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Improved lower bounds for the ground-state energy of many-body systems
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Alternative lower bounds for the binding energy of a quantum-mechanical system of interacting particles are
presented. These bounds are expressed in terms of two-particle quantities and improve the conventional bounds
of the Hall-Post type. They are constructed by considering not only the energy in the two-particle system, but
also the structure of the pair wave function. We apply the formal results to various numerical examples, and
show that in some cases dramatic improvement over the existing bounds is reached.
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I. INTRODUCTION

One of the central problems in quantum many-body ph
ics is to find the energy of a system ofA particles interacting
with given two-body potentials. Variational techniques yie
an upper bound to the exact energy. The determination
strict lower bound can then provide a natural and use
complement.

In recent years, there has been renewed interest in d
ing such lower bounds, mostly in connection with qua
models in hadron spectroscopy@1#, or the limits for Bor-
romean phenomena in loosely bound systems@2–5#. Earlier
uses of lower bounds were focused on thermodynamical c
siderations@6#, or the problem of stability in self-gravitating
systems@7,8#.

Up to now, all lower bounds have been based on
Hall-Post decomposition@9,10# of the Hamiltonian into two-
body clusters, and subsequent application of the variatio
principle in two-body space. Several variants and extens
have been proposed, e.g., an optimal decomposition in
case of three@11# or four @12# unequal masses. The case
identical fermions was recently studied in@13#.

In its most useful form, a lower bound of the Hall-Po
type is expressed in terms of the ground-state energy
two-body system. Finding this two-body energy usually go
together with determining the wave function of the groun
state pair. We show in this paper that by using the struc
of the pair wave function, one can always improve the Ha
Post bound, and that the improvement is sometimes s
tacular. Our results apply to boson and fermion systems, b
with and without the presence of an external potential, a
irrespective of the local or nonlocal character of the tw
body potentials. We do restrict ourselves to systems of id
tical particles, leaving a study of the unequal mass case
future work.

Loosely speaking, the Hall-Post bound implies that
ground state forA identical particles is a superposition o
1
2 A(A21) pairs in the lowest-energy state of a modifi
Hamiltonian. However, because of the correlated structur
such a pair, it is in general not possible to reach a pair oc
pation of 1

2 A(A21), except in the case of noninteractin
bosons. For any given pair, there exists a maximal value
the occupancy that can be reached in anA-body state. The
remainder of the1

2 A(A21) pairs must then necessarily be
a state with higher energy. This allows the construction of
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improved lower bound, whose value is increased with
spect to the Hall-Post case.

The present paper is organized as follows. In Sec. II,
first establish notations, introduce cluster decompositions
the many-body Hamiltonian, and rederive the Hall-Post
equalities. Next we point out in Sec. III how the Hall-Po
bound can be improved in the case of fixed-center boso
systems. The equivalent case for fermions is treated in S
IV. The modifications that enter when considering se
bound ~translationally invariant! systems are discussed
Sec. V. Finally, we apply the formal results to various n
merical examples, which are collected in Sec. VI. Sect
VII contains a global summary and points out some rema
ing problems.

II. GENERAL REMARKS ON CLUSTER
DECOMPOSITIONS OF THE HAMILTONIAN
FOR A SYSTEM OF IDENTICAL PARTICLES

A. Notational conventions

We restrict ourselves to systems of identical particles a
follow the notational conventions of@14#. In particular,
single-particle coordinates are generically written
x1 ,x2 , . . . and should be regarded as spatial coordinate
d dimensions. Spin or isospin degrees of freedom are
explicitly mentioned, but may be assumed to be included
the xi dependence of the wave functions and operators.

For a system ofA particles, we consider a Hamiltonia
ĤA@a#, which is a sum of one-body and two-body operato
with variable relative weight,

ĤA@a#~x1 , . . . ,xA!5a (
i 151, . . . ,A

t~xi 1
!

1 (
i 1, i 251, . . . ,A

v~xi 1
,xi 2

!. ~1!

Using a combinatorial identity, we can rewriteĤA@a51# for
any N with 2<N<A as

ĤA@1#~x1 , . . . ,xA!5
1

S A22

N22D (
i 1,•••, i N51, . . . ,A

3ĤNFN21

A21G~xi 1
, . . . ,xi N

!. ~2!
©2001 The American Physical Society07-1
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The HamiltonianĤN@(N21)/(A21)# for clusters ofN
particles is related to the original HamiltonianĤA@1# for A
particles, but has different relative weights for its one-bo
and two-body components~or, equivalently, a different cou
pling strength of the two-body interaction!. We can now
make the weights equal again by absorbing the differenc
an additional one-body term. As shown in Sec. II B, th
leads to sum rules for the energy that are generalization
the well-known Koltun sum rule@16#. Alternatively, we can
keep the different coupling strength in theN-particle Hamil-
tonian. This will lead to another set of sum rules, derived
Sec. II C, from which the Hall-Post inequalities immediate
follow.

One of the ingredients in these sum rules is the spec
scopic factors related to the removal of particles from
A-particle system in its ground state. These are defined
follows.1

The A-particle ground stateC0(A)@1# of ĤA@1# can al-
ways be expanded in terms of the complete orthonorma
of N-particle eigenstatesCn(N)@a# of ĤN@a#,

C0(A)@1#~x1 , . . . ,xA!5S A

ND 21/2

(
n(N)

3Cn(N)@a#~x1 , . . . ,xN!

3cn(N)@a#~xN11 , . . . ,xA!.

~3!

The expansion coefficientscn(N)@a# are the overlap func-
tions between theCn(N)@a# andC0(A)@1#,

cn(N)@a#~xN11 , . . . ,xA!5S A

ND 1/2E dx1•••dxN

3Cn~N!
* @a#~x1 , . . . ,xN!

3C0(A)@1#~x1 , . . . ,xA!,

~4!

and their normalization yields the corresponding spec
scopic factorSn(N)@a#,

Sn(N)@a#5E dxN11•••dxAucn(N)@a#~xN11 , . . . ,xA!u2,

~5!

that is, the squared amplitude for removingA2N particles
from C0(A)@1# and ending up inCn(N)@a#.

Obviously, the spectroscopic factors are positive, and
completeness of the setCn(N)@a# implies the sum rule

(
n(N)

Sn(N)@a#5S A

ND . ~6!

1The definitions in this section may look tedious or superfluo
but will allow in later sections a unified treatment for fixed-cen
and self-bound systems.
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Note that theSn(N)@a# can also be interpreted as theoc-
cupation numberof the stateCn(N)@a# in the ground state
C0(A)@1#, since Eq.~5! can be rewritten as

Sn(N)@a#5E dx1•••dxNdx18•••dxN8

3Cn~N!
* @a#~x1 , . . . ,xN!

3r (N)~x1 , . . . ,xN ;x18 , . . . ,xN8 !

3Cn(N)@a#~x18 , . . . ,xN8 ! ~7!

in terms of theN-body density matrix

r (N)~xA2N11 , . . . ,xA ;xA2N118 , . . . ,xA8 !

5S A

ND E dx1•••dxA2N

3C0~A!
* @1#~x1 , . . . ,xA2N ,xA2N118 , . . . ,xA8 !

