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Investigation of the temperature dependence of the Casimir force between real metals
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We investigate the Casimir force acting between real metals at nonzero temperature. It is shown that the
zero-frequency term of the Lifshitz formula is difficult to interpret in the case of a real metal described by the
Drude model. This is because the scattering theory underlying the Lifshitz formula is not well formulated when
the dielectric permittivity takes into account dissipation. To give the zeroth term of the Lifshitz formula a
definite meaning, different prescriptions have been used recently by different authors with diverse results.
These results are shown to be improper and in disagreement with experiment and the general physical require-
ments. We propose a prescription that is a generalization of the Schwinger, DeRaad, and Milton recipe
formulated earlier for ideal metals. On this basis, detailed numerical and analytical computations of the
temperature Casimir force are performed in the configurations of two plane plates and of a spherical lens
(sphere¢ above a plate. The corrections due to nonzero temperature and finite conductivity found here are in
agreement with the limiting case of a perfect metal and fit all experimental and theoretical requirements.
Among other facts, previous results obtained in the framework of the plasma model are confirmed. It appears
that they are the limiting case of Drude model computations when the relaxation parameter goes to zero. A
comparison with the Casimir force acting between dielectric test bodies is made.

DOI: 10.1103/PhysRevA.63.062108 PACS nuntber12.20.Ds, 12.20.Fv

[. INTRODUCTION surface roughness, finite conductivity, and nonzero tempera-
ture.

The Casimir effecf1] predicted more than 50 years ago is  Finite conductivity corrections to the Casimir force have
one of the most interesting manifestations of zero-poinfong been investigated. They were calculated using the
vacuum oscillations of quantized fields. The Casimir effectplasma mode[16-18 up to first order in the relative pen-
implies that there is some force acting between two unetration depth of the zero-point electromagnetic oscillations
charged bodies closely spaced in the vacuum. This effect igto the metal. Ir{19] more exact results up to second order
purely of quantum origin. There is no such force in classicalere obtained, and if20] up to the fourth order. In Refs.
physics. Unique to the Casimir force is its strong dependenck21,22 the finite conductivity corrections to the Casimir
on shape; it switches from attractive to repulsive as a funcforce were computed using tabulated optical data for the
tion of the size, geometry, and topology of the boundary. Thére_quency-dependent complex _refractive index. For all sepa-
force results from the alteration by the boundaries of thd@tions between the test bodies larger than the effective
zero-point electromagnetic energy that pervades all of spadd@sma wavelength of the metal under study the results of
as predicted by quantum field theory. Alternatively, the Cal20] @nd[21,23 are shown to be in good agreement. The

simir force can be described as the retarded eIectromagnet’géljg“;\tlsit O]:NSeL:refa}ﬁ?/ers(,)tliJg;[ggsii Ige(igiTiEiIZg?tflg:]t\fllvétr::(l;lrzlfliteu(-:on_
interaction of atomic and molecular dipoles and has bee y 9 9

S : ~ration of a sphere above a plate used in experim@#41].
extended_to forces betV\_/een macroscopic dielectric bOdIeI%oughness contributions to the Casimir efféntluding the
characterized by some dielectric constgit

. origination of a lateral forogehave been treated recently in
In recent years the Casimir effect has attracted much a 2 A?—Zﬂ ® y

tention because of numerous applications in quantum field e 5ction of nonzero temperature on the Casimir force
theory, atomic physics, condensed matter physics, gravitasetween dielectric semispaces was taken into account in the
tion and cosmology, and mathematical physisee[3-6] | jtshitz theory[2,16]. For perfect metals at nonzero tempera-
and references therginPrecision measurements have beenyre the Casimir force was calculated [8,29 within the
made of the Casimir force between metallic surfddesl?.  |imits of quantum field theory in terms of the free energy
In Refs.[13—-15 some promising applications of the Casimir density of vacuum. There were apparent differences between
effect were proposed for diagnostics in thin films and in na-the results off2,16] and those 028,29 which were re-
noelectromechanical systems. Given the above reasons it $slved in[18]. As shown by Schwinger, DeRaad, and Milton
very important to understand the Casimir force between redl18], to obtain the case of a perfect conductor from the Lif-
materials, including the effect of such influential factors asshitz theory one must take the limit of infinite dielectric per-
mittivity before putting the frequency equal to zero in the
temperature sum. The results [&,16] adapted for the case
*On leave from North-West Polytechnical Institute, St. Peters-of a perfect metal and 428,29 are then in agreement. The
burg, Russia. Electronic address: galina@fisica.ufpb.br temperature corrections to the Casimir force turned out to be
On leave from A. Friedmann Laboratory for Theoretical Physics,negligible in experiment§8—11] where the measurements
St. Petersburg, Russia. Electronic address: mostep@fisica.ufpb.bwere performed in the separation raray€ 1 wm. However,
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at a>1um, as in[7], the temperature corrections make The situation was clarified if83] where the discontinuity
large contributions to the zero-temperature force betweenf the transverse reflection coefficient as a function of fre-
perfect conductorse.g., fora=5 um the temperature cor- quency and photon momentum was demonstrated in the case
rection in the configuration of a spherical lens above a platgf 5 real metal described by the Drude model. According to
exc_:reheds_ the zerg-temperaturefforgeé]c):. it [33] to clear away the ambiguity in the zero-frequency term

e increased accuracy of the Casimir force measuress o | itshitz formula arising from this discontinuity it is
ments invites further investigation of the temperature correc- : . )

ecessary to use an alternative representation {di8i2g.

tions in the case of real metals. Although from a conceptu hi i . h il f fini h
point of view the Lifshitz theory provides a way of obtaining is representation gives the possibility of redefining the

all the required results, the problem here is worse than it wag€"0-frequency term of the Lifshitz formula in order to as-
with perfect metals. 1131] the suggestion was made to use Sign ita deﬁnltg meaning for real metals in accordance with
the plasma model in order to describe the dielectric permitthe usual physical requirements.[B8], however, the values
t|V|ty a|0ng the imaginary frequency axis in the Lifshitz for- Of the Casimil’ fOI’CE inClUding nonzero temperature and f|n|te
mula for the Casimir force at nonzero temperat{imete that ~ conductivity in the framework of the Drude model were not
in [16—20 the plasma model was applied for this purpose acomputed. Thus, up to now, there is no plausible qualitative
zero temperature onlyln Refs.[32,33 detailed calculations information on the Casimir effect between real metals in-
of the temperature Casimir force were performed in thecluding the temperature corrections. The need for such an
framework of the Lifshitz theory and the plasma model. Itinvestigation is apparent when the experimental and techno-
was shown that the temperature corrections are negligible &bgical applications of the Casimir force mentioned above
small separations where the finite conductivity correctionsare considered. It is also important that recently the Casimir
are very important. By contrast, at large separations finiteffect was used to obtain stronger constraints on the con-
conductivity corrections can be ignored, whereas the temstants of long-range interactiofiscluding corrections to the
perature corrections play an important role.[B2,33 the  Newtonian gravitational laypredicted by unified field theo-
transition region between these two asymptotic regimes wases, supersymmetry, supergravity, and string th¢80;41—
also investigated, where the combined effect of nonzero ten44]. Reliable theoretical values of the Casimir force at non-
perature and finite conductivity is important and should bezero temperature between real metals and the extent of their

taken into account. agreement with experiment are of particular interest in order
It is common knowledge that at small frequencies the dito obtain the strongest constraints.
electric permittivitye is proportional tow ! as given by the In the present paper we propose a method that allows one

