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Partial measurement turns the initial superposition not into a definite outcome but into a greater probability
for it. The probability can approach 100%, yet the measurement can undergo complete quantum erasure. In the
Einstein-Podolsky-Rose(EPR) setting, we prove thafi) every partial measurement nonlocally creates the
same partial change in the distant particle, dingl every erasure inflicts the same erasure on the distant
particle’s state. This enables an EPR experiment where the nonlocal effect does not vanish after a single
measurement but keeps “traveling” back and forth between particles. We study an experiment in which two
distant particles are subjected to interferometry with a partial “which path” measurement. Such a measure-
ment causes a variable amount of correlation between the particles. A new inequality is formulated for
same-angle polarizations, extending Bell's inequality for different angles. The resulting nonlocality proof is
highly visualizable, as it rests entirely on the interference effect. Partial measurement also gives rise to a new
form of entanglement, where the particles manifest correlations of multiple polarization directions. Another
novelty in that the measurement to be erased is fully observable, in contrast to prevailing erasure techniques in
which it can never be observed. Some profound conceptual implications of our experiment are briefly pointed
out.
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INTRODUCTION how, when the wave function is appropriately split,
interaction-free measurement becomes partial. Section Il
Bell's theorem[1] has made it possible, for the first time, shows that such a measurement obeys the uncertainty rela-
to experimentally demonstrate quantum nonlocality. Latertions in that it partially disrupts a noncommuting variable.
the Greenberger, Horne, and Zeiling&HZ) experimen{2] ~ Section IV shows that partial measuremeM) can some-
and Hardy’s[3] proof without inequalities extended the UMeS be completely reversed. Section V presents a hybrid
proof to new domains. All these proofs, however, involveEPR'P'\/I experiment in ord_e_r to show that partial measure-
complete measurements. This is insufficient since, at thment and its erasure exhibit non_lo_cal effects_. Secthn VI
) . ’ &hows that quantum theory’s predictions for this experiment
guantum level, measurement can be a continuous proce

. ) . ~Fuantitatively differ from those of a local theory. In Sec. VI,
the intermediate stages of which have seldom been studied; gg|i-jike inequality is shown to break by the EPR-PM ex-

Is it possible to prove that nonlocal effects are producegyeriment. Section VIII studies the case of a multiple partial
even by small stages of the measurement process? Moreoveieasurement on one particle and its unique nonlocal conse-
IS It pOSSIbIe to show that nonlocal effects are formed nObuences_ Section IX discusses the novel form of quantum
only by measurement but also by the time-reversed procesgrasure made possible by our experiment. Section X points
namely, quantum erasure? Affirmative answers would rendegut some bearings of these findings on quantum theory.
nonlocality much more intriguing because, in the ordinary
EPR experiments, a single measurement of a particle disen- [. INTERACTION-FREE MEASUREMENT
tangles it, and no further measurements can reveal nonlocal AND THE UNCERTAINTY RELATIONS
effects. Once the above two questions are answered in the

affirmative, however, nonlocality will turn out to connect not intriguing illustrations for quantum-mechanical principles,

only discrete events but continuopsocessesas well. The 547 vecent years it has become technically feasible. Con-
nonlocal influence will then appear to “bounce” back and giqer a photon entering a calcite crystal positioned to divert
forth, many times, between the distant particles during thene incident photon according to its polarization along the
measurements. Several other intriguing features of quantumyis (Fig. 1). If the photon’s polarization is 90°R,= +1,
mechanics(QM), such as reversibility and information ca- |1)), it will be diverted to the lower path, whereas if it is 0°
pacity, would also become manifest. (Py=—1, |—)) it will be diverted to the upper path. The
The organization of this paper is as follows. Section Icalcite thus acts as a polarizing beam split@BS), similar
introduces interaction-free measurement. Section Il showg the Stern-Gerlach magnet for sginparticles. As long as
no measurement has been made to find out which path the
photon took, thereby leaving the photon’s polarization unde-
*Email address: cfeli@weizmann.weizmann.ac.il termined too, the photon will remain in a superposition of
"Email address: shahar_dolev@email.com both paths and both polarizations:

Single-particle interferometry provides some of the most
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Mirror
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FIG. 3. A measurement that discloses the photonj®lariza-

FIG. 1. Itis possible to restore a photon’s exact state as long adon destroys they polarization even when the measurement has
no measurement is performed. been carried out by a single detector that did not click.

about the photon’s polarization will take the cost of blurring
| W) =ca|T)+Cal =). (1) the other, noncommuting variable, obeying an uncertainty
relation of the form
So far, the splitting of the wave function is reversible. A )
second calcite, aligned at theplane as the first but facing an AP AP =2i[Py,Py]. 3

opposite directior(denoted byx), reunites the resultingf ) Figure 3 demonstrates this principle. Ong is ascer-
and|—) beams, so that the photon reemerges in one singlgyined, P, is disrupted; a secong measurement will yield
be_am, in the same state as it has entered the first calCii§iher + 45° (7)) or —45° (|\.)), randomly. This is simi-
(Fig. 1). o o _ lar to the ordinary interference effect in a Mach-Zender in-
The reversibility of splitting the photon along thedirec-  terferometeMzI), where obtaining which-path information
tion is demonstrated by the measurement of another, NOR4isrupts the photon’s initial momentum.
commuting variable. Before splitting, let the photon impinge  Here a peculiar possibility emerges. What happens if, in
on a calcite positioned 45° in thedirection, measuring itg  order to measur®,, we place onlyone detector on one of
polarization. Suppose that tlyepolarization has been found the two routes? If the detector click, the answer is clear: This
to be +45° (Py=+1,[7)). Then, let the photon split ac- s an ordinary measurement, hence we should observe the
cording to itsx polarization and reunite agaiffig. 2. Ifno  anove disruption oP, . The situation becomes more intrigu-
measurement has been made between the splitting and figyy in the remaining 50% of the cases, when the single de-
uniting, we are left ignorant about the photoxolariza-  tector does not clicks. Although no observable interaction
tion. Consequently, thg polarization will remain intact: & pas taken place, the very silence of the detector indicates that
final y measurement willalways yield a polarization of  the photon has traversed the other path, thereby disclosing
+45°, just like the initialy measurement. the photon’s polarization with certainty. Hend&, should be

Suppose, however, that two detectors are placed on thgsrupted in this case too, just because the silent detector
two routes of the split wave function prior to its reunification ¢qy1d have clicked.

