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Nonlocal effects of partial measurements and quantum erasure
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Partial measurement turns the initial superposition not into a definite outcome but into a greater probability
for it. The probability can approach 100%, yet the measurement can undergo complete quantum erasure. In the
Einstein-Podolsky-Rosen~EPR! setting, we prove that~i! every partial measurement nonlocally creates the
same partial change in the distant particle, and~ii ! every erasure inflicts the same erasure on the distant
particle’s state. This enables an EPR experiment where the nonlocal effect does not vanish after a single
measurement but keeps ‘‘traveling’’ back and forth between particles. We study an experiment in which two
distant particles are subjected to interferometry with a partial ‘‘which path’’ measurement. Such a measure-
ment causes a variable amount of correlation between the particles. A new inequality is formulated for
same-angle polarizations, extending Bell’s inequality for different angles. The resulting nonlocality proof is
highly visualizable, as it rests entirely on the interference effect. Partial measurement also gives rise to a new
form of entanglement, where the particles manifest correlations of multiple polarization directions. Another
novelty in that the measurement to be erased is fully observable, in contrast to prevailing erasure techniques in
which it can never be observed. Some profound conceptual implications of our experiment are briefly pointed
out.
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INTRODUCTION

Bell’s theorem@1# has made it possible, for the first tim
to experimentally demonstrate quantum nonlocality. La
the Greenberger, Horne, and Zeilinger~GHZ! experiment@2#
and Hardy’s @3# proof without inequalities extended th
proof to new domains. All these proofs, however, invol
complete measurements. This is insufficient since, at
quantum level, measurement can be a continuous proc
the intermediate stages of which have seldom been stud

Is it possible to prove that nonlocal effects are produc
even by small stages of the measurement process? More
is it possible to show that nonlocal effects are formed
only by measurement but also by the time-reversed proc
namely, quantum erasure? Affirmative answers would ren
nonlocality much more intriguing because, in the ordina
EPR experiments, a single measurement of a particle di
tangles it, and no further measurements can reveal nonl
effects. Once the above two questions are answered in
affirmative, however, nonlocality will turn out to connect n
only discrete events but continuousprocessesas well. The
nonlocal influence will then appear to ‘‘bounce’’ back an
forth, many times, between the distant particles during
measurements. Several other intriguing features of quan
mechanics~QM!, such as reversibility and information ca
pacity, would also become manifest.

The organization of this paper is as follows. Section
introduces interaction-free measurement. Section II sh
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how, when the wave function is appropriately spl
interaction-free measurement becomes partial. Section
shows that such a measurement obeys the uncertainty
tions in that it partially disrupts a noncommuting variab
Section IV shows that partial measurement~PM! can some-
times be completely reversed. Section V presents a hy
EPR-PM experiment in order to show that partial measu
ment and its erasure exhibit nonlocal effects. Section
shows that quantum theory’s predictions for this experim
quantitatively differ from those of a local theory. In Sec. VI
a Bell-like inequality is shown to break by the EPR-PM e
periment. Section VIII studies the case of a multiple part
measurement on one particle and its unique nonlocal co
quences. Section IX discusses the novel form of quan
erasure made possible by our experiment. Section X po
out some bearings of these findings on quantum theory.

I. INTERACTION-FREE MEASUREMENT
AND THE UNCERTAINTY RELATIONS

Single-particle interferometry provides some of the m
intriguing illustrations for quantum-mechanical principle
and in recent years it has become technically feasible. C
sider a photon entering a calcite crystal positioned to div
the incident photon according to its polarization along thx
axis ~Fig. 1!. If the photon’s polarization is 90° (Px511,
u↑&), it will be diverted to the lower path, whereas if it is 0
(Px521, u→&) it will be diverted to the upper path. Th
calcite thus acts as a polarizing beam splitter~pBS!, similar
to the Stern-Gerlach magnet for spin-1

2 particles. As long as
no measurement has been made to find out which path
photon took, thereby leaving the photon’s polarization un
termined too, the photon will remain in a superposition
both paths and both polarizations:
©2001 The American Physical Society09-1
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uC&5c1u↑&1c2u→&. ~1!

So far, the splitting of the wave function is reversible.
second calcite, aligned at thex plane as the first but facing a
opposite direction~denoted byx̄), reunites the resultingu↑&
and u→& beams, so that the photon reemerges in one sin
beam, in the same state as it has entered the first ca
~Fig. 1!.

The reversibility of splitting the photon along thex direc-
tion is demonstrated by the measurement of another, n
commuting variable. Before splitting, let the photon impin
on a calcite positioned 45° in thex direction, measuring itsy
polarization. Suppose that they polarization has been foun
to be145° (Py511, u↗&). Then, let the photon split ac
cording to itsx polarization and reunite again~Fig. 2!. If no
measurement has been made between the splitting an
uniting, we are left ignorant about the photon’sx polariza-
tion. Consequently, they polarization will remain intact: a
final y measurement willalways yield a polarization of
145°, just like the initialy measurement.

Suppose, however, that two detectors are placed on
two routes of the split wave function prior to its reunificatio
~to enable the later reunification of the rays, let the meas
ments be of the nondemolition type, such that the detec
do not absorb the photon in case of detection!. Since theu↗&
state is an even mixture ofu→& and u↑&,

u↗&5
1

A2
~ u↑&1u→&), ~2!

in 50% of the cases the upper detector will click, and in
other 50% the lower one will. This measurement has an
reversible consequence: The knowledge we have ga

FIG. 1. It is possible to restore a photon’s exact state as lon
no measurement is performed.

FIG. 2. As long as no measurement is taken to determine
photon’s polarization in thex direction, its polarization along they
direction remains intact.
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about the photon’s polarization will take the cost of blurrin
the other, noncommuting variable, obeying an uncertai
relation of the form

DPxDPy>2i @Px ,Py#. ~3!

Figure 3 demonstrates this principle. OncePx is ascer-
tained,Py is disrupted; a secondy measurement will yield
either145° (u↗&) or 245° (u↘&), randomly. This is simi-
lar to the ordinary interference effect in a Mach-Zender
terferometer~MZI !, where obtaining which-path informatio
disrupts the photon’s initial momentum.