Drude model. Because of this, the Drude model is favoredo attribute a definite value to the term of the Lifshitz for-
over the plasma modévhich impliese ~ »~2) when calcu- mula at zero frequency for real metals as described by the
lating the Casimir force at nonzero temperature. The firsDrude model. This method avoids the above mentioned con-
attempts to calculate the nonzero-temperature Casimir forceadictions and solves the problem in a physically consistent
between real metals based on the Lifshitz formula and Drudway. Detailed computations of the Casimir force between
model were undertaken {183—37. They led to distinct and real metals at nonzero temperature are performed for the
unexpected results. It was found that the value of the transzonfiguration of two plane parallel plates and a spliknes
verse reflection coefficient, of the electromagnetic oscilla- above a plate in a wide separation range from 0 to
tions at zero frequency becomes indefinite when one detOum. It is shown that at small separatiofisw tempera-
scribes a boundary made of real metal using the Drudéureg the temperature corrections are small irrespective of
model. In[34,35 the valuer,=0 was adopted. This assump- whether the Drude or plasma model is used. In particular, no
tion leads to the nonphysical conclusion that the asymptoticorrections to the force arise that would be linear in tempera-
Casimir force at high temperature in the case of real metals isire, as in[34—37]. At large separationghigh temperaturgs
two times smaller than for the case of an ideal metéthout  there is some difference between the finite conductivity cor-
regard to the particular value of the conductivity of the realrections to the temperature Casimir force obtained with the
meta). Also, as a result of assumptions, made[&4#,35 plasma and Drude models, although the corrections them-
there arise large negative temperature corrections at smaielves are rather small. With decreasing relaxation parameter
separations, which are linear in temperature. These correthe results from the two models coincide. Our results at large
tions are not only unacceptable from the theoretical point ofeparations join smoothly with increase of conductivity with
view but also in conflict with experimental data8]. asymptotic values obtained for the perfect méthis is not
Other authorg36,37 assumed the valug,|=1 at zero the case in[34,35 where the asymptotic force for a real
frequency using the prescription §18] formulated for a metal is two times smaller than for a perfect bn&lso, the
perfect metal and the well known relation by Hagen andnonphysical results of36,37], according to which at large
Rubens which is valid for real photons onl$9,40. This  separations the finite conductivity corrections are absent in
assumption also leads to nonphysical conclusions, i.e., to lithe case of real metals, are shown to be in error. The
ear(although positivietemperature corrections at small sepa-nonzero-temperature Casimir force between dielectric bodies
rations and to the absence of any finite conductivity correcis also computed and the distinctions between the cases of
tions to the Casimir force for real metals starting from metallic and dielectric bodies are discussed. The results ob-
moderate separations of several micrometers regardless tH#ined are in agreement with the experiments. They establish
metal quality(note that the same assumption was accepted ithe theoretical basis for additional precise experiments in
the latest version af38]). measuring the Casimir force.
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The paper is organized as follows. In Sec. Il the generasemispaces the scattering problem onZlzis perpendicu-
formalism for the Casimir force between real metals at noniar to the boundary planes is considered. An electromagnetic
zero temperature is presented for the configuration of twavave coming from the left in the dielectric is scattered in the
plane parallel plates. Here special attention is paid to thair gap and there exist a transmitted and a reflected wave.
indefinite character and discontinuity of the zeroth term ofFinally the free energy and the Casimir force are expressed
the Lifshitz formula in the case of the Drude model. A rep-in terms of the scattering coefficient on the imaginary axis.
resentation of this term is given that is in accordance with theCalculating this coefficient for the problem of two semis-
general physical requirements. In Sec. lll the same is donpaces(denoted by an indegs with a frequency-dependent
for the configuration of a sphefiensg above a plate. Section dielectric permittivity e (w) separated by a gap of width
IV is devoted to numerical and analytical computations ofone finally obtains the Casimir force in the foffi#g]
the temperature Casimir force for the configuration of two

plane parallel plates. The asymptotics of both low and high kgT - e

temperatures are considered and also the transition region Fsda)=—5— > . k. dk, q

between them. Section V contains the results of analogous

computations for the configuration of a sphéeng above a X{[r7%(& ,k, )e2a—1]"1

plate. In Sec. VI the case of dielectrical test bodies is con- B

sidered and the Casimir force at nonzero temperature is +[ry %4 ke a-1]"1, @

found. In Sec. VII the reader will find conclusions and dis- h h flecti - s with I
cussion. Appendixes A and B contain some details of theVNerer.; are e reriection coe icients with paraligder-

mathematical calculations. pendicula) polarization, respectively, given by
e(ignai+k]® qi+ki|?
2 A& k)= ——] .

_2 _
f1 76k = e(i&)q—Kk a—k

Il. TEMPERATURE CASIMIR FORCE BETWEEN TWO
PLANE PARALLEL PLATES

The original Lifshitz derivatio2,16] of the temperature Herek, is the momentum component lying in the boundary
Casimir force between two semispaces was based on the gganes,k, =|k, |, w=i&, and the following notations are
sumption that the dielectric materials can be considered assed:
continuous media characterized by randomly fluctuating
sources. The correlation function of these sources, situated at g, ) §| ) 27l
different points, is proportional to thé function of the ra- a= +k v k= (|§,)—+k ) §|:7_
dius vector joining these points. The force per unit area act- c?
ing upon one of the semispaces was calculated as the flux of
incoming momentum into the semispace through the bound- |ntroducing a new variable according to
ary plane. This flux is given by the appropriate component of
the stress tensorzg component ifky is the boundary plane 5 g,

The usual boundary conditions on the boundary surfaces be- kf==(p’—1), 4

tween the different media were imposed on the temperature ¢

Green’s functions. To exclude divergences, the values of aUve rewrite Eq.(1) in the original Lifshitz form[2,16,49 as

the Green'’s functions in vacuum were subtracted from their

values in dielectric media. Another derivation of the Lifshitz 5T &, K(i&g)+e(ié&)p)?

formula is based on the solution of Maxwell’'s equations with Fg{a)=— — E gf’f p? dp[ (K——)

appropriate boundary conditions on the surfaces separating me” 1=0 L (i&)—e(i&)p
K(ig)+p\?

K(i&)—p

()

different medigd45—47. In this manner the allowed surface -1
modes and a harmonic oscillator free energy of each mode x g2a(é /C)P—l} +[(
can be determined. The total renormalized free energy is
obtained by summation over all modes and subtraction of the -1
free energy of vacuum. The nonzero temperature Casimir x e?a(& ’c)p—l} ) (5)
force is finally given by the negative derivative of the renor-
malized free energy with respect to the distance betweep
semispacesat zero temperature this procedure is presented
in detail in[22,47)). o o . K(i&)=[p?>—1+e(i&)]*? (6)

The modern derivation of the Lifshitz formula8] is
based on the temperature field theory in Matsubara formulaand the prime on the summation sign means that the zeroth
tion. In the case of a static Casimir effect the system is irterm is taken with the coefficient 1/2.
thermal equilibrium. To describe it at nonzero temperature Note that the representation of E() for the nonzero
one should take the Euclidean version of the field theorytemperature Casimir force has a disadvantage ad #@
with a field periodic in the time variable within the interval term in it is the product of zero with a divergent integral.
B=nhl(kgT), whereT is the temperature ark} is the Bolt-  This is usually eliminated49] by introducing the variablg
zmann constant. To find the free energy in the case of twanstead ofp,

ere
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y=[&lp. ”é.=2a%, (7

Where~§, is the dimensionless frequency. In terms of these

variables Eq(5) is

o

— kBT * 2 —2/% y_11-1
Foda) == 2 | V' arlri* (@ ye-1]
+[ry % y)e-11"1, (8)
where
N ey—\(e—1)EF+y?
ri(é,y)= 9

sy+\(e—1)E2+y?

~ y—V(e—1)& +y? . cé

r(é.y)= ~|2 , e=¢g(i§)=¢ |2_a|
y+V(e—1)EF+y?

Both changes of variabldg) and(7) are, however, singular

at1=0. In fact Eq.(8) can be obtained from Edl) by the
regular change of variable

4a’Kk? =y?—¢2. (10)

PHYSICAL REVIEW A 63 062108

If we put =0 in Egs.(2) and (3) and use the plasma
model dielectric functior{11) the result i§32,33

k.~ IZ+ wifc?| 3
k, +VkZ+wi/c?)

In the case of the Drude model dielectric functidr®), we
have

r2(0k,)=1, r3(0k,)=

i
ep(ié)—| =0, (14
oo
which leads td35]
r2(0k,)=1, r30k,)=0 (15)

for any k, #0. Note that Eq.(15) is valid for arbitrarily
small y and arbitrarily largew,. Thus the second equation
of Eq. (15) is in contradiction with the limiting case of the
ideal metaIr%(O,kL)zl which follows from Eq.(13) in the
limit w,—. The results obtained using Ed.5) are in con-
flict with the known results for an ideal mefdl8,29. What
is more important, the second equation(ds) does not ap-
proach the second equation @3) when the relaxation fre-
quency y goes to zero. In the limity—0 one still has
rﬁ(o,ki)zo, not Eq.(13), although lim,_ oep =€, in accor-
dance with Eqs(11) and(12). In Secs. IV, and V the dis-

Because of this, the equivalent representations of the Lifshitzontinuity of the zero-frequency term of the Lifshitz formula

formula (1) and (8) are preferred as compared to Ef).

with respect to the relaxation parameter will be discussed in

To calculate the Casimir force at nonzero temperature bedetail when assessing the continuous modification of this
tween real metals one should substitute the appropriate vajerm as suggested below. Exactly the same results as in Egs.

uess (i) into Eq. (1) or Eq.(8). In some frequency range (13) and (15) are obtained if one uses the variablds \)

g(i£)) can be found by the use of optical tabulated data fofistead of €, k,) and the representatioi8) of the Lifshitz
the complex refractive index for the metal under considerformula.

ation from, e.g.[50] (this was done if21,22). But in any

If the original representatio(b) of the Lifshitz formula is

case the optical data should be extrapolated outside the r@xploited and written in terms of the variableg, p) the

gion where they are available in the tables to smaller andjyation changes greatly. Here one immediately arrives at
larger frequencies. This can be performed by the use of the

plasma model function

2

gp(ug):1+§ (11)
or the more exact Drude model function
o142 (12)
i&=1+ ,
=1+ 5

where w,, is the plasma frequency ang is the relaxation

frequency. For some metals, the model dielectric function

with appropriate values of, and y can be reliably used

throughout the whole spectrum. Calculations of this typ

were performed in32-37 with different results. As shown

below, the reason for this is the discontinuity of the trans-
verse reflection coefficient, at zero frequency with respect
to the relaxation parameter, which must be made continuo

€

r3(0p)=r50p)=1 (16)
for all p#« irrespective of whether the plasma or Drude
model is used for the dielectric permittivity on the imaginary
axis. The reason for the distinct value rgf(0,p) is the sin-
gular character of the change of variabldg when &,=0.
This change relates the single valuekof=0 to all the finite
values ofp, and all the values ok, #0 to a single poinp
=, The valueq16) for both reflection coefficients at zero
frequency were postulated [86,37 and used in all the nu-
merical computations even after one more singular change of
gariables(?) was performed in order to calculate the diver-
gent integral in Eq(5). We show below that this postulate,
although it works well for the perfect metal, is not justified
for real metals of finite conductivity.

