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Investigation of the temperature dependence of the Casimir force between real metals

G. L. Klimchitskaya* and V. M. Mostepanenko†
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We investigate the Casimir force acting between real metals at nonzero temperature. It is shown that the
zero-frequency term of the Lifshitz formula is difficult to interpret in the case of a real metal described by the
Drude model. This is because the scattering theory underlying the Lifshitz formula is not well formulated when
the dielectric permittivity takes into account dissipation. To give the zeroth term of the Lifshitz formula a
definite meaning, different prescriptions have been used recently by different authors with diverse results.
These results are shown to be improper and in disagreement with experiment and the general physical require-
ments. We propose a prescription that is a generalization of the Schwinger, DeRaad, and Milton recipe
formulated earlier for ideal metals. On this basis, detailed numerical and analytical computations of the
temperature Casimir force are performed in the configurations of two plane plates and of a spherical lens
~sphere! above a plate. The corrections due to nonzero temperature and finite conductivity found here are in
agreement with the limiting case of a perfect metal and fit all experimental and theoretical requirements.
Among other facts, previous results obtained in the framework of the plasma model are confirmed. It appears
that they are the limiting case of Drude model computations when the relaxation parameter goes to zero. A
comparison with the Casimir force acting between dielectric test bodies is made.
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I. INTRODUCTION

The Casimir effect@1# predicted more than 50 years ago
one of the most interesting manifestations of zero-po
vacuum oscillations of quantized fields. The Casimir eff
implies that there is some force acting between two
charged bodies closely spaced in the vacuum. This effe
purely of quantum origin. There is no such force in classi
physics. Unique to the Casimir force is its strong depende
on shape; it switches from attractive to repulsive as a fu
tion of the size, geometry, and topology of the boundary. T
force results from the alteration by the boundaries of
zero-point electromagnetic energy that pervades all of sp
as predicted by quantum field theory. Alternatively, the C
simir force can be described as the retarded electromag
interaction of atomic and molecular dipoles and has b
extended to forces between macroscopic dielectric bo
characterized by some dielectric constant@2#.

In recent years the Casimir effect has attracted much
tention because of numerous applications in quantum fi
theory, atomic physics, condensed matter physics, grav
tion and cosmology, and mathematical physics~see @3–6#
and references therein!. Precision measurements have be
made of the Casimir force between metallic surfaces@7–12#.
In Refs.@13–15# some promising applications of the Casim
effect were proposed for diagnostics in thin films and in n
noelectromechanical systems. Given the above reasons
very important to understand the Casimir force between
materials, including the effect of such influential factors

*On leave from North-West Polytechnical Institute, St. Pete
burg, Russia. Electronic address: galina@fisica.ufpb.br

†On leave from A. Friedmann Laboratory for Theoretical Physi
St. Petersburg, Russia. Electronic address: mostep@fisica.ufpb
1050-2947/2001/63~6!/062108~18!/$20.00 63 0621
t
t
-
is
l

ce
-
e
e
ce
-
tic
n

es

t-
ld
a-

n

-
is

al
s

surface roughness, finite conductivity, and nonzero temp
ture.

Finite conductivity corrections to the Casimir force ha
long been investigated. They were calculated using
plasma model@16–18# up to first order in the relative pen
etration depth of the zero-point electromagnetic oscillatio
into the metal. In@19# more exact results up to second ord
were obtained, and in@20# up to the fourth order. In Refs
@21,22# the finite conductivity corrections to the Casim
force were computed using tabulated optical data for
frequency-dependent complex refractive index. For all se
rations between the test bodies larger than the effec
plasma wavelength of the metal under study the results
@20# and @21,22# are shown to be in good agreement. T
effects of surface roughness in combination with finite co
ductivity were investigated in detail in@23# for the configu-
ration of a sphere above a plate used in experiments@8–11#.
Roughness contributions to the Casimir effect~including the
origination of a lateral force! have been treated recently i
@24–27#.

The action of nonzero temperature on the Casimir fo
between dielectric semispaces was taken into account in
Lifshitz theory@2,16#. For perfect metals at nonzero temper
ture the Casimir force was calculated in@28,29# within the
limits of quantum field theory in terms of the free ener
density of vacuum. There were apparent differences betw
the results of@2,16# and those of@28,29# which were re-
solved in@18#. As shown by Schwinger, DeRaad, and Milto
@18#, to obtain the case of a perfect conductor from the L
shitz theory one must take the limit of infinite dielectric pe
mittivity before putting the frequency equal to zero in th
temperature sum. The results of@2,16# adapted for the case
of a perfect metal and of@28,29# are then in agreement. Th
temperature corrections to the Casimir force turned out to
negligible in experiments@8–11# where the measuremen
were performed in the separation rangea,1 mm. However,
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at a.1 mm, as in @7#, the temperature corrections mak
large contributions to the zero-temperature force betw
perfect conductors~e.g., for a55 mm the temperature cor
rection in the configuration of a spherical lens above a p
exceeds the zero-temperature force@30#!.

The increased accuracy of the Casimir force meas
ments invites further investigation of the temperature corr
tions in the case of real metals. Although from a concept
point of view the Lifshitz theory provides a way of obtainin
all the required results, the problem here is worse than it
with perfect metals. In@31# the suggestion was made to u
the plasma model in order to describe the dielectric perm
tivity along the imaginary frequency axis in the Lifshitz fo
mula for the Casimir force at nonzero temperature~note that
in @16–20# the plasma model was applied for this purpose
zero temperature only!. In Refs.@32,33# detailed calculations
of the temperature Casimir force were performed in
framework of the Lifshitz theory and the plasma model.
was shown that the temperature corrections are negligib
small separations where the finite conductivity correctio
are very important. By contrast, at large separations fi
conductivity corrections can be ignored, whereas the te
perature corrections play an important role. In@32,33# the
transition region between these two asymptotic regimes
also investigated, where the combined effect of nonzero t
perature and finite conductivity is important and should
taken into account.

It is common knowledge that at small frequencies the
electric permittivity« is proportional tov21 as given by the
Drude model. Because of this, the Drude model is favo
over the plasma model~which implies«;v22) when calcu-
lating the Casimir force at nonzero temperature. The fi
attempts to calculate the nonzero-temperature Casimir f
between real metals based on the Lifshitz formula and Dr
model were undertaken in@33–37#. They led to distinct and
unexpected results. It was found that the value of the tra
verse reflection coefficientr 2 of the electromagnetic oscilla
tions at zero frequency becomes indefinite when one
scribes a boundary made of real metal using the Dr
model. In@34,35# the valuer 250 was adopted. This assump
tion leads to the nonphysical conclusion that the asympt
Casimir force at high temperature in the case of real meta
two times smaller than for the case of an ideal metal~without
regard to the particular value of the conductivity of the re
metal!. Also, as a result of assumptions, made in@34,35#
there arise large negative temperature corrections at s
separations, which are linear in temperature. These cor
tions are not only unacceptable from the theoretical poin
view but also in conflict with experimental data@38#.

Other authors@36,37# assumed the valueur 2u51 at zero
frequency using the prescription of@18# formulated for a
perfect metal and the well known relation by Hagen a
Rubens which is valid for real photons only@39,40#. This
assumption also leads to nonphysical conclusions, i.e., to
ear~although positive! temperature corrections at small sep
rations and to the absence of any finite conductivity corr
tions to the Casimir force for real metals starting fro
moderate separations of several micrometers regardles
metal quality~note that the same assumption was accepte
the latest version of@38#!.
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The situation was clarified in@33# where the discontinuity
of the transverse reflection coefficient as a function of f
quency and photon momentum was demonstrated in the
of a real metal described by the Drude model. According
@33# to clear away the ambiguity in the zero-frequency te
of the Lifshitz formula arising from this discontinuity it is
necessary to use an alternative representation for it@18,28#.
This representation gives the possibility of redefining t
zero-frequency term of the Lifshitz formula in order to a
sign it a definite meaning for real metals in accordance w
the usual physical requirements. In@33#, however, the values
of the Casimir force including nonzero temperature and fin
conductivity in the framework of the Drude model were n
computed. Thus, up to now, there is no plausible qualitat
information on the Casimir effect between real metals
cluding the temperature corrections. The need for such
investigation is apparent when the experimental and tech
logical applications of the Casimir force mentioned abo
are considered. It is also important that recently the Casi
effect was used to obtain stronger constraints on the c
stants of long-range interactions~including corrections to the
Newtonian gravitational law! predicted by unified field theo
ries, supersymmetry, supergravity, and string theory@30,41–
44#. Reliable theoretical values of the Casimir force at no
zero temperature between real metals and the extent of
agreement with experiment are of particular interest in or
to obtain the strongest constraints.