(to enable the later reunification of the rays, let the measure- Thjs “interaction-free measurement[4] has been the

ments be of the nondemolition type, such that the detectorgypject of intense experimental and theoretical study in the

state is an even mixture ¢f-) and|1), the present context, it has two unique features that warrant
attention. First, with a simple modification, interaction-free

1 measurement can be partial, leaving the wave function in a

|/)= E(|T>+|H>), (2)  certain degree of superposition even after the measurement.

Second, it can be completely reversed.

in 50% of the cases the upper detector will click, and in the Il. MEASUREMENT CAN BE PARTIAL
other 50% the lower one will. This measurement has an ir-

reversible consequence: The knowledge we have gained Nearly always, measurement is regarded as a single event,

whereby the superposition of all possible states gives its
place to one state. In reality, however, there can be many
intermediate stages in the measurement process, stages that
only change the initial probabilities without yet giving a defi-
nite result{9-12].

Following is a simple apparatus for partial measurements.
Let a photon be split by a calcite in the above manner. Next,
with the aid of many partly silvered mirrors, let thg) beam
split further into 100 beams. The transmission coefficients of

FIG. 2. As long as no measurement is taken to determine théhe mirrors are graded such that all 100 beams have an equal
photon’s polarization in the direction, its polarization along the  intensity of 1% of the original beautfrig. 4). The first mirror
direction remains intact. transmits-%5 of the incident beam, the secog§, and so on,
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measurements, one before and one after the splitting and
100, 1% |- reunification processes. As long as no measurement is per-
h formed, the superposition will remain intact and all the pho-
. . tons will always emerge in the same state as it entered the
' ' apparatus, e.g|,”) as in Fig. 4.

This setup enables performing partial measurements. We
. can now remove one of the mirrors and place a detector, as
Patially  3|e 1% |- demonstrated on the third beam of the branch of Fig. 4. If
silvered the detector clicks, we know for certain that the photon’s
mirrors polarization is|1) and the measurement is complete. In
. E 99.5% of the cases, however, the detector will not click. This
e 1% \ constitutes an interaction-free measurement, which should
; alter the wave function. Yet, since the portion of the wave

function thus measured is so tiny, the superposition will

, change only slightly,
»
)

X |
/f< >_,_V 1 99 100

99

4 1%

2[e 1%

and will continue changing slightly for each further measure-

ment on the remaining beams that yields no click. In other

words, each interaction-free measurement slightly reduces
the probability that the photon’s polarization|is), thereby

“Detector increasing its probability to have [a-) polarization. Fom
[ ] detectors on the 90° branch, the effect on the wave function
will be

1 100—n 100
. : E(|T>+|—>>)—> m|T>+ 200—n|_)>

1
1o Dt N1 =) (5

FIG. 4. A series of partly silvered mirrors splits each half of the Wherea is the intensity of theunmeasured|1) beam:
wave function into 100 equal beams. Here, too, as long as no mea-
surement has been taken on any of the 200 beamy,gbkarization — 100-n
remains intact. 100 °

©6)

Let us denote the operator of partial polarization measure-

with the 99th mirror transmitting of the beam and the last i - o !
ment in thex up direction with intensityx as

one being a solid mirror. Similarly, let the—) beam split
into another 100 by the same technique. The photon is now
in a superposition of 200 beams, such that, if its polarization
along thex direction is 90°, it might be detected in one out of
the 100 lower beams, whereas if its polarization is 0°, it
might be detected in one out of the 100 upper beams.

Finally, let a complementary series of mirrors reunite all p.P. =P ®)
200 beams into two]) and|— ) beams, and let a reversed 1A T " Tap:

calcite reunite the resullting beams. The apparatus keeps the familiar guestion, central to quantum theory, now poses
paths of all the beams in the same length, so as to keep th@elf: Does partial measurement change merely our knowl-
beams in phast.This way, the entire splitting process is edge about the photon or is this a real physical change going
reversed and the photon reemerges as one single beam. on with the photon’s state? Interaction-free measurement
Here, too, we can demonstrate the superposition of thgroyides a straightforward way to show that the latter is true.
photon’s x polarization by performing twoy polarization Recall that, prior to the photon’s splitting along the
direction, its polarization has been measured alongyttie
rection and was found to Be”'). All one has to do now is to
IThis is, essentially, a modification of the Mach-Zender interfer-reunite the|1) and the|—) beams, and then measure again
ometer. Aligning these mirrors to about one wavelength error is ghey polarization. If no attempt has been made to determine
difficult task, but completely possible with current technology. ~ which of the 200 paths the photon took in thdirection, the

(partial polarization measuremestP . 7

(Note again thatr is the unmeasured intensityl his opera-
tor obeys the following multiplication law:
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photon will emerge from the interferometer with kpolar-  the x polarization, namely|—) and |1), resulting in 6
ization unmeasured, hence jtpolarization will remain| ) =45°. When a partialP, measurement is taken, thig) com-

with 100% certainty. If, however, a measurement has beeponent diminishes while the—) component increases, caus-
made to find out the photons polarization, this measure- ing the polarization plane to rotate clockwise, until a com-
ment will have a proportionate effect. If one of the detectorsplete measurement gives a plire ) state(Fig. 5).
clicks, then the measurement is complete and the photon’s  Figure 5 also allows us to look at the vectors without
polarization will be totally disrupted, as in Fig. 3. But if the normalizing ¥ for |||¥,)||?=1: The formulation given in
measurement is interaction-free, i.e., a few beams measurétty. (9) keeps the polarization vectors normalized since it
with no click, they polarization will be only partly disrupted counts only the cases in whi¢h™) or |\,) were measured,
(see also Ref9]). Instead of a purg, ") state, we will have excluding all the cases where a complete measurement took
R place and ended up with a click in one of the detectors.