In fact, the transverse reflection coefficiant from Eg.
(2) or Eg. (9) has a discontinuity as a function of two con-

Jénuous variables§ andy, for instancg in the case of the

in a physically reasonable way in order to describe real metBrude dielectric functior33]. If one putsé=0 in Eq. (9)

als by the Lifshitz formula.

from the very beginning the result 'r;%(O,y)zO, in agree-
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ment with Eq.(15). If, however, one approaches the point keT (= o
(£¢=0,y=0) along the directioré=ky in the (,y) plane Csd@)=— 16w2a3f0 dXCOSaXL y2dy fodx7,y).
thenr2(¢,y)—1. The distinguishing feature of the Drude 21)

model is that for an arbitrarily smafithere existk such that

ra(ky,y) takes any value between zero and unity. By con-Using Egs.(8), (18), and(21) one finally obtains the repre-
trast, in the case of the plasma model both reflection coeffisentation of the Lifshitz formula

cients are continuous, am@(ky,y) does not depend dnbut "

is determined only by the value of It is of even greater F.(a)= E bed )

concern that the transverse reflection coefficient at zero fre- S e 78

guency is discontinuous with respect to the relaxation param-

etery. hc , [ ~ ~ Tetf
As is seen from the above discussion, there is a serious - 16m2a% i<h fo décog 1€ T

unresolved issue concerning the value of the zero-frequency

term of the Lifshitz formula for real metals. In fact the scat- c ~

tering problem, which forms the basis of the Lifshitz for- X ﬁ yedy fsd&.y), (22)

mula, is meaningful only for nondissipative medihis is the :

case for the plasma model or dielectric matefial$ie case where the continuous frequency varialgte 7, andkgTe(s

e=, as it is for metals at zero frequency, is especially com-=7¢/(2a). Note that in the representatia22) the 1=0

plicated when the Drude model is used taking into accounferm gives the force at zero temperature. It is useful also to

dissipation. The latter leads to the violation of the unitarity change the order of integration in EQ2),

condition and thereby the zeroth term of the Lifshitz formula

becomes indefinite and must be redefined. For ideal metals hC

of infinite conductivity this issue was resolved by the Fsd{a)=-—

Schwinger, DeRaad, and Milton prescriptidi8] demanding

that the limit e—o should be taken before setting=0

[which is equivalent to the use of EGLG)]. Let us find out  \yheret=T,,,/T.

how the problem of the zero-frequency term of the Lifshitz ) et ys isolate the zero-frequency term of the usual Lif-

formula can be solved for real Drude metals in a physicallyshitz formula(8) with discrete frequencies in representation

satisfactory way. (23). In this way it will be expressed in terms of integrals

_For this purpose let us use t_he representation of Fhe LIfWith respect to continuous variabiég/. For this purpose we
shitz formula in terms of continuous frequency variables.

Such a representation was suggested28| and used in write out separately the terms of EQ3) with | =0, inte-

[18,29 for other purposes. According to the Poisson summadrate all the other terms by parts with respecgtochange
tion formula if c(a) is the Fourier transform of a function the order of summation and integrations, and use the formula

b(x), 51]

[

’ * 2 \ . . ~
16m2a* |20 fo y dyfo d¢ coslEt)fsd(&y),
(23

. Zosin(lzt) 1 tz
C(a’)Z%J’_wb(X)e_iade, (17) IZl | :E{W—FZWA(E)_tZ

: (24)

where A(z) is the integer portion of. The result of these

then it follows that . ;
transformations is

b(l)=2 c(2l). 18 hc ” Y=o 2
2, =27 2 c(2m) B e [y gy
327a 0 0
We apply this formula to Eq8) using the identification 1 [ ty
+—f y2dy fo(y,y) 77+277A(—)—ty}
keT [* AmakgT tJo 2m
bSS(I)E_ 3 y dy fSS(lTiy)7 T= A ' ~
16maJ|ilr ¢ 1> Y ~ 9fsd€Y)
(19 ——f y2dyf dé —=—
tJo 0 d€
where,= 7l and 3
foll ) =f QU my) + 121 7y), (20 . ”*2”A(z)‘tfH- (29
fOUry)=r"2-1)"1, i=1,2, Here the first term is the zero-temperature force. The second

and the third contributions on the right-hand side of &%)
are even functions of. Then the quantitcg( @) from Eq.  can be transformed using the definition of the funci(z)
(17) is given by and the representation 6fs in terms of the sum of parallel

062108-5



G. L. KLIMCHITSKAYA AND V. M. MOSTEPANENKO PHYSICAL REVIEW A 63 062108

and transverse modes in accordance with §). Taking  so that in the case of the plasma model the double integral in
into account thaf(!) and its derivative are continuous func- Eq.(27) vanishes. If, howeveg = ¢, is substituted into Egs.

tions (as distinct fromf{2)) one obtains finally after cancel- (29) and(30) one discovers a discontinuity i Actually, as
lation of the zero-temperature contribution follows from Eqgs.(29) and(30),

(?f(z) )
SEY) im f Y o @2

(26 7o

) ) . . for anyé=0 andy+0. On the other hand,
(see Appendix A for details In this equation all the terms

: o . . . B - 5 .
w_|th I.Bl. coincide with those in Eq8) and the term with ot Dy y+ /w2+y2
=0 is given by ; ss - P y_
lim | d& — = — e’—1 #0.
FO(a)= | | “yarit@oy + 1@ (33
To conclude, the presence of the double integral in the right-
f(Z)(g y) hand side of Eq(27) renders it unsuitable for real metals
f y2d f dé ="~ (27)  described by the Drude model.
To remedy the situation let us note that with increasing
The representation obtained for the zero-frequency term It @A(Ey) 1
of the Lifshitz formula is well suited for solving the problem A —0 with e—om, (34)
formulated above. In terms of dimensionless variableg) 9¢ ve—1

the plasma and Drude dielectric functions take the forms Consequently, the discontinuous term can be deleted by use

~5 ~5 of the Schwinger, DeRaad, and Milton type of prescription
e (iB)=1+ ﬁ ep(iB)=1+ O (28)  [18], where the infinite limit of the dielectric permittivity is
P g2’ EE+y)' taken before setting the frequency to zero when considering

the zero-frequency term of the Lifshitz formula. For ideal
WhereEpEZawp/c, }EZay/C_ Evidently, no discontinuity ~metals the use of such a prescription is necessary in order to
problem arises in the single integral with respecyta the achieve agreement between the Lifshitz formula for dielec-
right-hand side of Eq(27). It is well defined for both dielec- trics and field theoretical results obtained for a perfect metal,
tric functions of Eq.(28) and for both polarizations, and i.€., for boundaries with the Dirichlet boundary condition. As
contains the limiting cases of an ideal metal and zero relaxadvocated here, for real metals the analogous prescription
ation parameter. What this means is that the single integrdnust be used in a more restricted way to eliminate the dis-

term in Eq.(27) is analytic with respect tg, i.e., its values conU_nhut)r/] In t{;e zero-frequgncyr:erm. i © g b
calculated with the Drude model approach the values calcu- With the above prescription the Casimir force acting be-

tween two plane parallel plates at nonzero temperature is
lated with the plasma model whep—0 (see also the nu- given by P P P P
merical computations of Sec. }V

A completely different type of situation occurs in the oT "
double integral from the right-hand side of Hg7). In fact, Fd{a)=— { f y2dy[fE0y)+f3(y,y)]
by the use of Eqs(9) and(20) one obtains 16ma 0

af A(E, ey c o, ~
ss(~§ y):2 ) y) ra(, y)’ 29 +2I=2l 2 dyfss(§|,y)}. (35
29 [€=r3(&y)] JE
In Sec. IV detailed calculations of the Casimir force using
where Eq. (35) are performed. The results obtained are compared
- - - _ with those obtained by other authors.