Here a peculiar possibility emerges. What happens if
order to measurePx , we place onlyonedetector on one of
the two routes? If the detector click, the answer is clear: T
is an ordinary measurement, hence we should observe
above disruption ofPy . The situation becomes more intrigu
ing in the remaining 50% of the cases, when the single
tector does not clicks. Although no observable interact
has taken place, the very silence of the detector indicates
the photon has traversed the other path, thereby disclo
the photon’s polarization with certainty. Hence,Py should be
disrupted in this case too, just because the silent dete
could have clicked.

This ‘‘interaction-free measurement’’@4# has been the
subject of intense experimental and theoretical study in
past few years@5–7# ~see@8# for a comprehensive review!. In
the present context, it has two unique features that war
attention. First, with a simple modification, interaction-fre
measurement can be partial, leaving the wave function
certain degree of superposition even after the measurem
Second, it can be completely reversed.

II. MEASUREMENT CAN BE PARTIAL

Nearly always, measurement is regarded as a single ev
whereby the superposition of all possible states gives
place to one state. In reality, however, there can be m
intermediate stages in the measurement process, stage
only change the initial probabilities without yet giving a de
nite result@9–12#.

Following is a simple apparatus for partial measureme
Let a photon be split by a calcite in the above manner. Ne
with the aid of many partly silvered mirrors, let theu↑& beam
split further into 100 beams. The transmission coefficients
the mirrors are graded such that all 100 beams have an e
intensity of 1% of the original beam~Fig. 4!. The first mirror
transmits 99

100 of the incident beam, the second98
99 , and so on,

as

e

FIG. 3. A measurement that discloses the photon’sx polariza-
tion destroys they polarization even when the measurement h
been carried out by a single detector that did not click.
9-2
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NONLOCAL EFFECTS OF PARTIAL MEASUREMENTS . . . PHYSICAL REVIEW A 63 062109
with the 99th mirror transmitting12 of the beam and the las
one being a solid mirror. Similarly, let theu→& beam split
into another 100 by the same technique. The photon is n
in a superposition of 200 beams, such that, if its polarizat
along thex direction is 90°, it might be detected in one out
the 100 lower beams, whereas if its polarization is 0°
might be detected in one out of the 100 upper beams.

Finally, let a complementary series of mirrors reunite
200 beams into twou↑& andu→& beams, and let a reversedx
calcite reunite the resulting beams. The apparatus keep
paths of all the beams in the same length, so as to keep
beams in phase.1 This way, the entire splitting process
reversed and the photon reemerges as one single beam

Here, too, we can demonstrate the superposition of
photon’s x polarization by performing twoy polarization

1This is, essentially, a modification of the Mach-Zender interf
ometer. Aligning these mirrors to about one wavelength error
difficult task, but completely possible with current technology.

FIG. 4. A series of partly silvered mirrors splits each half of t
wave function into 100 equal beams. Here, too, as long as no m
surement has been taken on any of the 200 beams, they polarization
remains intact.
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measurements, one before and one after the splitting
reunification processes. As long as no measurement is
formed, the superposition will remain intact and all the ph
tons will always emerge in the same state as it entered
apparatus, e.g.,u↗& as in Fig. 4.

This setup enables performing partial measurements.
can now remove one of the mirrors and place a detector
demonstrated on the third beam of theu↑& branch of Fig. 4. If
the detector clicks, we know for certain that the photon
polarization is u↑& and the measurement is complete.
99.5% of the cases, however, the detector will not click. T
constitutes an interaction-free measurement, which sho
alter the wave function. Yet, since the portion of the wa
function thus measured is so tiny, the superposition w
change only slightly,

u↗&5
1

A2
~ u↑&1u→&)→A 99

199
u↑&1A100

199
u→&, ~4!

and will continue changing slightly for each further measu
ment on the remaining beams that yields no click. In oth
words, each interaction-free measurement slightly redu
the probability that the photon’s polarization isu↑&, thereby
increasing its probability to have au→& polarization. Forn
detectors on the 90° branch, the effect on the wave func
will be

1

A2
~ u↑&1u→&)→A1002n

2002n
u↑&1A 100

2002n
u→&

5A a

11a
u↑&1A 1

11a
u→&, ~5!

wherea is the intensity of the~unmeasured! u↑& beam:

a5
1002n

100
. ~6!

Let us denote the operator of partial polarization measu
ment in thex up direction with intensitya as

~partial polarization measurement![ P̂↑a . ~7!

~Note again thata is the unmeasured intensity.! This opera-
tor obeys the following multiplication law:

P̂↑bP̂↑a5 P̂↑ab . ~8!

A familiar question, central to quantum theory, now pos
itself: Does partial measurement change merely our kno
edge about the photon or is this a real physical change g
on with the photon’s state? Interaction-free measurem
provides a straightforward way to show that the latter is tr

Recall that, prior to the photon’s splitting along thex
direction, its polarization has been measured along they di-
rection and was found to beu↗&. All one has to do now is to
reunite theu↑& and theu→& beams, and then measure aga
the y polarization. If no attempt has been made to determ
which of the 200 paths the photon took in thex direction, the

-
a

a-
9-3
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FIG. 5. The polarization angle
as a function ofa.
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photon will emerge from the interferometer with itsx polar-
ization unmeasured, hence itsy polarization will remainu↗&
with 100% certainty. If, however, a measurement has b
made to find out the photon’sx polarization, this measure
ment will have a proportionate effect. If one of the detect
clicks, then the measurement is complete and the photony
polarization will be totally disrupted, as in Fig. 3. But if th
measurement is interaction-free, i.e., a few beams meas
with no click, they polarization will be only partly disrupted
~see also Ref.@9#!. Instead of a pureu↗& state, we will have

uCa&[ P̂↑auC&

5A a

11a
u↑&1A 1

11a
u→&

5
11Aa

A212a
u↗&1

12Aa

A212a
u↘&. ~9!