In the present paper we propose a method that allows
to attribute a definite value to the term of the Lifshitz fo
mula at zero frequency for real metals as described by
Drude model. This method avoids the above mentioned c
tradictions and solves the problem in a physically consist
way. Detailed computations of the Casimir force betwe
real metals at nonzero temperature are performed for
configuration of two plane parallel plates and a sphere~lens!
above a plate in a wide separation range from 0.1mm to
10mm. It is shown that at small separations~low tempera-
tures! the temperature corrections are small irrespective
whether the Drude or plasma model is used. In particular
corrections to the force arise that would be linear in tempe
ture, as in@34–37#. At large separations~high temperatures!
there is some difference between the finite conductivity c
rections to the temperature Casimir force obtained with
plasma and Drude models, although the corrections th
selves are rather small. With decreasing relaxation param
the results from the two models coincide. Our results at la
separations join smoothly with increase of conductivity w
asymptotic values obtained for the perfect metal~this is not
the case in@34,35# where the asymptotic force for a rea
metal is two times smaller than for a perfect one!. Also, the
nonphysical results of@36,37#, according to which at large
separations the finite conductivity corrections are absen
the case of real metals, are shown to be in error. T
nonzero-temperature Casimir force between dielectric bo
is also computed and the distinctions between the case
metallic and dielectric bodies are discussed. The results
tained are in agreement with the experiments. They estab
the theoretical basis for additional precise experiments
measuring the Casimir force.
8-2
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The paper is organized as follows. In Sec. II the gene
formalism for the Casimir force between real metals at n
zero temperature is presented for the configuration of
plane parallel plates. Here special attention is paid to
indefinite character and discontinuity of the zeroth term
the Lifshitz formula in the case of the Drude model. A re
resentation of this term is given that is in accordance with
general physical requirements. In Sec. III the same is d
for the configuration of a sphere~lens! above a plate. Section
IV is devoted to numerical and analytical computations
the temperature Casimir force for the configuration of t
plane parallel plates. The asymptotics of both low and h
temperatures are considered and also the transition re
between them. Section V contains the results of analog
computations for the configuration of a sphere~lens! above a
plate. In Sec. VI the case of dielectrical test bodies is c
sidered and the Casimir force at nonzero temperatur
found. In Sec. VII the reader will find conclusions and d
cussion. Appendixes A and B contain some details of
mathematical calculations.

II. TEMPERATURE CASIMIR FORCE BETWEEN TWO
PLANE PARALLEL PLATES

The original Lifshitz derivation@2,16# of the temperature
Casimir force between two semispaces was based on th
sumption that the dielectric materials can be considered
continuous media characterized by randomly fluctuat
sources. The correlation function of these sources, situate
different points, is proportional to thed function of the ra-
dius vector joining these points. The force per unit area a
ing upon one of the semispaces was calculated as the flu
incoming momentum into the semispace through the bou
ary plane. This flux is given by the appropriate componen
the stress tensor (zz component ifxy is the boundary plane!.
The usual boundary conditions on the boundary surfaces
tween the different media were imposed on the tempera
Green’s functions. To exclude divergences, the values o
the Green’s functions in vacuum were subtracted from th
values in dielectric media. Another derivation of the Lifsh
formula is based on the solution of Maxwell’s equations w
appropriate boundary conditions on the surfaces separa
different media@45–47#. In this manner the allowed surfac
modes and a harmonic oscillator free energy of each m
can be determined. The total renormalized free energ
obtained by summation over all modes and subtraction of
free energy of vacuum. The nonzero temperature Cas
force is finally given by the negative derivative of the reno
malized free energy with respect to the distance betw
semispaces~at zero temperature this procedure is presen
in detail in @22,47#!.

The modern derivation of the Lifshitz formula@48# is
based on the temperature field theory in Matsubara form
tion. In the case of a static Casimir effect the system is
thermal equilibrium. To describe it at nonzero temperat
one should take the Euclidean version of the field the
with a field periodic in the time variable within the interv
b5\/(kBT), whereT is the temperature andkB is the Bolt-
zmann constant. To find the free energy in the case of
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semispaces the scattering problem on thez axis perpendicu-
lar to the boundary planes is considered. An electromagn
wave coming from the left in the dielectric is scattered in t
air gap and there exist a transmitted and a reflected w
Finally the free energy and the Casimir force are expres
in terms of the scattering coefficient on the imaginary ax
Calculating this coefficient for the problem of two semi
paces~denoted by an indexss! with a frequency-dependen
dielectric permittivity«(v) separated by a gap of widtha,
one finally obtains the Casimir force in the form@48#

Fss~a!52
kBT

2p (
l 52`

` E
0

`

k' dk' ql

3$@r 1
22~j l ,k'!e2aql21#21

1@r 2
22~j l ,k'!e2aql21#21%, ~1!

where r 1,2 are the reflection coefficients with parallel~per-
pendicular! polarization, respectively, given by

r 1
22~j l ,k'!5F«~ i j l !ql1kl

«~ i j l !ql2kl
G2

, r 2
22~j l ,k'!5S ql1kl

ql2kl
D 2

.

~2!

Herek' is the momentum component lying in the bounda
planes,k'5uk'u, v5 i j, and the following notations are
used:

ql5Aj l
2

c2
1k'

2 , kl5A«~ i j l !
j l

2

c2
1k'

2 , j l5
2p l

b
.

~3!

Introducing a new variablep according to

k'
2 5

j l
2

c2
~p221!, ~4!

we rewrite Eq.~1! in the original Lifshitz form@2,16,49# as

Fss~a!52
kBT

pc3 (
l 50

`

8 j l
3E

1

`

p2 dp H F S K~ i j l !1«~ i j l !p

K~ i j l !2«~ i j l !p
D 2

3e2a(j l /c)p21G21

1F S K~ i j l !1p

K~ i j l !2pD 2

3e2a(j l /c)p21G21J , ~5!

where

K~ i j l ![@p2211«~ i j l !#
1/2 ~6!

and the prime on the summation sign means that the ze
term is taken with the coefficient 1/2.

Note that the representation of Eq.~5! for the nonzero
temperature Casimir force has a disadvantage as thel 50
term in it is the product of zero with a divergent integra
This is usually eliminated@49# by introducing the variabley
instead ofp,
8-3
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y5u j̃ l up, j̃ l52a
j l

c
, ~7!

where j̃ l is the dimensionless frequency. In terms of the
variables Eq.~5! is

Fss~a!52
kBT

16pa3 (
l 52`

` E
u j̃ l u

`

y2 dy$@r 1
22~ j̃ l ,y!ey21#21

1@r 2
22~ j̃ l ,y!ey21#21%, ~8!

where

r 1~ j̃ l ,y!5
«y2A~«21!j̃ l

21y2

«y1A~«21!j̃ l
21y2

, ~9!

r 2~ j̃ l ,y!5
y2A~«21!j̃ l

21y2

y1A~«21!j̃ l
21y2

, «[«~ i j l !5«S i
cj̃ l

2a
D .

Both changes of variables~4! and~7! are, however, singula
at l 50. In fact Eq.~8! can be obtained from Eq.~1! by the
regular change of variable

4a2k'
2 5y22 j̃ l

2 . ~10!

Because of this, the equivalent representations of the Lifs
formula ~1! and ~8! are preferred as compared to Eq.~5!.

To calculate the Casimir force at nonzero temperature
tween real metals one should substitute the appropriate
ues«( i j l) into Eq. ~1! or Eq. ~8!. In some frequency rang
«( i j l) can be found by the use of optical tabulated data
the complex refractive index for the metal under consid
ation from, e.g.,@50# ~this was done in@21,22#!. But in any
case the optical data should be extrapolated outside the
gion where they are available in the tables to smaller
larger frequencies. This can be performed by the use of
plasma model function

«p~ i j!511
vp

2

j2
~11!

or the more exact Drude model function

«D~ i j!511
vp

2

j~j1g!
, ~12!

where vp is the plasma frequency andg is the relaxation
frequency. For some metals, the model dielectric functi
with appropriate values ofvp and g can be reliably used
throughout the whole spectrum. Calculations of this ty
were performed in@32–37# with different results. As shown
below, the reason for this is the discontinuity of the tran
verse reflection coefficientr 2 at zero frequency with respec
to the relaxation parameter, which must be made continu
in a physically reasonable way in order to describe real m
als by the Lifshitz formula.
06210
e

tz

e-
al-

r
-

re-
d
e

s

e

-

us
t-

If we put j l50 in Eqs.~2! and ~3! and use the plasma
model dielectric function~11! the result is@32,33#

r 1
2~0,k'!51, r 2

2~0,k'!5S k'2Ak'
2 1vp

2/c2

k'1Ak'
2 1vp

2/c2D 2

. ~13!

In the case of the Drude model dielectric function~12!, we
have

«D~ i j l !
j l

2

c2U
l 50

50, ~14!

which leads to@35#

r 1
2~0,k'!51, r 2

2~0,k'!50 ~15!

for any k'Þ0. Note that Eq.~15! is valid for arbitrarily
small g and arbitrarily largevp . Thus the second equatio
of Eq. ~15! is in contradiction with the limiting case of th
ideal metalr 2

2(0,k')51 which follows from Eq.~13! in the
limit vp→`. The results obtained using Eq.~15! are in con-
flict with the known results for an ideal metal@18,29#. What
is more important, the second equation of~15! does not ap-
proach the second equation of~13! when the relaxation fre-
quency g goes to zero. In the limitg→0 one still has
r 2

2(0,k')50, not Eq.~13!, although limg→0«D5«p in accor-
dance with Eqs.~11! and ~12!. In Secs. IV, and V the dis-
continuity of the zero-frequency term of the Lifshitz formu
with respect to the relaxation parameter will be discussed
detail when assessing the continuous modification of
term as suggested below. Exactly the same results as in
~13! and ~15! are obtained if one uses the variables (j̃, y)
instead of (j, k') and the representation~8! of the Lifshitz
formula.

If the original representation~5! of the Lifshitz formula is
exploited and written in terms of the variables (j, p) the
situation changes greatly. Here one immediately arrives

r 1
2~0,p!5r 2

2~0,p!51 ~16!

for all pÞ` irrespective of whether the plasma or Drud
model is used for the dielectric permittivity on the imagina
axis. The reason for the distinct value ofr 2(0,p) is the sin-
gular character of the change of variables~4! when j050.
This change relates the single value ofk'50 to all the finite
values ofp, and all the values ofk'Þ0 to a single pointp
5`. The values~16! for both reflection coefficients at zer
frequency were postulated in@36,37# and used in all the nu-
merical computations even after one more singular chang
variables~7! was performed in order to calculate the dive
gent integral in Eq.~5!. We show below that this postulate
although it works well for the perfect metal, is not justifie
for real metals of finite conductivity.