3C0(A)@1#~x1 , . . . ,xA2N ,xA2N11 , . . . ,xA!. ~8!

The above equations hold for fixed-center systems,
which the one-body part of the Hamiltonian contains an
ternal potential. For self-bound systems, the one-body pa
purely kinetic and the two-body part depends on relat
coordinates only, i.e.,v(x1 ,x2)[v(x12x2). Since the in-
trinsic eigenstates of the Hamiltonian are translationally
variant, some modifications@14# are needed.

The intrinsic kinetic energy is obtained by subtracting t
center-of-mass from the total kinetic energy,

T̂A852
1

2m (
i 151, . . . ,A

] i 1
2 1

1

2AmS (
i 151, . . . ,A

] i 1D 2

52
1

2Am (
i 1< i 251, . . . ,A

~] i 1
2] i 2

!2, ~9!

and is seen to behave as a two-body operator with
A-dependent coupling strength. Defining the intrinsic Ham
tonian with variable coupling strength as

ĤA8 @a#5aT̂A81 (
i 1, i 251, . . . ,A

v~xi 1
2xi 2

!, ~10!

the decomposition~2! gets modified to

ĤA8 @1#~x1 , . . . ,xA!5
1

S A22

N22D (
i 1,•••, i N51, . . . ,A

3ĤN8 FN

AG~xi 1
, . . . ,xi N

!. ~11!

The A-particle ground-state wave function can be e
panded in a complete orthonormal set of intrinsicN-particle
eigenstates@14#, the self-bound equivalent of Eq.~3! being

,
r
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C0(A)@1#~x1 , . . . ,xA!5S A

ND 21/2

(
n(N)

3Cn(N)@a#~x1 , . . . ,xN!

3cn(N)@a#~xN112RN , . . . ,xA2RN!,

~12!

whereRN51/N( i 51
N xi ; the overlap functions are defined a

cn(N)@a#~xN11 , . . . ,xA!5S A

ND 1/2E dx1•••dxNd~RN!

3Cn~N!
* @a#~x1 , . . . ,xN!

3C0(A)@1#~x1 , . . . ,xA!,

~13!

whereas Eqs.~5! and ~6! remain unchanged.
The spectroscopic factorSn(N) , as defined by Eq.~5!, can

again be viewed as the occupation number of the intrin
N-particle stateCn(N) in the A-particle ground state, but thi
occupation number now also includes a summation over
possible states ofN-particle center-of-mass motion, i.e., u
ing

E dK
exp~2 iKRN!

~2p!d/2

exp~ iKRN8 !

~2p!d/2
5d~RN2RN8 !, ~14!

we can express the spectroscopic factor as

Sn(N)@a#5E dx1•••dxNdx18•••dxN8 d~RN2RN8 !

3Cn~N!
* @a#~x1 , . . . ,xN!

3r (N)~x1 , . . . ,xN ;x18 , . . . ,xN8 !

3Cn(N)@a#~x18 , . . . ,xN8 !. ~15!

The N-body density matrix for a self-bound system, defin
as

r (N)~xA2N11 , . . . ,xA ;xA2N118 , . . . ,xA8 !

5S A

ND E dx1•••dxA2Nd~RA2N!

3C0~A!
* @1#~x1 , . . . ,xA2N ,xA2N118 , . . . ,xA8 !

3C0(A)@1#~x1 , . . . ,xA2N ,xA2N11 , . . . ,xA!,

~16!

is the proper extension of the one-body density matrix
translationally invariant systems in@14,15#.
06210
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B. Generalized Koltun sum rules

For fixed-center systems, the decomposition~2! can be
reshuffled so as to have the same Hamiltonian inA-particle
and N-particle space, at the expense of an additional o
body term,

ĤA@1#~x1 , . . . ,xA!5
1

S A22

N22D (
i 1,•••, i N51, . . . ,A

3ĤN@1#~xi 1
, . . . ,xi N

!

2
A2N

N21 (
i 151, . . . ,A

t~xi 1
!. ~17!

The expectation value of Eq.~17! in theA-particle ground
state, expanded according to Eq.~3!, can be worked out us
ing Eqs.~4! and ~5! and reads

E0(A)@1#5
N

A1N21 H T0(A)2
1

S A22

N21D
3 (

n(N)
~En(N)@1#2E0(A)@1# !Sn(N)@1#J .

~18!

Here the ground-state energy has been expressed in term
the expectation valueT0(A) of the one-body field and the firs
energy-weighted moment of the distribution
(A2N)-particle removal strength~or mean removal energy!.
This is a generalization of the familiar Koltun sum rule@16#
for N5A21,

E0(A)@1#5
1

2 H T0(A)2 (
n(A21)

~En(A21)@1#

2E0(A)@1# !Sn(A21)@1#J , ~19!

where the distribution of single-particle removal strength
experimentally accessible through single-particle~SP!
knock-out reactions@17,18#.

For self-bound systems, we can@in analogy to Eq.~17!#
restore in Eq.~11! the original Hamiltonian at the expense
an additional~intrinsic! kinetic term,

ĤA8 @1#~x1 , . . . ,xA!5
1

S A22

N22D (
i 1,•••, i N51, . . . ,A

3ĤN8 @1#~xi 1
, . . . ,xi N

!2
A2N

N
T̂A8 .

~20!
7-3
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The ground-state expectation value of Eq.~20!, evaluated by
means of Eqs.~12! and ~13!, then reads

E0(A)@1#5
N

A1N21 H N21

N
T0(A)8 2

1

S A22

N21D
3 (

n(N)
~En(N)@1#2E0(A)@1# !Sn(N)@1#J . ~21!

The result for the case ofN5A21,

E0(A)@1#5
1

2 H A22

A21
T0(A)8 2 (

n(A21)
~En(A21)@1#

2E0(A)@1# !Sn(A21)@1#J , ~22!

is the Koltun sum rule for self-bound systems~including the
correct recoil factor for the kinetic energy@14,19#!.

C. Hall-Post inequalities

The expectation value of Eq.~2!, with the modified cou-
pling strength in theN-particle Hamiltonian, can be evalu
ated in the same way as Eq.~18!,

E0(A)@1#5
1

S A22

N22D (
n(N)

En(N)FN21

A21GSn(N)FN21

A21G .
~23!

This expression forms the basis for deriving the low
bounds considered in the next section. At the simplest le
combining Eq.~23! with the trivial inequality resulting from
the spectroscopic sum rule~6!,

0<Sn(N)FN21

A21G<S A

ND , ~24!

immediately leads to inequalities of the Hall-Post type,

E0(A)@1#>
A~A21!

N~N21!
E0(N)FN21

A21G . ~25!

For self-bound systems, theA-particle ground-state en
ergy can be likewise evaluated, from the expectation valu
Eq. ~11!, in terms of intrinsicN-particle energies and occu
pation numbers, and reads

E0(A)@1#5
1

S A22

N22D (
n(N)

En(N)FN

AGSn(N)FN

AG . ~26!

The Hall-post inequalities

E0(A)@1#>
A~A21!