This change of the wave function is an objective, physi
event. Measuring the photon’sy polarization before and afte
the partial measurement will show that, at the statisti
level, they polarization has been disrupted proportionately
the knowledge we gained about thex polarization.

III. PARTIAL MEASUREMENT EXERTS A PARTIAL
EFFECT ON NONCOMMUTING VARIABLES

Let us now turn to the way partial measurement obeys
uncertainty principle. The effect of a partial measuremen
Px on Py can be regarded as a rotation of the polarizat
plane: Drawing a vector with theu→& component as thex
ordinate and theu↑& component as they ordinate, will give
u5tan21(^↑uCa&/^→uCa&) as the angle of the polarizatio
plane. The initial state ofu↗& has two equal components o
06210
n

s

ed

l

l

e
f

n

the x polarization, namelyu→& and u↑&, resulting in u
545°. When a partialPx measurement is taken, theu↑& com-
ponent diminishes while theu→& component increases, cau
ing the polarization plane to rotate clockwise, until a co
plete measurement gives a pureu→& state~Fig. 5!.

Figure 5 also allows us to look at the vectors witho
normalizing C for iuCa&i251: The formulation given in
Eq. ~9! keeps the polarization vectors normalized since
counts only the cases in whichu↗& or u↘& were measured
excluding all the cases where a complete measurement
place and ended up with a click in one of theu↑& detectors.
An efficient way to look at the wave function is to keep tra
of theseu↑& measurements. In this case, the probabilities
u↗& andu↘& will not sum to 1, and the vector in Fig. 5 wil
get shorter asa diminishes. Formally,

uCa8 &5Aa

2
u↑&1A1

2
u→&5

11Aa

2
u↗&1

12Aa

2
u↘&.

~10!

This fact will turn out to be important later.
We can now calculate the correlation coefficient betwe

the initial and the finaly polarizations as a function of th
magnitude of the partial measurement:

Cy(a)5i^↗uCa&i25S 11Aa

A212a
D 2

. ~11!

Cy(a) ranges from 1~when a total correlation is kept! to 0.5
~when we have no correlation at all, since there is an eq
probability to find u↗& or u↘&). For example, if measure
ments have been carried out on 50 out of the 100u↑& beams,
yielding no click, thena50.5 and the agreement betwee
the y polarization before and after thePx measurement will
be
9-4
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FIG. 6. DPx andDPy as a function ofa.
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Cy(a)5S 11 a

A212a
D .97%.

Indeed, since thex andy polarization directions are noncom
muting variables, they satisfy the uncertainty relations m
tioned in Eq.~3!, and when applied to the above case
partial measurement,

DPx5
2Aa

11a
, DPy5

12a

11a
, ~12!

which vary witha as in Fig. 6.
It is easily seen that asa increases~that is, fewer mea-

surements on theu↑& branch!, DPx also increases andDPy

decreases. That means that the more we measure on thu↑&
branch, the more precise knowledge wegain about Px

~henceDPx decreases!, and the more knowledge welose
aboutPy ~henceDPy increases!.

IV. PARTIAL MEASUREMENT IS AMENABLE
TO COMPLETE ERASURE

An intriguing peculiarity of partial measurement is that,
contrast to the ordinary one, it can sometimes be totally
versed. To do this, there is no need to time-reverse the
eration of any detector; one can merely repeat the pa
measurement on the photon’s opposite branch~Fig. 7!.

For example, letn detectors be placed onn paths of a
photon’s u↑& branch. On average, in (2002n)/200 of the
cases, these detectors will not click. This is a partial m
surement, its outcome being given by Eq.~5!. Now let an-
other battery ofn detectors be placed onn paths of the same
photon’su→& branch. On average, in (20022n)/200 of the
cases, none of these detectors will produce a click eit
This will completely undo the measurement and turn
wave function back to the initial superposition:
06210
-
f
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-

r.
e

1

A2
~ u↑&1u→&)→

→A1002n

2002n
u↑&1A 100

2002n
u→&

5A a

11a
u↑&1A 1

11a
u→& 6 measurement

→A 1002n

20022n
u↑&1A 1002n

20022n
u→&

5
1

A2
(u↑&1u→&). 6 erasure ~13!

According to the notation we used for the partial measu
ment, the erasure process will take the form

P̂→aP̂↑a51̂. ~14!

This reversal occurs when the two partial measurements
the opposing branches are of the same magnitude. In
more general case of placingn detectors on theu↑& branch
andm detectors on theu→& branch, the correlation~or rather
the mismatch! between the initial and finalPy measurement
will be

uCab&[ P̂→bP̂↑auC&

5A a

b1a
u↑&1A b

b1a
u→&

5
Ab1Aa

A2b12a
u↗&1

Ab2Aa

A2b12a
u↘&, ~15!

with correlation coefficient

Cy(ab)5S Aa1Ab

A2a12b
D 2

5S 11Ak

A212k
D 2

, ~16!

wherea andb are the beam intensities of theu→& and the
u↑& branches, respectively, andk is the ratio between them:
9-5
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a5
1002n

100
, b5

1002m

100
, k5

a

b
. ~17!

Notice thatCy(ab) depends on the ratiok alone. That means
for example, that a measurement of 50% of theu↑& branch
(k51/A2) will yield exactly the sameCy(ab) as a measure
ment of 90% of theu↑& branch and 80% of theu→& branch,
or 99% of theu↑& branch and 98% of theu→& branch, etc. In
other words, the exact number of paths on either branch d
not matter, nor does their relative intensities, nor the num
nor the identity of the measured paths. The only thing t
counts is the ratio of theunmeasuredparts of the two
branches,

P̂→bP̂↑a5 P̂↑a/b . ~18!

Consequently, the partial measurement operators in thex di-
rection are commutative:

P̂→bP̂↑a5 P̂↑aP̂→b5 P̂↑a/b5 P̂→b/a . ~19!

FIG. 7. When the same number of paths is freely measured
respect to both theu→& and u↑& branches, their overall effects can
cel each other and the photon returns to the original superposi
06210
es
r,
t
This ratio looks natural when discussing a single photon
interference is known to depend on the intensities of
various beams diverging and reconverging from the ini
wave function. Later, however, this ratio will prove to be
crucial significance as a proof for nonlocal influence betwe
distant photons.

