state back to the initial state with such a high prob£€ven be quadratic for the short times while the QZE still
ability that the sequence of the measurements “freezes” th€Xists in such a cag@0,27. We have showitsee also Kof-
initial state. Led by analogy with the Zeno paradox, thisman and Kurizki[24]) that the time period within which the
effect has been called the quantum_Zeno ef(mE) QZE could be observed is much smaller than preViOUSly be-
Cook [2] suggested an experiment on the QZE that wadiéved. Hence, we conclude that the experimental
realized by Itancet al. [3]. In this experiment, the Rabi os- Observation/realization of the QZE is quite challenging.
cillations have been used in order to demonstrate that the We have also analyzed the anti-Zeno period. While it
repeated observations slow down the transition proces§€ems that most decaying systems exhibit anti-Zeno behav-
However, the detailed analysié—6] has shown that the re- ior, our examples contradict the estimations of Lewenstein
sults of this experiment could equally well be understoodand Rzazewsk[22]. We have studied the duration of the
using a density maitrix approach for the whole System_ Rea.n“'ZenO perIOd a.nd haVe est|mated th|S dura“on When pOS'
cently, an experiment similar to RéB] has been performed Sible.
by Balzeret al.[7] on a single trapped ion. This experiment
has removed some drawbacks usually associated with the Il. MODEL AND EXACT SOLUTION
experiment of Itanat al. [3], for example, dephasing a sys- . i i
tem's wave function caused by a large ensemble and the Thg quﬂtoman of the second quantized formulation of
nonrecording of the results of the intermediate measurement8€ Friedrichs mode]26] is
pulses. We refer to recent revie,9] for detailed discus- H=Ho 4 NV e
sions of these and related questions. o ’
. Both experiments3,7] Qemonstrate the perturbed evolu- where the unperturbed Hamiltonian is defined as
tion of a coherent dynamics, as opposed to spontaneous de-
cay. So, the demonstration of the QZE for an unstable sys- w
tem with exponential decay, as originally proposed in Ref. HO:wlaTa+f dwwblbw,
[1], is still an open question. The main problem in such an 0
experimental observation of the Zeno effect is the very short ) o
time when the quadratic behavior of the transition amplitudednd the interaction is
is valid [10,11]. On the other hand, the Zeno-type experi-
ment could also reyeal deviations from .the exponential decay V= dewf(w)(abha*bw). )
law and the magnitude of these deviations. 0
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Here,a', a are creation and annihilation boson operators of lll. SHORT-TIME BEHAVIOR AND THE ZENO REGION
the atom excitationp!, b, are creation and annihilation

fbosor} opera)t\ors O:] the ph(l)_ton with frequem&;y;(a;]) is the tially on the form factor. In order to illustrate different types
orm factor, A Is the coupling parameter, and the vacuum evolution, we shall consider two form factors, namely
energy is chosen to be zero. The creation and annihilation

operators satisfy the following commutation relations:

The short time evolution of the modél) depends essen-

w
= T ’ A X
[a,a"]=1, [b,.b,]=8w—w). 3) ()= A | *Dl(x):lT(x’ @
All other commutators vanish. 1+
The HamiltonianH, has continuous spectruf®,~) of
uniform multiplicity, and the discrete spectrumw; (with and
integern) is embedded in the continuum. The space of the
wave functions is the direct sum of the Hilbert space of the 1)
oscillator and the Fock space of the field. A X
For w,>0, the oscillator excitations are unstable due to fg(w)=A—2—z, ©o(X)= m——57. (8
. ) (1+x°)
the resonance between the oscillator energy levels and the 1+(_
energy of a photon. Therefore, the total evolution leads to the A

decay of a wave packet corresponding to the bare atgm

Decay is described by the survival probabiliigt) to find, ~ he form factorf, permits exact calculationg28,29. It
after timet, the bare atom evolving according to the evolu-{Urns out that the short-time behavior is not quadri®,27]
tion exp(=iHt) in its excited statg11]: as anticipated bj22]. We shall also use, for comparison the

results presented 10,11 for the form factor ¢5(X)
p(t)=|(1]e " 1)|2. (4 =x/(1+x?)* [30]. To get a first impression about the time
scales, we associate with each form factor a physical system:
The survival probability can be easily calculated in the secthe photodetachement process feg(x) [22,28,31, the