N~N21!
E0(N)FN

AG ~27!
06210
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then follow immediately from Eq.~24!.

III. IMPROVED LOWER BOUNDS FOR FIXED-CENTER
BOSONIC SYSTEMS

A. Derivation of new lower bounds

From now on we concentrate on the most relevant c
N52, and try to derive lower bounds for theA-particle
ground-state energy in terms of two-body quantities.
present, such a lower bound is given by the Hall-Post
equality ~25!,

E0(A)@1#>S A

2 DE0(2)F 1

A21G , ~28!

which is usually derived by applying a variational princip
in two-body space@2#. As was shown in Sec. II C, the Hall
Post inequality is actually anequality when expressed in
terms of two-body energies and occupations,

E0(A)@1#5(
n(2)

En(2)F 1

A21GSn(2)F 1

A21G . ~29!

In order to simplify notations we drop the couplin
strength dependence in this section, as it will be fixed toa
51 for A-particle anda51/(A21) for two-particle quanti-
ties. It is clear from Eqs.~28! and~29! that in the traditional
lower bound, the distribution of pair strengthSn(2) is ap-
proximated by concentrating all strength in the two-bo
ground state, i.e., by the distribution

Sn(2)'d0nS A

2 D , ~30!

which exhausts the sum rule~6!.
This assumption can only be realistic for weakly corr

lated systems. For a noninteracting Bose system@v[0 in
Eq.~1!# it holds exactly. The uncorrelated eigenstates
product-type wave functions,

C0(A)
unc ~x1 , . . . ,xA!5 )

i 51, . . . ,A
x~xi !,

C0(2)
unc ~x1 ,x2!5x~x1!x~x2!, ~31!

wherex(x) is the SP eigenstate of the one-body Hamilton
t(x) corresponding to the lowest energye0. As a conse-
quence,S0(2)

unc 5A(A21)/2, and the Hall-Post lower boun
coincides with the exact result,

E0(A)
unc 5Ae05S A

2 D 1

A21
2e05S A

2 DE0(2)
unc . ~32!

For strongly correlated systems, we expect that the occu
tion S0(2) can deviate substantially fromA(A21)/2, and the
Hall-Post lower bound will be far from the exact result.

In order to improve on this situation we need to take in
account correlations in the structure of the many-bos
7-4
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eigenstates. As it is more convenient to work in second qu
tization, we definewn(2)

† as the creation operator for the two
body eigenstateCn(2) , i.e.,

uCn(2)&5wn(2)
† u&. ~33!

The occupationSn(2) , as defined by Eq.~5! or Eq. ~7!, is
then simply written as

Sn(2)5^C0(A)uwn(2)
† wn(2)uC0(A)&. ~34!

We now consider the it upper boundSn(2)
max for Sn(2) ,

Sn(2)
max5max

CA

$^CAuwn(2)
† wn(2)uCA&%, ~35!

where the maximum is taken with respect to all normaliz
A-boson eigenstates. This upper bound only requires kno
edge of the two-body stateCn(2) ; its explicit construction is
pointed out in Sec. III B.

SinceSn(2)
max is better than the trivial upper bound~24!, the

following inequality holds:

Sn(2)<Sn(2)
max<S A

2 D . ~36!

In combination with Eq.~29!, this results in a sequence o
new lower boundsLm , with m50,1, . . . , for theground-
state energy,

E0(A)>Lm5 (
n50

m21

Sn(2)
maxEn(2)1H S A

2 D 2 (
n50

m21

Sn(2)
maxJ Em(2) .

~37!

Here the two-body states are assumed to be ordered ac
ing to increasing energy,E0(2)<E1(2)<•••.

The optimal lower bound in this sequence is given by
largest valueLm̃5maxm(Lm), wherem̃ is determined by

(
n50

m̃21

Sn(2)
max,S A

2 D< (
n50

m̃

Sn(2)
max . ~38!

The inequalities in Eq.~37! constitute the principal resul
in this paper, and several remarks are in order.

~a! The conventional Hall-Post bound of Eq.~28! coin-
cides withL0.

~b! L1 is alwaysa better bound thanL0, since

L12L05H S A

2 D 2S0(2)
maxJ @E1(2)2E0(2)#>0. ~39!

In most of the cases we studied,L1 is the optimal boundLm̃ .
~c! If only a finite numbernb of discrete levels is presen

in the two-body spectrum, then Eq.~37! holds for 0<m
<nb , whereEnb

can be taken equal to zero.
~d! Equation ~37! holds without any symmetries of th

underlying Hamiltonian. If these are present, they can
course be used to refine the lower bound, e.g., an en
level En(2) appearing in Eq.~37! can correspond to adn-fold
degenerate multiplet with eigenstateswn(2),m , m
51, . . . ,dn . If the quantum numbers of the ground sta
06210
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C0(A) are known, it will usually be possible to determine th
maximal joint occupation number of the multiplet,

Pn(2)
max5max

CA

H ^CAu(
m

wn(2),m
† wn(2),muCA&J , ~40!

where the variation is made over allA-particle states with the
same symmetry properties asC0(A) . Using Pn(2)

max in the
evaluation of Eq.~37! will result in a better bound, becaus
Pn(2)

max<(mSn(2),m
max . An example of this will be given in Sec

VI.
~e! Finally, doing better thanLm̃ would require, e.g., an

optimalization of the simultaneous occupation for the tw
body ground and first excited state, involving a determin
tion of

max
CA

^CAuE0(2)w0(2)
† w0(2)1E1(2)w1(2)

† w1(2)uCA&. ~41!

This appears to be a far more complicated problem than
determination ofSn(2)

max .

B. Construction of maximal pair occupancies

Introducing the set of its natural orbitalsxa(x), a general
two-boson stateC (2) can be written as~see Appendix A 1!

C (2)~x1 ,x2!5(
a

xaxa~x1!xa~x2!, ~42!

where thexa are real and positive, and(axa
251. In second

quantized form, this reads

uC (2)&5
1

A2
(
a

xa~ca
† !2u&5w (2)

† u&, ~43!

where ca
† is the creation operator for the one-boson st

xa(x).
The maximal pair occupationS(2)

max of C (2) , defined ac-
cording to Eq.~35!, is equal to the largest eigenvalue of th
following Hermitian eigenvalue problem inA-boson space:

w (2)
† w (2)uCA&5luCA&. ~44!

The corresponding eigenvalue problem for fermions w
recently solved by Panet al. @20# in the context of a gener
alized pairing problem. The method in@20#, which involves
an infinite-dimensional algebra, can be easily adapted
bosonic systems. Here we only state the final result; for co
pleteness the derivation is given in Appendix B.

Let s50 for A even,s51 for A odd, anda5(A2s)/2.
The largest eigenvalue ofw (2)

† w (2) is among the eigenvalue
l in the maximally paired subspace~see Appendix B!. These
are given by

l5112sxb
214 (

k51, . . . ,a21

1

yk
, ~45!

in terms of the solutions of a set ofa21 nonlinear equations
in a21 variables (y1 , . . . ,ya21),
7-5
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1

4 (
a

xa
2~112sdab!