An important feature of the erasure process is that it co
plies with a cost-benefit principle. Any measurement on
u→& path to restore the exactu↗& state will also diminish an
equal part of theu↑& part, as seen in Fig. 8. To trace the co
of the erasure, we must keep track of the measured portio

th

n.

FIG. 8. The cost of undoing a measurement.~a! Initial setup:
uC&5u↗&. ~b! A partial measurement on theu↑& branch rotates the
polarization plane:u↗& diminishes whileu↘& increases.~c! Fol-
lowing a countermeasurement on theu→& branch, the initial state is
restored. Theu↘& part is nullified butu↗& diminishes, too.
9-6
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NONLOCAL EFFECTS OF PARTIAL MEASUREMENTS . . . PHYSICAL REVIEW A 63 062109
the beam, hence a formulation similar to Eq.~10! is used
with the inclusion of the erasure process:

uCab8 &5Aa

2
u↑&1Ab

2
u→&

5
Ab1Aa

2
u↗&1

Ab2Aa

2
u↘&. ~20!

Let us now summarize Secs. II–IV. The splitting of th
wave function into 200 paths enables carrying out a par
measurement, whose effect is manifested by the proport
ate disruption of the interference effect. This setup also
lows, in some cases, a complete erasure of the partial m
surement and consequently a restoration of the interfere
pattern.

V. NONLOCAL EFFECTS OF PARTIAL MEASUREMENT
AND ERASURE, REVEALED BY INTERFEROMETRY

Is it possible to show that such a partial measurement
nonlocal effects? Our proof involves an experiment with t
particles in a singlet state. We show that, when both phot
are subjected to interferometry, the partial measurement
erasure performed on each photon disrupt and restore
spectively, the interference effects ofboth photons.2

Consider, then, a pair of spacelike-separated photonA
and B, in an entangled state, each entering an apparatu
the form described in Fig. 4. This is a hybrid EPR-PM e
periment~Fig. 9!. If both Px polarizations are measured, the
will be 100% correlated but thePy polarizations will be un-
related. Conversely, if no detection is performed to find
which of the possible 200 paths any of the photons has ta
their x polarization will remain unmeasured, hence theirPy
correlations will remain intact.

Now let some detectors be placed onn out of the 100
paths of theu↑& branch of photonA. PhotonB, in contrast,
will not undergo any measurement ofPx , only of its Py .

In (2002n)/200 of the cases, all detectors measur
photon A will perform an interaction-free measuremen
changing the wave function as in Eq.~9!. But here, due to the
singlet state connecting the two photons, a unique s
evolves. The partial measurement has partly disrupted
two photons’ EPR entanglement:

uEPR&5
1

A2
~ u↑&1u↑&21u→&1u→&2)

→A1002n

2002n
u↑&1u↑&21A 100

2002n
u→&1u→&2

5A a

11a
u↑&1u↑&21A 1

11a
u→&1u→&2 , ~21!

2For combining IFM and EPR experiments to prove the nonlo
nature of the former, see@13,14#.
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wherea, again, is the intensity of the beam@as in Eq.~6!#.
This change causes a decrease in the correlation betw
their y polarizations:

uCa&[ P̂↑1auC&

5A a

11a
u↑&1u↑&21A 1

11a
u→&1u→&2

5
11Aa

2A11a
~ u↗&1u↗&21u↘&1u↘&2)l

FIG. 9. An EPR-interferometry experiment. As long as no me
surement of the two photons’x polarizations is made, their finaly
polarization will be 100% correlated. When partialPx measure-
ments are carried out, the changes in the correlation between thy
polarizations can demonstrate their nonlocal effects.
9-7
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FIG. 10. EPR and anti-EPR parts as a functi
of a.
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1
12 a

2A11a
~ u↗&1u↘&21u↘&1u↗&2)

5
11Aa

A212a
uEPR&1

12Aa

A212a
uEPR&, ~22!

where uEPR& is the ‘‘anti-EPR’’ state in which the photon
are entangled, but in reverse polarization:

uEPR&5
1

A2
~ u↗&1u↘&21u↘&1u↗&2). ~23!

As we can see, the partial measurement did not break
entanglement between the two photons. Instead, the
EPR state became ‘‘contaminated’’ by a certain amoun
the anti-EPR state. This means that measurements of ty
polarization of photonsA and B have a probability of@(1
1Aa)/A(212a)2 to yield correlated results, and a pro
ability of @(12Aa)/A(212a)#2 to yield opposite results
The latter probability will grow as the magnitude of the pa
tial measurements onPx grows ~that is, asa diminishes!
until the correlation drops to the random level of 50%-50
asa drops to 0 in case of a complete measurement~Fig. 10!.

As we will show below, the fact that the photons rema
entangled evenafter partial measurement was performed e
ables us to increase or decrease the amount of the anti-
component in subsequent measurements.

Our next aim is to show that such a reversal can erase
only the outcome of a measurement performed on the s
photon, but also that of theother photon. Consider the era
sure of a partial measurement as described in Sec. II. If
erasure works, i.e., the measurement of the opposing br
also turns out to be interaction-free, the correlation betw
the two photons’y polarizations will be restored:

uCab&[ P̂→1bP̂↑1auC&

5A a

a1b
u↑&1u↑&21A b

a1b
u→&1u→&2

5
Ab1Aa

2Aa1b
~ u↗&1u↗&21u↘&1u↘&2)
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1
b2 a

2Aa1b
~ u↗&1u↘&21u↘&1u↗&2)

5
Ab1Aa

A2a12b
uEPR&1

Ab2Aa

A2a12b
uEPR&, ~24!

whereb is the intensity of theu→& branch, as in Eq.~17!.
It is now clear that whena5b, theuEPR& part diminishes

and the final state is the originaluEPR& state, restoring the
initial entanglement of photonsA andB.