ar,(&y) 2y 2&(e—1)+E%de/dé

JE [V(e— DB +y2+y2 2\(s—1)E2+y? Iil. TEMPERATURE CASIMIR FORCE IN THE
(30) CONFIGURATION OF A SPHERICAL LENS

(SPHERE) ABOVE A PLATE
Substitution ofe =&, from Eq.(28) into Egs.(29) and (30)

leads to In this section the most important results of Sec. Il are

adapted for a lengspherg above a semispadglate, which

o,y IfDEyY) is the configuration most often used in experimdts11].
Z(f’y —_ 55 Y =0 (31  Although there is no fundamental derivation of the Casimir
9€ 9& force acting between a lens and a plate the proximity force
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theoren[5_2] gives the possibility of expressing it in terms of faEy) = tDE )+ fDEy),
the Casimir free energy density for the configuration of two
plane parallel plates. This latter is given [82,33,48 tOEy)=In(1—r2e™). (40)
e Clearly, the zeroth term of Eq39) gives us the Casimir
—_B 2 -2
Esda)= 72— l;w fo kp dk,{In[1—ri(& ke =] force at zero temperature. The terms withl represent the
temperature correction. After changing the order of integra-
+In[1-r3(¢ ke 22a]}, (36)  tion in Eq.(39) one obtains

where the reflection coefficients and other notations are in- _ ke ” Y o~ ~ ~
troduced in Egs(2) and (3). Note that the Casimir force Sl(a)_8wa3 “ )Y dyJ'O décoglét)fg(E,y).
between plates from Eq(l) can be obtained a¥ = (41)
—dEgs/oa. ' _

According to the proximity force theoref52] the Ca- Using Eq.(24) and performing exactly the same transfor-
simir force acting between a letispher¢ of radiusR and a ~ mations as in Sec. Il and Appendix A, the Casimir force
plate is between a plate and a lens takes the form

Fal@)=2mREJa) S(ELY). (42
kBTR -
|—E_m ki dk, Here all terms with =1 are exactly the same as in Eg8),

whereas the zeroth term is given by
X{ln[l—fi(f;ﬂ ky)em2a]
kgTR

; | | yasi@op+ 1@

FIN[1-r2(¢ ke 2], (37) F{ )=

The indexsl here stands for semispace lens. This formula is f(z)(g y)
valid with rather high accuracy of aboafR [53] which is f yd f dé } (43)
usually a fraction of a percent.

Introducing the dimensionless variablés and y from

This representation of the zero-frequency term is in direct
Egs.(7) and(10) we rewrite Eq.(37) in the form P d 4

analogy with Eq.(27) for two plates. As in Eq{(27), no
discontinuity is contained in the single integral with respect

oo

kBTR to y. As to the double integral in Eq43), it is discontinuous
. J y dy{In[1- 3% y)e ] Y gral in Eq43), 1t uoL
8ac I1=—= J[g| with respect to the relaxation parameterat the pointy
. =0. In fact, it follows from Eq.(40) that
+In[1-r3(&,y)e "]} (38)

AP Ey) 20 Ey) ara(Ly)
This result is in direct analogy with E¢8) for two plates. ' (44)

There is no need to use singular changes of variables as Z5 K r2(§ y)
discussed in the previous section. where the derivative of the transverse reflection coefficient
The term of Eq«(38) with | =0 suffers exactly the same was calculated in Eq(30). Once again, in the case of the
ambiguity as the zeroth term of E@) if one uses the Drude plasma model the derivativi@4), and also the double inte-
model(12) to describe the dependence of the dielectric pergral in (43), vanish. As to the Drude model, it follows from
mittivity on frequency. This ambiguity lies in the fact that Eq. (44) that
the quantityrg('é,y) has a discontinuity at the poif®,0) as (2)
a function of two variables and is discontinuous also at the i (£&,y)
) . : . |m— 0 (45)
point of zero relaxation parametésee the detailed discus- - g€
sion in Sec. I]. Because of this, the zeroth term of E§8), 70
when applied to real metals, must be modified in the saméut
way as was done for the configuration of two plane plates. 2
For this purpose we apply the Poisson summation formula y _ of@(Ey) y— Vo +y?
(18) and rewrite Eq(38) in a form analogous to Eq22), Iimf d{ ——=In|1-| ————| eV |#0,
5070 3 y+ Vi +y?
ﬁcR off (46)
Fq(a)= f dgcm(lg

8mad 1= ,ﬁg y dy &), which means a discontinuity of the double integral in Eq.
(399 (43 as a function ofy.
This discontinuity leads to nonphysical resulége Secs.
where IV, and V). It can be removed by taking the limit of the
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dielectric permittivity to infinity prior to setting the fre- Sy ()
guency equal to zero in accordance with the prescription

used in Sec. Il. Then from Eq§30) and (44) 2
afP(E, 1
S| EE Y) ~ —0 with g—» (47 1.5
d€ Ve—1

and the discontinuous term in E@3) disappears. Using this

prescription, one finally obtains the expression for the Ca-
simir force acting between a plate and a spherical lens® -5}
(spherg at nonzero temperature,

ks TR
8a?

Fq(a)=

U:y aifPoy+iPoyyr b T a(um)

© FIG. 1. Relative temperature correction to the Casimir force
+22 ﬁ y dyf (% 'y)] . (48) between two plates versus separation. Curve 1 corresponds to the
=1 Jg Drude modelour computatiop the dashed curve is obtained in the
Drude model withr,(0k,)=0, and curve 2 is for dielectric plates.
Calculations of the Casimir force on the basis of &) are
contained in Sec. V. The results obtained are compared with ag is seen from Fig. Tcurve 1, in the case of real metals

those obtained without the use of the above prescriptiofne rejative temperature correction is rather small at small

[34,39 or by using another prescriptid36,37. separations and monotonically increases with increasing

separation, remaining positive, as it should be from general

IV. COMPUTATIONS OF THE CASIMIR FORCE thermodynamical considerations. In contrast to this, the tem-
BETWEEN TWO PLATES MADE OF REAL METAL perature correction computed on the basif34f,35 is nega-

tive in a wide range of separations and becomes zero at a

We start the numerical computation of the Casimir force Hora~6.3 For | dist b .
with Eg. (35 using the Drude and plasma dielectric func- separatiora~b.oum. or larger distances it becomes posi-

tions (12). For the sake of definiteness, we consider the casgve' At small distances it is rather large by the modulus and

of aluminum whose plasma frequency and relaxation paran{pc_rease_s linearly Wit.h _distan_cﬁtemperatur)a This behavi_or
eter can be chosen as folloWs0]: Is in radical contradiction with both the case of the ideal

metal and the case of a metal described by the plasma model

w.~12.5eV~1.9x 10* rad/s, (49  dielectric function considered in detail i{82,33. At the
P same time the results obtained here are in good agreement
y~0.063 e\=9.6x 101 rad/s. with both limiting cases of an ideal metal and a metal de-

scribed by the plasma model.
The most descriptive quantity illustrating the temperature Note that in the original pap€i35] not 6(F) but the

correction to the Casimir force is correction factor was plotted as a function of separatipn
i.e., the ratio between the Casimir force for real metals com-
Fl(a, Ty —Fl(a0 puted afT =300 K and the Casimir force for ideal metals at
5T(F;S) = : (50 zero temperature. According to the result§3#] in the case
Fsda,0) of the plasma model this correction factor is approximately

, , equal to the product of the correction factors through finite
Here the upper index of the quantityFss from Eq. (35  conductivity(at zero temperatuyeand through nonzero tem-
S|gn_|f|es one or another dielectric functi@@rude or plasma, perature(for the ideal metal Thus the resulting negative
for instancg, and the second argumefip=300 K andT  temperature corrections, which are unacceptable from the

=0 means the temperature at which the Casimir force ishermodynamical point of view, were not clearly evident in
computed. The relative temperature correctid@ is a func- 35,

tion of separatiora. It incorporates effectively the cases of = |y Taple | the values of the relative temperature correc-
both low temperaturesvhich occurs wheMo<Terrat small  tions are given at several distances between the plates in the
a) and high temperaturd@s To>Te¢( at largea). case of the Drude modébresent paper, column) 2nd the
The results of numerical computations by E(5) and  plasma modelpresent paper, column,Jor the ideal metal
(50) in the casef =D (Drude model are presented in Fig. 1 (column 4, computed on the basis £85] in the framework
by the solid curve 1. In the same figure the solid curve 2of the Drude modelcolumn 5, and computed on the basis
illustrates the result obtained for dielectric plat#ss case is  of [36,37] in the framework of the Drude and plasma models
discussed in Sec. YIThe dashed curve represents the resu'tcolumns 6 and 7, respectivélywe recall that i 36,37 all
obtained by the approach [84,35. In accordance with this computations were performed using E&) where in the
approach, as was discussed in Sec. II, one should substit@roth term the reflection coefficients6) were substituted.
f2)(0y)=0 instead off ¥)(y,y) into Eq.(35). As is seen from the comparison of columns 2—4, in the
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TABLE I. The relative temperature correction to the Casimir force between two plates versus separation
for different models of metal conductivity.