12ykxa
2

5
1

yk
1 (

l 51, . . . ,a21;lÞk

1

yk2yl
,

k51, . . . ,a21. ~46!

The indexb which appears for oddA is arbitrary~see Ap-
pendix B!.

The system of equations~46! allows us to determine the
maximal occupancyS(2)

max for generalA. For small values of
A, it can be rewritten in a much simpler form:

l5112xb
2 , A53,

(
a

xa
2

l2124xa
2

51, A54,

(
a

xa
2~112dab!

l2124xa
222xb

2
51, A55.

The maximal occupation of a pair state depends on
structure ofC (2) , i.e., on the distribution of thexa . The two
extreme cases are~a! uncorrelated and~b! ‘‘maximally cor-
related.’’ In the uncorrelated limit~a! only one of thexa is
nonzero, resulting inS(2)

max5A(A21)/2. The latter limit ~b!
has a flat distribution, i.e., assuming that there areV SP
states, thenxa51/AV. This case, corresponding to a sch
matic boson pairing force in a single degenerate shell, ca
treated analytically since the algebra reduces to SU~2!. The
resulting maximal eigenvalue isS(2)

max5a$11@2(a211s)/V#%.
In summary, the maximal eigenvalue inA-boson space

obeys

a<S(2)
max<S A

2 D , ~47!

where the upper limit corresponds to an uncorrelated w
function and the lower limit is reached as the large-V limit
of a maximally correlated wave function.

IV. MODIFICATIONS FOR FIXED-CENTER
FERMIONIC SYSTEMS

The basic inequalities~37! derived in the prceding sectio
still hold for fermions. However, the boundaries for the
lowed pair occupation numbers are completely different.

The natural orbitals for a two-fermion state come in as
ciated pairs„xa(x),xā(x)…, and a general two-fermion stat
C (2) can be written as~see Appendix A 1!

C (2)~x1 ,x2!5 (
a.0

xa@xa~x1!xā~x2!2xā~x1!xa~x2!#,

~48!

where the sum runs over distinct pairs. Thexa are real, posi-
tive for a.0, and withxā52xa , normalized as(axa

251.
In second quantized form, this reads
06210
e

-
be

e

-

uC (2)&5A2 (
a.0

xaca
†cā

† u&5w (2)
† u&. ~49!

The maximal pair occupationS(2)
max of C (2) is again equal

to the largest eigenvaluel of an eigenvalue problem in
A-fermion space,

w (2)
† w (2)uCA&5luCA&. ~50!

For fermion systems, we can use directly the results
@20#. Let s50 for A even, s51 for A odd, anda5(A
2s)/2. We have to solve the set ofa21 nonlinear equations
in a21 variables (y1 , . . . ,ya21),

2
1

2 (
a.0

xa
2~12sdab!

12ykxa
2

5
1

yk
1 (

l 51, . . . ,a21;lÞk

1

yk2yl
,

k51, . . . ,a21. ~51!

Then the relevant eigenvalues of Eq.~50! corresponding to
the subspace of maximally paired states are given by

l5122sxb
224 (

k51, . . . ,a21

1

yk
. ~52!

The simplified secular equations for smallA read,

l5122xb
2 , A53,

2 (
a.0

xa
2

l2114xa
2

51, A54,

2 (
a.0

xa
2~12dab!

l2114xa
212xb

2
51, A55.

It is again instructive to consider the two limiting cases
the structure ofC (2) . In the uncorrelated case, only one
the coefficientsxa is nonzero. This corresponds to a tw
body Slater determinant, andS(2)

max51. In the maximally cor-
related case, where all coefficients are equal, the coeffici
becomeuxau51/AV if there areV SP states. This is equiva
lent to the well-known problem of a schematic fermion pa
ing force in a single degenerate shell, withS(2)

max5a$12@2(a
211s)/V#%.

In the large-V limit, we then find that the maximal pai
occupation inA-fermion space obeys

1<S(2)
max<a. ~53!

Note the different role of correlations for boson and fermi
systems: for boson systems, correlations decrease the m
mal pair occupation compared to the uncorrelated case;
fermion systems they increase it.

From these bounds onS(2)
max, it follows that the Hall-Post

lower bound~28! will never be satisfactory for fermion sys
tems. Even without knowing the structure of the two-bo
eigenstates, it can be replaced by the better bound
7-6
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E0(A)>a(
n(2)

En(2) , ~54!

where n50, . . . ,2(a211s). Unfortunately, this bound
does not in general become the exact result in the limi
noninteracting fermions. For a noninteracting fermionic s
tem, the new bound~37! would yieldLm̃5(n(2)En(2) , where

n50, . . . ,12 A(A21)21; hence the new bound, though be
ter, would still not be exact, the reason being that
1
2 A(A21) two-particle energiesEi j 5e i1e j made with the
A lowest SP energiese i are not necessarily the lowest two
particle energies.

V. MODIFICATIONS FOR SELF-BOUND SYSTEMS

In analogy to the treatment in the previous sections,
try to derive lower bounds for the intrinsicA-body ground-
state energy in terms of the two-body wave functions a
energies of relative motion, by considering Eq.~26! with
N52,

E0(A)@1#5(
n(2)

En(2)F 2

AGSn(2)F 2

AG . ~55!

We again drop the dependence on the coupling stren
since it will remain fixed ata51 for the A-body and at
a52/A for the two-body quantities.

Apart from the different couplings, there are no diffe
ences with the fixed-center case, and the basic set o
equalities Eqs.~37! is still valid. The novel complication lies
in deriving an upper boundSn(2)

max for the pair occupation of a
relative pair wave functionC (2) in an intrinsic A-particle
wave function C (A) . Mathematically, this boils down to
finding the absolute maximum of the pair occupation in E
~5! or Eq. ~15!,

S(2)5S A

ND E dx1dx2dx18dx28d~R2!d~R28!

3C~2!
* ~x1 ,x2!C (2)~x18 ,x28!E dx3•••dxA

3C (A)~x1 ,x2 ,x3 , . . . ,xA!C~A!
* ~x18 ,x28 ,x3 , . . . ,xA!,

~56!

by varying C (A) in the space of translationally invarian
wave functions of the correct~anti!symmetry.

The problem of spectroscopic factors and occupat
numbers in self-bound systems is a difficult one~see@14#!,
and we did not succeed in finding a general solution to
problem. The caseA53 is tractable, however, since it can b
transformed into an eigenvalue equation in SP coordin
space. We neglect~iso!spin degrees of freedom and on
consider here cases in which the spatial part of the w
function is totally symmetric (h51) or antisymmetric (h
521), though the results can probably be extended to ca
of mixed spatial symmetry@13#.
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Introducing Jacobi coordinatesa5x12x2 and b5x3
2R2, a general three-body wave functionC (3) can be writ-
ten as

C (3)~x1 ,x2 ,x3![C̃ (3)~a,b!5 f ~a,b!1h f S b1
a

2
,
3a

4
2

b

2D
1 f S b2

a

2
,2

3a

4
2

b

2D ~57!

in terms of a functionf (a,b)5h f (2a,b). The pair wave
function is simply

C (2)~x1 ,x2![g~a!5hg~2a!. ~58!