Note that the restoration process is reminiscent of a p
cedure proposed by Deutschet al. @15# for ‘‘entanglement
purification’’ of EPR-like pairs. However, their procedur
suffers from lack of information about the partially entangl
state. Consequently, it necessitates destroying every o
transmitted particle, which serves as an ‘‘entangleme
control’’ particle, and then destroying also the accompany
particle, should the ‘‘entanglement-control’’ particle indica
a nonentangled state. Our experiment, in contrast, does
require ‘‘testing’’ the particles for entanglement.Each and
everyparticle that is being ‘‘caught’’ by the detector in th
‘‘countermeasurement’’ is a nonentangled particle. Surp
ingly, the QM formalism ensures that only the nonentang
particles will be caught by the detector.3

Therefore, when partial measurements and erasures
performed on two entangled photons, the local and nonlo
interpretations differ markedly:

Local Argument A. Both the disruption of the correlation
and its restoration are performed only by photonA’s local
interaction with the nearby detector, without affecting ph
ton B whatsoever.4

Nonlocal refutation. The correlation between the twoy
polarizations will be restored even if we perform the partiax

3This point will be elaborated in Sec. VI.
4Proving nonlocal action is always difficult as adherents of loc

ity often come up with very awkward yet not impossible loc
mechanisms. Disproving such mechanisms is a tedious task
essential for a proof’s completion. We therefore consider and
prove here all possible localist arguments.
9-8
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measurement on photonA and the undoing of this measure
ment on photonB.

Here is the proof. Letg andd denote the intensities of th
u→& andu↑& branches of photonB, respectively. If both pho-
tons are subjected to partial measurements, the pair’s
will be

uCabgd&[ P̂→2dP̂↑2gP̂→1bP̂↑1auC&

5A ag

ag1bd
u↑&1u↑&21A bd

ag1bd
u→&1u→&2

5
Abd1Aag

A2ag12bd
uEPR&1

Abd2Aag

A2ag12bd
uEPR&.

~25!

Again, the entanglement between the photons is kept@though
evolving into the unique state similar to Eq.~23!#, and the
correlation between the photons’y polarizations would be

Cy(abgd)5i^EPRuCabgd&i2

5S Abd1Aag

A2ag12bd
D 2

5S 11AK

A212K
D 2

, ~26!

where, again,a andb are, respectively, the beam intensiti
of the u→& and theu↑& branches of photonA, andg andd
are theu→& and u↑& branches of photonB. K is the ratio
between the intensities of the two photons:

K5
bd

ag
. ~27!

A few points are worth mentioning here.
~i! The uEPR& component will always be greater than

equal to theuEPR& part. Hence, in the above setup, one c
never reach a situation when the two photons are manife
anticorrelated.

~ii ! In the extreme case when eithera, d, b, or g equals
0 ~that is, a complete measurement was performed!, the re-
sultant state is an even blend ofuEPR& anduEPR& states, and
Cy(abgd)5

1
2 . That means that, following a complete me

surement ofPx on one photon, no information can be o
tained about the other’sy polarization, as there are eve
probabilities to find the other photon in the same polarizat
(uEPR&) or in the opposite one (uEPR&).

~iii ! The opposite extreme case occurs whenad5bg,
therebyCy(abgd)51. Then, the two photons will restore th
original uEPR& state of 100% entanglement.

~iv! The process of ‘‘erasing’’ the measurement bear
cost. Getting rid of the anti-EPR component will take the t
of diminishing the EPR part in equal amount. That mea
that many measurements will end up with a click. In order
measure this effect, we have to rewrite Eq.~25! without nor-
malization foriCi251 after each measurement@as we did
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before in Eqs.~10! and~20!#. When keepinguC& relative to
its initial intensity ~wherea5b5g5d51), we get

uCabgd8 &5
Abd1Aag

2
uEPR&1

Abd2Aag

2
uEPR&.

~28!

Now, for example, if a measurement of 50% was taken ona,
the result will be

uC18&5
11A 1/2

2
uEPR&1

12A 1/2

2
uEPR&, ~29!

whereas after a countermeasurement of 50% onb or d, the
result will be

uC28&5
1

2
uEPR&. ~30!

Hence, erasing the anti-EPR part took the toll of anot
reduction of 1/A2 out of the EPR part. That is the reaso
why we cannot retrieve the EPR state after acompletemea-
surement on one of the branches: The resultant state wi
1/A2uEPR&11/A2uEPR&. Trying to eliminate the anti-EPR
component will also nullify the EPR component, leaving
fully measured photon.

~v! Since Cy(abgd) depends onK alone, the process is
inherently nonlocal. K is the ratio of the partial measure
ments on both particles and cannot be ‘‘compensated’’
one particle without knowing the ratio of measurement
the other. This nonlocality causes Bell-like inequalities
break~see the refutation of local argumentD in Sec. VII for
a demonstration of such an example!.

Once, however, a pair of initially entangled photons h
survived the partial measurements of theiru→& and u↑&
branches withK51—regardless of whether the partial me
surements were carried out on one photon or on both—t
restore their entanglement, hence the correlation in they
polarizations. This offers a new extension of the EPR ar
ment: Just as quantum measurement imposes the mea
polarization on the distant photon, so does quantum era
obliterate the other photon’s polarization.

Equation~26! reveals another feature of thePy correlation
between the photons. The combined effects of partial m
surements and partial ‘‘countermeasurements’’ do not co
ply with the ordinary subtraction rules. Consider, first, t
case of a single particle. Itsy polarization is determined by
the relative intensities of theu→& and u↑& branches, as in
Eqs.~15! and~17!. To put it more pictorially, this is a natura
consequence of the interference effect. If an interaction-f
measurement has occurred, say, in 90% of theu↑& branch
and in 95% of theu→& branch, then the entire wave functio
resides in the remaining 10% and 5%, yielding aK value of
2. Hence, the resultingPy correlation would be identical to
that obtained by measuring just 50% of theu→& branch
alone~giving againK52).
9-9
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Now, when considering such interference effects oftwo
such photons in the EPR setup, the nonlocality assump
yields another straightforward prediction that differs fro
the local assumption.