Separation Present paper Ideal metal  Approacl85f Approach of[36,37

a (pum) Sr(F gy Sr(F2Y Sr(F 39 S1(F o) Sr(F g9 Sr(F2)
0.1 5.16<10°% 6.60x10°® 1.57x10°7 —7.72x1078 2.18x10°% 1.62x10°?
0.3 9.24<10°% 5.48<10°° 1.27x10°° —3.49x10 2 2.54<10°2 1.53x10 2
0.5 1.0810°2 2.11x10°° 9.82x10°° —6.43x10°2 2.70x10°? 1.52x10°?
0.7 1181072 6.05x10°% 3.77x10°* —9.41x 1072 2.83x10°2 1.54x10°?
1 1371072 2.06x10°° 1.57x10°° -0.138 3.0&610°% 1.68x10°?
3 0.136 0.123 0.117 -0.324 0.156 0.137
5 0.580 0.563 0. 553 -0.185 0.602 0.577
7 1.17 1.15 1.14 9.7%10 ? 1.19 1.16
10 2.08 2.06 2.05 0.556 2.11 2.07

framework of the Drude model the relative temperature cor- It is notable that the finite conductivity correction com-
rection at the smallest separations is three orders of magnputed on the basis di36,37] becomes zero at separations
tude larger than with the plasma model and four orders largdiarger than Sum in both Drude and plasma modédkee the
than for the ideal metal. Note that for the ideal metal at smallong-dashed curves in Figs. 2 and B fact, as is seen from
separations the lowest nonzero temperature correction to thhe solid and short-dashed curves in Figs. 2 and 3, with in-
zero-temperature result is of ordeT/{T¢1)* (see below. creasing temperature the finite conductivity correction de-
With increasing separation the difference between the precreases. The extent of this decrease depends on the model
dictions of the Drude and plasma models decreases, apsed O or p) and on the values of plasma and relaxation
proaching the values obtained for the ideal métalumn 4. frequencies. In contrast to this, the finite conductivity correc-
At small separations the modulus of the temperature corredion computed on the basis §86,37] becomes zero at one
tion calculated on the base ¢85] (column 5 is several and the same separation not only in different models but also
times larger than calculated by (0lumn 2 and the correc- for the same model with different values of parameters, i.e.,
tion itself is negative. The results of the calculations on theregardless of the quality of metal under consideration. It is
basis 0f[ 36,37 (columns 6 and Jare also significantly dif- easily seen that the separation value at which the finite con-
ferent from our corresponding results of columns 2 and 3ductivity corrections 0f36,37] vanish is determined not by
According to[36,37 there exist large temperature correc- the conductivity properties of the metal but by the smallness
tions at small separations which are linear in temperature. of terms withl =1 in the Lifshitz formula, which are of order
Now let us discuss the finite conductivity corrections toexp(—2#T/Ts;). This means that the ansatz used 36,37
the Casimir force at nonzero temperature. They can be chate redefine the zeroth term of the Lifshitz formulsee the
acterized by the quantity

Fl(a,To)—Fi(aTo) 51 ¢
Fo(a,To) ’ 101

Se(Fi9=

[}

where, as abovel,:gs(a,To) is the Casimir force between
perfect metallic plates at temperaturg. The results of nu-
merical computations 0B (FL) in the case of the Drude %
model (f=D) are shown in Fig. 2. The solid curve repre-
sents the finite conductivity correction obtained by our 4}
method[Eq. (35)] at T,=300 K. For comparison the corre-
sponding results at zero temperatliig=0 are given by the
short-dashed curve. The long-dashed curve is obtained &
T,=300 K in the framework of the approach [#6,37. In

Fig. 3 the results computed in the case of the plasma mode s 5
(f=p) are shown with the same notations as in Fig. 2. As is alpm)

seen from Figs. 2, and 3, in the Drude model the finite con-

ductivity correction is larger than in the plasma model at all g, 2. Relative finite conductivity correction to the Casimir
temperatures and at all separations. From Fig. 3 it followgorce between two plates versus separation in the Drude model.
that ata=1 um the finite conductivity correction computed Solid curve represents our computationsTat300 K, long-dashed
using the plasma model a,=300 K is almost the same as curve is obtained under the suppositigr(0k,)=1 atT=300 K,
atTy=0. and short-dashed curve is for=0.

~.u
-
~-
-
~
- ——
e, ———
e
———————

~N
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1&8 F) model with decreasing. The reason is that different defini-
¢ s tions of the zero-frequency term of the Lifshitz formula are
8r used in[34,35 and in the present papésee Sec. )l

In the paper$36,37], there is a smooth transition between
the results obtained in Drude and plasma models. However,
as was indicated in Figs. 2 and 3, far-4 um the results in
the two models coincide with one another and for separations
a>6 um they coincide also with the case of the ideal metal.

Now let us derive some analytic results for the configura-
tion of two plane parallel plates using both the plasma and
Drude models. In the plasma model it is possible to obtain
the perturbation expansion of E(R3) in terms of a small
parametew,/a, wheredy=c/ w, is the effective penetration
depth of the electromagnetic zero-point oscillations into the
] 7; P 3 10 metal. For this purpose it is useful to introduce the new vari-

al um) ablev=¢/y instead of¢ and to rewrite Eq(23) in the form

FIG. 3. Relative finite conductivity correction to the Casimir

force between two plates versus separation in the plasma model. e 2 o 1

Solid t tationsTat300 K, long-dashed Fsda)=— > 3dy | dvcoglvyt)fedv,y)
olid curve represents our computations , long-dashe s > a y“dy v vyt)fodv,y).

curve is obtained under the suppositior(0k,)=1 atT=300 K, 167a™ =0 Jo 0

and short-dashed curve is fo=0. (52)

discussion in Sec. Jlis unjustified. Expanding the quantity . defined in Eq.(20) up to first
It is of interest to consider the dependence of our resultgder in powers o, /a one obtains

on the relaxation parameter of the Drude model. In Fig. 4
the relative temperature correction computed by HE85)

and (50) is plotted versusy at a separatiom=2 um and a 2 ye o
temperaturel =300 K (solid curve. In the same figure the fsdv,y)= ” -2 S 2(1+02)§_ (53
dashed curve represents the result obtained using the plasma -1 (¢/-1)

model. It is clearly seen that asdecreases by three orders

of magnitude the results computed in the Drude model m';hubstituting Eq(53) into Eq.(52) we come after some trans-

smoothly with the results of the plasma model, as the . . : .
should from general considerations. Note that this is not théormatlons to the Casimir force including the effect of both

case in the approach ¢84,35, where the results obtained honzero temperature and finite conductivity,
with the Drude model do not join the results of the plasma

X E(a)=FYa) 1+30 | 1 @ coshmtl)
a)=F%(a — _—
10784 (£) °° s 7 S 44t sin(artl)
97 ]
16 5, ) 2 cosR(mtl)+1
———0—60—02 (—)
3.8 3 a a =1 sint(amtl)
3.6 2 cosfiatl) 1
3.q wtl sintB(artl)  272t212 sinkP(rtl)
3.2} coth( rtl
_ cothtth) | (54)
o 273613
2.8
where Fl(a)=F2(a,0)=—7?ic/(240* is the zero-

10 i1 12 13 14 temperature Casimir force between ideal metals. The first
10g1 0[7 (rad/s)] summation in Eq(54) is exactly the temperature correction
in the case of ideal metalsee, e.9.[18]). The second sum-
FIG. 4. Relative temperature correction to the Casimir forceMation takes into account the effect of finite conductivity
between two plates versus relaxation frequency at separation cOmbined with nonzero temperature.
=2 um and T=300 K (solid curvé. The dashed line is for the In the limit of low temperature¥ <T.¢; one has from Eq.
plasma model. (54), neglecting terms exponentially small inrZ o+¢/T [33],
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relaxation frequency. For ai>6 um the results obtained

)4 ture Casimir force depends on both plasma frequency and
by the asymptotic Eq57) coincide with the above results of

Fea)~F24a) 1+3( !
SS( SS 3 Teff

numerical computationgee Figs. 2 and)3The characteris-

16 % ] ' (55) tic size of the conductivity correction at large separations can

3 a

_45g(3)( T )3

8m3 |\ Ters

be estimated from the following example. At 10um the
finite conductivity correction obtained from Ed57) is
For 6,=0 (perfect conductorEg. (55 turns into the well 5 (F2)~0.89% and with y=0 we obtain 5,(FP)
known result{18] demonstrating that the first nonzero tem- < 479, in perfect agreement with Figs. 2 and 3. The
perature correction is of the fourth powerTTe¢. FOrT  smooth joining of the results obtained using the Drude model
=0 the first order finite conductivity correction to the Ca- yjth those using the plasma model wher-0 is evident.
simir force[17,18 is reproduced from Eq55). Note that the Note that in the framework of the approach used in
first correction of mixing finite conductivity and finite tem- [34 35 the high temperature Casimir force between real met-
perature is of orderT/Tqs)3. Mor_e significantly, nokte _that als is given byFSS(a)=FSS(a,T)/2 [see Eq.(59)], i.e. two
there are no temperature corrections of ordeTer)" With  times smaller than for the ideal metal, regardless of the con-
k<4 n the higher order conductivity correction terms gyctivity properties of the real metal used. As to the ap-
(6o/@)" from the second up to the sixth orded3]. ~ proach used 36,37, the asymptotic behavior at high tem-
In the Drude model the analytical results can be Obta'”e‘ﬂ)eratures coincides with E€59), i.e., it is the same as the
in the high temperature limit>T,¢;. Itis easily seen thatat ¢ase for ideal metals in both plasma and Drude models. Once

high temperatureglarge separationsonly one term of Eq.  again, the real properties of the metal do not influence the
(35 with =0 contributes the result, the other terms with ggyit.