In terms of these quantities, the pair occupation~56! for
A53 is rewritten as

S(2)53E db da da8 f * ~a8,b!g* ~a!Fg~a8!C̃ (3)~a,b!

1hgS a8

2
1bD C̃ (3)S a,

3a8

4
2

b

2D
1gS 2

a8

2
1bD C̃ (3)S a,2

3a8

4
2

b

2D G , ~59!

and the maximum must be taken with respect to allf (a,b)
having a fixed normalization,

E dx1dx2dx3d~R3!uC (3)~x1 ,x2 ,x3!u2

53E da db f* ~a,b!C̃ (3)~a,b!. ~60!

Performing the variation leads to the secular equation

lC̃ (3)~a8,b!5E da g* ~a!Fg~a8!C̃ (3)~a,b!1hgS a8

2
1bD

3C̃ (3)S a,
3a8

4
2

b

2D1gS 2
a8

2
1bD

3C̃ (3)S a,2
3a8

4
2

b

2D G . ~61!

Introducing the overlap function G(b)

5*da g* (a)C̃ (3)(a,b) @see Eq.~13!#, the secular equation
is transformed to a SP eigenvalue equation of a hermi
non-local operator,

~l21!G~x!52hE dx8Fg* S x

2
1x8DgS x8

2
1xD GG~x8!,

~62!

which can easily be solved numerically.
Although we cannot yet determine the maximal pair o

cupation for generalA, we can still find a bound forE0(A) in
terms of two-particle quantities that is better than the tra
7-7
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tional Hall-Post bound Eq.~27! for N52. This is done sim-
ply by replacing in the Hall-Post lower bound~27! for N
53,

E0(A)@a51#>
A~A21!

6
E0(3)F 3

AG , ~63!

the three-body ground-state energyE0(3)@3/A# by an im-
proved lower bound obtained by solving Eq.~62!.

VI. NUMERICAL EXAMPLES

A. Trapped boson system with pairing forces

As a first example, we consider a system of spinl
bosons trapped in a~three-dimensional! harmonic-oscillator
well, and interacting with a general monopole pairing for
~see, e.g., Dukelskyet al. @21#!. The Hamiltonian reads

Ĥ5(
N

eN(
lm

cNlm
† cNlm1gP†P, ~64!

whereN50,1, . . . is theharmonic-oscillator~HO! quantum
number andl is the orbital angular momentum. For conv
nience, we remove the zero-point energy from the sing
particle spectrum and set\v51, i.e., we takeeN5N.

The pair operator in Eq.~64! is

P†5(
N

wN(
l

~cNl
† cNl

† !

5(
N

wN(
l

~21! lA2l 11@cNl
†

^ cNl
† #0

0 . ~65!

For the purely schematic pairing force, with constantwN
[w, the system is exactly solvable for any finite number
HO levels, as was demonstrated by Richardson@22#. How-
ever, the schematic force has some unrealistic features d
its implicit dependence on the degeneracyDN5(N11)(N
12)/2 of the HO shells@21#. The interaction between boso
pairs in N and N8 levels is proportional toADNDN8. For
attractive pairing, e.g., this leads to occupations of the hig
levels far exceeding those of the lower ones. This can
cured by takingwN51/ADN, which is the pairing force we
will consider in our numerical examples.

In order to have the same notation as in Sec. III B, we
go over to the natural basis forP† by defining new SP states

bNlm
† 5

1

A2
i mi 1/2[12sgn(m)]@cNlm

† 1sgn~m!cNl2m
† # if mÞ0,

~66!
bNl0

† 5cNl0
† ,

in terms of whichP†5(NlmwN(bNlm
† )2.

The construction in Eq.~37! of a lower boundLm for the
A-boson system requires first to solving the two-boson pr
lem with the same Hamiltonian~64! but modified SP ener
gieseN8 5@(N21)/(A21)#eN , and we briefly discuss its so
06210
s

-

f

to

er
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lution. The two-body eigenstates of the collective pairi
type ~involving all harmonic-oscillator shells! can be written
as

uC (2)&5
1

A2
(
Nlm

xNlm~bNlm
† !2u&, ~67!

and have eigenenergiesE(2) that are solutions of

1

2g
5(

N

wN
2 DN

E(2)22eN8
. ~68!

The corresponding wave function isxNlm;wN /(E(2)

22eN8 ); these coefficients must be used in Eq.~46! to deter-
mine the maximal occupation number of this two-bos
state. The noncollective eigenstates have energiesE(2)

5eN1
8 1eN2

8 , and keep their unperturbed~harmonic-

oscillator! structure, apart from the fact that for a levelE(2)

52eN8 , the pair wave function must be orthogonal to t
zero-coupled pair( lm(bNlm

† )2. For g,0, the two-body
ground state is always collective, whereas the first exc
state can be either collective or noncollective, depending
the interaction strength.

First we study a simple case of four bosons in four H
levels (N50, . . . ,3), as thedimensionality is still suffi-
ciently small to allow comparison with exact diagonaliz
tion. In Fig. 1 and Fig. 2, results are shown for attracti
pairing. The weak-coupling regime is displayed in Fig.
where the exact energy is compared with the Hall-Post lo
boundL056E0(2) and the new lower boundL15S0(2)

maxE0(2)

1(62S0(2)
max)E1(2). We also plot, as an example of a simp

FIG. 1. Ground-state energy of four bosons with Hamiltoni
~64!, in four harmonic-oscillator levels. Solid line: exact resu
E0(4) . Dashed line: Hartree upper boundE(4)

H . Dotted line: Hall-
Post lower boundL0. Dot-dashed line: improved lower boundL1.
7-8
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upper bound, the energyE(4)
H of the Hartree solution, which

is known exactly for this system. If the sequence of struct
coefficientswN is decreasing withN, then the Hartree energ
E(A)

H for generalA can be shown to equalE(A)
H /A5e01(A

21)g if g,gc , andE(A)
H /A5e01(A21)gc@22(gc /g)# if

g,gc , where the critical strength isgc5@w0(e1
2e0)#/@2(A21)(w01w1)#.

Both lower bounds coincide with the exact result asg→
20. For more negative values ofg, the Hall-Post bound
quickly diverges from the exact result, whereas the impro
lower bound follows the exact result quite closely. In fact
is easy to see that the improved lower bound, in contras
the Hall-Post one, becomes exact also in the strong-coup
limit for all attractive pairing forces. This is because,
g→2`, the interaction term increasingly dominates ov
the external potential in the ground-state energy, and
lower boundL1 becomes exact for a separable Hamilton
P†P. Figure 2, where we show the relative error with resp
to the exact energy, demonstrates this explicitly. The kink
L1 at g525/16'0.3 occurs because at this value of t
coupling strength, the first excited state of theA52 system
changes from a solution of Eq.~68! to the unpaired solution
e081e18 .

We checked that in all cases,L1 is the optimal bound, i.e.
S0(2)

max1S1(2)
max.6, by calculatingS1(2)

max through Eq.~46! for the
second lowest solution of of Eq.~68!, or, if the first excited
state is the tripletc000

† c11m
† u&, by realizing that the maxima

joint occupation number of this triplet is equal to 4 in fou
boson space.