In fact, the transverse reflection coefficientr 2 from Eq.
~2! or Eq. ~9! has a discontinuity as a function of two con
tinuous variables (j̃ and y, for instance! in the case of the
Drude dielectric function@33#. If one putsj̃50 in Eq. ~9!
from the very beginning the result isr 2

2(0,y)50, in agree-
8-4
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ment with Eq.~15!. If, however, one approaches the poi
( j̃50,y50) along the directionj̃5ky in the (j̃,y) plane
then r 2

2( j̃,y)→1. The distinguishing feature of the Drud
model is that for an arbitrarily smally there existsk such that
r 2

2(ky,y) takes any value between zero and unity. By co
trast, in the case of the plasma model both reflection coe
cients are continuous, andr 2

2(ky,y) does not depend onk but
is determined only by the value ofy. It is of even greater
concern that the transverse reflection coefficient at zero
quency is discontinuous with respect to the relaxation par
eterg.

As is seen from the above discussion, there is a ser
unresolved issue concerning the value of the zero-freque
term of the Lifshitz formula for real metals. In fact the sca
tering problem, which forms the basis of the Lifshitz fo
mula, is meaningful only for nondissipative media~this is the
case for the plasma model or dielectric materials!. The case
«5`, as it is for metals at zero frequency, is especially co
plicated when the Drude model is used taking into acco
dissipation. The latter leads to the violation of the unitar
condition and thereby the zeroth term of the Lifshitz formu
becomes indefinite and must be redefined. For ideal me
of infinite conductivity this issue was resolved by th
Schwinger, DeRaad, and Milton prescription@18# demanding
that the limit «→` should be taken before settingj50
@which is equivalent to the use of Eq.~16!#. Let us find out
how the problem of the zero-frequency term of the Lifsh
formula can be solved for real Drude metals in a physica
satisfactory way.

For this purpose let us use the representation of the
shitz formula in terms of continuous frequency variabl
Such a representation was suggested in@28# and used in
@18,29# for other purposes. According to the Poisson summ
tion formula if c(a) is the Fourier transform of a functio
b(x),

c~a!5
1

2pE2`

`

b~x!e2 iax dx, ~17!

then it follows that

(
l 52`

`

b~ l !52p (
l 52`

`

c~2p l !. ~18!

We apply this formula to Eq.~8! using the identification

bss~ l ![2
kBT

16pa3Eu l ut

`

y2 dy fss~ l t,y!, t[
4pakBT

\c
,

~19!

wherej̃ l5t l and

f ss~ l t,y!5 f ss
(1)~ l t,y!1 f ss

(2)~ l t,y!, ~20!

f ss
( i )~ l t,y!5~r i

22ey21!21, i 51, 2,

are even functions ofl. Then the quantitycss(a) from Eq.
~17! is given by
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css~a!52
kBT

16p2a3E0

`

dx cosaxE
xt

`

y2 dy fss~xt,y!.

~21!

Using Eqs.~8!, ~18!, and ~21! one finally obtains the repre
sentation of the Lifshitz formula

Fss~a!5 (
l 52`

`

bss~ l !

52
\c

16p2a4 (
l 50

`

8 E
0

`

dj̃ cosS l j̃
Te f f

T D
3E

j̃

`

y2 dy fss~ j̃,y!, ~22!

where the continuous frequency variablej̃5tx, andkBTe f f
5\c/(2a). Note that in the representation~22! the l 50
term gives the force at zero temperature. It is useful also
change the order of integration in Eq.~22!,

Fss~a!52
\c

16p2a4 (
l 50

`

8 E
0

`

y2 dyE
0

y

dj̃ cos~ l j̃t ! f ss~ j̃,y!,

~23!

wheret[Te f f /T.
Let us isolate the zero-frequency term of the usual L

shitz formula~8! with discrete frequencies in representati
~23!. In this way it will be expressed in terms of integra
with respect to continuous variablesj̃,y. For this purpose we
write out separately the terms of Eq.~23! with l 50, inte-
grate all the other terms by parts with respect toj̃, change
the order of summation and integrations, and use the form
@51#

(
l 51

`
sin~ lzt!

l
5

1

2 Fp12pAS tz

2p D2tzG , ~24!

whereA(z) is the integer portion ofz. The result of these
transformations is

Fss~a!52
\c

32p2a4 H E0

`

y2 dyE
0

y

dj̃ f ss~ j̃,y!

1
1

t E0

`

y2 dy fss~y,y!Fp12pAS ty

2p D2tyG
2

1

t E0

`

y2 dyE
0

y

dj̃
] f ss~ j̃,y!

]j̃

3Fp12pAS t j̃

2p
D 2t j̃G J . ~25!

Here the first term is the zero-temperature force. The sec
and the third contributions on the right-hand side of Eq.~25!
can be transformed using the definition of the functionA(z)
and the representation off ss in terms of the sum of paralle
8-5
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and transverse modes in accordance with Eq.~20!. Taking
into account thatf ss

(1) and its derivative are continuous fun
tions ~as distinct fromf ss

(2)) one obtains finally after cance
lation of the zero-temperature contribution

Fss~a!5Fss
( l 50)~a!2

kBT

8pa3 (
l 51

` E
j̃ l

`

y2 dy fss~ j̃ l ,y!

~26!

~see Appendix A for details!. In this equation all the terms
with l>1 coincide with those in Eq.~8! and the term with
l 50 is given by

Fss
( l 50)~a!52

kBT

16pa3 H E0

`

y2dy@ f ss
(1)~0,y!1 f ss

(2)~y,y!#

2E
0

`

y2 dyE
0

y

dj̃
] f ss

(2)~ j̃,y!

]j̃
J . ~27!

The representation obtained for the zero-frequency t
of the Lifshitz formula is well suited for solving the problem
formulated above. In terms of dimensionless variables (j̃,y)
the plasma and Drude dielectric functions take the forms

«p~ i j̃ !511
ṽp

2

j̃ 2
, «D~ i j̃ !511

ṽp
2

j̃~ j̃1g̃ !
, ~28!

whereṽp[2avp /c, g̃[2ag/c. Evidently, no discontinuity
problem arises in the single integral with respect toy in the
right-hand side of Eq.~27!. It is well defined for both dielec-
tric functions of Eq.~28! and for both polarizations, an
contains the limiting cases of an ideal metal and zero re
ation parameter. What this means is that the single inte
term in Eq.~27! is analytic with respect tog̃, i.e., its values
calculated with the Drude model approach the values ca
lated with the plasma model wheng̃→0 ~see also the nu
merical computations of Sec. IV!.

A completely different type of situation occurs in th
double integral from the right-hand side of Eq.~27!. In fact,
by the use of Eqs.~9! and ~20! one obtains

] f ss
(2)~ j̃,y!

]j̃
52

ey

@ey2r 2
2~ j̃,y!#2

r 2~ j̃,y!
]r 2~ j̃,y!

]j̃
, ~29!

where

]r 2~ j̃,y!

]j̃
52

2y

@A~«21!j̃21y21y#2

2j̃~«21!1 j̃ 2d«/dj̃

2A~«21!j̃ 21y2
.

~30!

Substitution of«5«p from Eq. ~28! into Eqs.~29! and ~30!
leads to

]r 2~ j̃,y!

]j̃
5

] f ss
(2)~ j̃,y!

]j̃
50, ~31!
06210
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so that in the case of the plasma model the double integra
Eq. ~27! vanishes. If, however,«5«D is substituted into Eqs
~29! and~30! one discovers a discontinuity ing̃. Actually, as
follows from Eqs.~29! and ~30!,

lim
g̃→0

] f ss
(2)~ j̃,y!

]j̃
50 ~32!

for any j̃>0 andyÞ0. On the other hand,

lim
g̃→0

E
0

y

dj̃
] f ss

(2)~ j̃,y!

]j̃
5F S y1Aṽp

21y2

y2Aṽp
21y2

D 2

ey21G21

Þ0.

~33!

To conclude, the presence of the double integral in the rig
hand side of Eq.~27! renders it unsuitable for real meta
described by the Drude model.

To remedy the situation let us note that with increasing«

] f ss
(2)~ j̃,y!

]j̃
;

1

A«21
→0 with «→`. ~34!

Consequently, the discontinuous term can be deleted by
of the Schwinger, DeRaad, and Milton type of prescripti
@18#, where the infinite limit of the dielectric permittivity is
taken before setting the frequency to zero when conside
the zero-frequency term of the Lifshitz formula. For ide
metals the use of such a prescription is necessary in orde
achieve agreement between the Lifshitz formula for diel
trics and field theoretical results obtained for a perfect me
i.e., for boundaries with the Dirichlet boundary condition. A
advocated here, for real metals the analogous prescrip
must be used in a more restricted way to eliminate the
continuity in the zero-frequency term.

With the above prescription the Casimir force acting b
tween two plane parallel plates at nonzero temperatur
given by

Fss~a!52
kBT

16pa3 H E0

`

y2 dy@ f ss
(1)~0,y!1 f ss

(2)~y,y!#

12(
l 51

` E
j̃ l

`

y2 dy fss~ j̃ l ,y!J . ~35!

In Sec. IV detailed calculations of the Casimir force usi
Eq. ~35! are performed. The results obtained are compa
with those obtained by other authors.