ond quantized representation: quantum dot fore,(x) [32], and the hydrogen atom for
A ¢3(x) [10]. The corresponding numerical values of the pa-
p(t)=[(0a(0)e M'a’(0)[0)|? rameters\, w,, and\? are listed in Table I. We would like
— |(0le~ Hteita(0)e~Hta’(0)|0)|2 to emphasize that these valu@s well as the model itsglf
are approximate estimations of the corresponding effects.
=|(0la(t)a’(0)|0)|?, Let us discuss the short-time behavior of the survival

probability p(t). We shall assume here the existence of all
wherea’(0)=a'. The time evolution of(t) in the Heisen- necessary matrix elements, and denote=(1|-|1).
berg representation is presented in Appendix A. Using Eq. _
(A12) we obtain p(t)=(e™ ")
p(t)=|A(1)[?, i Yoo as . L e 5
1-iHt 2H t +6H t +24H t*+O(t°)

where the survival amplitudA(t) is given by Eq.(A14). 5 A
Due to the dimension argument, we can write the form _(1- t—<H2)+ t—(H“)
factor f(w) in the form 2 24

2
+

t3 2
)~ ()
® +0(t%)
lo=relg).
F{H 23R
4 12

=1-t?((H?)—(H)?) +t*
whereg(x) is a dimensionless function. Herk,is a param-

eter with the dimension ab. The survival amplitudé\(t) in 1
the dimensionless representation is —§(H)(H3>) +0(t5)
1 o eiyAt t2 t4
A)=5—| dy—-, (5 =1— 5+ 3+0(t%. 9

2mi ) =" (y) 2t

where In order to calculate the parametdgsandt,, we need to
calculate the averages of the powerdbfHy+AV:
e —gen? [P
R I I (H) =3,

andw,=w, /A. (H?)=wf+\%(V?),
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TABLE I. The Zeno timet,, the timet,, the decay time, and the time,, of the transition from the
exponential to power law decay for different model of interactions and for different physical systems.
Numerical values are given in seconds and in units,of

\/i X X
Form factore(x) 1+x (1+x3)? (1+x%)4
tz 321 J6 2.6
97 A 2\/6(1)1 A
A In
( 3 ) 2/3 A
—— 2 V6
t N N b
a 2w A A
)\4/3A
. 1 1 1
d 77)\2‘/A2:)1 277)\7w1 277)\7w1
A
. 5In{ A= 2 In(2m\3) 2In(2m\3)
o _ _
ep Y mN\w, 7\,
477)\2 V A’(I)l
System Photodetachement Quantum dot Hydrogen atom
A(s™Y) 1.0x 10 1.67x 10'° 8.498< 10'8
(s 2.0x 10 7.25x 102 1.55x 10'°
A2 3.18x10°7 3.58x10 ® 6.43x10°°
t2(s) [tq] 1.1x1071°71.1x107°°] 5.9x10 ¥ [9.7x10°°] 5.76x10 °[3.6x10 17
ta(s) [tq] 9.6X1077[9.6x10°%]  4.5x10 *[7.4x10°%]  3.59x10 °[2.2x10 ]
tq(s) [tq] 0.1[1] 6.1x10°° [1] 1.60x10° [1]
tep(s) [tq] 1.7[17] 4.2x10°7 [69] 1.69x 107 [110]

In the weak-coupling models, the following inequalities are

(H3) =03+ 2\201(V?) + \3(VH,V),
(HY =01+ N\2(30X(V2) +201(VHV) +(VH3V))

FNAVAY. (10)

These expressions are valid in our model because of the spe-

cial structure of the potentiaf (2). Now we can find

1
2 =NV =A%,
a

1 > w A?
2| 1,2 1,3

— [— [— +_

tﬁ A(lZAIO 6A|1 12I2)

oo
a4y ¥, - -
+A°A 7 + 7 , (11

where

Ik=J xKo(x)dx.
0

satisfied(see Table)t

A<l and A>o;. (12)