=1 being exponentially small in the parametetr ™ Tey;.
The situation here is exactly the same as for the ideal metal  \, ~oMPUTATIONS OF THE CASIMIR EORCE

[18]. As a consequence, E@5) can be rewritten in the form Yt
=y2dy ° y2dy LENS MADE OF REAL METAL
f y—1 * f 2 y—1
0 — 0 — ) .
¢ 27y.y)e (56) semispacéplate was found to be the most suitable for pre-
cision measurements of the Casimir fofge-12]. In these

It is seen from Eq(56) that in the high temperature limit experiments finite conductivit_y_ c_orrections have been dem-
only the perpendicular reflection coefficient gives rise to ~ onstrated8-12] and the sensitivity needed for detection of

finite conductivity corrections to the Casimir for¢iae same the temperature corrections is close to being achigved
is valid in the plasma model also For this reason the combined effect of both corrections is of

After straightforward calculations up to first order in the €xtreme interest. Here the computations of the Casimir force
small parametersy/a and y/w,, (see the details in Appen- for the configuration of a lens above a plate are performed

kgT
167ad

Fsfa)=— : The configuration of a spherical lef@r a sphergabove a

dix B) the result using the Drude and plasma models with the parameters of
Eq. (49). The results obtained by our E@8) are compared
0 6 v 1 ~ with the computations of other authors.
Fs(a)=Fs{a,T) 1_3§_w_p @' 1(7) (57) We start with the relative temperature correction
is obtained, wheré, is a function slowly depending on the ‘ Fl(a,To)—F(a,0
effective relaxation parametéspace separatiprand given or(Fs)= Ff(a,0) ' (60
by shm
) where all the notations and parameters are the same as in Eq.
~ * y \/; e (50) and only the configuration is different. The results of
l(y)= fo dy - y_1)2 (58) numerical computations using Eqg8) and(60) in the case
y+ty+ \/3—’ (e ) of the Drude model are presented in Fig. 5 by the solid curve

1. The solid curve 2 represents the temperature correction in
the case of a dielectric plate and a Iésse the next sectipn
The dashed curve shows the results obtained by the approach
of [34,35. Curve 1 increases monotonically in perfect anal-
T ; ;

3«3)' (59) ogy vx_nth Fig. 1. However, th_e dashed curve represents a
a negative temperature correction at separatiass4.lum
) _ ) and changes sign for larger separations. This behavior corre-
where/(3)~1.202 is the Riemann zeta function. sponds to the case where large-by-modulus corrections linear

With the above value of the relaxation frequency for Al jn temperature to the ideal zero-temperature Casimir force

one had;~1.16 ata=5 um andl;~0.99 ata=10um. In  are present. According t88] such corrections are in con-
Appendix B (Fig. 8 below the functional dependence bf  tradiction with the experimental data []. On the basis of
on vy is plotted. As is seen from E@57), the high tempera- our Eq.(48) such corrections do not arise.

At high temperatures, which are considered here, the Casim
force acting between ideal metals is
kg

Fi{a,T)=—
o 4
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or(Fa) 10°5 (F)
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g 3 ) 10

a( um)

) 10

a(um)

FIG. 5. Relative temperature correction to the Casimir force
between a plate and a lens versus separation. Curve 1 corresponds
to the Drude modelour computatiofy the dashed curve is obtained
in the Drude model withr,(0k,)=0, and curve 2 is for dielectric
test bodies.

FIG. 6. Relative finite conductivity correction to the Casimir
force between a plate and a lens versus separation in the Drude
model. Solid curve represents our computation§-a800 K, long-
dashed curve is obtained under the suppositipgfOk,)=1 atT
=300 K, and short-dashed curve is for=0.

In Table Il the values of the relative temperature correc-
tions are presented at different distances between a lens and ¢ F(a,To)—Fy(a,To)
a plate computed using the Drude mo¢@lesent paper, col- dc(Fs) = FO(a,Ty) :
umn 2 and the plasma modébresent paper, column,3or R0
the ideal metalcolumn 4, computed on the basis ¢85] In Fig. 6 this quantity is plotted as a function of separation in
using the Drude mode{column 9, and on the basis of the case of the Drude model B§= 300 K[the solid curve is
[36,37] using Drude and plasma moddlolumns 6 and 7, our result computed by E¢48), and the long-dashed curve
respectively. From Table Il(columns 2—-4it follows that at  is computed on the basis {86,37]]. The dependence of the
the smallest separations the temperature correction computednductivity correction on separation B§=0 is shown by
using the Drude model is about two orders of magnitudehe short-dashed curve. In Fig. 7 the analogous results com-
larger than with the plasma model and for the ideal metal. Aputed using the plasma model are presented. As with the case
large separations the predictions of both models are vergf two plane plategSec. I\V), the Drude model leads to
close to each other and to the results obtained with the idedrger finite conductivity corrections than the plasma model.
metal(column 4. The results of column 5, computed on the At separations larger than4m the conductivity correction
basis of[35], correspond to linear temperature correctionscomputed using36,37 becomes zero with both Drude and
that are negative and large in magnitude. The results of colasma modelgthe long-dashed curves in Figs. 6 and 7
umns 6 and 7, although positive, also correspond to the pre®nce more, this property is determined by the artificial
ence of linear temperature corrections at small separationsmodification of the zeroth term of the Lifshitz formula used

The relative finite conductivity correction at temperaturein [36,37] and does not depend on the particular characteris-
T, can be described by tics of a real metal.

(61)

TABLE II. The relative temperature correction to the Casimir force between a lens and a plate versus
separation for different models of metal conductivity.

Separation Present paper Ideal metal  Approacl85f Approach of[36,37]
a(um) 5T(FEI) 5T(Fsp|) 5T(F(s)|) 5T(FEI) 5T(FEI) 5T(F£I)
0.1 6.8710°° 6.68<10°° 3.09x10°° —1.51x1072 2.34x10°% 1.59x10°?
0.3 1131072 1.08<10°% 8.09x10°* —5.76x102 2.76x10°% 1.62x10°?
0.5 1561072 4.33x10°% 3.63x10°° —9.96x102 3.22x107% 1.92x10°?
0.7 2271072 1.09x10°%2 9.63x10°° -0.139 3.9%10°2 2.57x10°?
1 4131072 2.91x10°2 2.67x10°2 -0.189 5.8%10°2 4.38<10°?
3 0.498 0.481 0.470 -0.192 0.519 0.496
5 1.33 1.31 1.30 0.183 1.36 1.32
7 2.24 2.22 2.20 0.636 2.27 2.23
10 3.62 3.58 3.57 1.33 3.65 3.60
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10°5 ,(F)

45:(3)( T\ [ T\
FS'(a)mFg'(a)[” 3 (m) _(Teff)

o
T 3 T 4
— +
Teff) (Teff)

The corrections to Eq(65) are exponentially small in the
parameter ZT.;:/T. For an ideal metab,=0 and Eq.65)
coincides with the known result7]. It is seen that for a
~ perfectly conducting lens and plate the first nonzero tempera-
b N N e ture correction is of the third order i/ T¢¢;. For T=0 the
""""""" first order finite conductivity correction to the Casimir force
[20] is reproduced. In analogy with two plane plates the per-
turbation orders §,/a)"' with 2<i<6 do not contain tem-
perature corrections of orderd/(Tq¢ ) and (T/Ter)* or
FIG. 7. Relative finite conductivity correction to the Casimir smaller 0ne$33]._ .
force between a plate and a lens versus separation in the plasma Now we consider the analytical results that can be ob-

model. Solid curve represents our computatior-aB800 K, long-  t@ined with the Drude model at high temperatdie Te.
dashed curve is obtained under the suppositiofOk,)=1 atT Here only the zeroth term of the Lifshitz formula contributes

o

a

- 45((3)

278

] . (65

8 10

a(um)

=300 K, and short-dashed curve is fo=0. to the result. Then Eq48) can be represented as
In the same way as for two plane plates our results for a Fo(a)= kKeTR[ [ dyln(1—eY)
lens above a plate, computed using the Drude model, join sl 8a2 0 yay

smoothly wheny—0 with the results computed with the
lasma model. This is not the case in the approach of * -
F34,3ﬂ. i +f0 y dyln[1-r3(y,y)e y]]. (66)
We come now to the perturbative analytical results that
can be obtained for the configuration of a lens above a plate. After some transformationsee Appendix Bone arrives
Here, the plasma model can be used. Introducing the newt the result

variablev = &/y instead of¢ one obtains

Fu@=Foam 1-22-2 2 (”)} 67)
hCR ) , . , 1 sl sl ! a wp 5(3) 2 7 1
Fa(a)= —— > f y dyf dv cogltvy)fg(v,y). o
8ma’i=0 Jo 0 wherel , is defined by
(62)