| )=P;,|¥) An efficient way to look at the wave function is to keep track
of these| 1) measurements. In this case, the probabilities for
| /) and|\,) will not sum to 1, and the vector in Fig. 5 will
get shorter age diminishes. Formally,

1+a 1-a , @ 1 1+a 1- e
=m|/>+ml\>- 9 I‘Pa>=\[§|T>+\[§|—>>= > |/t — |\(1>6)

This change of the wave function is an objective, physica
event. Measuring the photoryspolarization before and after
the partial measurement will show that, at the statistica{
level, they polarization has been disrupted proportionately to
the knowledge we gained about theolarization.

B a 1
B 1+a|T>+ 1+a|_>>

I'I'his fact will turn out to be important later.

We can now calculate the correlation coefficient between
he initial and the finaly polarizations as a function of the
magnitude of the partial measurement:

1+ Ve |2
lll. PARTIAL MEASUREMENT EXERTS A PARTIAL Cya)=I{./ ¥ )= .
EFFECT ON NONCOMMUTING VARIABLES V2+2a

Let us now turn to the way partial measurement obeys th&€,, ranges from Iwhen a total correlation is kepto 0.5
uncertainty principle. The effect of a partial measurement ofwhen we have no correlation at all, since there is an equal
P, on P, can be regarded as a rotation of the polarizatiorprobability to find| ) or [\,)). For example, if measure-
plane: Drawing a vector with the—) component as th&  ments have been carried out on 50 out of the [jQtbeams,
ordinate and thél) component as thg ordinate, will give  yielding no click, thena=0.5 and the agreement between
o=tan *((1|¥ /(—|¥,)) as the angle of the polarization they polarization before and after tie, measurement will
plane. The initial state df ") has two equal components of be

(11)
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Indeed, since thz andy polarization directions are noncom- 200-n 200—n
muting variables, they satisfy the uncertainty relations men- o 1 measurement
tioned in Eq.(3), and when applied to the above case of = 1ta [T)+ ita |—)
partial measurement, « «
100—n N 100—n
iz ) ~V200-2n """ V200-2n |
o —
AP, = , AP = , (12) 1 erasure (13
Lra Lra = N+1=),

According to the notation we used for the partial measure-

which vary with« as in Fig. 6.
ment, the erasure process will take the form

It is easily seen that as increasegthat is, fewer mea-
surements on thgl) branch, AP, also increases antiP, P N
decreases. That means that the more we measure ¢f)the P_oPra=1, (14)
branch, the more precise knowledge wain about P, Thjs reversal occurs when the two partial measurements on
(hence AP, decreasgs and the more knowledge wese  the opposing branches are of the same magnitude. In the

aboutP, (henceAP, increasek more general case of placimgdetectors on thél) branch
andm detectors on the— ) branch, the correlatiofor rather

the mismatchbetween the initial and find?, measurement

IV. PARTIAL MEASUREMENT IS AMENABLE will be

TO COMPLETE ERASURE ~ R
|\I,aﬁ>EPHBPTa|\P>

An intriguing peculiarity of partial measurement is that, in
contrast to the ordinary one, it can sometimes be totally re- — A [_ & I1)+ 1 /i |—)
versed. To do this, there is no need to time-reverse the op- Bta Bta
eration of any detector; one can merely repeat the partial
measurement on the photon’s opposite brafkh. 7). — M | )+ M 1N (15)
For example, leth detectors be placed om paths of a V2B+2a V2B+2a '
photon’s |T) branch. On average, in (26(n)/200 of the
cases, these detectors will not click. This is a partial meaWith correlation coefficient
surement, its outcome being given by Ef). Now let an- 5 2
other battery oh detectors be placed anpaths of the same C _ Jat \/E _ 1+k (16)
photon’s|—) branch. On average, in (26@n)/200 of the y(ah) V2a+28 V2+2k/

cases, none of these detectors will produce a click either.
This will completely undo the measurement and turn thewherea and 3 are the beam intensities of thes) and the

wave function back to the initial superposition: |T) branches, respectively, akds the ratio between them:
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FIG. 7. When the same number of paths is freely measured with R
respect to both the—) and|1) branches, their overall effects can- | >
cel each other and the photon returns to the original superposition.
_100—n _100—m k_a 1
=0 P 100 Kz 0@ )

Notice thatC,,z depends on the ratioalone. That means,
for example, that a measurement of 50% of thg branch
(k=1//2) will yield exactly the same, 5 as a measure-
ment of 90% of thd 1) branch and 80% of the—) branch,
or 99% of the|T) branch and 98% of thi—) branch, etc. In
other words, the exact number of paths on either branch does

(c)

FIG. 8. The cost of undoing a measuremdai. Initial setup:

|T)=],. (b) A partial measurement on thé) branch rotates the
polarization plane{ ”) diminishes while|\,) increases(c) Fol-
lowing a countermeasurement on the) branch, the initial state is
restored. The™,) part is nullified but| ) diminishes, too.

not matter, nor does their relative intensities, nor the numbeF,-hiS ratio looks natural when discussing a single photon, as
nor the identity of the measured paths. The only thing thatierference is known to depend on the intensities of the

counts is the ratio of thaunmeasuredparts of the two

branches,

Consequently, the partial measurement operators ix thie
rection are commutative:

P pgP1a=P1aP = Praip=P_pia-

PHBPTCV: PTQ/B'

various beams diverging and reconverging from the initial
wave function. Later, however, this ratio will prove to be of
crucial significance as a proof for nonlocal influence between
distant photons.