In this approximation we can simplify the expression tipr
1 N?A*
tﬁN 7 5. (13
The parametet, has been called Zeno tinj&0,11] because
it has been conjectured to be related to the Zeno region, i.e.,
the region where the decay is slower than the exponential
one and the Zeno effect can manifest. On the other hand, a
more precise estimation reveals that the Zeno region is, in
fact, orders of magnitude shorter thgn We illustrate this
in Fig. 1 where the survival probabilities for the form factors
¢1(X) and ¢,(x) are plotted. The corresponding analytical
expressions and the numerical values for different time
scales are presented in Table I. We see fi{a)} is not con-
vex, already at times much shorter than the tipe

In view of this fact, we propose another definition for the
Zeno time. As one refers in discussions about the Zeno effect
on the expansion of survival probability for small times, and
specifically on the second term, we shall define the Zeno
timet; as corresponding to the region where the second term
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17 form factor decreases as(x)~x“ when x—o, only the
Taylor coefficients up ta" with n<1+|a| can be defined.
Following the previous discussion, for the form factor

0.999996 — ¢1(X) the Zeno time, can be estimated by the condition
_ t7\1° [tz)? oo 32
t.)  \ty) SO 259 A

0.999992 —

p(t)

For this case, one can see that the timéas scaling prop-
erties which differ from Eq(11) while the Zeno time, has
a value similar to Eq(14).

For ¢, the matrix elemergV?) exists so the usual time
t, can be introducedt,= \2/A A. However,(VH3V) does
not exist and the asymptotic behaviorm(ft) is (see Appen-
dix C)

0.999988 —

0.999984 —

' I ' I ' | ' | ' | 2 5
0 2x108 4x108 6x108  8x108 1x107 t

t (units of t p()=1—|—| — =IN(2wit) A*t*+0O(t%).
(units of tg) ty 12

FIG. 1. The survival probabilityp(t) for the photodetachement Repeating the arguments concerning the Zeno region, we

model [ ¢;(x) = Vx/(1+Xx), the dashed ling and for the quantum find t,= \/EIA In(2V6w,/A)][. In this case one can see

— 2)2 i i ; ;
?n?ig?ggl[ﬁ?é?i; Trﬁ(jr:t)s(, ij't:]hee;g:g l'gSﬁ@The Zeno timdz Is again that the Zeno timg, has a value similar to Eq14),
' y ' and the inequality,<t, is satisfied.

dominates. Hence, the introduced ties a natural bound-
ary where the second and third terms have the same ampli- IV. ZENO AND ANTI-ZENO EFFECTS

tude: The probability that the statil) after N equally spaced

2 measurements during the time intenjd@,T] has not de-
=2, so ty=tlt,. (14)  cayed, is given by1]
ta tb .
, Pa(T)=(1](|1)(1]e"™TM)N1)
In the weak-coupling models,
=pN(T/N)(1[1)=pN(T/N). (15)
1 /12
tZZX\II—O, Expression(15) is only correct for the ideal von Neumann
2

measurement$l]. We are interested in the behavior of

that agrees with the estimation f&4]. This time is much Pn(T) asN—c or, equally, when the time interval between
shorter thart,~ 1\ A and agrees much better with the nu- theé measurements=T/N goes to zero:
merical estimations. For example, for the interactiof{x)

; i TI
we find t,=26/A~5.8<10"1° s while t,= J6/\A~3.6 fim py(T)=lim p(r)

X 10716 s[10]. e e
Our conclusions are in fact valid for a rather wide class of 1-p(n\ Y7

interactions. Namely, they are valid if the matrix elements _ T

(10) exist and condition§12) are satisfied. For example, any =| lim| 1- 1

bounded locally integrable interactiop(x) decreasing as 70 —

o(X)~C/Ix}5€ >0 atx— o, gives finite matrix elements T

(10). Furthermore, we show below that the relatipp<t, 0, when p’(0)=—c,

may be valid even when the matrix elemeiiif) do not Lot Lo

exist. =ye°, when p'(0)=-c, (16
For the form factore,, already the matrix elemer/?) 1, when p’(0)=0.