Local Argument B. The above deviation from ordinar
subtraction rules stems from the interference effects oc
ring in each photon, regardless of what happens with
other photon.

Nonlocal refutation. The singlet state obliges the abov
subtraction rules to hold equally even when theu↑& branch is
measured in photonA and theu→& branch is measured in
photonB. This effect is obliged by Eq.~26!, which shows
that they polarization coefficientCy(abgd) is a function of
the measurement ratioK alone.5

To summarize, in all cases in which interaction-free m
surements are carried out on the opposing branchesu↑& and
u→&, they mutually cancel out in the same way,regardless
of whether they have been carried out on the same photo
on two entangled ones. This indicates that each measure
and erasure effects the distant photon, too.

VI. INTRODUCING THE EXPERIMENTER’S
FREE CHOICE

Let us consider the next difference between quant
theory and the local prediction.

Local Argument C. All the effects stem from a simple
preestablished correlation between the photons, commit
them to give the same results to the partial measureme6

But such an argument enforces nonlocality in a new way
follows.

Nonlocal refutation. In order for each single photon to b
capable of responding to a certain number of detectors w
silence, the photon must maintain a nonlocal connection
tween all the 200 parts of its wave function traversing dist
paths. After all, the photon cannot know in advance
which paths the experimenter will choose to place the de
tors.

This aspect of the experiment parallels the last-min
choice of the polarization direction in the Aspect a
Grangier@16# experiment or the GHZ@2# experiment. A re-
alization of the experiment would therefore require a rand

5Moreover, the restoration of thePy correlation cannot occur if
we perform the undoing onbothphotons at the same time. By Eq
~21! and ~22!, the surplus undoing constitutes a measuremen
itself, which would disrupt again the correlation. For any part
measurement that has changed the initial superposition, we
only one ‘‘countermeasurement’’ of the same magnitude,on either
photon, in order to restore it. This indicates that each measurem
of one photon instantly affects the interference effects observe
the other photon.

6Note that such a local account cannot be entirely classica
cannot assume that the photon traverses only one out of the
paths, because in that case no interference will be observed.
local account must therefore go along the lines of the ‘‘gu
wave’’ interpretation. Nonetheless, as we show below, this acco
will not restore locality either.
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process for choosing the location and number of then out of
the 100 paths to be measured.

We have therefore proved that either the two photo
maintain nonlocal correlation between them, or each pho
maintains nonlocal correlation between its distant bea
The latter interpretation would join Hardy’s@17,18# and Al-
bert et al.’s @19# proofs for the nonlocality of a single pho
ton. Either way, nonlocality is inescapable.

The setup in Fig. 9 also points out the difficulty in appl
ing counterfactuals to quantum mechanics. Suppose we m
sure 50 of the 100u↑& beams of photonA. A possible result
of such an experiment might be that photonA finishes in the
u↗& path, while photonB goes on theu↘& path.

A possible description of such a situation will be as fo
lows. There is a 3% probability that the photons will b
anticorrelated, and this is one of those cases. But the
counterfactual can be presented. What would have been
result had we placed detectors in front of 50 out of the 1
beams of theu↑& branch of photonB, too? The answer is
intriguing. Since doing so will completely undo the measu
ment on photonA, photonB must either hit one of the 50
detectors or completely agree with they measurement of
photon A. Since our photon did not agree with it, it mu
have been captured by one of the 50 detectors.

This imposes another odd counterfactual: When we pl
a battery of countermeasuring detectors on pathB, they
‘‘magically’’ capture all the photons thatwere aboutto dis-
agree with they measurement of photonA if we have not
placed the countermeasuring detectors. Such a teleolog
view is, of course, alien to physics. One must rather acc
the objective reality of the wave function. Only such a vie
can accept that the 50 detectors on photonB cancel exactly
the 50 measurements done on photonA.

VII. AN INEQUALITY FOR PARTIAL MEASUREMENTS

Let us now give a general nonlocality proof for parti
measurements. We shall consider a local hypothesis that
to maintain locality despite the above predictions and sh
that it must violate an inequality theorem.

Local Argument D. Each pair of photons uses a preesta
lished algorithm that assigns a definitePy value for each
partial measurement: For any number of paths that w
freely measured with respect to interaction, the photo
would yield some preestablishedy polarization. The result-
ing list of Py values is infinite, matching every possible d
gree of partial measurement.

Nonlocal refutation. The alleged algorithm must satisf
two restrictions.~i! In every pair, both photons must obey th
same algorithm~though in reverse polarities!: if photon A
undergoes a measurement of 30% on itsu↑& branch, and
photon B undergoes the same measurement of itsu→&
branch, theirPy measurementmustagree on each single ex
periment (K51, henceCy(abgd)51). This, indeed, explains
the apparent ‘‘erasure,’’ where opposite partial measu
ments on the two photons restore the initial correlations.~ii !
However, the algorithm must assign the particulary polar-
ization to theratio of the intensities of the photon’su↑& and
u→& branches~that is,a/b for photonA andg/d for photon
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FIG. 11. The disagreement between observ
A and C is higher that the sum of disagreeme
between A and B plus B and C for a broad ran
of ratios, disproving locality by breaking a Bell
like inequality.
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B). The correlation ratioCy(abgd) makes this fact evident: A
measurement of 50% on theu↑& branch of photonA yields
a/b50.5, but many other measurements on photonB will
result g/d50.5 too ~0/50, 60/80, 80/90, etc.!, equating
Cy(abgd) to 1 and restoring the photons’Py correlation.

