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Improved lower bounds for the ground-state energy of many-body systems
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Alternative lower bounds for the binding energy of a quantum-mechanical system of interacting particles are
presented. These bounds are expressed in terms of two-particle quantities and improve the conventional bounds
of the Hall-Post type. They are constructed by considering not only the energy in the two-particle system, but
also the structure of the pair wave function. We apply the formal results to various numerical examples, and
show that in some cases dramatic improvement over the existing bounds is reached.
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[. INTRODUCTION improved lower bound, whose value is increased with re-

spect to the Hall-Post case.
One of the central problems in quantum many-body phys- The present paper is organized as follows. In Sec. I, we
ics is to find the energy of a system Afparticles interacting  first establish notations, introduce cluster decompositions of
with given two-body potentials. Variational techniques yield e many-body Hamiltonian, and rederive the Hall-Post in-

an upper bound to the exact energy. The determination of §dualities. Next we point out in Sec. Il how the Hall-Post
strict lower bound can then provide a natural and usefuP©und can be improved in the case of fixed-center bosonic
complement systems. The equivalent case for fermions is treated in Sec.

IV. The modifications that enter when considering self-

: In recent years, there has bee?‘ renewed 'lntere'st n derlY)'ound (translationally invariant systems are discussed in
ing such lower bounds, mostly in connection with quarkge: "y Finally, we apply the formal results to various nu-

models in hadron spectroscopy], or the limits for Bor-  orica) examples, which are collected in Sec. VI. Section
romean phenomena in loosely bound syst¢@nsd]. Earlier v/ contains a global summary and points out some remain-
uses of lower bounds were focused on thermodynamical conng problems.

siderationg 6], or the problem of stability in self-gravitating

systemg7,8]. IIl. GENERAL REMARKS ON CLUSTER
Up to now, all lower bounds have been based on the DECOMPOSITIONS OF THE HAMILTONIAN
Hall-Post decompositio[®,10] of the Hamiltonian into two- FOR A SYSTEM OF IDENTICAL PARTICLES

body clusters, and subsequent application of the variational
principle in two-body space. Several variants and extensions
have been proposed, e.g., an optimal decomposition in the We restrict ourselves to systems of identical particles and
case of thre¢11] or four [12] unequal masses. The case of follow the notational conventions of14]. In particular,
identical fermions was recently studied[it3]. single-particle coordinates are generically written as
In its most useful form, a lower bound of the Hall-Post X1.X2, - - . @nd should be regarded as spatial coordinates in
type is expressed in terms of the ground-state energy in @ dimensions. Spin or isospin degrees of freedom are not
two-body system. Finding this two-body energy usually goe§pr|C|tIy mentioned, but may be ass_umed to be included in
together with determining the wave function of the ground-th€X; dependence of the wave functions and operators.
state pair. We show in this paper that by using the structure FOr @ system of particles, we consider a Hamiltonian
of the pair wave function, one can always improve the Hall-H[ @], which is a sum of one-body and two-body operators
Post bound, and that the improvement is sometimes spewith variable relative weight,
tacular. Our results apply to boson and fermion systems, both

A. Notational conventions

yv|th and_W|thout the presence of an external potential, and Aala](Xe, ... X =a E t(x;.)

irrespective of the local or nonlocal character of the two- i1=1,... A 1

body potentials. We do restrict ourselves to systems of iden-

tical particles, leaving a study of the unequal mass case for + 2 v(x.%). (1)
future work. i<i, oL, A 1T

Loosely speaking, the Hall-Post bound implies that the .
ground state forA identical particles is a superposition of Using a combinatorial identity, we can rewrltg\[ a=1] for
$A(A—1) pairs in the lowest-energy state of a modifiedany N with 2<N<A as
Hamiltonian. However, because of the correlated structure of

such a pair, it is in general not possible to reach a pair occu-  {,[1](xy, ... ,XA):; >

pation of $A(A—1), except in the case of noninteracting A=2) i< <g=1. A
bosons. For any given pair, there exists a maximal value for N—2

the occupancy that can be reached infahody state. The

remainder of thg A(A— 1) pairs must then necessarily be in <A E (x x ). (2
a state with higher energy. This allows the construction of an NEA—1 | e i

1050-2947/2001/68)/06210714)/$20.00 63062107-1 ©2001 The American Physical Society



D. Van NECK, Y. DEWULF, AND M. WAROQUIER PHYSICAL REVIEW A63 062107

The HamiltonianHy[ (N—1)/(A—1)] for clusters ofN Note that theS,(y)[a] can also be interpreted as the-
particles is related to the original Hamiltonias[1] for A cupation numbeof the stateW,y)[«] in the ground state
particles, but has different relative weights for its one-body¥ oa)[ 11, since Eq.(5) can be rewritten as
and two-body componentsr, equivalently, a different cou-
pling strength of the two-body interactipnWe can now
make the weights equal again by absorbing the difference in
an additional one-body term. As shown in Sec. Il B, this