An important feature of the erasure process is that it com-
plies with a cost-benefit principle. Any measurement on the
|—) path to restore the exagt”) state will also diminish an
equal part of théT) part, as seen in Fig. 8. To trace the cost
of the erasure, we must keep track of the measured portion of
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the beam, hence a formulation similar to Ed0) is used
with the inclusion of the erasure process:

W)= \/§|¢>+ \@M

:@|/ +@|\>

) (20

Let us now summarize Secs. II-1V. The splitting of the
wave function into 200 paths enables carrying out a partial
measurement, whose effect is manifested by the proportion
ate disruption of the interference effect. This setup also al-
lows, in some cases, a complete erasure of the partial mee
surement and consequently a restoration of the interferenc
pattern.

V. NONLOCAL EFFECTS OF PARTIAL MEASUREMENT

AND ERASURE, REVEALED BY INTERFEROMETRY EPR
Source

Is it possible to show that such a partial measurement ha
nonlocal effects? Our proof involves an experiment with two
particles in a singlet state. We show that, when both photons
are subjected to interferometry, the partial measurement an
erasure performed on each photon disrupt and restore, re
spectively, the interference effects lnth photons?

Consider, then, a pair of spacelike-separated photans,
and B, in an entangled state, each entering an apparatus c
the form described in Fig. 4. This is a hybrid EPR-PM ex-
periment(Fig. 9). If both P, polarizations are measured, they
will be 100% correlated but the,, polarizations will be un-
related. Conversely, if no detection is performed to find out
which of the possible 200 paths any of the photons has taken
their x polarization will remain unmeasured, hence thjr
correlations will remain intact.

Now let some detectors be placed orout of the 100
paths of thel 1) branch of photorA. PhotonB, in contrast,
will not undergo any measurement Bf, only of its P, .

In (200—n)/200 of the cases, all detectors measuring
photon A will perform an interaction-free measurement,
changing the wave function as in E§). But here, due to the

singlet state connecting the two photons, a unique state

evolves. The partial measurement has partly disrupted th
two photons’ EPR entanglement:

PHYSICAL REVIEW A 63 062109
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Photon B
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FIG. 9. An EPR-interferometry experiment. As long as no mea-
%urement of the two photong’ polarizations is made, their fingl
polarization will be 100% correlated. When partal measure-
ments are carried out, the changes in the correlation betweerytheir

polarizations can demonstrate their nonlocal effects.

|EPR>:%uwﬂwzﬂﬂlp»)

100—n 100
~V200=n 1)l 1)2+ 200=n |=)1l—)2

a 1
= m|T>1|T>2+ m|—>>1|—>>2, (2D

2For combining IFM and EPR experiments to prove the nonlocal
nature of the former, s¢d 3,14].
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where a, again, is the intensity of the bedras in Eq.(6)].
This change causes a decrease in the correlation between
their y polarizations:

a 1
1Tt [Tl 1)+ 1Tt |—=)1l—)2

1+a

1+

\/——a(|/>1|/>2+|\>1|\>2)
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...... anti-EPR FIG. 10. EPR and anti-EPR parts as a function
of a.
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where|EPR) is the “anti-EPR” state in which the photons \whereg is the intensity of thé—) branch, as in Eq(17).
are entangled, but in reverse polarization: It is now clear that whem= 3, the|[EPR) part diminishes
1 and the final state is the originfEPR) state, restoring the
[EPR=—(|/)il\)2+ |\l 7)2). (23 initial entanglement of photons andB.
V2 Note that the restoration process is reminiscent of a pro-

As we can see, the partial measurement did not break th%edure proposed by Deutseh al. [15] for "entanglement

entanglement between the two photons. Instead, the pu rification” of EPR—Iike pgirs. However, thgir procedure
EPR state became “contaminated” by a certain amount Ofsuffers from lack of information about the partially entangled

the anti-EPR state. This means that measurements of theState. Consequently, it necessitates destroying every other

polarization of photonsA and B have a probability of (1 ransmitted particle, which serves as an “entanglement-

+\a)/\(2+2a)? to yield correlated results, and a prob- cont_rol” particle, and then destroying also the accompanying

ability of [(1— Ja)/\(2+2a)]? to yield opposite results. particle, should the “entangIemen.t-contrtl)l” particle indicate

The latter probability will grow as the magnitude of the par- nonentangled state. Our experiment, in contrast, does not

tial measurements oR, grows (that is, asa diminisheg ~ 'equire “testing” the particles for entanglemerach and

until the correlation drops to the random level of 50%-50%¢€Veryparticle that is being “caught” by the detector in the

asa drops to 0 in case of a complete measurentEig. 10). “countermeasurement” is a nonentangled particle. Surpris-
As we will show below, the fact that the photons remainingly, the QM formalism ensures that only the nonentangled

entangled eveafter partial measurement was performed en-particles will be caught by the detector.

ables us to increase or decrease the amount of the anti-EPR Therefore, when partial measurements and erasures are

component in subsequent measurements. performed on two entangled photons, the local and nonlocal
Our next aim is to show that such a reversal can erase naterpretations differ markedly:

only the outcome of a measurement performed on the same Local Argument ABoth the disruption of the correlation

photon, but also that of thether photon. Consider the era- and its restoration are performed only by phoi#'s local

sure of a partial measurement as described in Sec. Il. If thiteraction with the nearby detector, without affecting pho-

erasure works, i.e., the measurement of the opposing bran¢bn B whatsoevef.

also turns out to be interaction-free, the correlation between Nonlocal refutation The correlation between the twpo

the two photonsy polarizations will be restored: polarizations will be restored even if we perform the partial

|\I,a,B>EPHl,BPT1a|\P>

P B 3This point will be elaborated in Sec. VI.
= |T>1|T>2+ A\ — |H>1|H>2 “4Proving nonlocal action is always difficult as adherents of local-
atp atpB ity often come up with very awkward yet not impossible local
mechanisms. Disproving such mechanisms is a tedious task, yet
E+a

essential for a proof's completion. We therefore consider and dis-
prove here all possible localist arguments.