III. TEMPERATURE CASIMIR FORCE IN THE
CONFIGURATION OF A SPHERICAL LENS

„SPHERE… ABOVE A PLATE

In this section the most important results of Sec. II a
adapted for a lens~sphere! above a semispace~plate!, which
is the configuration most often used in experiments@7–11#.
Although there is no fundamental derivation of the Casim
force acting between a lens and a plate the proximity fo
8-6
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theorem@52# gives the possibility of expressing it in terms
the Casimir free energy density for the configuration of t
plane parallel plates. This latter is given by@32,33,48#

Ess~a!5
kBT

4p (
l 52`

` E
0

`

k' dk'$ ln@12r 1
2~j l ,k'!e22aql#

1 ln@12r 2
2~j l ,k'!e22aql#%, ~36!

where the reflection coefficients and other notations are
troduced in Eqs.~2! and ~3!. Note that the Casimir force
between plates from Eq.~1! can be obtained asFss5
2]Ess/]a.

According to the proximity force theorem@52# the Ca-
simir force acting between a lens~sphere! of radiusR and a
plate is

Fsl~a!52pREss~a!

5
kBTR

2 (
l 52`

` E
0

`

k' dk'

3$ ln@12r 1
2~j l ,k'!e22aql#

1 ln@12r 2
2~j l ,k'!e22aql#%. ~37!

The indexsl here stands for semispace lens. This formula
valid with rather high accuracy of abouta/R @53# which is
usually a fraction of a percent.

Introducing the dimensionless variablesj̃ l and y from
Eqs.~7! and ~10! we rewrite Eq.~37! in the form

Fsl~a!5
kBTR

8a2 (
l 52`

` E
u j̃ l u

`

y dy$ ln@12r 1
2~ j̃ l ,y!e2y#

1 ln@12r 2
2~ j̃ l ,y!e2y#%. ~38!

This result is in direct analogy with Eq.~8! for two plates.
There is no need to use singular changes of variable
discussed in the previous section.

The term of Eq.~38! with l 50 suffers exactly the sam
ambiguity as the zeroth term of Eq.~8! if one uses the Drude
model ~12! to describe the dependence of the dielectric p
mittivity on frequency. This ambiguity lies in the fact tha
the quantityr 2

2( j̃,y) has a discontinuity at the point~0,0! as
a function of two variables and is discontinuous also at
point of zero relaxation parameter~see the detailed discus
sion in Sec. II!. Because of this, the zeroth term of Eq.~38!,
when applied to real metals, must be modified in the sa
way as was done for the configuration of two plane plat
For this purpose we apply the Poisson summation form
~18! and rewrite Eq.~38! in a form analogous to Eq.~22!,

Fsl~a!5
\cR

8pa3 (
l 50

`

8 E
0

`

dj̃ cosS l j̃
Te f f

T D E
j̃

`

y dy fsl~ j̃,y!,

~39!

where
06210
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f sl~ j̃,y!5 f sl
(1)~ j̃,y!1 f sl

(2)~ j̃,y!,

f sl
( i )~ j̃,y!5 ln~12r i

2e2y!. ~40!

Clearly, the zeroth term of Eq.~39! gives us the Casimir
force at zero temperature. The terms withl>1 represent the
temperature correction. After changing the order of integ
tion in Eq. ~39! one obtains

Fsl~a!5
\cR

8pa3 (
l 50

`

8 E
0

`

y dyE
0

y

dj̃ cos~ l j̃t ! f sl~ j̃,y!.

~41!

Using Eq.~24! and performing exactly the same transfo
mations as in Sec. II and Appendix A, the Casimir for
between a plate and a lens takes the form

Fsl~a!5Fsl
( l 50)~a!1

kBTR

4a2 (
l 51

` E
j̃ l

`

y dy fsl~ j̃ l ,y!. ~42!

Here all terms withl>1 are exactly the same as in Eq.~38!,
whereas the zeroth term is given by

Fsl
( l 50)~a!5

kBTR

8a2 H E
0

`

y dy@ f sl
(1)~0,y!1 f sl

(2)~y,y!#

2E
0

`

y dyE
0

y

dj̃
] f sl

(2)~ j̃,y!

]j̃
J . ~43!

This representation of the zero-frequency term is in dir
analogy with Eq.~27! for two plates. As in Eq.~27!, no
discontinuity is contained in the single integral with respe
to y. As to the double integral in Eq.~43!, it is discontinuous
with respect to the relaxation parameterg̃ at the pointg̃
50. In fact, it follows from Eq.~40! that

] f sl
(2)~ j̃,y!

]j̃
5

2r 2~ j̃,y!

ey2r 2
2~ j̃,y!

]r 2~ j̃,y!

]j̃
, ~44!

where the derivative of the transverse reflection coeffici
was calculated in Eq.~30!. Once again, in the case of th
plasma model the derivative~44!, and also the double inte
gral in ~43!, vanish. As to the Drude model, it follows from
Eq. ~44! that

lim
g̃→0

] f sl
(2)~ j̃,y!

]j̃
50 ~45!

but

lim
g̃→0

E
0

y

dj̃
] f sl

(2)~ j̃,y!

]j̃
5 lnF 12S y2Aṽp

21y2

y1Aṽp
21y2

D 2

e2yGÞ0,

~46!

which means a discontinuity of the double integral in E
~43! as a function ofg.

This discontinuity leads to nonphysical results~see Secs.
IV, and V!. It can be removed by taking the limit of th
8-7
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dielectric permittivity to infinity prior to setting the fre
quency equal to zero in accordance with the prescrip
used in Sec. II. Then from Eqs.~30! and ~44!

] f sl
(2)~ j̃,y!

]j̃
;

1

A«21
→0 with «→` ~47!

and the discontinuous term in Eq.~43! disappears. Using this
prescription, one finally obtains the expression for the C
simir force acting between a plate and a spherical l
~sphere! at nonzero temperature,

Fsl~a!5
kBTR

8a2 H E
0

`

y dy@ f sl
(1)~0,y!1 f sl

(2)~y,y!#

12(
l 51

` E
j̃ l

`

y dy fsl~ j̃ l ,y!J . ~48!

Calculations of the Casimir force on the basis of Eq.~48! are
contained in Sec. V. The results obtained are compared
those obtained without the use of the above prescrip
@34,35# or by using another prescription@36,37#.

IV. COMPUTATIONS OF THE CASIMIR FORCE
BETWEEN TWO PLATES MADE OF REAL METAL

We start the numerical computation of the Casimir for
with Eq. ~35! using the Drude and plasma dielectric fun
tions ~12!. For the sake of definiteness, we consider the c
of aluminum whose plasma frequency and relaxation par
eter can be chosen as follows@50#:

vp'12.5 eV'1.931016 rad/s, ~49!

g'0.063 eV'9.631013 rad/s.

The most descriptive quantity illustrating the temperat
correction to the Casimir force is

dT~Fss
f !5

Fss
f ~a,T0!2Fss

f ~a,0!

Fss
f ~a,0!

. ~50!

Here the upper indexf of the quantityFss from Eq. ~35!
signifies one or another dielectric function~Drude or plasma,
for instance!, and the second argumentT05300 K andT
50 means the temperature at which the Casimir force
computed. The relative temperature correction~50! is a func-
tion of separationa. It incorporates effectively the cases
both low temperatures~which occurs whenT0!Te f f at small
a) and high temperatures~asT0@Te f f at largea).

The results of numerical computations by Eqs.~35! and
~50! in the casef 5D ~Drude model! are presented in Fig. 1
by the solid curve 1. In the same figure the solid curve
illustrates the result obtained for dielectric plates~this case is
discussed in Sec. VI!. The dashed curve represents the res
obtained by the approach of@34,35#. In accordance with this
approach, as was discussed in Sec. II, one should subs

f ss
(2)(0,y)50 instead off ss

(2)(y,y) into Eq. ~35!.
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As is seen from Fig. 1~curve 1!, in the case of real metal
the relative temperature correction is rather small at sm
separations and monotonically increases with increas
separation, remaining positive, as it should be from gen
thermodynamical considerations. In contrast to this, the te
perature correction computed on the basis of@34,35# is nega-
tive in a wide range of separations and becomes zero
separationa'6.3mm. For larger distances it becomes po
tive. At small distances it is rather large by the modulus a
increases linearly with distance~temperature!. This behavior
is in radical contradiction with both the case of the ide
metal and the case of a metal described by the plasma m
dielectric function considered in detail in@32,33#. At the
same time the results obtained here are in good agreem
with both limiting cases of an ideal metal and a metal d
scribed by the plasma model.

Note that in the original paper@35# not dT(F) but the
correction factor was plotted as a function of separationa,
i.e., the ratio between the Casimir force for real metals co
puted atT05300 K and the Casimir force for ideal metals
zero temperature. According to the results of@32# in the case
of the plasma model this correction factor is approximat
equal to the product of the correction factors through fin
conductivity~at zero temperature! and through nonzero tem
perature~for the ideal metal!. Thus the resulting negative
temperature corrections, which are unacceptable from
thermodynamical point of view, were not clearly evident
@35#.

In Table I the values of the relative temperature corr
tions are given at several distances between the plates in
case of the Drude model~present paper, column 2! and the
plasma model~present paper, column 3!, for the ideal metal
~column 4!, computed on the basis of@35# in the framework
of the Drude model~column 5!, and computed on the bas
of @36,37# in the framework of the Drude and plasma mode
~columns 6 and 7, respectively!. We recall that in@36,37# all
computations were performed using Eq.~5! where in the
zeroth term the reflection coefficients~16! were substituted.
As is seen from the comparison of columns 2–4, in t

FIG. 1. Relative temperature correction to the Casimir fo
between two plates versus separation. Curve 1 corresponds t
Drude model~our computation!, the dashed curve is obtained in th
Drude model withr 2(0,k')50, and curve 2 is for dielectric plates
8-8
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TABLE I. The relative temperature correction to the Casimir force between two plates versus sep
for different models of metal conductivity.