SV(N)[Q]ZJ Xm' . ‘dXNdXi. . d)(’/\I

. . X\If*N[a](Xl, ...,XN)
leads to sum rules for the energy that are generalizations of v(N)
the WeII-knpwn Koltun sum rulg1e. Alternatlv_ely, we can XpM(xq, ... Xy XL X
keep the different coupling strength in thieparticle Hamil-
tonian. This will lead to another set of sum rules, derived in X‘I’V(N)[a](xi, Ce XN (7)

Sec. Il C, from which the Hall-Post inequalities immediately

follow. in terms of theN-body density matrix
One of the ingredients in these sum rules is the spectro-

scopic factors related to the removal of particles from the P(N)(XA7N+1, e XA XA Ny - XA
A-particle system in its ground state. These are defined as
follows ! (A f . dx

The A-particle ground stateVos)[1] of H[1] can al- N ! AN

ways be expanded in terms of the complete orthonormal set
of N-particle eigenstate¥ [ a] of Ayl al,

A —-1/2
N) v(zm

X‘I’V(N)[a](xl, e ,XN)

X,nla](Xnrg, - -+ Xa)-

X\Pg(A)[l](le .
XWoml1](Xg, - -

! !
c XA-NSXA—N+1s - -+ Xp)

CXA-NXA-N+1s e Xp) . (8)
Yol 11X, ... Xa)=

The above equations hold for fixed-center systems, in
which the one-body part of the Hamiltonian contains an ex-
ternal potential. For self-bound systems, the one-body part is
purely kinetic and the two-body part depends on relative
coordinates only, i.e.p(X1,X2)=v(X;—X,). Since the in-

3 trinsic eigenstates of the Hamiltonian are translationally in-
variant, some modificationd 4] are needed.

The intrinsic kinetic energy is obtained by subtracting the
center-of-mass from the total kinetic energy,

Al/2
dx:---d R 1 1
N) J O Tha=—oe > & ( > 4
1=

24—
2mi, =7 a7t 2Am{; =7 A 1

The expansion coefficientg,\,[ «] are the overlap func-
tions between th&V ,\,[ @] and W[ 1],

. ,XA) =

danlal(Xnr, - -

X\P:(N)[a](xlv e XN)

XWomlLlI(Xy, - .. Xa),

¢ >

- T 9. )2
2Ami1Si2=l,...A(&'1 3'2)’ 9

4
_ o . . and is seen to behave as a two-body operator with an
and their normalization yields the corresponding spectroa-dependent coupling strength. Defining the intrinsic Hamil-

scopic factorS, [ a1,

SV(N)[CY]ZJ dXno e AXal ol @l (X gy - -2 Xa) %,
®)

that is, the squared amplitude for removiAg-N particles
from W[ 1] and ending up in¥ [ a].

tonian with variable coupling strength as

Apal=aTp+ >

i1<ip=1,...

o, ~%), (10

the decompositiori2) gets modified to

Obviously, the spectroscopic factors are positive, and the . 1 2
completeness of the s#t, [ a] implies the sum rule HAlLI(X1, - o X)) =73 <o A
2 (A) N— 2)
S = . 6
2 Suwlal=| ®) N
XHN K (Xil, ...,XiN). (11)

The definitions in this section may look tedious or superfluous, The A-particle ground-state wave function can be ex-
but will allow in later sections a unified treatment for fixed-center panded in a complete orthonormal set of intrinSiparticle
and self-bound systems. eigenstate$l4], the self-bound equivalent of E¢) being
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A\ 12 B. Generalized Koltun sum rules
Yol 1](x1, ... Xa)= N) 0 For fixed-center systems, the decompositi@ can be
reshuffled so as to have the same Hamiltoniaiparticle
XU, lal(Xy, ... XN) and N-particle space, at the expense of an additional one-
body term,
X mlalXnr1—Ryy -+ - Xa— Ry,
. 1
12 ALl - X =t D
A=2) i< <L A
whereRy=1/NZN . x;; the overlap functions are defined as N—-2

XHN[l](Xila e Xiy)