does not exist, and the short time expansion is writsae

Appendix B as Hence, for the casp(t) =1—ct® one has the Zeno effect

for all >1 [20,27. We should notice that in case of the
linear asymptotics op(t) at short times(in particular, for

the purely exponential decathere is no Zeno effect, and the
probability to find the system in the initial stdtk) decreases
where t,=(3/(4y27))?(\*3A), and ty,=1/(JmAA). In  exponentially with the time of observation. The reslts)

fact, from the representatidd0) one can easily deduce that are found in case of continuously ongoing measurements
for any form factor decreasing according to the power lawduring the entire time intervglO,T]. Obviously, this is an
whenx—<, p(t) is not analytic at=0. Specifically, if the idealization. In practice, we have a manifestation of the Zeno

2
+0(t%?),

th

15
p(t)=1—(t£) +
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effect, if the probability(15) increases as the time interval 19
between measurements decreases. Forfllamay be ac- i
cepted as an approximation for a very short time interval
<t,. For longer times, we cannot use the Taylor expansion, 0.8
therefore Eq.(16) is not valid. It appears that in order to N
analyze longer time behavior, the long time asymptotics of
the p(t) are more convenient. These asymptotics can be 0.6
summarized as followssee Appendicies B, C 'L:Z, i
[s%
2, —4y oAl m A 047
PO~Ayf et s hi() |
\/;)\2/\ 1/2 0.2 —
— 5 | Addhy(e” 2Vt cog wgt— mld), 1
wit
(17) 0 HIIHH‘ IHHHIl HIIIIIIl \IIIHH‘ I\HHIIl TTIT \IIIHH‘ IHHIIl HIIHH‘ IIIIHH‘ IHHIII‘
10-11 10-1910-° 108 107 106 105 104 10-3 102 10
whent>24/w, for the ¢,(x), and @ 7 (units of tg)

A4 17
p(t)~|Ay|%e” "M+ ——h3(1)

wit .
2\ 2e~ 71At2 0.8 —
———55—|Ashy(t) cogwt), (19 ]
wit
0.6 —
when t>4/w, for the ¢p,(x). Here, the constantd,;, A,
satisfy the inequality1—|A|?|<1, k=1,2. The functions i
h,, h, have the following asymptotic properties: 0.4 —
_ o hy(t _ |
lim hy(t)=1; lim—_-—=const; 0.2 —
t—oo t—0 t
hy(t -
lim hy(t)=1; i Zt(z )_ const. 0

1010 109 10 107 106 105 104 10% 102 101
7 (units of tg)

In paper[10], an expression very similar to E¢18) was FIG. 2. The probabilitypy(T) [Eq. (15)] as a function of the
found for the form factorps(x). Expressiong17),(18) are  duration r between measurements. From above, the curves corre-
analytically established only in the regid&C/w;. HOW-  spond to the time of observatioh=10 4, 1073, 10 2, and 101,
ever, the numerical investigation shows that for our choice ofespectively.T and r are in units of the decay timig . The photo-
parameters, we can use Eq$7),(18) for a qualitative de-  detachement modgke,(x) = X/(1+x)] [Fig. 2@)] and the quan-
scription already in the regioh~1/w;. Then one can see tum dot model ¢,(x)=x/(1+x?)?] [Fig. 2(b)] are presented.
that the oscillation with the frequeneay; starts always with
the negative cosine wave. Therefore, the survival probability On the basis of Fig. 2 we would like to make some addi-
(4) turns out to be less than purely exponential, and one cational remarks. First of all, for lager observation timigthe
expect decreasing of the probabilipy(T) as well. We illus-  AZ region is wider and the probabilitpy(T) in the AZ
trate this effect in Fig. 2 for both the photodetachement profegion is lower. This is natural: the bigger the time of obser-
cess and the quantum dot. The anti-Zeno regiohregion),  vation is, the harder to restore the initial state of the system.
e., the region where the probabilitgy(T) is less than Second, one can see that the valpelescribes very well a
purely exponential, is clearly seen for both systems. For minimum of the probability in the AZ region. For shorter
—0, pn(T) approaches 1 according to H3.6). times, pn(T) increases, but it still may be much less com-
We should stress that the above-described behavior shovgsmred to thepy(T) in the purely exponential region. Hence,
that the initial quadratic behavior is not just a beginning ofthe classical Zeno effe¢fl] could be observed only when
the first wave of oscillation as stated in REI0]. This is true <t . Finally, we also notice that one can sometimes observe
because the timg, is actually not the time within whicp(t) the second wave of oscillation in Eq4.7,18 [see Fig. 2a)].
has quadratic behavior. In fact, the quadratic behavior is onljHowever, its amplitude is much less than the amplitude of
valid for t<t, and has nothing in common with the oscilla- the first wave.
tions in Egs.(17),(18). A general consideration of the AZ region is presented in