Separation Present paper Ideal metal Approach of@35# Approach of@36,37#
a (mm) dT(Fss

D ) dT(Fss
p ) dT(Fss

0 ) dT(Fss
D ) dT(Fss

D ) dT(Fss
p )

0.1 5.1631023 6.6031026 1.5731027 27.7231023 2.1831022 1.6231022

0.3 9.2431023 5.4831025 1.2731025 23.4931022 2.5431022 1.5331022

0.5 1.0831022 2.1131025 9.8231025 26.4331022 2.7031022 1.5231022

0.7 1.1831022 6.0531024 3.7731024 29.4131022 2.8331022 1.5431022

1 1.3731022 2.0631023 1.5731023 –0.138 3.0631022 1.6831022

3 0.136 0.123 0.117 –0.324 0.156 0.137
5 0.580 0.563 0. 553 –0.185 0.602 0.577
7 1.17 1.15 1.14 9.7531022 1.19 1.16
10 2.08 2.06 2.05 0.556 2.11 2.07
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framework of the Drude model the relative temperature c
rection at the smallest separations is three orders of ma
tude larger than with the plasma model and four orders la
than for the ideal metal. Note that for the ideal metal at sm
separations the lowest nonzero temperature correction to
zero-temperature result is of order (T/Te f f)

4 ~see below!.
With increasing separation the difference between the
dictions of the Drude and plasma models decreases,
proaching the values obtained for the ideal metal~column 4!.
At small separations the modulus of the temperature cor
tion calculated on the base of@35# ~column 5! is several
times larger than calculated by us~column 2! and the correc-
tion itself is negative. The results of the calculations on
basis of@36,37# ~columns 6 and 7! are also significantly dif-
ferent from our corresponding results of columns 2 and
According to @36,37# there exist large temperature corre
tions at small separations which are linear in temperatur

Now let us discuss the finite conductivity corrections
the Casimir force at nonzero temperature. They can be c
acterized by the quantity

dc~Fss
f !5

Fss
0 ~a,T0!2Fss

f ~a,T0!

Fss
0 ~a,T0!

, ~51!

where, as above,Fss
0 (a,T0) is the Casimir force betwee

perfect metallic plates at temperatureT0. The results of nu-
merical computations ofdc(Fss

f ) in the case of the Drude
model (f 5D) are shown in Fig. 2. The solid curve repr
sents the finite conductivity correction obtained by o
method@Eq. ~35!# at T05300 K. For comparison the corre
sponding results at zero temperatureT050 are given by the
short-dashed curve. The long-dashed curve is obtaine
T05300 K in the framework of the approach of@36,37#. In
Fig. 3 the results computed in the case of the plasma m
( f 5p) are shown with the same notations as in Fig. 2. As
seen from Figs. 2, and 3, in the Drude model the finite c
ductivity correction is larger than in the plasma model at
temperatures and at all separations. From Fig. 3 it follo
that ata51 mm the finite conductivity correction compute
using the plasma model atT05300 K is almost the same a
at T050.
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It is notable that the finite conductivity correction com
puted on the basis of@36,37# becomes zero at separation
larger than 5mm in both Drude and plasma models~see the
long-dashed curves in Figs. 2 and 3!. In fact, as is seen from
the solid and short-dashed curves in Figs. 2 and 3, with
creasing temperature the finite conductivity correction
creases. The extent of this decrease depends on the m
used (D or p) and on the values of plasma and relaxati
frequencies. In contrast to this, the finite conductivity corre
tion computed on the basis of@36,37# becomes zero at on
and the same separation not only in different models but a
for the same model with different values of parameters, i
regardless of the quality of metal under consideration. I
easily seen that the separation value at which the finite c
ductivity corrections of@36,37# vanish is determined not by
the conductivity properties of the metal but by the smalln
of terms withl>1 in the Lifshitz formula, which are of orde
exp(22pT/Tef f). This means that the ansatz used in@36,37#
to redefine the zeroth term of the Lifshitz formula~see the

FIG. 2. Relative finite conductivity correction to the Casim
force between two plates versus separation in the Drude mo
Solid curve represents our computations atT5300 K, long-dashed
curve is obtained under the suppositionr 1,2(0,k')51 atT5300 K,
and short-dashed curve is forT50.
8-9
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discussion in Sec. II! is unjustified.
It is of interest to consider the dependence of our res

on the relaxation parameterg of the Drude model. In Fig. 4
the relative temperature correction computed by Eqs.~35!
and ~50! is plotted versusg at a separationa52 mm and a
temperatureT05300 K ~solid curve!. In the same figure the
dashed curve represents the result obtained using the pl
model. It is clearly seen that asg decreases by three orde
of magnitude the results computed in the Drude model j
smoothly with the results of the plasma model, as th
should from general considerations. Note that this is not
case in the approach of@34,35#, where the results obtaine
with the Drude model do not join the results of the plas

FIG. 3. Relative finite conductivity correction to the Casim
force between two plates versus separation in the plasma m
Solid curve represents our computations atT5300 K, long-dashed
curve is obtained under the suppositionr 1,2(0,k')51 atT5300 K,
and short-dashed curve is forT50.

FIG. 4. Relative temperature correction to the Casimir fo
between two plates versus relaxation frequency at separatioa
52 mm and T5300 K ~solid curve!. The dashed line is for the
plasma model.
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model with decreasingg. The reason is that different defin
tions of the zero-frequency term of the Lifshitz formula a
used in@34,35# and in the present paper~see Sec. II!.

In the papers@36,37#, there is a smooth transition betwee
the results obtained in Drude and plasma models. Howe
as was indicated in Figs. 2 and 3, fora.4 mm the results in
the two models coincide with one another and for separati
a.6 mm they coincide also with the case of the ideal met

Now let us derive some analytic results for the configu
tion of two plane parallel plates using both the plasma a
Drude models. In the plasma model it is possible to obt
the perturbation expansion of Eq.~23! in terms of a small
parameterd0 /a, whered05c/vp is the effective penetration
depth of the electromagnetic zero-point oscillations into
metal. For this purpose it is useful to introduce the new va
ablev5 j̃/y instead ofj̃ and to rewrite Eq.~23! in the form

Fss~a!52
\c

16p2a4 (
l 50

`

8 E
0

`

y3 dyE
0

1

dv cos~ lvyt! f ss~v,y!.

~52!

Expanding the quantityf ss defined in Eq.~20! up to first
order in powers ofd0 /a one obtains

f ss~v,y!5
2

ey21
22

yey

~ey21!2
~11v2!

d0

a
. ~53!

Substituting Eq.~53! into Eq.~52! we come after some trans
formations to the Casimir force including the effect of bo
nonzero temperature and finite conductivity,

Fss~a!5Fss
0 ~a!H 11

30

p4 (
l 51

` F 1

t4l 4
2

p3

t l

cosh~pt l !

sinh3~pt l !
G

2
16

3

d0

a
260

d0

a (
l 51

` F2 cosh2~pt l !11

sinh4~pt l !

2
2 cosh~pt l !

pt l sinh3~pt l !
2

1

2p2t2l 2 sinh2~pt l !

2
coth~pt l !

2p3t3l 3 G J , ~54!

where Fss
0 (a)5Fss

0 (a,0)[2p2\c/(240a4) is the zero-
temperature Casimir force between ideal metals. The
summation in Eq.~54! is exactly the temperature correctio
in the case of ideal metals~see, e.g.,@18#!. The second sum-
mation takes into account the effect of finite conductiv
combined with nonzero temperature.

In the limit of low temperaturesT!Te f f one has from Eq.
~54!, neglecting terms exponentially small in 2pTe f f /T @33#,

el.

e
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Fss~a!'Fss
0 ~a!H 11

1

3 S T

Te f f
D 4

2
16

3

d0

a F12
45z~3!

8p3 S T

Te f f
D 3G J . ~55!

For d050 ~perfect conductor! Eq. ~55! turns into the well
known result@18# demonstrating that the first nonzero tem
perature correction is of the fourth power inT/Te f f . For T
50 the first order finite conductivity correction to the C
simir force@17,18# is reproduced from Eq.~55!. Note that the
first correction of mixing finite conductivity and finite tem
perature is of order (T/Te f f)

3. More significantly, note tha
there are no temperature corrections of order (T/Te f f)

k with
k<4 in the higher order conductivity correction term
(d0 /a) i from the second up to the sixth order@33#.

In the Drude model the analytical results can be obtai
in the high temperature limitT@Te f f . It is easily seen that a
high temperatures~large separations! only one term of Eq.
~35! with l 50 contributes the result, the other terms withl
>1 being exponentially small in the parameter 2pT/Te f f .
The situation here is exactly the same as for the ideal m
@18#. As a consequence, Eq.~35! can be rewritten in the form

Fss~a!52
kBT

16pa3 F E0

` y2 dy

ey21
1E

0

` y2 dy

r 2
22~y,y!ey21

G .

~56!

It is seen from Eq.~56! that in the high temperature limi
only the perpendicular reflection coefficientr 2 gives rise to
finite conductivity corrections to the Casimir force~the same
is valid in the plasma model also!.

After straightforward calculations up to first order in th
small parametersd0 /a andg/vp ~see the details in Appen
dix B! the result

Fss~a!5Fss
0 ~a,T!F123

d0

a
2

g

vp

1

z~3!
I 1~ g̃ !G ~57!

is obtained, whereI 1 is a function slowly depending on th
effective relaxation parameter~space separation! and given
by

I 1~ g̃ !5E
0

`

dy
y2Ay

Ay1g̃1Ay

ey

~ey21!2
. ~58!