The results for repulsive pairing (g.0), shown in Fig. 3,
are less impressive. In this case, we lose the feature tha
g→1` the two-body force dominates the ground-state

FIG. 2. Relative errors for the ground-state energy of fo
bosons with Hamiltonian~64!, in four harmonic-oscillator levels
Dashed line: Hartree result (E(4)

H 2E0(4))/E0(4) @whereE0(4) is the
exact energy#. Dotted line: Hall-Post result (L02E0(4))/E0(4) . Dot-
dashed line: improved result (L12E0(4))/E0(4) .
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ergy; the system will simply tend to make pairs orthogona
P†, and the one-body part of the Hamiltonian can never
neglected. Of course, the new boundL1 ~which is the opti-
mal Lm̃) is still better than the conventionalL0.

Systems with a larger number of particles and/or sh
can be similarly treated. Results for 1000 bosons
50 harmonic oscillator main shells are shown in Fig. 4, a
the appreciable improvement of the new lower bound o
the conventional one is again clear. Forg,g8, whereg8'

r FIG. 3. See caption to Fig. 1. Case of repulsive pairing.

FIG. 4. Ground-state energyE0(A) for A51000 bosons with
Hamiltonian ~64! in 50 harmonic-oscillator levels. Dashed line
Hartree upper bound. Dotted line: Hall-Post lower boundL0. Dot-

dashed line: improved lower boundLm̃ , wherem̃51 or m̃52 ~see
text!.
7-9
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22.631024, we haveL2.L1 and the optimal lower bound
Lm̃ is given byL2 instead ofL1; the difference betweenL2
andL1 is marginal, however, certainly when compared w
L0.

B. Bosons interacting with power-law potentials

As an example of a self-bound system, we consideA
spinless bosons in three dimensions, interacting with pow
law potentials,

ĤA52
1

2m (
i

“ i
21g sgn~b! (

i 1, i 2
ur i2r j ub. ~69!

Note that physically relevant potentials must haveb.22 to
ensure an eigenvalue spectrum bounded from below.

In accordance with Eq.~63!, we try to derive lower
bounds for the three-particle ground-state energyE0(3)@3/A#,
in terms of the solutions of the following relative pair Ham
tonian:

Ĥ285S 3

A

2

3D S 2
1

m
“

2D1g sgn~b!r b. ~70!

Scaling laws can be used to write the eigenenergiesE(2) of
Ĥ28 as

E(2)5gS 2

AmgD
b/(b12)

h (2) ~71!

in terms of the eigenenergiesh (2) of 2“

21sgn(b)r b.
For the latter Hamiltonian, we determined numerically t

Lp501 ground-state energyh0(2) and wave function
C0(2)5g(r )Y00, as well as the energyh1(2) of the first ex-
cited ~symmetric! state, which hasLp501 for b<2 and
Lp521 for b>2.

We also determined the maximal occupationS0(2)
max of the

ground-state pairC0(2) in 01 three-boson space, which a
cording to Eq.~62! equals the largest eigenvaluel of

~l21!G~r !52E dr8r 82W~r ,r 8!G~r 8!. ~72!

The operatorW reads

W~r ,r 8!5
1

2E21

1

dx gS U r

2
1r 8U DgS Ur 82 1rU D , ~73!

wherex denotes the cosine of the angle betweenr andr . We
solved the radial eigenvalue equation~73! on a grid.

The lower bounds~37! for the three-boson energ
E0(3)@3/A# can now be used, according to Eq.~63!, to derive
lower boundsL0<L1<E0(A) for the generalA-boson sys-
tem,

L05
A~A21!

6
gS 2

AmgD
b/(b12)

3h0(2)53Ch0(2) ,

~74!
L15C~S0(2)

maxh0(2)1@32S0(2)
max#h1(2)!.
06210
r-

Note that, because of the scaling properties of power-
potentials, theA dependence ofL0 andL1 can be absorbed
in the coefficientC appearing in Eq.~74!.

In order to compare the new lower boundL1 with the
conventionalL0, we have plotted in Fig. 5 the relative im
provementR5(L12L0)/uL0u for a range of powers22
,b,10. Being a ratio,R is independent ofA. It can be
rewritten as a product,

R5
L12L0

uL0u
5S 12

1

3
S0(2)

max D S h1(2)2h0(2)

uh0(2)u
D5R1R2 ,

~75!

where the contributing factorsR1 and R2 are related to the
maximal occupation of the ground-state pair and to the
ergy difference between the ground and first excited st
respectively. These factors are also plotted in Fig. 5.

As can be seen from Fig. 5, the relative improvemenR
becomes zero for two values,b50 andb52. Forb52, it is
R1 that vanishes, since the operator in Eq.~73! has an eigen-
value equal to 1 ifg(r );exp(2r2). This reflects the fact tha
the conventional boundL0 becomes exact for harmonic
oscillator systems@1#. For b50, it is R2 that vanishes, since
the pair energy spectrum becomes degenerate asb→60,
that is,hn(2)→61 in this limit ~see, e.g.,@23#!.

Except for extreme values ofb ~which meansb close to
22 or positive and large!, the improvement ofL1 over L0
seems modest, e.g., for the case of gravitating bosons (b5
21) we findR'1.4%. However, for most power-law poten
tials, the conventional boundL0 is already quite a good ap
proximation to the exact energy of the three-body system
any improvement cannot be large on this scale. In Tabl

FIG. 5. Lower bounds for the energy of a system ofA bosons
interacting with a power-law potential sgn(b)r b. Solid line: relative
improvementR5(L12L0)/uL0u. The ratioR5R1R2 is a product of
two factors@see Eq.~75!#, which are also plotted. Dashed line:R1

512S0(2)
max/3. Dotted line:R25(h1(2)2h0(2))/uh0(2)u.
7-10
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we compare, for the three-body system withm5g51, the
exact ground-state energy~taken from @1#! with the lower
boundsL0 andL1, for a few values ofb. It is seen that in the
three-body system, the improved bound removes a siz
fraction ~between 25% and 75%) of the remaining discre
ancy between the exact energy and the lower-bound of
Hall-Post type.

It is interesting to note@23# that in the limit b→0, the
power-law potential is related to the case of the logarithm
potential, lnr5lim

b→0
(r b21)/b. As a consequence, the e

genvalueshn(b) of the Hamiltonian2“

21sgn(b)r b are,
for smallb, connected with the eigenvalueshn

L of the Hamil-
tonian2“

21 ln r via the relation

hn~b!→sgn~b!1ubuS hn
L2

1

2
lnubu D , ~76!

which holds up to terms decreasing faster than linear inubu.
Equation ~76! shows the origin of the degeneracy in th
power-law eigenvalue spectrum forb→0. This degeneracy
is absent if we consider directly the logarithmic potenti
i.e., anA-boson system with Hamiltonian

ĤA52
1

2m (
i

“ i
21g (

i 1, i 2
lnur i2r j u. ~77!

A straightforward analysis then leads to

L05
A~A21!

6
gF3h0(2)

L 1
1

2
lnS 2

AmgD G ,
L15

A~A21!