A 1/2
boylal(Xnsas - - Xa)= N) f dxg- - -dxyo(Ry) A—N
“NC1 _12 t(xi,). (17
X\P:(N)[a](xli B 1XN) =LA
XWoml1](Xg, ... Xa), The expectation value of EqL7) in the A-particle ground
13 state, expanded according to Eg), can be worked out us-
ing Eqgs.(4) and (5) and reads
whereas Eqs(5) and (6) remain unchanged. N 1
The spectroscopic fact@, ) , as defined by Eq5), can Eowlll=57v—=) Tow~ 7557
. - . S A+N-1 A-2
again be viewed as the occupation number of the intrinsic
N-particle state¥,y, in the A-particle ground state, but this N—1
occupation number now also includes a summation over all
ipnc:gssmle states dN-particle center-of-mass motion, i.e., us- XVE (Euny[ 11— Eo[ 1DS, o[ 1]
exp —iKRy) expliKRY) 18
f K d/zN) ’ 72 = 0Ry=R(), (14 4
(27) (2)

Here the ground-state energy has been expressed in terms of
_ the expectation valugy sy of the one-body field and the first
we can express the spectroscopic factor as energy-weighted moment of the distribution of
(A—N)-particle removal strengtfor mean removal energy

This is a generalization of the familiar Koltun sum r{ils]
Sl [ - didxg- - deoRy-RY) for NoA—1,
XW* [al(Xg, ... XN) 1
»(N) 1 XN
Eomll]= > Tony— > (Epa—1)l1]
XpM (X, oo XNiXE, o X v(A-1)
XWypledxa, - Xy (15 ~Eoml[1)Sya_ 1]}, (19

lge N-body density matrix for a selt-bound system, defmedwhere the distribution of single-particle removal strength is

experimentally accessible through single-particl&P
knock-out reaction$17,18.

P M (XA-Ns1s -+ XATXANT1r - - - XA) For self-bound systems, we céin analogy to Eq(17)]
A restore in Eq(11) the original Hamiltonian at the expense of
_ dxi- - dXa nS(Ra_ an additional(intrinsic) kinetic term,
N) f X1 Xa-nO(Ra-n)
/ / N 1
Xq’S(A)[l](Xla <o XA-N 1XA7N+11 s 1XA) HA[l](Xl, s !XA): — ) Z
A—2 i1<---<in=1,... A
XWoml1]1(X1, - Xa-NXa-N+1s - - - XA),s N—2
(16) . A-N,,
XHGLI(X - X ) — TTA'
is the proper extension of the one-body density matrix for
translationally invariant systems ji4,15. (20
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The ground-state expectation value of E20), evaluated by then follow immediately from Eq(24).
means of Eqs(12) and (13), then reads

N N—1 1 IIl. IMPROVED LOWER BOUNDS FOR FIXED-CENTER

E— e BOSONIC SYSTEMS
Bowl 1= 27 n—1!{ N Tow (A—Z)

N—1

A. Derivation of new lower bounds

From now on we concentrate on the most relevant case
N=2, and try to derive lower bounds for th&-particle
XV(EN) (B[ 1= Eo[1DS,[ 11| - (22) ground-state energy in terms of two-body gquantities. At
present, such a lower bound is given by the Hall-Post in-
equality (25),

The result for the case M=A—-1, A

1
EO(A)[1]>< 2) Eom[m

, (28)

1[{A-2
Eowl1]= g{m%w— 2 (Eyapf1]
A7y which is usually derived by applying a variational principle
in two-body spacé2]. As was shown in Sec. Il C, the Hall-
~Eow[1DSua-0[ 1]}, (22 Post inequality is actually aequality when expressed in
terms of two-body energies and occupations,
is the Koltun sum rule for self-bound systeitscluding the
correct recoil factor for the kinetic enerd$4,19). Eoml1]= V(zz) E,2)

(29

SI/(Z) A—1:|'

A-1
C. Hall-Post inequalities

In order to simplify notations we drop the coupling
strength dependence in this section, as it will be fixedrto
=1 for A-particle anda=1/(A—1) for two-particle quanti-
ties. It is clear from Eqs(28) and(29) that in the traditional

The expectation value of E¢2), with the modified cou-
pling strength in theN-particle Hamiltonian, can be evalu-
ated in the same way as Ed.9),

1 N—1 N—1 lower bound, the distribution of pair streng®),, is ap-
EO(A)[1]=W > E.n A1 S m} proximated by concentrating all strength in the two-body
( ) v(N) ground state, i.e., by the distribution
N-2
(23 A
SV(Z)% 501/( 2) ' (30)
This expression forms the basis for deriving the lower

bounds considered in the next section. At the simplest level

L . S . . Which exhausts the sum ru(é).
combining Eq.(23) with the trivial inequality resulting from ; . .
the spectroscopic sum ru(é), This assumption can only be realistic for weakly corre-

lated systems. For a noninteracting Bose sysfers0 in

N—1 A Eq(1)] it holds exactly. The uncorrelated eigenstates are
0=S,n) A1 s( N)’ (29 product-type wave functions,
immediately leads to inequalities of the Hall-Post type, Wotay (X1, - - Xa)= T xx,
i=1,... A
A(A—1) N-1
=
ol 1= Nn=1) o] a—1 @9 WS (X1, %2) = x(X0) x(X), (31)