= m(|/>1|/>2+|\>1|\>2)
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measurement on photohand the undoing of this measure- before in Eqs(10) and(20)]. When keepind¥') relative to
ment on photorB. its initial intensity (wherea= B=y=6=1), we get
Here is the proof. Lety and § denote the intensities of the

|—) and|1) branches of photoB, respectively. If both pho- Bo+ Jav Bo— Jav
tons are subjected to partial measurements, the pair's state |‘1’;ﬁ75>=¥ |EPR + % |EPR.
will be

(28)

|V apys)=P_,sP1,,P— sP1,al¥)

ay Bo
= \/mmlmﬁ \/m|—>>1|—>>z

Now, for example, if a measurement of 50% was takefmpn
the result will be

1+ i P—
_ VBotay oo NBOay W)= |[EPR+=—5—|EPR, (29
Vay+2B5 V2ay+286 '
(25) whereas after a countermeasurement of 50%Bar &, the
. ) result will be
Again, the entanglement between the photons is kbptigh
evolving into the unique state similar to E®3)], and the 1
correlation between the photongpolarizations would be P4y = 5 |EPR). (30)
Cy(aﬁyﬁ):||<EPHq,aﬁyﬁ>||2
2 Hence, erasing the anti-EPR part took the toll of another
VBO+A\a
:(u reduction of 142 out of the EPR part. That is the reason
V2ay+2B6 why we cannot retrieve the EPR state aftarompletemea-
14K 2 surement on one of the branches: The resultant state will be
:(— 26)  1N\2|EPR+1/y2|EPR. Trying to eliminate the anti-EPR
V2+2K component will also nullify the EPR component, leaving a

fully measured photon.

(v) Since Cy(,5,5 depends orK alone, the process is
inherently nonlocal. K is the ratio of the partial measure-
ments on both particles and cannot be “compensated” on
one particle without knowing the ratio of measurement on
the other. This nonlocality causes Bell-like inequalities to
break(see the refutation of local argumdntin Sec. VII for
a demonstration of such an example
. L Once, however, a pair of initially entangled photons has
A few points are worth mentioning here. survived the partial measurements of theie) and |1)

(i) The [EPR _component will always be greater than or panches with = 1—regardless of whether the partial mea-
equal to thg EPR part. Hence, in the above setup, one cansyrements were carried out on one photon or on both—they
never reach a situation when the two photons are manifestliestore their entanglement, hence the correlation in their
anticorrelated. polarizations. This offers a new extension of the EPR argu-

(if) In the extreme case when either 6, 8, or y equals  ment: Just as quantum measurement imposes the measured
0 (that is, a complete measurement was perfojmée re-  polarization on the distant photon, so does quantum erasure
sultant state is an even blend|&PR and|EPR) states, and obliterate the other photon’s polarization.

Cy(apys)=3- That means that, following a complete mea-  Equation(26) reveals another feature of tiRg, correlation
surement ofP, on one photon, no information can be ob- between the photons. The combined effects of partial mea-
tained about the other’'y polarization, as there are even surements and partial “countermeasurements” do not com-
probabilities to find the other photon in the same polarizatiorply with the ordinary subtraction rules. Consider, first, the

where, againg and g are, respectively, the beam intensities
of the|—) and the|T) branches of photo&, andy and §
are the|—) and|1) branches of photo. K is the ratio
between the intensities of the two photons:

_Be

K .
ay

(27)

(|EPR) or in the opposite one|EPR).
(i) The opposite extreme case occurs whedi= 8y,

case of a single particle. It polarization is determined by
the relative intensities of the/—) and|1) branches, as in

therebyC,(,s,5=1. Then, the two photons will restore the Egs.(15) and(17). To put it more pictorially, this is a natural

original |[EPR) state of 100% entanglement.

consequence of the interference effect. If an interaction-free

(iv) The process of “erasing” the measurement bears aneasurement has occurred, say, in 90% of |the branch
cost. Getting rid of the anti-EPR component will take the tolland in 95% of theé— ) branch, then the entire wave function
of diminishing the EPR part in equal amount. That meangesides in the remaining 10% and 5%, yieldin& &alue of
that many measurements will end up with a click. In order to2. Hence, the resulting,, correlation would be identical to
measure this effect, we have to rewrite E2p) without nor-  that obtained by measuring just 50% of the:) branch
malization for||W||?=1 after each measuremdmts we did alone(giving againk =2).

062109-9



AVSHALOM C. ELITZUR AND SHAHAR DOLEV PHYSICAL REVIEW A 63 062109

Now, when considering such interference effectdwad  process for choosing the location and number ofrtloait of
such photons in the EPR setup, the nonlocality assumptiothe 100 paths to be measured.
yields another straightforward prediction that differs from We have therefore proved that either the two photons
the local assumption. maintain nonlocal correlation between them, or each photon

Local Argument B The above deviation from ordinary maintains nonlocal correlation between its distant beams.
subtraction rules stems from the interference effects occurfhe latter interpretation would join Hardy[47,18 and Al-
ring in each photon, regardless of what happens with théertet al’s [19] proofs for the nonlocality of a single pho-
other photon. ton. Either way, nonlocality is inescapable.