pn(D)

t—o t—0
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Ref.[22]. The authors conclude that the AZ region exists for 500 —
all generic weakly coupled decaying systems. Under some
assumptions, they have found that

|Al%<1, (19

and use this condition for the explanation of the existence of
the AZ region. However, some assumptions made in Ref.
[22] for the derivation of Eq(19) are not always valid. For
example, for the modep,(x) (the form factor used in Ref.
[22]) one calculate$A,|>~1+1.1x 10 ®>1 for our choice

of the parameters. For the modgh(x) we have|A,|?~1
+2?(3+2logw,)<1, but this effect is of the second order

in the coupling while in Ref[22] the fourth order was found.
Hence, the above-mentioned results cannot be considered as
a proof of the existence of the AZ region.

Indeed, our results show that there exist two different
types of the AZ region. The first case takes place as the
amplitude of oscillations in Eqgs(17,18 is less than|1 FIG. 3. The valueN,(T) [Eq. (20)] as a function of observation
—|AJ?|, and|A|?<1. This corresponds to the arguments oftime T. From above, the curves correspond to the accuracy
Ref.[22]. In this situation, the survival probability is always =102, 3x10 3, and 103, respectively. The solid lines are for
less than the “ideal” one corresponding to the pure expo-the photodetachement modeb,(x) = x/(1+x)], and the dashed
nential decay(except for the very short times<t,). The lines are for the quantum dot modab,(x) =x/(1+x?)?]. Tis in
second case arises when the amplitude of oscillations in Eqgnits of the decay time; .

(17,18 is bigger than|1—|A|?| (for any |A?|), or when

|A%[>1. In this case, the survival probability may be lower that for the interactiong,(x) andes(x) the estimation kb,
or higher than the “ideal” one, that may result in oscillations can hardly be used, contrary to the result§ 2.

of the probabilitypy(T). This is exactly the situation in Fig.  we would like to mention that the estimatiope= 1/w,
2(a). has been obtained by Petrosky and Barsd@3} as an up-

It would be very interesting to find an estimation for the per boundary of the decoherence time marking the onset of
duration of the AZ region. We have found that the minimumthe exponential era. As the Zeno effect cannot be realized for
of the p\(T) is reached at;, however the whole region is times larger tharpc, Petrosky and Barsegov callégl the

much wider. Unfortunately, we can present this estimatiorgeno time. In fact, this is a rough estimation of the real Zeno
only for the second type of the AZ region. In order to illus- time t,.

trate this, we plot in Fig. 3 the valug,(T) defined as

Ne(T)

0 T IIIIIII| T IIIIIII| T IIIIIII| T IIIIIII|

0.0001 0.001 0.01 0.1 1
T (units of tg)

P, m(T)=(1=&)ps(T). (20) V. CONCLUSION

Let us summarize the short-time behavior of the survival

This value gives the maximum number of repeated observgprobability. We introduce two regions: the very short Zeno
tion such that the probabilitpy(T) would not be less than regiont, with the scale 14 and the much longer anti-Zeno
p(T) with accuracye. The difference between two types of regiont,,. If one performs a Zeno-type experiment, and the
the AZ region is very pronounced. For the first tyjag,(x) time between measurements is much shorter thanthen
interactior] N,(T)~Ce and is almost independent of the the Zeno effect — increasing of the survival probability — can
time T of observation. It means that the anti-Zeno redign  be observed. In the time range betwégrandt,,, the anti-
should be described dg,~cT/e. So the duration depends Zeno effect exists, i.e., decay is accelerated by repeated mea-
critically on the time of observation and the accuracy, andsurements. That is why the Zeno time cannot be longer than
cannot be attributed to the properties of the system itself. t,. The previous estimations of the Zeno time10,11] and

For the second typpe;(X) interactio] N.(T)~CT and  tp [33] are much longer than our estimation for physi-
is almost independent of the accuracyThis means that,,  cally relevant systemé&l?2).
is independent of the time of the observation and the accu- While the acceleration of decay is clearly seen in all
racy, so it can be correctly introduced. In fact, in this casecases, it is not always possible to introduce the vajye
taz is defined by the oscillations of the survival probability The reason is the possible dependenck,gfon the moment
and can be estimated asv}/ of the observation and on the accuracy of the observation.