. . . - yvy 1
The expansion of g up to first order in the small parameter I o y)zj dy ) (68)
Solais Vy+y+4y €-1

S0 The high temperature Casimir force acting between a lens

fsi(v,y)=2 In(l—e*y)+2ey_ 1(1+02)g- (63 and a plate made of ideal metal is

Substitution of Eq(63) into Eq. (60) leads to the result FO,(a T)=-— kBTRg
s\ 2

) oz G (69)
Fsl<a>=FS.<a>[ 1+4—§ >
a

=1

coth(7rtl) N T
t33 t212 sink?(rtl)

For example|,~0.519 ata=5 um andl;~0.434 ata
=10um [using the data of49) for Al]. The dependence of
mcoth(wtl) 2 I, on’y is plotted in Appendix B(Fig. 8. The asymptotic
results of EQ.(67) coincide with the results of numerical
computations foa>5 um. The choice of the model describ-

] ing the dielectric properties of the metal at large separations

1 8 18068, —

t4 a g4ar=

2t33 44
a2 coth(mtl) A

* tl sink?(artl) * t212 sink(rtl)

(64) is rather important. Aa=10um the conductivity correction
is 6.(F0)~0.68% using the Drude model and.(FP)
~0.32% using the plasma model, i.e., more than two times

WhereF2|(a)=F§,(a,O)E—WShCR/(SGOf). smaller. In analogy with the case of two plates, the high
For the case of low temperatur@s<T.¢; Eq. (64) leads temperature Casimir force calculated on the basig36f is
to [33] two times smaller than in Eq69) regardless of the conduc-
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tivity properties of the metal. 136,37 the high temperature quency in the case of metals, it corresponds to nonphysical
behavior for real metals coincides with E§9) obtained for  photons and takes the values=0<r(®=1 in the Drude
the ideal metal, so the actual properties of a particular metahodel andr,=g(k,)<r(®=1 in the plasma modelsee

are not reflected. Egs.(13) and(15)]. ' o
It is of paramount importance that the discontinuity of the
VI. TEMPERATURE CASIMIR FORCE BETWEEN two reflec_tion C(_)efficients causes no phys!cal prpblem in fche
DIELECTRIC TEST BODIES case of dielectrics. The point is that the dielectric permittiv-

ity (70) corresponds to a nondissipative medium described

Here we briefly discuss the temperature Casimir force beby the Drude mode{which is not the case for metals de-
tween dielectrics. The application of Lifshitz formulés)  scribed by the Drude modelFor this reason, the scattering
and (37) for the case of dielectric surfaces is direct. No ad-problem, which underlies the Lifshitz theofgee Sec. Il and
ditional prescriptions such as the ones used above or thefso[48)), is well defined at zero frequency through the uni-
generalizations are needed to obtain a final result matching”ty of the scattering matrix, furnishing the desired value of
the general physical requirements. However, when the forth€ scattering coefficient and thereby the free energy. The
malism developed for dielectrics is compared with that for'€Sults obtained for dielectrics are physically consistent.
metals, the origin of the above difficulties becomes clear. 'neY are immediately evident from Ed4) and(37) without

The dielectric permittivity of dielectrics can be modeled, ;Jhsee c(:sggyo?ggittrilo'r(]jaelaﬁsasr]%mrzg?rr]r?ét\glzi(\:/\r/]h;i:g t?licgizaayriri]n
e.g., by the Mahanty-Ninham relati¢46,54 : 9

problem at zero frequency is not well defined.

The results of numerical computations for dielectric test
=0 - (700  bodies made of mica are shown by the solid curves 2 in Fig.
1+ gzlwg 1 [Eqg. (1), two plane platesand Fig. 5[Eq. (37), a lens

above a plate The curve 2 is in direct analogy with the
Here w,~2x 10 Hz gives the main electronic absorption curve 1 in the same figure. At all separations the relative
in the ultraviolet, where j is the static dielectric constant. At temperature correction for dielectrics is positive. At
small é<w, one hass(i&)~s,. In fact, frequencies giving =0.1um it takes the valueSi(Fs)=1.94x10 °. This is
large contributions to the Lifshitz formulad) and (37) in  larger than for ideal metal and for a real mefal) consid-
the micrometer separation range are much smaller &éhan ered in the framework of the plasma model but smaller than
Because of thisg (i £) can be approximately replaced by. for the same metal in the framework of the Drude mddek
Below we use in all computations,~7 which corresponds Table ). At a=1um and a=10um &7(Fsd=1.99
to a sheet of mica. X 1072, respectively, 2.50. It is the value af;(Fso at
In reality, the zeroth term of the Lifshitz formula for di- @=10 um for dielectrics. Ata=1 um the temperature cor-
electrics is also discontinuous as in the case of metals. Teection for dielectrics is larger than for ideal or real metals at
illustrate this statement we pLi=0 in Eq.(3) and obtain the the same separation. For the configuration of a dielectric lens
following values of the reflection coefficients defined in Eq.above a disk at separatioas=0.1, 1, and 1&m the tem-
2): perature correction is, respectively, 23904, 6.94
X102, and 4.25. The relationship of these values with those

s(if)=1+—0"1

) [eo—1 2 ) B computed for the real and ideal metéee Table Il is the
ri(0k,)= got+1) r(0k,)=0. (1) same as in the case of two plane plates.
These values do not depend kbn. Therefore they are pre- VII. CONCLUSIONS AND DISCUSSION

served in the limitk, —0. At the same time, if we put,

s . As demonstrated above, the computation of the Casimir
=0 from the very beginning we obtain

force between real metals at nonzero temperature is a com-
2 plicated theoretical problem. The first contradictions between

f§(§|,o) — r§(§|,0) —r(R= ‘/8—0_ , (72) Lifshitz theory[2,16] applied to ideal metals and calculations
Veo+1 based on quantum field theof8,29 were revealed in the

1960s. They were resolved by Schwinger, DeRaad, and Mil-
which is the case for real photons. These values do not deen [18] by the use of a special prescription modifying the
pend on¢ and are preserved in the limf{—0. Equations  zero-frequency term of the Lifshitz formula. After the use of
(71) and(72) together imply that both reflection coefficients this prescription the results §2,16] when applied to an ideal
ri(é,ky) andr,(£,k, ) are discontinuous as the functions of metal agreed with those ¢28,29.
two variables at the poin{0,0). Recall that in the case of  The next stage in the solution of the problem has been
metals described by the Drude model only the transversetarted only recently. It was motivated by the increased ac-
reflection coefficient, was discontinuouésee Sec. )l Note  curacy of Casimir force measurements and possible applica-
that in the zeroth term of the Lifshitz formula for dielectrics tions of the Casimir effect as a test of fundamental physical
both reflection coefficient$71) correspond to nonphysical theories and in nanotechnology. Different authf88—37
(virtual) photons withr;>r(® andr,<r®. For metals the applied Lifshitz theory to calculate the temperature Casimir
longitudinal reflection coefficient at zero frequency takes theforce between real metals and obtained diverse results. In
physical valuer;=r(®=1 in both plasma and Drude mod- [34,35 the Lifshitz formula was applied to real metals in its
els. As to the perpendicular reflection coefficient at zero fre-original form without any modification of the zero-frequency
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term. The results obtained, however, turned out to be in conis necessary to proceed with a more detailed elaboration of
tradiction with experimenisee Sec. Y and with general the microscopic theory of dispersion forces based on quan-
theoretical requirementiegative temperature corrections at tum field theory at nonzero temperature in the Matsubara
small distances and an incorrect asymptotic at high temperdormulation. There is a real possibility that the above phe-
tures; see Secs. II, IV, and)VIn [36,37] the zeroth term of nomenological prescription, of the zero-frequency contribu-
the Lifshitz formula for real metals at honzero temperatureion to the Lifshitz formula will be rigorously derived, at

was modified according to the prescription [d8] formu-  |east as a good approximation, in terms of the scattering
lated for ideal metals. The results obtained were comparefheory in dissipative media. The final solution of this prob-

with the Casimir force at zero temperature which was comye seems to be of great importance, taking into account the
puted for real metals without use of any prescription. Suc)@

S . rospective role of dispersion forces in both fundamental and

an approach leads to significant temperature corrections lied science
the Casimir force at small separatiofis both plasma and PP '
Drude models which are linear in temperature, and also to
the absence of any finite conductivity corrections at moder- ACKNOWLEDGMENTS
ate separations. I[82,33 computations of the temperature
Casimir force in the framework of the plasma model were The authors are grateful for helpful discussions with M.
performed with coinciding resultéo linear-in-temperature Bordag, |. A. Merkulov, U. Mohideen, and V. |. Perel'. They
corrections were found at small distanceBhese computa- are indebted to the Brazilian Center of Physical Research
tions did not use any modification of the Lifshitz formula. In (Rio de Janeirpand the Physics Department of the Federal
[33] the problems arising in the framework of the Drude University of Parava(Joa Pessopfor kind hospitality. This
model were also formulated and the way to their solutionwork was partially supported by FAPERJ and CNPq.
was indicated.