Nonlocal refutation The singlet state obliges the above The setup in Fig. 9 also points out the difficulty in apply-
subtraction rules to hold equally even when thebranch is  ing counterfactuals to quantum mechanics. Suppose we mea-
measured in photoA and the|—) branch is measured in sure 50 of the 1007) beams of photor. A possible result
photonB. This effect is obliged by Eq(26), which shows of such an experiment might be that pho#finishes in the
that they polarization coefficienCy,z,5 is a function of | ”) path, while photorB goes on thé>\) path.
the measurement rati¢ alone® A possible description of such a situation will be as fol-

To summarize, in all cases in which interaction-free mealows. There is a 3% probability that the photons will be
surements are carried out on the opposing brantheand  anticorrelated, and this is one of those cases. But then, a
|—), they mutually cancel out in the same waggardless counterfactual can be presented. What would have been the
of whether they have been carried out on the same photon @esult had we placed detectors in front of 50 out of the 100
on two entangled ones. This indicates that each measuremedstams of the 1) branch of photorB, too? The answer is
and erasure effects the distant photon, too. intriguing. Since doing so will completely undo the measure-

ment on photor, photonB must either hit one of the 50
detectors or completely agree with tlyemeasurement of
VI. INTRODUCING THE EXPERIMENTER'S photon A. Since our photon did not agree with it, it must
FREE CHOICE have been captured by one of the 50 detectors.

Let us consider the next difference between quantum This imposes another odd counterfactual: When we place
theory and the local prediction. a battery of countermeasuring detectors on péththey

Local Argument C All the effects stem from a simple “Magically” capture all the photons thatere abouto dis-
preestablished correlation between the photons, committingdrée with they measurement of photoA if we have not
them to give the same results to the partial measurenfients?laced the countermeasuring detectors. Such a teleological
But such an argument enforces nonlocality in a new way, a¥/€W iS, of course, alien to physics. One must rather accept
follows. the objective reality of the wave function. Only such a view

Nonlocal refutation In order for each single photon to be can accept that the 50 detectors on phdgocancel exactly
capable of responding to a certain number of detectors wit® 50 measurements done on phafon
silence, the photon must maintain a nonlocal connection be-
tween all the 200 parts of its wave function trgversing distanty;; AN INEQUALITY FOR PARTIAL MEASUREMENTS
paths. After all, the photon cannot know in advance on
which paths the experimenter will choose to place the detec- Let us now give a general nonlocality proof for partial
tors. measurements. We shall consider a local hypothesis that tries

This aspect of the experiment parallels the last-minutdo maintain locality despite the above predictions and show
choice of the polarization direction in the Aspect andthat it must violate an inequality theorem.

Grangier[16] experiment or the GHZ2] experiment. A re- Local Argument DEach pair of photons uses a preestab-
alization of the experiment would therefore require a randonlished algorithm that assigns a definig, value for each
partial measurement: For any number of paths that were
freely measured with respect to interaction, the photons
would yield some preestablishgdpolarization. The result-
ing list of P, values is infinite, matching every possible de-
Jree of partial measurement.

SMoreover, the restoration of the, correlation cannot occur if
we perform the undoing ohoth photons at the same time. By Egs.

(21) and (22), the surplus undoing constitutes a measurement i Nonl | ref ion Th I d alaorith .
itself, which would disrupt again the correlation. For any partial onlocal refutation The alleged algorithm must satisfy

measurement that has changed the initial superposition, we ned@© restrictions(i) In every pair, both photons must obey the
only one “countermeasurement” of the same magnitutegither ~Same algorithm(though in reverse polaritigsif photon A
photon in order to restore it. This indicates that each measuremeriindergoes a measurement of 30% on|its branch, and
of one photon instantly affects the interference effects observed iphoton B undergoes the same measurement of |its)
the other photon. branch, theilP, measuremennustagree on each single ex-
®Note that such a local account cannot be entirely classical. Iperiment K=1, henceCy(,z,5=1). This, indeed, explains
cannot assume that the photon traverses only one out of the 2dbe apparent “erasure,” where opposite partial measure-
paths, because in that case no interference will be observed. Thaents on the two photons restore the initial correlatidings.
local account must therefore go along the lines of the “guideHowever, the algorithm must assign the particulgpolar-
wave” interpretation. Nonetheless, as we show below, this accourization to theratio of the intensities of the photon|g) and
will not restore locality either. |—) branchegthat is, /8 for photonA andy/ 8 for photon
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i / FIG. 11. The disagreement between observers
30.00% L A and C is higher that the sum of disagreement
. / ’_,—"' between A and B plus B and C for a broad range
! / , of ratios, disproving locality by breaking a Bell-
20.00% \ ot like inequality.
10.00% ¢
0.00% D |
0 2 4 6 8 10
[ Disagreement A-C = - - - - Disagreement A-B plus B-C | P
B). The correlation rati€,, s, makes this fact evident: A If the difference between measurement ratios of particles
measurement of 50% on thé) branch of photorA yields A and B is K=p, the disagreement if?, measurements
al 3=0.5, but many other measurements on phdBowill will be.

result y/6=0.5 too (0/50, 60/80, 80/90, etg. equating

Cy(apys) t0 1 and restoring the photonB, correlation. _ B 1+ \/; 2
Now, restrictiong(i) and(ii) refute the nonlocal argument Ap-8=1-Cyapyy=1— m (31)

by breaking a Bell-like inequality in the following way. Con-

sider an experiment where photérhasa/$=1.0 and pho-  The difference between measurement ratio aind C will
ton B has y/6=0.5. Here,K=0.5, henceCy(,5,5=0.97,  pep, too, yielding the same value fdrz_ (since it depends
implying that theP, correlation between the photons is dis- on the ratiop alone, hence the maximal sum of the disagree-

rupted in 3% of the cases. If one believes in a preexistingpent betweer andC will be twice the above amount:
algorithm directing each photon, the following counterfac-

tual must be true: Shoul® now havea/B=0.5 and it re- 1++p 2
peats the same measurement, but with a different opponent, Ap gtAp c=2—2| —— (32
C, with the square of the measurement rati@§=0.25), the V2+2p

resultsmustbe the same. Sinc® must give aP, measure- Y th d di t betweand C will
ment according to itsx/3=0.5 ratio, it must measure ex- owever, the measured disagreement betwsemdt wi