At high temperatures, which are considered here, the Cas
force acting between ideal metals is

Fss
0 ~a,T!52

kBT

4pa3
z~3!, ~59!

wherez(3)'1.202 is the Riemann zeta function.
With the above value of the relaxation frequency for

one hasI 1'1.16 ata55 mm andI 1'0.99 ata510mm. In
Appendix B ~Fig. 8 below! the functional dependence ofI 1

on g̃ is plotted. As is seen from Eq.~57!, the high tempera-
06210
d

al

ir

ture Casimir force depends on both plasma frequency
relaxation frequency. For alla.6 mm the results obtained
by the asymptotic Eq.~57! coincide with the above results o
numerical computations~see Figs. 2 and 3!. The characteris-
tic size of the conductivity correction at large separations
be estimated from the following example. Ata510mm the
finite conductivity correction obtained from Eq.~57! is
dc(Fss

D )'0.89% and with g50 we obtain dc(Fss
p )

'0.47%, in perfect agreement with Figs. 2 and 3. T
smooth joining of the results obtained using the Drude mo
with those using the plasma model wheng→0 is evident.

Note that in the framework of the approach used
@34,35# the high temperature Casimir force between real m
als is given byFss(a)5Fss

0 (a,T)/2 @see Eq.~59!#, i.e. two
times smaller than for the ideal metal, regardless of the c
ductivity properties of the real metal used. As to the a
proach used in@36,37#, the asymptotic behavior at high tem
peratures coincides with Eq.~59!, i.e., it is the same as th
case for ideal metals in both plasma and Drude models. O
again, the real properties of the metal do not influence
result.

V. COMPUTATIONS OF THE CASIMIR FORCE
BETWEEN A PLATE AND A SPHERICAL

LENS MADE OF REAL METAL

The configuration of a spherical lens~or a sphere! above a
semispace~plate! was found to be the most suitable for pr
cision measurements of the Casimir force@7–12#. In these
experiments finite conductivity corrections have been de
onstrated@8–12# and the sensitivity needed for detection
the temperature corrections is close to being achieved@7#.
For this reason the combined effect of both corrections is
extreme interest. Here the computations of the Casimir fo
for the configuration of a lens above a plate are perform
using the Drude and plasma models with the parameter
Eq. ~49!. The results obtained by our Eq.~48! are compared
with the computations of other authors.

We start with the relative temperature correction

dT~Fsl
f !5

Fsl
f ~a,T0!2Fsl

f ~a,0!

Fsl
f ~a,0!

, ~60!

where all the notations and parameters are the same as in
~50! and only the configuration is different. The results
numerical computations using Eqs.~48! and~60! in the case
of the Drude model are presented in Fig. 5 by the solid cu
1. The solid curve 2 represents the temperature correctio
the case of a dielectric plate and a lens~see the next section!.
The dashed curve shows the results obtained by the appr
of @34,35#. Curve 1 increases monotonically in perfect an
ogy with Fig. 1. However, the dashed curve represent
negative temperature correction at separationsa<4.1mm
and changes sign for larger separations. This behavior co
sponds to the case where large-by-modulus corrections li
in temperature to the ideal zero-temperature Casimir fo
are present. According to@38# such corrections are in con
tradiction with the experimental data of@7#. On the basis of
our Eq.~48! such corrections do not arise.
8-11
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In Table II the values of the relative temperature corr
tions are presented at different distances between a lens
a plate computed using the Drude model~present paper, col
umn 2! and the plasma model~present paper, column 3!, for
the ideal metal~column 4!, computed on the basis of@35#
using the Drude model~column 5!, and on the basis o
@36,37# using Drude and plasma models~columns 6 and 7,
respectively!. From Table II~columns 2–4! it follows that at
the smallest separations the temperature correction comp
using the Drude model is about two orders of magnitu
larger than with the plasma model and for the ideal metal.
large separations the predictions of both models are v
close to each other and to the results obtained with the i
metal~column 4!. The results of column 5, computed on th
basis of @35#, correspond to linear temperature correctio
that are negative and large in magnitude. The results of
umns 6 and 7, although positive, also correspond to the p
ence of linear temperature corrections at small separatio

The relative finite conductivity correction at temperatu
T0 can be described by

FIG. 5. Relative temperature correction to the Casimir fo
between a plate and a lens versus separation. Curve 1 corresp
to the Drude model~our computation!, the dashed curve is obtaine
in the Drude model withr 2(0,k')50, and curve 2 is for dielectric
test bodies.
06210
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dc~Fsl
f !5

Fsl
0 ~a,T0!2Fsl

f ~a,T0!

Fsl
0 ~a,T0!

. ~61!

In Fig. 6 this quantity is plotted as a function of separation
the case of the Drude model atT05300 K @the solid curve is
our result computed by Eq.~48!, and the long-dashed curv
is computed on the basis of@36,37##. The dependence of th
conductivity correction on separation atT050 is shown by
the short-dashed curve. In Fig. 7 the analogous results c
puted using the plasma model are presented. As with the
of two plane plates~Sec. IV!, the Drude model leads to
larger finite conductivity corrections than the plasma mod
At separations larger than 4mm the conductivity correction
computed using@36,37# becomes zero with both Drude an
plasma models~the long-dashed curves in Figs. 6 and 7!.
Once more, this property is determined by the artific
modification of the zeroth term of the Lifshitz formula use
in @36,37# and does not depend on the particular characte
tics of a real metal.

e
ndsFIG. 6. Relative finite conductivity correction to the Casim
force between a plate and a lens versus separation in the D
model. Solid curve represents our computations atT5300 K, long-
dashed curve is obtained under the suppositionr 1,2(0,k')51 at T
5300 K, and short-dashed curve is forT50.
versus
TABLE II. The relative temperature correction to the Casimir force between a lens and a plate
separation for different models of metal conductivity.

Separation Present paper Ideal metal Approach of@35# Approach of@36,37#
a (mm) dT(Fsl

D) dT(Fsl
p ) dT(Fsl

0 ) dT(Fsl
D) dT(Fsl

D) dT(Fsl
p )

0.1 6.8731023 6.6831025 3.0931025 21.5131022 2.3431022 1.5931022

0.3 1.1331022 1.0831023 8.0931024 25.7631022 2.7631022 1.6231022

0.5 1.5631022 4.3331023 3.6331023 29.9631022 3.2231022 1.9231022

0.7 2.2731022 1.0931022 9.6331023 –0.139 3.9731022 2.5731022

1 4.1331022 2.9131022 2.6731022 –0.189 5.8931022 4.3831022

3 0.498 0.481 0.470 –0.192 0.519 0.496
5 1.33 1.31 1.30 0.183 1.36 1.32
7 2.24 2.22 2.20 0.636 2.27 2.23
10 3.62 3.58 3.57 1.33 3.65 3.60
8-12
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In the same way as for two plane plates our results fo
lens above a plate, computed using the Drude model,
smoothly wheng→0 with the results computed with th
plasma model. This is not the case in the approach
@34,35#.

We come now to the perturbative analytical results t
can be obtained for the configuration of a lens above a pl
Here, the plasma model can be used. Introducing the
variablev5 j̃/y instead ofj̃ one obtains

Fsl~a!5
\cR

8pa3 (
l 50

`

8 E
0

`

y2 dyE
0

1

dv cos~ l tvy! f sl~v,y!.

~62!

The expansion off sl up to first order in the small paramete
d0 /a is

f sl~v,y!52 ln~12e2y!12
y

ey21
~11v2!

d0

a
. ~63!

Substitution of Eq.~63! into Eq. ~60! leads to the result

Fsl~a!5Fsl
0 ~a!H 11

45

p3 (
l 51

` Fcoth~pt l !

t3l 3
1

p

t2l 2 sinh2~pt l !
G

2
1

t4
24

d0

a
1

180

p4

d0

a (
l 51

` Fp coth~pt l !

2t3l 3
2

2

t4l 4

1
p3 coth~pt l !

t l sinh2~pt l !
1

p2

t2l 2 sinh2~pt l !
G J , ~64!

whereFsl
0 (a)5Fsl

0 (a,0)[2p3\cR/(360a3).
For the case of low temperaturesT!Te f f Eq. ~64! leads

to @33#

FIG. 7. Relative finite conductivity correction to the Casim
force between a plate and a lens versus separation in the pl
model. Solid curve represents our computations atT5300 K, long-
dashed curve is obtained under the suppositionr 1,2(0,k')51 at T
5300 K, and short-dashed curve is forT50.
06210
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Fsl~a!'Fsl
0 ~a!H 11

45z~3!

p3 S T

Te f f
D 3

2S T

Te f f
D 4

24
d0

a F12
45z~3!

2p3 S T

Te f f
D 3

1S T

Te f f
D 4G J . ~65!

The corrections to Eq.~65! are exponentially small in the
parameter 2pTe f f /T. For an ideal metald050 and Eq.~65!
coincides with the known result@7#. It is seen that for a
perfectly conducting lens and plate the first nonzero temp
ture correction is of the third order inT/Te f f . For T50 the
first order finite conductivity correction to the Casimir forc
@20# is reproduced. In analogy with two plane plates the p
turbation orders (d0 /a) i with 2< i<6 do not contain tem-
perature corrections of orders (T/Te f f)

3 and (T/Te f f)
4 or

smaller ones@33#.
Now we consider the analytical results that can be

tained with the Drude model at high temperatureT@Te f f .
Here only the zeroth term of the Lifshitz formula contribut
to the result. Then Eq.~48! can be represented as

Fsl~a!5
kBTR

8a2 H E
0

`

y dy ln~12e2y!