6
gFS0(2)

maxh0(2)
L 1@32S0(2)

max#h1(2)
L

1
1

2
lnS 2

AmgD G , ~78!

where h0(2)
L 51.044 433 2, h1(2)

L 51.847 442, and S0(2)
max

52.986 419. To compare this with the values in Fig. 5, o
can consider, e.g.,mAg/2'1. The relative improvemen
then becomesR5(L12L0)/uL0u'0.35%.

TABLE I. Energies and bounds in a three-body system intera
ing with power-law potentials sgn(b)r b. The Hamiltonian is given
by Eq. ~69! with A53 and m5g51. We compare the lowe
boundsL0 andL1 with the exact energyE0(3) , taken from@1# and
properly rescaled. The last column contains the ratio (L1

2L0)/(E0(3)2L0).

b E0(3) L0 L1 ratio

21.0 21.0670 21.1250 21.1095 27
20.5 21.4911 21.5043 21.4987 42

0.1 3.6383 3.6363 3.6374 57
0.5 5.0780 5.0718 5.0757 64
1.0 6.1323 6.1276 6.1309 71
2.0 7.3485 7.3485 7.3485 -
3.0 8.1228 8.1163 8.1212 75
06210
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C. Electrons confined in a harmonic-oscillator well

As an example of a fermion problem, we improve t
bounds derived recently by Juilletet al. for a quantum dot
system of electrons confined in a harmonic-oscillator w
@13#. The hamiltonian in atomic units (m5e51) reads

Ĥ5(
i 51

S 2
“ i

2

2
1

v2r i
2

2 D 1(
i , j

1

ur i2r j u2
. ~79!

The harmonic center-of-mass motion can be split off a
treated exactly, and we concentrate on the relative motio

We consider a system of three electrons with total s
S5 3

2 , e.g., three spin-up electrons. The spatial wave funct
is antisymmetric, so the bound derived in Sec. V can
applied for the energy of the ground state, which hasLp

511.
According to Eq.~11!, with N52 andA53, we must first

construct the ground state of the relative two-body Ham
tonian,

Ĥ285
2

3 S 2“

21
v2

4
r2D1

1

r
. ~80!

In the previous examples, the pair ground state was non
generate. In the present case, the lowest antisymmetric ei
stateg(r ) forms anLp512 triplet,

gm~r !5g~r !Y1m~V!. ~81!

Since the pair ground state is now degenerate, we must
eralize Eq. ~59!, and maximize thejoint occupancy l
5(mS(2)m of the members of the triplet. This leads in
straightforward fashion to an eigenvalue equation,

~l21!Gmn~r !522(
m8

E dr 8Fgm* S r

2
1r 8D

3gm8S r 8
2

1r D GGm8n~r 8!, ~82!

which replaces Eq.~62!. The overlap functionGmn(r ) be-
tween the 12 pair stategm and one of the membersC (3)n of
the A53 ground-state 11 triplet has the following tensor
structure:

Gmn~r !5G~r !^1 m 1 n2mu 1 n&Y1n2m~V!. ~83!

Substitution into Eq.~82! leads, after some angular mome
tum algebra, to a radial eigenvalue equation

~l21!G~r !52E dr8r 82W~r ,r 8!G~r 8!. ~84!

The operatorW reads

t-
7-11
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W~r ,r 8!5
1

2
rr 8E

21

1

dx @P0~x!2P2~x!#

3

gS U r

2
1r 8U DgS Ur 82 1rU D

U r

2
1r 8UUr 82 1rU , ~85!

wherePl are the Legendre polynomials.
We checked that for a HOp wave function, g(r )

;r exp(2r2), the maximal eigenvalue of Eq.~84! yields
l53, which equals the number of pairs in theA53 system.
This means that the Hall-Post boundL0 already coincides
with the exact result for HO systems, as could be expec
from the discussion in@13#.

In the presence of the electron-electron repulsion, the
wave function is distorted from the HO shape, and we fin
maximal eigenvaluel52.901 644 forv50.01. The lowest
energies of the Hamiltonian~80! are e050.055 608 37 for
the (p-wave! ground state ande150.061 712 71 for the
( f -wave! first excited antisymmetric state. For the Hall-Po
bound, we thus findL053e050.1668, in agreement with
@13#. This is already quite a good bound compared with
exact three-body ground-state energyE(3)50.1680, as
quoted in @13#. The new bound improves this toL15le0
1(32l)e150.1674.

For v510, which is closer to a pure harmonic-oscillat
system, we find l52.999 780, e0518.322 73, ande1
531.147 20, yielding boundsL0554.968 andL1554.971,
to be compared with the exact resultE(3)554.973, quoted in
@13#.

In conclusion, by taking the structure of the pair wa
function into account we are able to halve the remain
deviation between the Hall-Post-type lower bound and
exact result.

VII. SUMMARY

Motivated by the renewed interest in lower bounds for
ground-state energy of many-body systems, we have de
oped a method to improve the existing lower bounds of
Hall-Post type. The method is based on an exact sum rule
the energy in terms of two-body occupation numbers@or,
equivalently, spectroscopic factors related to (A22)-particle
removal# in the A-particle ground state. The pair occupatio
numbers that enter the sum rule refer to the two-body eig
states of the two-body cluster Hamiltonian in the conve
tional Hall-Post decomposition of the many-body Ham
tonian. We find that it is possible to derive upper bounds
these pair occupation numbers, without detailed knowle
of the structure of theA-particle wave function. These uppe
bounds, or maximal pair occupancies, do depend on
structure of the pair state, and can be used to obtain s
lower bounds to theA-particle energy that are better than t
conventional one.

We have studied both the bosonic and fermionic sec
and developed a framework for both fixed-center syste
and self-bound systems, where the wave functions are tr
06210
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ir
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lationally invariant. We have applied the formal results
various numerical examples, and demonstrated that sig
cant improvements are obtained over the conventional lo
bound.

Several problems are still remaining. In the case of s
bound systems, a method to evaluate the maximal pair o
pation in A-particle space is not available forA>4. Also,
states of mixed spatial symmetry are not yet treated. If
two-body energy spectrum contains a continuum part,
associated pair strength does not contribute to the lo
bound in the present work; a better treatment of the c
tinuum part would be very interesting, as it would lead to t
derivation of improved bounds for the critical couplin
strength@2–4# needed to achieve binding in many-body sy
tems.

In general, further improvements could be made by m
refined approximations to the distributionSn(2) of the pair
occupations over the various pair states. In the present w
this occupation is maximized for each pair state separat
in reality, of course, they are interrelated, as they reflect
cupations within the sameA-particle state. Such a refineme
is needed in particular for the fermion case, since the non
teracting limit is at present not reproduced.