H _ 2.
actly the same result that it gave for that ratio in the actuaPe according & =p=
experimen{in accordance with restrictiofi), A and B must

2
obey the same algorithm; and with restriction, the algo- A =1— N (33)
rithm depends om/ B8 alond. SinceK remains with the same Ame V2+2p?

value (1/0.5=0.5/0.25=2), Cy(,4,s remains 0.97, s& and
C must give noncorrelated results in 3% of the cases, todn Fig. 11 we show the graphs of these functions, which
This imposes another counterfactual: Af measureda/8  show that in the region 4 p<8.3 the disagreement, . is
=1.0 againstC with y/§=0.25, they could give, at most, higher than the sum, g+ Ag_, thereby disproving any
different results in 3% 3%=6% of the cases. However, possible local explanation.
when we comput€,,z,4) for this case K=4), the result is It should also be pointed out th#ical argument Dis
0.90, which means that theyustgive noncorrelated results especially ludicrous when we consider jisst hocexplana-
in 10% of the cases. Since 1098%-+ 3%, that condition tions for the unique quantitative features of joint interferom-
cannot be met, and we conclude that the local argument igtry. Why should the ratio 50%-0% of measurement and era-
false. Q.E.D. sure give the same result as 75%-50%, 90%-80%, and so on?
This proof will be generalized below for a broad range of A local model can “explain” these phenomena only by add-
ratios. That is, for a certain measurement ratiothe dis- ing arbitrary assumptions without any rationale other than
agreement betweef and C is greater than the sum of dis- the need to account for such unexpected results. In the non-
agreement betwee andB plus B andC (see Fig. 1L local account, in contrast, these peculiarities are straightfor-
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wardly derived from(i) the very nature of interference, and

(ii) the assumption that the two interferometries affect one

another due to the quantum entanglement of the two photons.
Finally, let the proof be extended to include all pairs.

P ,a0%P;00%( P& ,90%P ,90%) P ~,00%P1 009 EPR)

=P_. 00w P~ 00%P ~,00%) P1 ;006 EPR

Local Argument E Perhaps only those photons that give =(P_, 90%'5T 90%)| EPR
rise to partial measurements maintain nonlocal correlation, ! !
while the others, which react to the measurement with a click =|EPR. (35

n th? detector¢complete measuremenhave prefixed cor- In general, any set of partial measurements gives a complex
relation and do not affect one other nonlocally. These phoﬁnear combination of the kind

tons, in other words, have “agreed” in advance to respond to

the detectors with clicks, and therefore need not show corre- [W)=(a+ib)[1)[ 1)zt (c+id)|=)i—),

lation in theiry polarization. The refutation of this hypoth- +(e+if)|[ 1) =)t (g+ih)[—)4]T)2. (36
esis(see also Ref.20]) is just like the proof we used in Sec. ) . )

VI, A pair of particles, therefore, can carry up to eight real pa-

Nonlocal refutation In order for some photons to be ca- "@MEters. Such a combination of states, once successfully
pable of responding to a certain number of detectors with & ¢ated on one particle, shows up in the distant particle, too,
. Ez]acase that is |mp033|ble in Fhe ord.mary EPR experiment. In
between the 200 distant parts of its wave function, for th erggzngfsﬁnugﬁlgfg? ng‘;?org?té%?;efgﬁons_ tate far exceeds the
phaton cannot k_now in advance in which of the paths th. Let us note another interesting peculiarity of multiple par-
detectors are going to be placed. Therefore, once the partigh; measurement. If one particle has undergone a series of
measurements confirm _thg nonlocal prediction, the Completﬁartial measurements, then the erasure of these measure-
measurements equally indicate nonlocal effects. ments can be attempted only in the reverse ottt first,
first lasd. If, however, the erasure is attempted on the other
particle of the entangled pair, even after a timelike interval,
VIIl. MULTIPLE PARTIAL MEASUREMENT the order of the erasures must be that of the measurements
) ) ) (first first, last last This fact seems to lend support to Cram-
Since partial measurement does not take into account thgeg [21] “transactional interpretation,” where the measure-

cost of disentanglement, it can be followed by many conment of one particle affects the other particle by traversing a
secutive partial measurements, all of which affect the distamtFeynman zigzag” through time.

entangled particle. This is in marked contrast with the ordi-
nary EPR experiment, which allows the nonlocal transfer of IX. THE NEW QUANTUM ERASURE
only one variable. AND ITS SIGNIFICANCE

Consider the following case. Of two entangled particles, “Quantum erasure” denotes an operation that constitutes

one undergo_es part|a| measurement Ok'ﬁm""‘.“z?“on’ then the time reversal of the measurement process, undoing the
of its y polarization, and then of its polarization: SUppOSe  ya4q rement's outcome and turning the wave function back
also thato all partial measurements were very close t0 100%, js initial pure state. It has become the focus of intensive
(say, 90% each Of course, such a multitude of measure- sydy during the past few years because of its far-reaching
ments increases the probability for a click, which would ruintheoretical and technological bearings, such as quantum
the experiment, but if all partial measurements succeede@omputation and reversibility.
the state of the two entangled particles is Most notable of these works is that of Scutyal. [22],
who demonstrated erasure of a quantum measurement in a
double-slit experiment with atoms. In this experiment, the
Po,00%P ~,005P 1,006 EPR). (34  two parts of the wave function, prior to being reunited, pass
through a small cavity where they undergo a measurement
that can tell which path the atom has traversed. Immediately