The estimatiori,,<1/w; was given by Kofman and Kur- When this dependence is absent, one finds- 1/w,. Hence,
izki [24]. While this estimation obviously holds, it is neces- the anti-Zeno region is, for typical values of parameters, a
sary to establish more precise boundariestjgr. We have few orders of magnitude longer than the Zeno region. It
found the boundant,,~1/w, for the ¢,(X) interaction. would be very important from the experimental point of
However, from the results presented in Fig. 3, one can seeew, to find an estimation for the anti-Zeno region in terms
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of the initial parameters without any reference to the constant [HyBL]:wBL and [H,B,]=-wB,, (A1)
Ay.

It is possible, in principle, that the oscillations in Egs. obtained with the usual procedure of the Bogolubov transfor-
(17,18 may give a few successive Zeno and anti-Zeno remation[35,36| is
gions. However, as the amplitude of the oscillations de-

creases exponentially with time, these regions are hardly vis- _ M(w) (= bI),
ible. After the anti-Zeno region, the system decays (Bl)ow=bl+— f do'\M(0')| ———-a'|,
exponentially up to the timé,, when the long-tail asymp- 7 (w)Jo ®'—w¥i0 (A2)
totics substitutes the exponential decay.

In accordance with this picture, the experimental observa- .
tion of the Zeno effect is very difficult. Indeed, the Zeno (g yin_p 4 )‘f(“’)f dw’)\f(w’)( b _al
region appears to be considerably shorter than previously 7 (w)Jo o' —w=*il
believed. The acceleration of the decay should be observed (A3)

before the deceleration will be possible. In this connection, ]
the proposals for using the Zeno effect for increasing of thdn Eds. (A2), (A3) we used the notation #F(w)=1/n(w
decoherence timgL9] should be critically analyzed. We con- *10) where the functiom(z) of the complex argumentis
clude that the Zeno effect may not be very appropriate for N
decoherence control desired for quantum computations. n(z)= wl—Z_f dop— )

There seems to be no place for the usual estimations of 0 w—Z
the Zeno time byt,. There are no physical effects that can ) -
be associated with this time scale. In our opinion, the wide-The following condition on the form factdi(w)
spread expectation that the tiredescribes the Zeno region, . N2
is based on a naive perturbation theory. One could assume w _f do (w)>o (A5)

1 ’

thatp(t)=1—2f:2ck()\t)k, wherec, is defined in terms of 0 @
the matrix elements of the interactions and are independent . . .
of \. In this case, all terms in the series fpft) have the guarantees that the function/i) is analytic everywhere on
same order at,. However, this assumption is not trueldg the first sheet of the Riemann r?nanl'fold except fqr the cut
andV do not commute, henal|e~Mt[1)# (1]e VY1) [0). Therefore, the total Hamiltoniakl has no discrete

We would like to mention a few interesting problems re- SPectrum and there are no bound states.
lated to the Zeno effectl) A better characterization of the ~ The incoming and outgoing operator8)()in, (B,)n
anti-Zeno region. This problem is relevant to the experimensatisfy the following commutation relation out out
tal demonstration of théanti-) Zeno behavior of the survival
probability. (2) How the nonideal measurements influence [(B,)in ,(BL,) n]=0(w—w'"). (AB)
the Zeno effect?3) Is the asymptotic quantum-Zeno dynam- out out
ics limy_...pn(T) governed by a unitary group or & semi- The other commutators vanish. The bare vacuum $@ijte
group of isometries or contractiof84]? This question de- satisfying
fines if the quantum-Zeno dynamics introduces irreversibility
in the evolution of a system. a,/0)=b,|0)=0,