Now, restrictions~i! and~ii ! refute the nonlocal argumen
by breaking a Bell-like inequality in the following way. Con
sider an experiment where photonA hasa/b51.0 and pho-
ton B has g/d50.5. Here,K50.5, henceCy(abgd)50.97,
implying that thePy correlation between the photons is di
rupted in 3% of the cases. If one believes in a preexist
algorithm directing each photon, the following counterfa
tual must be true: ShouldB now havea/b50.5 and it re-
peats the same measurement, but with a different oppon
C, with the square of the measurement ratio (g/d50.25), the
resultsmustbe the same. SinceB must give aPy measure-
ment according to itsa/b50.5 ratio, it must measure ex
actly the same result that it gave for that ratio in the act
experiment@in accordance with restriction~i!, A andB must
obey the same algorithm; and with restriction~ii !, the algo-
rithm depends ona/b alone#. SinceK remains with the same
value (1/0.550.5/0.2552), Cy(abgd) remains 0.97, soB and
C must give noncorrelated results in 3% of the cases,
This imposes another counterfactual: IfA measureda/b
51.0 againstC with g/d50.25, they could give, at mos
different results in 3%13%56% of the cases. Howeve
when we computeCy(abgd) for this case (K54), the result is
0.90, which means that theymustgive noncorrelated result
in 10% of the cases. Since 10%.3%13%, that condition
cannot be met, and we conclude that the local argumen
false. Q.E.D.

This proof will be generalized below for a broad range
ratios. That is, for a certain measurement ratior, the dis-
agreement betweenA andC is greater than the sum of dis
agreement betweenA andB plus B andC ~see Fig. 11!.
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If the difference between measurement ratios of partic
A and B is K5r, the disagreement inPy measurements
will be.

DA2B512Cy(abgd)512S 11Ar

A212r
D 2

. ~31!

The difference between measurement ratios ofB andC will
ber, too, yielding the same value forDB2C ~since it depends
on the ratior alone!, hence the maximal sum of the disagre
ment betweenA andC will be twice the above amount:

DA2B1DB2C5222S 11Ar

A212r
D 2

. ~32!

However, the measured disagreement betweenA andC will
be according toK5r2:

DA2C512S 11r

A212r2D 2

. ~33!

In Fig. 11 we show the graphs of these functions, wh
show that in the region 1,r,8.3 the disagreementDA2C is
higher than the sumDA2B1DB2C , thereby disproving any
possible local explanation.

It should also be pointed out thatlocal argument D is
especially ludicrous when we consider itspost hocexplana-
tions for the unique quantitative features of joint interfero
etry. Why should the ratio 50%-0% of measurement and e
sure give the same result as 75%-50%, 90%-80%, and so
A local model can ‘‘explain’’ these phenomena only by ad
ing arbitrary assumptions without any rationale other th
the need to account for such unexpected results. In the n
local account, in contrast, these peculiarities are straight
9-11
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wardly derived from~i! the very nature of interference, an
~ii ! the assumption that the two interferometries affect o
another due to the quantum entanglement of the two phot

Finally, let the proof be extended to include all pairs.
Local Argument E. Perhaps only those photons that gi

rise to partial measurements maintain nonlocal correlat
while the others, which react to the measurement with a c
in the detectors~complete measurement!, have prefixed cor-
relation and do not affect one other nonlocally. These p
tons, in other words, have ‘‘agreed’’ in advance to respond
the detectors with clicks, and therefore need not show co
lation in their y polarization. The refutation of this hypoth
esis~see also Ref.@20#! is just like the proof we used in Sec
VI.

Nonlocal refutation. In order for some photons to be ca
pable of responding to a certain number of detectors wit
click, each such photon must maintain a nonlocal connec
between the 200 distant parts of its wave function, for
photon cannot know in advance in which of the paths
detectors are going to be placed. Therefore, once the pa
measurements confirm the nonlocal prediction, the comp
measurements equally indicate nonlocal effects.

VIII. MULTIPLE PARTIAL MEASUREMENT

Since partial measurement does not take into accoun
cost of disentanglement, it can be followed by many co
secutive partial measurements, all of which affect the dis
entangled particle. This is in marked contrast with the or
nary EPR experiment, which allows the nonlocal transfer
only one variable.

Consider the following case. Of two entangled particl
one undergoes partial measurement of itsx polarization, then
of its y polarization, and then of itsz polarization.7 Suppose
also that all partial measurements were very close to 10
~say, 90% each!. Of course, such a multitude of measur
ments increases the probability for a click, which would ru
the experiment, but if all partial measurements succee
the state of the two entangled particles is

P̂(190%P̂↗190%P̂↑190%uEPR&. ~34!

The resulting pair of particles is poorly correlated, but
inverted set of countermeasurements, performed on the
ticle that was measured, can restore the initial correlat
Since measurements in orthogonal directions cannot c
mute, the countermeasurements must be performed in
verse order:

7We will use thez ‘‘direction’’ to denote a circular polarization
The z direction is taken from the spin measurement of spin-1

2 par-
ticles, which obeys the same relations as thex, y, and circular po-

larization measurement. The appropriate operators will beP̂(a and

P̂^ a .
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P̂→190%P̂↘190%~ P̂^ 190%P̂(190%!P̂↗190%P̂↑190%uEPR&

5 P̂→190%~ P̂↘190%P̂↗190%!P̂↑190%uEPR&

5~ P̂→190%P̂↑190%!uEPR&

5uEPR&. ~35!

In general, any set of partial measurements gives a com
linear combination of the kind

uC&5~a1 ib !u↑&1u↑&21~c1 id !u→&1u→&2

1~e1 i f !u↑&1u→&21~g1 ih !u→&1u↑&2 . ~36!

A pair of particles, therefore, can carry up to eight real p
rameters. Such a combination of states, once success
created on one particle, shows up in the distant particle,
a case that is impossible in the ordinary EPR experiment
terms of quantum information, this state far exceeds
present, single-bit nonlocal correlation.

Let us note another interesting peculiarity of multiple pa
tial measurement. If one particle has undergone a serie
partial measurements, then the erasure of these mea
ments can be attempted only in the reverse order~last first,
first last!. If, however, the erasure is attempted on the ot
particle of the entangled pair, even after a timelike interv
the order of the erasures must be that of the measurem
~first first, last last!. This fact seems to lend support to Cram
er’s @21# ‘‘transactional interpretation,’’ where the measur
ment of one particle affects the other particle by traversin
‘‘Feynman zigzag’’ through time.