The resulting pair of particles is poorly correlated, but anafter the measurement, while the beams are still inside the

inverted set of countermeasurements, performed on the pa §1V|It||es, tk|1e hWh'Cg Eath ft|nfc1rm§t|on r;s totally err]ased.
ticle that was measured, can restore the initial correlation>"Y etal. showe that after leaving t, e caylty, the two
Since measurements in orthogonal directions cannot conf€aMs gave rise to normal interference, just as if no measure-

mute, the countermeasurements must be performed in rgjent_took P'ﬁce- .
verse order: This experiment, however, has two shortcomings that ob-

scure the unigueness of quantum erasure. First, the experi-
ment makes it impossible to know the actual result of the
measurement that has been later erased. This impossibility is
"We will use thez “direction” to denote a circular polarization. imposed by the very definition of the experiment: If an ex-
The z direction is taken from the spin measurement of spipar-  perimenter observes the result of a measurement, this obser-
ticles, which obeys the same relations asxthg, and circular po-  yation itself becomes part of the measurement, hence erasure
larization measurement. The appropriate operators wikbg and  requires completely erasing that observer’s brain processes
Pou- as well. Therefore, one can onigfer that detection and its
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erasure took place on one of the two beams, but one camwhere he showed that any quantum-mechanical variable is a
never know which beam gave rise to the initial click. The superposition of another, noncommuting one. He went on to
same holds for the proposals of Greenberger and Ya38), show how any variable could emerge from the interference
Becker,[24] and others, reviewed and refined by Kweatal.  effect of its conjugate.

[25]. This is what the present work does with tkendy po-

Our proposal overcomes this limitation. When the meadarizations, illustrating the uncertainty principle by the famil-
surement is partial, it is as observable as any other measur@ phenomenon of interference. It is this highly visualizable
ment, and similarly its erasure. The reason for this waghenomenon upon which the present proof for nonlocality is
pointed out earlier. Unlike the prevailing techniques, oursased, not requiring Bell's theorem. In so doing, we have
does not require time-reversing any measuring instrumen@ISO extended the EPR argument to two conclusionslon-
thereby avoiding the enormous technical difficulties involved!ocal effects are caused not only by a complete measurement
with proper atomic control and thermodynamic isolation. PUt €ven by its minutest stagei) Nonlocal effects are

Rather, the only thermodynamic price we have to pay is thai:aUSGd not only by a measurement but also by the time-

reversed process. Therefore, nonlocality need not cease once
the cIoser.the mgasurement gets tp a complete measuremetrﬁte two particles in the EPR experiment are measured; they
the more likely it is to end up in a click, whereby erasure will

. Lt . i can remain entangled in spite of many successive measure-
no Ionger be possible. S|m|la_rly, erasure itself might end u ents, maintaining the strange “dialogue” between them for
in a click. We thus comply with the second law of thermo- 5 5ng time. Our proof also extends Bell's proof in that,
dynamics at the statistical level. Still, in a large enough seyhereas Bell’'s inequality is based on the polarization mea-
ries of experiments, we can have many cases In which wyrements along varying angles, we present a new inequality
can directly observe a measurement that is close enough taat holds within the same angle of polarization for both
complete measurement, and then observe its complete ergarticles.
sure. Partial measurement gives a new twist to the question of

But the most intriguing consequence of quantum erasurguantum indeterminism, to which Einstein objected in his

is obscured by the second shortcoming of Scellyl's ex-  famous dictum that God does not play di&8]. Our experi-
periment. They carried out the measurements and its erasuneent shows that not only does Nature cast a dice every time
on both halves of the wave function. This, we suggest, is nota polarization measurement is performed, but that, when the
only unnecessary but suppresses the nonlocal aspect of thige takes some time to fall, Nature preserves the right to
process. Elitzuf26] has proposed to repeat Scully’s experi- change her mind as many times as she pleases. She can, for
ment dropping one of the measurement and its erasure dixample, give 99% for a particle to havefa polarization,

one side. The argument was that if interference shows up iAnd then, upon the 100th partial measurement, change her
this case, too, it would prove that undoing one-half of themind and make the polarizatign-). When given further
wave function instantly “unmeasures” the other half, too. OPPOrtunities by dividing the 100th measurement into further

However, this proposal suffers from the same shortcoming a0 part.irafgl measurements, she might change her mind time
the above erasure experiments. The measurement and its e?ﬁ'—ﬁlj_ agairr. ¢ highliahts & fund al
sure can only be inferred and never directly observed. Brup_ | © SUmmarize, our proot highlights a fundamental pecu-

and Barnetf27], on the other hand, proposed to carry out the“a”.ty of.quantum mechanics. Suppose that a plassmal object
. resides in one out of 200 closed boxes. Opening some boxes
measurement on one arm and the cancellation on the oth

ea{ - . )
; ; hd not finding the object there only alters the observer’s
arguing that both operations should affect both arms. knowledgegor, better, ignorangeabout the object’s location.

_Unfortunately, all these experiments study single-particlg, o ;antum mechanics, in contrast, every such nondetection

interference, where the two parts of the wave function argyings about a real change in the particle’s state, empirically

eventually reunited. This does not allow nonlocality to beproved in our EPR-PM setting with utmost quantitative pre-

tested. A local theory could argue that both the measuremewfsjon. It is this lack of differentiation between ontology and

and its erasure affect Only the measured half. epistemo]ogy_any Change in the 0bserv®r’mw|edg&or-
Partial measurement, again, overcomes all these shorﬁesponding to precisely the same change instage of the

comings. It allows a direct observation of both the measurething observed—that makes quantum mechanics so unique

ment and its erasure. Furthermore, by performing the meaamong all natural sciences.

surement on one photon and the erasure on the other, and by

not uniting the two distant photons, we are in a position to ACKNOWLEDGMENTS

affirm that not only quantum measurement, but also its era-  an early version of this work was presented at the Gordon
sure, affects the other particle in the EPR experiment. Noticgonference on Modern Developments in Thermodynamics,
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X. CONCEPTUAL IMPLICATIONS

In a discussion that has become a classic, Feynia&h
defined the double-slit experiment as “the core of the mys- ®This bearing of partial measurement on the issue of determinism
tery of quantum mechanics.” Albelf29] has generalized versus indeterminism makes it also relevant to the origins of time
this insight in his lucid exposition of quantum mechanics,asymmetry; se€30-32.
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