(Ad)
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ful discussions. We would also like to acknowledge .the re-Therefore, the new operators diagonalize the total Hamil-

marks of Professor Kofman and Professor Kurizki. Thistonian (1) as

work enjoyed the financial support of the European Commis-

sion Project No. IST-1999-11318QID). 0 +
H :f doww(B,)in(B,) in (A7)
0 out out
APPENDIX A:  TIME EVOLUTION IN THE HEISENBERG . . ,
REPRESENTATION Using the inverse relations

The second quantized form of the well-known Friedrichs . . % M) (BZ),)in
model[26] is given by the Hamiltoniaril). For w;>0, the bwz(Bw)in—Kf(w)f do'———— —,
oscillator excitations are unstable due to the resonance be- o 7 (e) o' ~w=i0 A8)
tween the oscillator energy levels and the energy of a photon.
Strong interaction, however, may lead to the emergence of a . M) (B,
bound state. In weak-coupling cases discussed here, bound bw:(Bw)in_)\f(w)f do’ o/in_
states do not arissee Eq(A5) below]. 0 77 (w') o —w+i0

The solution of the eigenvalue problem (A9)
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M(w) N
dw (BN )in, (A10)
o (w)
» M(w)
a=—f do———(B,)in, (A11)
0o 7 (o)

we obtain the time evolution of the bare creation and anni-

hilation operators in the Heisenberg representation:

bfu(t)zblei“’tvL)\f(w)lfmdw’)\f(w’)
0

><Q(w’,'f) 9(w, )

w—w

—9g(o, t)aT}

bw(t)zbwe‘i“’t+)\f(w){fwdw’)\f(w’)
0

Xg*(w’,t)—g*(w,t)

o' —w

bm,—g*(w,t)a],
aT(t)=f:dw)\f(w)g(w’,t)bl,+A(t)aT,

a(t)=fowdw)\f(w)g*(w’,t)bw/+A*(t)a. (A12)

Except for the oscillating exponent, all time dependence of

the field operators is described by the functigis,t) and
A(t):

s 1 eia)'t

1
g(w,t)= do’

27T| —o0

7 (w") o' —w—i0’
(A13)
(w,t)— f dw

APPENDIX B: TYPE 1 FORM FACTOR

th

i
I_
at ¢

A(t)=
7 (o)
(A14)

For the form factore,(x) = Vx/(1+x), we have:

A2

1-iyz'

(2 =wy—Z— (B1)

where the first sheet of the complexlane corresponds to
the upper half of the compleyz plane. The exact expression
for the survival amplitude is knowf28,29,37:

PHYSICAL REVIEW A63 062110

Iy—i-\/—A N2
2\, B2

wei"’4)\22
k=1

|22At

A(t)=

3

IT —
m= Zk
m#k

X iz @M —1+erf(Viz, At)].

Here,z, is the root of#,(z) on the second sheet afplane,
andw, , y are expressed in terms gf. If conditions (12)

are satisfied, we have the following approximate expres-
sions:

1

Zm

(B2)

T, o~
‘y*E)\, WA~ Wy . (B3)

In order to analyze the survival probability for large times,
we need the asymptotics of tgt) ast—oo:

123 1
- = Z —+0(1K?)|.
k=1 1Zg

In the last expression, we can use the first term only when
t>12/332_,1/iz,|~24lw,. We have in fact checked numeri-
cally, that this is valid even on shorter times.

Using Eq.(B3), we can now calculate the survival prob-
ability:

NN JTNRA YR
4oftd 232

p(t) %6—47%&7/\4.
x e~ 2 erlcog @, t — 1r/4)

24
when t>—.
w1

(B4)

One can see that the survival probability decays exponen-
tially for intermediate times, while for large times, there is a
power law. We can calculate the transition titgg when the
exponential decay is replaced by the power law. This hap-
pens when these two terms in the expressionpf) are
equal. This condition leads to a transcendental equation that
can be approximately solved

51n

A
470.4y 4
(27N wl}
4mN2 A w,

We should notice that in the vicinity of.,, the survival
probability oscillates with the frequenay;.