IX. THE NEW QUANTUM ERASURE
AND ITS SIGNIFICANCE

‘‘Quantum erasure’’ denotes an operation that constitu
the time reversal of the measurement process, undoing
measurement’s outcome and turning the wave function b
to its initial pure state. It has become the focus of intens
study during the past few years because of its far-reach
theoretical and technological bearings, such as quan
computation and reversibility.

Most notable of these works is that of Scullyet al. @22#,
who demonstrated erasure of a quantum measurement
double-slit experiment with atoms. In this experiment, t
two parts of the wave function, prior to being reunited, pa
through a small cavity where they undergo a measurem
that can tell which path the atom has traversed. Immedia
after the measurement, while the beams are still inside
cavities, the ‘‘which path’’ information is totally erased
Scully et al. showed that after leaving the cavity, the tw
beams gave rise to normal interference, just as if no meas
ment took place.

This experiment, however, has two shortcomings that
scure the uniqueness of quantum erasure. First, the ex
ment makes it impossible to know the actual result of
measurement that has been later erased. This impossibil
imposed by the very definition of the experiment: If an e
perimenter observes the result of a measurement, this ob
vation itself becomes part of the measurement, hence era
requires completely erasing that observer’s brain proce
as well. Therefore, one can onlyinfer that detection and its
9-12
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erasure took place on one of the two beams, but one
never know which beam gave rise to the initial click. T
same holds for the proposals of Greenberger and YaSin,@23#
Becker,@24# and others, reviewed and refined by Kwiatet al.
@25#.

Our proposal overcomes this limitation. When the me
surement is partial, it is as observable as any other meas
ment, and similarly its erasure. The reason for this w
pointed out earlier. Unlike the prevailing techniques, o
does not require time-reversing any measuring instrum
thereby avoiding the enormous technical difficulties involv
with proper atomic control and thermodynamic isolatio
Rather, the only thermodynamic price we have to pay is t
the closer the measurement gets to a complete measure
the more likely it is to end up in a click, whereby erasure w
no longer be possible. Similarly, erasure itself might end
in a click. We thus comply with the second law of therm
dynamics at the statistical level. Still, in a large enough
ries of experiments, we can have many cases in which
can directly observe a measurement that is close enoug
complete measurement, and then observe its complete
sure.

But the most intriguing consequence of quantum eras
is obscured by the second shortcoming of Scullyet al.’s ex-
periment. They carried out the measurements and its era
on bothhalves of the wave function. This, we suggest, is n
only unnecessary but suppresses the nonlocal aspect o
process. Elitzur@26# has proposed to repeat Scully’s expe
ment dropping one of the measurement and its erasure
one side. The argument was that if interference shows u
this case, too, it would prove that undoing one-half of t
wave function instantly ‘‘unmeasures’’ the other half, to
However, this proposal suffers from the same shortcomin
the above erasure experiments. The measurement and it
sure can only be inferred and never directly observed. B
and Barnett@27#, on the other hand, proposed to carry out t
measurement on one arm and the cancellation on the o
arguing that both operations should affect both arms.

Unfortunately, all these experiments study single-parti
interference, where the two parts of the wave function
eventually reunited. This does not allow nonlocality to
tested. A local theory could argue that both the measurem
and its erasure affect only the measured half.

Partial measurement, again, overcomes all these sh
comings. It allows a direct observation of both the measu
ment and its erasure. Furthermore, by performing the m
surement on one photon and the erasure on the other, an
not uniting the two distant photons, we are in a position
affirm that not only quantum measurement, but also its e
sure, affects the other particle in the EPR experiment. No
also that, unlike the micromaser cavities and laser beam
Scully et al.’s experiment, our method carries out the eras
by much simpler optical means.

X. CONCEPTUAL IMPLICATIONS

In a discussion that has become a classic, Feynman@28#
defined the double-slit experiment as ‘‘the core of the m
tery of quantum mechanics.’’ Albert@29# has generalized
this insight in his lucid exposition of quantum mechanic
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where he showed that any quantum-mechanical variable
superposition of another, noncommuting one. He went on
show how any variable could emerge from the interferen
effect of its conjugate.

This is what the present work does with thex andy po-
larizations, illustrating the uncertainty principle by the fam
iar phenomenon of interference. It is this highly visualizab
phenomenon upon which the present proof for nonlocality
based, not requiring Bell’s theorem. In so doing, we ha
also extended the EPR argument to two conclusions:~i! Non-
local effects are caused not only by a complete measurem
but even by its minutest stages.~ii ! Nonlocal effects are
caused not only by a measurement but also by the ti
reversed process. Therefore, nonlocality need not cease
the two particles in the EPR experiment are measured; t
can remain entangled in spite of many successive meas
ments, maintaining the strange ‘‘dialogue’’ between them
a long time. Our proof also extends Bell’s proof in tha
whereas Bell’s inequality is based on the polarization m
surements along varying angles, we present a new inequ
that holds within the same angle of polarization for bo
particles.

Partial measurement gives a new twist to the question
quantum indeterminism, to which Einstein objected in h
famous dictum that God does not play dice@33#. Our experi-
ment shows that not only does Nature cast a dice every t
a polarization measurement is performed, but that, when
dice takes some time to fall, Nature preserves the righ
change her mind as many times as she pleases. She ca
example, give 99% for a particle to have au↑& polarization,
and then, upon the 100th partial measurement, change
mind and make the polarizationu→&. When given further
opportunities by dividing the 100th measurement into furth
100 partial measurements, she might change her mind
and again.8

To summarize, our proof highlights a fundamental pec
liarity of quantum mechanics. Suppose that a classical ob
resides in one out of 200 closed boxes. Opening some bo
and not finding the object there only alters the observe
knowledge~or, better, ignorance! about the object’s location
In quantum mechanics, in contrast, every such nondetec
brings about a real change in the particle’s state, empiric
proved in our EPR-PM setting with utmost quantitative p
cision. It is this lack of differentiation between ontology an
epistemology—any change in the observer’sknowledgecor-
responding to precisely the same change in thestateof the
thing observed—that makes quantum mechanics so un
among all natural sciences.
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