In the present paper we propose a different prescription
modifying the zeroth term of the Lifshitz formula in the case

of real metals described by the Drude modseécs. Il and In this Appendix, Eqs(26) and (27) are derived starting

IIl). This prescription is necessary because of the failure ofom Eq. (25). Using Eq.(20), Eq. (25) can be rewritten in
the scattering formalism underlying the Lifshitz formula in the form

the case when the dielectric permittivity describes a medium
with dissipation where the unitarity condition is absent. This
prescription is a generalization of the Schwinger, DeRaad, hc -, 1(y ~ ~
and Milton prescriptior{ 18] for the case of a real metal. In Fsda)=— 32:2a%) o y=dy 2o défsd(&.y)
the case of the plasma modethich describes a nondissipa-
tive medium) it | - 1)(F
m it leads to exactly the same results as an un o (Y It D(Ey)
.y - | dE ==
0 d€

APPENDIX A

modified Lifshitz formula. Because of this all the results ob- + %
tained in[32,33 preserve their validity.
The Lifshitz formula with the modified zero-frequency

term is given by Eq(35) (configuration of two plane platgs L £@(y.y)— fydE afD(Ey) Lty
and by Eq.(48) (configuration of a lens above a plat®e- 2t s 0 g€ 27 3%
tailed computations with the use of these equations were L

reported in Secs. IV and V. It was shown that the tempera- ~ Y ~e ~

ture corrections obtained are positive and offer the correct * 2 €l Ey)|0- fo dgf“(g’y)}

asymptotic behavior at both low and high temperatures

(separations The results obtained in the framework of the ™ y

Drude model join smoothly with those obtained in the +Tf55(y'y) A(E)

plasma model when the relaxation frequency goes to zero. 5 5

The finite conductivity corrections to the Casimir force were T (v ~ Ifs&)y) [ t€

computed at nonzero temperature in the separation range _Tfo dé a—EA oxl [ (A1)

from 0.1um to 10um in both Drude and plasma models.
Both the temperature and finite conductivity corrections cal-
culated above possess reasonable physical properties, avoid-The functionsf(!) and ofY/dé are continuous at all
. . . . . . i SS SS
ing difficulties that arise 134,39 and in[36,37. The per-  points for both plasma and Drude models. Therefore
turbative analytical results at both small and large
separations are in agreement with the numerical computa- D~
tions. The case of dielectric test bodi&ec. VI where the y _ ofD(Ey) (1) o
. : . e df ——=—=fJ(y,y)—fJ(0y). (A2)

scattering problem is consistent at all frequencies illustrates JE ss ss
the essence of difficulties arising in the case of real metals.

In the near future one should expect experimental regis-
tration of the temperature Casimir force. This will be the Note that the same equality is not valid ftif;) because it is
final answer in the discussion on the subject of what is thaliscontinuous at zero frequency. Substituting E) into
temperature dependence of the Casimir force. Meanwhile iEq. (A1) and performing the cancellations one obtains

0
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Fod@)=— f myzdy[%[f‘”<0.y>+f‘2>(y,y>]
(v - it QEy) w ty
5t B + 7 fsdyy) A(Z)
i f £
__J ass(fy) (;&” A3
a

Now let us consider the two last contributions to E43)
containing the functiolA(z). Taking account of Eq(19),
=27T/Te¢=2m/t. According to the definition of the in-
teger portion function,

t
A —y>=A<X>=k if krsy<(k+1)7 (A4)
2 T
for k=0,1,2,... .Using Eq.(A4) the integral from(A3)

can be represented as

2 =
fo y=dy fsdy,y) A(z7T

27 37
f yzdyfss(y,y)+2f2 y2dy fody,y)+- -
(a+1)7
+|fl y“dy fedy,y)+- -
=f yzdyfss(y,y)+f2 y2dy fedy,y)+ -
+fl y2dy fody,y)+ -
(A5)

=|§1 fl y2dy fody,y).

The second integral from EJA3) containing the integer
portion function is slightly more complicated. Using the defi-
nition of this function, it can be represented in the form

R
N 23:y2dy{ fhz ‘”%syhz
-

+2LT dé ——

Iy 8fs§(§ y)

té
2

ydg &)
JE

2T

&

(1+1)r 2r _ of (%,
) yj o s &Y)

y“d 7
)

T

i of
gz edey) s(§ y)

(AB)
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Now we calculate all integrals with respectd@ccording
to

_fss(b y)_fss(a y) (A7)

It €y)
Ja f z?f

For all a#0, as in Eq.(A6), Eq. (A7) is valid for both
polarizations(i.e., for bothf{}) andf?)) because the quan-
tities under consideration are continuous. The result is

(ol

27
y2dy[ fsdy,y) = fsd 7y)]

té
2

37
+ [y oty )ty = el

gl

(+1)7

y2dy[Ifsdy,y) —fsd 7,y) —fsd27,y)

T

fodlmy)]+ - (A8)

Combining the terms with identical arguments and using Eq.
(A5), we obtain

Joyrav)

—;lfl yzdyfss(lr,y)+2,lfI y2dy fsdy,y).

(A9)

Iy 8fss(§ y)

té
277

Now we substitute EqgA5) and(A9) into Eq. (A3) with
the result

Fed@)= = ot

f(2)
f i & y)}

[y [f“><0y>+f<2><y,y>

>

” 2
167ra4tl .,y dy fsdizy).

T

(A10)

Taking account of =T/ T=%c/(2akgT) andl7=%,, E
(A10) coincides with Eqs(26) and (27).

APPENDIX B

In this Appendix Egs(57) and(67) are obtained and the

integral quantities () (i=1,2) are computed. The expres-
sion under the second integral on the right-hand side of Eq.
(56) is approximately equal to
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2 ey

(e'=1)%

2
y y do =
~ — 22y y(y+
rz_zey— 1 o_1 a yvy(y+y)

(B1)

where the terms up to first order in the small paramégen

are preserved. Note that the first contribution here is the

same as under the first integral in E&6). They together

produce the high temperature asymptotic for the case of ate.7s}

ideal metal. The second contribution in E@1) takes the

effects of finite conductivity into account. This second con- ©-5f

tribution can be identically represented as

8o ) - eY
—2—yNy(y+ty) ——;
a (- 1)?
% v - y2y e
50 9 .
al(@-1% \y+y+y (&@-1)7?

(B2)

Substituting Eqs(B1) and (B2) into Eq. (56), taking ac-
count of 25y/a=4/w, andy/w,= y/w, one obtains

kgT
167as

50 Y ~
Fsda)=— 4£(3)=12€(3) - —4_~11(7)],
p

(B3)

wherel ;(7) was defined in Eq58). This equation coincides

with Eq. (57) because of Eq59).

In Fig. 8 the dependence of ony is plotted (curve 1.
The values of ; decrease from 1.3844 at=1 to 0.8782 at
y=10. Recalling the definition of Sec. [ly=2aylc, the

dependence of, ony may be recalculated as the depen-
dence ofl, on a at fixed y. To take an example, with the

above value ofy=9.6x 10'% rad/s’y changes in the interval
1.92<'y<6.4 when the separation distance is in the interva

3um=a<10um.

We now turn to the derivation of E¢67). The expression

under the second integral on the right-hand side of (E6).
calculated up to first order if,/a is
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In(%)

1.5}
.25} 1

1

0.25

° 2 ] 3 8 10

Y

FIG. 8. Dependence of the coefficient integrals in EGs)
(curve 1 and (67) (curve 2 on the dimensionless relaxation fre-
quency.

g =y
yIn[L=r3(y.y)e =y In(1-e ™)+ 2 2\y(y+7) =

(B4)

Once more the first contribution here is the same as under the
first integral in Eq.(66). Together they produce the high
temperature Casimir force between a lens and a plate made
of an ideal metal. The second contribution in EB4) is
responsible for the finite conductivity correction. This sec-
ond contribution can be rewritten in the form

S ——= vy % v¥2 . vy 1
2—Vy(y+v) =2— ty :
a e/—1 al\e¥—1 \/y+’;,+ \/§ e/—1

(B5)
Substituting Egs(B4) and (B5) into Eq. (66) and per-
forming the integration one obtains

ke TR
8a?

Fsl(a):

60 Y ~
—2§(3)+4§(3)g+4w—p|2(7)}.
(B6)

Ivvherelz(}) was defined in Eq(68). Equation(B6) coin-
cides with Eq.(67) if we take account of Eq69).

In Fig. 8 the dependence bf on’y is shown by the curve
2. The values of , decrease from 0.6455 at=1 to 0.3787
at y=10.
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