The present work can also be rephrased in terms of
stract many-body theory. TheA-particle ground-state energ
in Eqs.~23! and ~26! is expressed as

E0(A)5Tr $Ĥ2@a#r (2)%, ~86!

where a51/(A21) or a52/A for fixed-center and self-
bound systems, respectively. Minimizing the right-hand s
of Eq. ~86! over all A-representable two-body densitie
would yield the exactA particle energy. The full set of exac
conditions for A representability are of course unknow
Minimizing the right-hand side of Eq.~86! over all two-body
densities that comply with alimited set ofA-representability
conditions will then yield a lower bound for theA-particle
energy. The conventional boundL0 can be seen as th
lowest-order approximation in this scheme, since only
normalization condition Tr$r (2)%5A(A21)/2 is required
for the two-body density matrix in Eq.~86!. The improved
bounds in this work can be viewed as imposing additio
conditions on the natural pair occupation numbers of
two-body density matrix in this scheme.
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APPENDIX A: NATURAL ORBITAL REPRESENTATION
FOR PAIR STATES

1. Two-boson states

In a general SP basis, a two-boson state can be expa
as
7-12
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uC (2)&5
1

A2
(
ab

Cabca
†cb

† , ~A1!

where Cab5Cba is a ~complex! symmetric matrix, and
Tr$CC†%5(abuCabu251 fixes the normalization.

The Hermitian one-body density matrix reads

rab5^C (2)ucb
†cauC (2)&52(

l
CalCbl* , ~A2!

or, in matrix notation,r52CC†.
Under a unitary transformationca8

8†
5(aUaa8ca

† to a new
SP basis, the matricesr andC transform as

r85U†rU, C85U†CU* . ~A3!

We can always make a unitary transformation to the na
ral SP basis that diagonalizes the one-body density matrir.
In this basis,r is real, and as a consequence the commuta
@C,C†#5@r,C#50 vanish. It follows that in the natural ba
sisC is block-diagonal, eachn3n block C(a) corresponding
to ann-fold degenerateraa .

For such a block, the matrixD (a)5C(a)A2/raa is a uni-
tary and symmetric matrix, which can be diagonalized b
real orthogonal transformation. Indeed, ifX is an eigenvector
of D (a) with eigenvalue l, then D (a)X5lX implies
D (a)X* 5lX* , becauseD (a)* 5D (a)21

andl* 5l21. So ei-
ther X5X* is real or l is degenerate with eigenvecto
X,X* , which can be replaced by an orthogonal pair from
real linear combinationsX15(X1X* ),X25(X2X* )/ i .

Since the transformation to the basis of real eigenvec
of C is real orthogonal, it also corresponds, according to
~A3!, to an allowed unitary transformation on the SP ba
In this basis,Cmn

(a)5dmnAraa/2 exp(iun). The phase can be
absorbed in the SP states. As a result, the desired cano
form of a two-boson state reads

uC (2)&5
1

A2
(
a

xa~ca
† !2u&, ~A4!

wherexa5Araa/2 is real and positive.

2. Two-fermion states

In a general SP basis, a two-fermion state can be
panded as

uC (2)&5
1

A2
(
ab

Cabca
†cb

† u&, ~A5!

whereCab5Cba is a ~complex! antisymmetric matrix, and
Tr$CC†%51.
06210
-

rs

a

e

rs
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x-

An identical analysis to that in the bosonic case leads
the natural basis to matricesD (a) that are now unitary and
antisymmetric, and can be brought to a canonical form b
real orthogonal transformation. IfD (a)X5lX, thenD (a)X*
52lX* ~becauseD (a)* 52D (a)21

). So the eigenvalues
vectors come in pairs (l,X),(2l,X* ), whereX†X* 50. For
such a pair, we may transform from the eigenvector ba
X,X* to the real basis X15(X1X* )/A2,X25(X
2X* )/ iA2. The 232 diagonal block in theX,X* represen-
tation is transformed as

S l 0

0 2l
D→S 0 2 il

il 0 D . ~A6!

The transformation to the real basis vectorsX1 ,X2 is
again real orthogonal, and corresponds to an allowed uni
transformation on the SP basis. In this basis,Cmn

(a)

5dmn̄Araa/2 exp(ium), wheren,n̄ are associated pair state
andu n̄5un1p. Apart from an overall sign, the phase can
absorbed in the SP states. As a result, the desired cano
form of a two-fermion state reads

uC (2)&5
1

A2
(
a.0

xa~ca
†cā

†
2cā

†
ca

† !u&5A2 (
a.0

xaca
†cā

† u&,

~A7!

where xa5Araa/2 is real and positive and the summatio
a.0 is made over distinct pairs.

APPENDIX B: MAXIMAL PAIR OCCUPANCY FOR A
GENERAL NUMBER OF BOSONS

We follow here closely the reasoning by Panet al. @20#
for the fermion pairing problem.

A two-boson stateC (2) is expressed in its natural basis

uC (2)&5
1

A2
(
a

xa~ca
† !2u&5w (2)

† u&, ~B1!

where thexa are real and positive, and(axa
251. The con-

struction of the eigenvalues of thew (2)
† w (2) operator then

proceeds as follows.
The uncorrelatedA-boson states in the natural SP ba

read

uC (A)&5)
i 51

1`

~ci
†!piu&, ~B2!

where( i pi5A, and can be classified according to the br
ken pairs they contain, i.e., withpi52mi1r i and r i50 or
r i51, we can construct the corresponding vacuumu0& of the
w (2) operator,

u0&5)
i 51

1`

~ci
†!r iu&. ~B3!
7-13
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Obviously, thew (2)
† w

(2)
operator does not connectA-boson

states belonging to a different vacuumu0&. For our purpose,
we may takeu0&5u& ~the zero-boson state! if A52a is even
and u0&5cb

† u&5ub& if A52a11 is odd, whereb is one of
the single-boson states.

Next we introduce generalized operators,

w†~y!5
1

A2
(
a

xa

12yxa
2 ~ca

† !2,

N~y!5(
a

xa
2

12yxa
2 S ca

†ca1
1

2D , ~B4!

which obey the commutator algebra

@w~y1!,w†~y2!#52
y1N~y1!2y2N~y2!

y12y2
,

@N~y1!,w†~y2!#52
w†~y1!2w†~y2!

y12y2
. ~B5!

One can now show that for a suitable choice of variab
y1 ,•••,ya21, the vector

uC (A)&5w†~0!w†~y1!•••w†~ya21!u0& ~B6!
B

d,

cl.

A

06210
s

is an eigenvector of thew†(0)w(0)5w (2)
† w (2) operator.

Using the commutation relations~B5!, one finds

w†~0!w~0!uC (A)&5S 2L~0!14(
k51

a21
1

yk
D uC (A)&

12(
k51

a21 S L~yk!2
2

yk
2 (

k851
(k8Þk)

a21
2

yk2yk8D
3w†~0!w†~0! )

i 51
( iÞk)

a21

w†~yi !u0&, ~B7!

whereL(y) is the eigenvalue forN(y) acting on the vacuum
u0&,

L~y!5(
a

xa
2

12yxa
2 S 1

2
1sdabD . ~B8!

For evenA, u0&5u& and s50; for odd A, u0&5ub& and s
51.

The second term in Eq.~B7! vanishes if the variables
(y1 , . . . ,ya21) are solutions of the set~46! of nonlinear
equations, whereas the coefficient in front of the first te
yields the corresponding eigenvalue~45! of the w†(0)w(0)
operator.
dy

a,

s.
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