1E
0

`

y dy ln@12r 2
2~y,y!e2y#J . ~66!

After some transformations~see Appendix B! one arrives
at the result

Fsl~a!5Fsl
0 ~a,T!F122

d0

a
2

g

vp

2

z~3!
I 2~ g̃ !G , ~67!

whereI 2 is defined by

I 2~ g̃ !5E
0

`

dy
yAy

Ay1g̃1Ay

1

ey21
. ~68!

The high temperature Casimir force acting between a l
and a plate made of ideal metal is

Fsl
0 ~a,T!52

kBTR

4a2
z~3!. ~69!

For example,I 2'0.519 ata55 mm and I 1'0.434 ata
510mm @using the data of~49! for Al #. The dependence o
I 2 on g̃ is plotted in Appendix B~Fig. 8!. The asymptotic
results of Eq.~67! coincide with the results of numerica
computations fora.5 mm. The choice of the model describ
ing the dielectric properties of the metal at large separati
is rather important. Ata510mm the conductivity correction
is dc(Fsl

D)'0.68% using the Drude model anddc(Fsl
p )

'0.32% using the plasma model, i.e., more than two tim
smaller. In analogy with the case of two plates, the h
temperature Casimir force calculated on the basis of@35# is
two times smaller than in Eq.~69! regardless of the conduc

ma
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G. L. KLIMCHITSKAYA AND V. M. MOSTEPANENKO PHYSICAL REVIEW A 63 062108
tivity properties of the metal. In@36,37# the high temperature
behavior for real metals coincides with Eq.~69! obtained for
the ideal metal, so the actual properties of a particular m
are not reflected.

VI. TEMPERATURE CASIMIR FORCE BETWEEN
DIELECTRIC TEST BODIES

Here we briefly discuss the temperature Casimir force
tween dielectrics. The application of Lifshitz formulas~1!
and ~37! for the case of dielectric surfaces is direct. No a
ditional prescriptions such as the ones used above or
generalizations are needed to obtain a final result matc
the general physical requirements. However, when the
malism developed for dielectrics is compared with that
metals, the origin of the above difficulties becomes clear

The dielectric permittivity of dielectrics can be modele
e.g., by the Mahanty-Ninham relation@46,54#

«~ i j!511
«021

11j2/ve
2

. ~70!

Here ve;231016 Hz gives the main electronic absorptio
in the ultraviolet, where«0 is the static dielectric constant. A
small j!ve one has«( i j)'«0. In fact, frequencies giving
large contributions to the Lifshitz formulas~1! and ~37! in
the micrometer separation range are much smaller thanve .
Because of this,«( i j) can be approximately replaced by«0.
Below we use in all computations«0'7 which corresponds
to a sheet of mica.

In reality, the zeroth term of the Lifshitz formula for d
electrics is also discontinuous as in the case of metals
illustrate this statement we putl 50 in Eq.~3! and obtain the
following values of the reflection coefficients defined in E
~2!:

r 1
2~0,k'!5S «021

«011D 2

, r 2
2~0,k'!50. ~71!

These values do not depend onk' . Therefore they are pre
served in the limitk'→0. At the same time, if we putk'

50 from the very beginning we obtain

r 1
2~j l ,0!5r 2

2~j l ,0!5r (R)[S A«021

A«011
D 2

, ~72!

which is the case for real photons. These values do not
pend onj l and are preserved in the limitj l→0. Equations
~71! and~72! together imply that both reflection coefficien
r 1(j,k') andr 2(j,k') are discontinuous as the functions
two variables at the point~0,0!. Recall that in the case o
metals described by the Drude model only the transve
reflection coefficientr 2 was discontinuous~see Sec. II!. Note
that in the zeroth term of the Lifshitz formula for dielectric
both reflection coefficients~71! correspond to nonphysica
~virtual! photons withr 1.r (R) and r 2,r (R). For metals the
longitudinal reflection coefficient at zero frequency takes
physical valuer 15r (R)51 in both plasma and Drude mod
els. As to the perpendicular reflection coefficient at zero f
06210
al
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-
eir
g
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quency in the case of metals, it corresponds to nonphys
photons and takes the valuesr 250,r (R)51 in the Drude
model andr 25g(k'),r (R)51 in the plasma model@see
Eqs.~13! and ~15!#.

It is of paramount importance that the discontinuity of t
two reflection coefficients causes no physical problem in
case of dielectrics. The point is that the dielectric permitt
ity ~70! corresponds to a nondissipative medium describ
by the Drude model~which is not the case for metals de
scribed by the Drude model!. For this reason, the scatterin
problem, which underlies the Lifshitz theory~see Sec. II and
also@48#!, is well defined at zero frequency through the un
tarity of the scattering matrix, furnishing the desired value
the scattering coefficient and thereby the free energy.
results obtained for dielectrics are physically consiste
They are immediately evident from Eqs.~1! and~37! without
use of any additional assumptions, which are necessar
the cases of both ideal and real metals where the scatte
problem at zero frequency is not well defined.

The results of numerical computations for dielectric te
bodies made of mica are shown by the solid curves 2 in F
1 @Eq. ~1!, two plane plates# and Fig. 5@Eq. ~37!, a lens
above a plate#. The curve 2 is in direct analogy with th
curve 1 in the same figure. At all separations the relat
temperature correction for dielectrics is positive. Ata
50.1mm it takes the valuedT(Fss)51.9431025. This is
larger than for ideal metal and for a real metal~Al ! consid-
ered in the framework of the plasma model but smaller th
for the same metal in the framework of the Drude model~see
Table I!. At a51 mm and a510mm dT(Fss)51.99
31022, respectively, 2.50. It is the value ofdT(Fss) at
a510 mm for dielectrics. Ata>1 mm the temperature cor
rection for dielectrics is larger than for ideal or real metals
the same separation. For the configuration of a dielectric l
above a disk at separationsa50.1, 1, and 10mm the tem-
perature correction is, respectively, 2.3931024, 6.94
31022, and 4.25. The relationship of these values with tho
computed for the real and ideal metals~see Table II! is the
same as in the case of two plane plates.

VII. CONCLUSIONS AND DISCUSSION

As demonstrated above, the computation of the Casi
force between real metals at nonzero temperature is a c
plicated theoretical problem. The first contradictions betwe
Lifshitz theory@2,16# applied to ideal metals and calculation
based on quantum field theory@28,29# were revealed in the
1960s. They were resolved by Schwinger, DeRaad, and M
ton @18# by the use of a special prescription modifying th
zero-frequency term of the Lifshitz formula. After the use
this prescription the results of@2,16# when applied to an idea
metal agreed with those of@28,29#.

The next stage in the solution of the problem has be
started only recently. It was motivated by the increased
curacy of Casimir force measurements and possible app
tions of the Casimir effect as a test of fundamental phys
theories and in nanotechnology. Different authors@32–37#
applied Lifshitz theory to calculate the temperature Casi
force between real metals and obtained diverse results
@34,35# the Lifshitz formula was applied to real metals in i
original form without any modification of the zero-frequenc
8-14
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term. The results obtained, however, turned out to be in c
tradiction with experiment~see Sec. V! and with general
theoretical requirements~negative temperature corrections
small distances and an incorrect asymptotic at high temp
tures; see Secs. II, IV, and V!. In @36,37# the zeroth term of
the Lifshitz formula for real metals at nonzero temperat
was modified according to the prescription of@18# formu-
lated for ideal metals. The results obtained were compa
with the Casimir force at zero temperature which was co
puted for real metals without use of any prescription. Su
an approach leads to significant temperature correction
the Casimir force at small separations~in both plasma and
Drude models!, which are linear in temperature, and also
the absence of any finite conductivity corrections at mod
ate separations. In@32,33# computations of the temperatur
Casimir force in the framework of the plasma model we
performed with coinciding results~no linear-in-temperature
corrections were found at small distances!. These computa-
tions did not use any modification of the Lifshitz formula.
@33# the problems arising in the framework of the Dru
model were also formulated and the way to their solut
was indicated.

In the present paper we propose a different prescrip
modifying the zeroth term of the Lifshitz formula in the ca
of real metals described by the Drude model~Secs. II and
III !. This prescription is necessary because of the failure
the scattering formalism underlying the Lifshitz formula
the case when the dielectric permittivity describes a med
with dissipation where the unitarity condition is absent. T
prescription is a generalization of the Schwinger, DeRa
and Milton prescription@18# for the case of a real metal. I
the case of the plasma model~which describes a nondissipa
tive medium! it leads to exactly the same results as an
modified Lifshitz formula. Because of this all the results o
tained in@32,33# preserve their validity.