Let us now discuss the asymptotics of EB2) for small
timest~0. From the definition of the survival probability
p(t) we know that/A(0)|=1. As the evolution is unitary,
we know that a linear term in the expansionpgt) vanishes
in the vicinity of t=0. Expanding Eq(B2) at small times,
we find for the survival probability

top~—

062110-8
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P A - 2 X
/// C \\\ A(t)= E R(zk)e'zk“
/ N k=1
7/ \
// Z \\ 2y2,— XAt
,/ 2 \\ +)\2de' X(1—x%)e
A
{ 0 @ \ 0 [Q(X)+ 3 N2mx](Q(X)— 3 \2mX)
! P
L Pl 2 )
:kZl R(z,) €M+ 21 (1), (C3
where
)\2
FIG. 4. The contour of integration. Q(X)=(w —ix)(1—x?)?— Z(w—Zix)(l—xz)
t\15 2 2 '
p(t)=1—(—) +| =] +0(t%?). (B5) - 7(wx2—zlx Inx),
ta tb
and
wheret,=[3/(4y27) 1?3 (N*3A), andty,=1/(\/7\A).
N2 (3—Z%+2mz 1-37°
R(z)=—|1-— +
APPENDIX C: TYPE 2 FORM FACTOR 2\ 1+25%2 @1+2»°®
For the form factorp,(x) =x/(1+ x?)2 the dimensionless -1
function 7,(2) is X(mwz+2Inz+2im)
, ™22 27722+ 2z(Inz—im) It is worth noticing that we have two exponential terms in

()= wp—Z—\ representatioiC3). The first corresponds to the usual expo-
nential decay of the system. The second decays very fast,
with the time constant 1/2. However, this term is very im-
portant for the description of the survival amplitude at times
This function has no roots on the first Riemann sheet. The~1/A. As shown in Sec. IV, in this region, the Taylor ex-
roots on the second sheet are defined by the equation pansion at=0 already cannot be used, hence the represen-
tation (C3) is the only way to get results. We would like to
2 miz\2 notice that for the interactiop(x)=x/(1+x?)* there are
——>—>5=0. (C2)  three roots contributing to the survival amplitudg~ w,

) +imN2o,, Zy~i(1—4Nw/Be™®, and zg~i(1- N8
e®™’8 Hence, the expressions for the survival amplitude pre-
Inserting Eq.(C1) into Eq.(5), we can see that the integrand viously obtained10,11] cannot be used for arbitrary tinte
vanishes at infinity at the upper half of the compleglane  and should be corrected for- 1/A by adding two additional
and we can change the contour of the integration as it i€xponential terms.
shown in Fig. 4. Hence, only two roots of E@2) contrib- Let us calculate first the long-time asymptotics. For the
ute toA(t): integral term in theA(t) we have

4(1+7%) 2(1+27%)2
(Cy

(1/(A1)?)].

1 [ 4i
I(t)= 1+ +0
B ort Ry tim oy, V= Qo7 M taQo)
As in Appendix B, we can use only one term of the asymp-
J7 totics whent>4/w,. In this region, the survival probability

Zo~ —N\+i. can be written as

)\4 2)\297 y1At/2
It is interesting to notice that the roap does not approach QY O)A %Y Q2(0)A %2 cogw;t).
the continuous spectrum when—0. Instead,z, “annihi- (C4)
lates” with the rootzg~ — \Jw\/2+i, which, however, does
not contribute to the survival amplitude. Here, again, we can see two regions: intermediate with ex-
Combining the pole contributions with the backgroundponential behavior and long tail with the power-law decay.
integral, we have for the survival amplitude The transition timet,, can also be calculated:

p(t)~e A+

062110-9
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4 Ay, whereC; are constants. The asymptotics of the integral term
tep=——1In . i i i :
ep 71 "Q(0)A in the last expression can be easily foud@]:
. . o0 efot
In order to calculate the short-time asymptotics we ex- I“”(U%—A“f dx————=A%IN(2iw,t)+ O(1).
pandl (t) into the series at=0: o Xt2Ziwy
[(t)~Cq+ Cqt+ Cyt?+ Cyt® Combining these results with E¢(P), we get
o0 — XA 4 1— 22— XAt t 2 2
+J o XxM)A-x)7e , p()=1-| | - M2eA+O(t),  (CH
0 [QM)— 5 \2ax][Q(X) + 3 A2mx] ) 1

(C5  wherety=2/\A.
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