The Lifshitz formula with the modified zero-frequenc
term is given by Eq.~35! ~configuration of two plane plates!
and by Eq.~48! ~configuration of a lens above a plate!. De-
tailed computations with the use of these equations w
reported in Secs. IV and V. It was shown that the tempe
ture corrections obtained are positive and offer the cor
asymptotic behavior at both low and high temperatu
~separations!. The results obtained in the framework of th
Drude model join smoothly with those obtained in t
plasma model when the relaxation frequency goes to z
The finite conductivity corrections to the Casimir force we
computed at nonzero temperature in the separation ra
from 0.1mm to 10mm in both Drude and plasma model
Both the temperature and finite conductivity corrections c
culated above possess reasonable physical properties, a
ing difficulties that arise in@34,35# and in @36,37#. The per-
turbative analytical results at both small and lar
separations are in agreement with the numerical comp
tions. The case of dielectric test bodies~Sec. VI! where the
scattering problem is consistent at all frequencies illustra
the essence of difficulties arising in the case of real meta

In the near future one should expect experimental re
tration of the temperature Casimir force. This will be t
final answer in the discussion on the subject of what is
temperature dependence of the Casimir force. Meanwhi
06210
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is necessary to proceed with a more detailed elaboratio
the microscopic theory of dispersion forces based on qu
tum field theory at nonzero temperature in the Matsub
formulation. There is a real possibility that the above ph
nomenological prescription, of the zero-frequency contrib
tion to the Lifshitz formula will be rigorously derived, a
least as a good approximation, in terms of the scatter
theory in dissipative media. The final solution of this pro
lem seems to be of great importance, taking into account
prospective role of dispersion forces in both fundamental
applied science.
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APPENDIX A

In this Appendix, Eqs.~26! and ~27! are derived starting
from Eq. ~25!. Using Eq.~20!, Eq. ~25! can be rewritten in
the form

Fss~a!52
\c

32p2a4E0

`

y2 dyH 1

2E0

y

dj̃ f ss~ j̃,y!

1
p

2t F f ss
(1)~y,y!2E

0

y

dj̃
] f ss

(1)~ j̃,y!

]j̃
G

1
p

2t F f ss
(2)~y,y!2E

0

y

dj̃
] f ss

(2)~ j̃,y!

]j̃
G2

1

2
y fss~y,y!

1
1

2 F j̃ f ss~ j̃,y!U0
y2E

0

y

dj̃ f ss~ j̃,y!G
1

p

t
f ss~y,y! AS ty

2p D
2

p

t E0

y

dj̃
] f ss~ j̃,y!

]j̃
AS t j̃

2p
D J . ~A1!

The functions f ss
(1) and ] f ss

(1)/]j̃ are continuous at al
points for both plasma and Drude models. Therefore

E
0

y

dj̃
] f ss

(1)~ j̃,y!

]j̃
5 f ss

(1)~y,y!2 f ss
(1)~0,y!. ~A2!

Note that the same equality is not valid forf ss
(2) because it is

discontinuous at zero frequency. Substituting Eq.~A2! into
Eq. ~A1! and performing the cancellations one obtains
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Fss~a!52
\c

16p2a4E0

`

y2 dyH p

2t
@ f ss

(1)~0,y!1 f ss
(2)~y,y!#

2
p

2tE0

y

dj̃
] f ss

(2)~ j̃,y!

]j̃
1

p

t
f ss~y,y! AS ty

2p D
2

p

t E0

y

dj̃
] f ss~ j̃,y!

]j̃
AS t j̃

2p
D J . ~A3!

Now let us consider the two last contributions to Eq.~A3!
containing the functionA(z). Taking account of Eq.~19!,
t52pT/Te f f52p/t. According to the definition of the in-
teger portion function,

AS ty

2p D5AS y

t D5k if kt<y,~k11!t ~A4!

for k50, 1, 2, . . . . Using Eq. ~A4! the integral from~A3!
can be represented as

E
0

`

y2 dy fss~y,y! AS ty

2p D
5E

t

2t

y2 dy fss~y,y!12E
2t

3t

y2 dy fss~y,y!1•••

1 l E
l t

( l 11)t

y2 dy fss~y,y!1•••

5E
t

`

y2 dy fss~y,y!1E
2t

`

y2 dy fss~y,y!1•••

1E
l t

`

y2 dy fss~y,y!1•••

5(
l 51

` E
l t

`

y2 dy fss~y,y!. ~A5!

The second integral from Eq.~A3! containing the integer
portion function is slightly more complicated. Using the de
nition of this function, it can be represented in the form

E
0

`

y2 dyE
0

y

dj̃
] f ss~ j̃,y!

]j̃
AS t j̃

2p
D

5E
t

2t

y2 dyE
t

y

dj̃
] f ss~ j̃,y!

]j̃

1E
2t

3t

y2 dyF E
t

2t

dj̃
] f ss~ j̃,y!

]j̃
12E

2t

y

dj̃
] f ss~ j̃,y!

]j̃
G

1•••1E
l t

( l 11)t

y2 dyF E
t

2t

dj̃
] f ss~ j̃,y!

]j̃

12E
2t

3t

dj̃
] f ss~ j̃,y!

]j̃
1•••1 l E

l t

y

dj̃
] f ss~ j̃,y!

]j̃
G1••• .

~A6!
06210
Now we calculate all integrals with respect toj̃ according
to

E
a

b

dj̃
] f ss~ j̃,y!

]j̃
5 f ss~b,y!2 f ss~a,y!. ~A7!

For all aÞ0, as in Eq.~A6!, Eq. ~A7! is valid for both
polarizations~i.e., for both f ss

(1) and f ss
(2)) because the quan

tities under consideration are continuous. The result is

E
0

`

y2 dyE
0

y

dj̃
] f ss~ j̃,y!

]j̃
AS t j̃

2p
D

5E
t

2t

y2 dy@ f ss~y,y!2 f ss~t,y!#

1E
2t

3t

y2 dy@2 f ss~y,y!2 f ss~t,y!2 f ss~2t,y!#1•••

1E
l t

( l 11)t

y2 dy@ l f ss~y,y!2 f ss~t,y!2 f ss~2t,y!

2•••2 f ss~ l t,y!#1•••. ~A8!

Combining the terms with identical arguments and using
~A5!, we obtain

E
0

`

y2 dyE
0

y

dj̃
] f ss~ j̃,y!

]j̃
AS t j̃

2p
D

52(
l 51

` E
l t

`

y2 dy fss~ l t,y!1(
l 51

` E
l t

`

y2 dy fss~y,y!.

~A9!

Now we substitute Eqs.~A5! and~A9! into Eq.~A3! with
the result

Fss~a!52
\c

32pa4t
E

0

`

y2 dyF f ss
(1)~0,y!1 f ss

(2)~y,y!

2E
0

y

dj̃
] f ss

(2)~ j̃,y!

]j̃
G

2
\c

16pa4t
(
l 51

` E
l t

`

y2 dy fss~ l t,y!. ~A10!

Taking account oft[Te f f /T5\c/(2akBT) and l t[j̃ l , Eq.
~A10! coincides with Eqs.~26! and ~27!.

APPENDIX B

In this Appendix Eqs.~57! and ~67! are obtained and the
integral quantitiesI n(g̃) ( i 51,2) are computed. The expre
sion under the second integral on the right-hand side of
~56! is approximately equal to
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y2

r 2
22ey21

'
y2

ey21
22

d0

a
y2Ay~y1g̃ !

ey

~ey21!2
, ~B1!

where the terms up to first order in the small parameterd0 /a
are preserved. Note that the first contribution here is
same as under the first integral in Eq.~56!. They together
produce the high temperature asymptotic for the case o
ideal metal. The second contribution in Eq.~B1! takes the
effects of finite conductivity into account. This second co
tribution can be identically represented as

22
d0

a
y2Ay~y1g̃ !

ey

~ey21!2

522
d0

a F y3ey

~ey21!2
1g̃

y2Ay

Ay1g̃1Ay

ey

~ey21!2G .

~B2!

Substituting Eqs.~B1! and ~B2! into Eq. ~56!, taking ac-
count of 2d0 /a54/ṽp and g̃/ṽp[g/vp one obtains

Fss~a!52
kBT

16pa3 F4z~3!212z~3!
d0

a
24

g

vp
I 1~ g̃ !G ,

~B3!

whereI 1(g̃) was defined in Eq.~58!. This equation coincides
with Eq. ~57! because of Eq.~59!.

In Fig. 8 the dependence ofI 1 on g̃ is plotted~curve 1!.
The values ofI 1 decrease from 1.3844 atg̃51 to 0.8782 at
g̃510. Recalling the definition of Sec. II,g̃52ag/c, the
dependence ofI 1 on g̃ may be recalculated as the depe
dence ofI 1 on a at fixed g. To take an example, with th
above value ofg59.631013 rad/sg̃ changes in the interva
1.92<g̃<6.4 when the separation distance is in the inter
3 mm<a<10mm.

We now turn to the derivation of Eq.~67!. The expression
under the second integral on the right-hand side of Eq.~66!
calculated up to first order ind0 /a is
,

c-

06210
e

n

-

-

l

y ln@12r 2
2~y,y!e2y#'y ln~12e2y!12

d0

a
Ay~y1g̃ !

y

ey21
.

~B4!

Once more the first contribution here is the same as unde
first integral in Eq.~66!. Together they produce the hig
temperature Casimir force between a lens and a plate m
of an ideal metal. The second contribution in Eq.~B4! is
responsible for the finite conductivity correction. This se
ond contribution can be rewritten in the form

2
d0

a
Ay~y1g̃ !

y

ey21
52

d0

a S y2

ey21
1g̃

yAy

Ay1g̃1Ay

1

ey21
D .

~B5!

Substituting Eqs.~B4! and ~B5! into Eq. ~66! and per-
forming the integration one obtains

Fsl~a!5
kBTR

8a2 F22z~3!14z~3!
d0

a
14

g

vp
I 2~ g̃ !G ,

~B6!

where I 2(g̃) was defined in Eq.~68!. Equation~B6! coin-
cides with Eq.~67! if we take account of Eq.~69!.

In Fig. 8 the dependence ofI 2 on g̃ is shown by the curve
2. The values ofI 2 decrease from 0.6455 atg̃51 to 0.3787
at g̃510.

FIG. 8. Dependence of the coefficient integrals in Eqs.~57!
~curve 1! and ~67! ~curve 2! on the dimensionless relaxation fre
quency.
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