For self-bound systems, th&-particle ground-state en- wherey(x) is the SP eigenstate of the one-body Hamiltonian
ergy can be likewise evaluated, from the expectation value of(x) corresponding to the lowest energy. As a conse-
Eqg. (11), in terms of intrinsicN-particle energies and occu- quence,S.E“(‘g)=A(A—1)/2, and the Hall-Post lower bound

pation numbers, and reads coincides with the exact result,
E []_]:;E E —|S — (26) unc __ _ A 1 _ A unc
0(A) A-2\ 5 v(N)| A SN AL EO(A)_AEO_ 2 meo— o |F0(2)- (32
N-2
For strongly correlated systems, we expect that the occupa-
The Hall-post inequalities tion Sy(2) can deviate substantially from(A—1)/2, and the
Hall-Post lower bound will be far from the exact result.
Eon[1]= AAZD N 27) In order to improve on this situation we need to take into
OALT N(N—1) N A account correlations in the structure of the many-boson

062107-4



IMPROVED LOWER BOUNDS FOR THE GROUND-STAH . .. PHYSICAL REVIEW A 63 062107

eigenstates. As it is more convenient to work in second quar¥’ 4, are known, it will usually be possible to determine the
tization, we deflnepv(z) as the creation operator for the two- maximaljoint occupation number of the multiplet,
body eigenstatd,,), i.e.,

(33) Pl2)=max (Va2 <PI(2),,L<PV(2),,L|‘I’A> , (40
N

|‘I’V(2)>:€01(2)|>- W

The occupatiorS,,), as defined by Eq(5) or Eq. (7), is

- ' where the variation is made over Allparticle states with the
then simply written as

same symmetry properties aBg(). Using P73) in the
S . =(T t ¥ _ 34 evaluation of Eq(37) will result in a beftter bognd, l?ecause
@)= (Yowl uavalVow) (34 PI=Z,S/5 .- An example of this will be given in Sec.

We now consider the it upper bour]%) for S, ), . . ) .
(e) Finally, doing better tharC;, would require, e.g., an

s =max (Wl @l 20" @ W)}, (35  optimalization of the simultaneous occupation for the two-
A body ground and first excited state, involving a determina-

. . . . fion of
where the maximum is taken with respect to all normalized

A-boson eigenstates. This upper bound only requires knowl- max W 5| EO(2)¢3(2)¢0(2)+ E1(2)¢I(2)¢1(2)|\IIA>_ 41
edge of the two-body stat¥ ) ; its explicit construction is W
pointed out in Sec. Il B.

SinceS™ is better than the trivial upper bouti@4), the This appears to bn?a)? far more complicated problem than the

following mequahty holds: determination of5,3).
A . . . .
Su(z)\sr,?(% ( 2) (36) B. Construction of maximal pair occupancies

Introducing the set of its natural orbitals,(x), a general
In combination with Eq.(29), this results in a sequence of two-boson staté¥ ,, can be written agsee Appendix A 1
new lower boundsC,, with x=0,1,..., for theground-

state energy, W (2)(X1,%2) = 2 XaXa(X1) Xa(X2), (42
u—1 @
Eow=Lu= z Sv(Z)Ev(Z)+ ) 2 Sv(Z)] Eue)- where thex, are real and positive, arﬁaxffl. In second
(37)  quantized form, this reads
Here the two-body states are assumed to be ordered accord- 1 ) :
ing to increasing energyg)<Ej@<- . W ()= NG > XD =00)), (43)
The optimal lower bound in this sequence is given by the 2 @
largest valueC;=max,(L,), wherew is determined by wherec! is the creation operator for the one-boson state
n—1 7 Xa(X).
2 ax 2 max (389) The maximal pair occupatio3)* of ¥ ,), defined ac-
52 = i) cording to Eq.(35), is equal to the largest eigenvalue of the

following Hermitian eigenvalue problem iA-boson space:
The inequalities in Eq(37) constitute the principal result

in this paper, and several remarks are in order. 0lye )| YAy =N Wa). (44)
(a) The conventional Hall-Post bound of E(8) coin- ) ) )

cides with £, The corresponding eigenvalue problem for fermions was
(b) £, is alwaysa better bound that,, since recently solved by Past al.[20] in the context of a gener-

alized pairing problem. The method [i20], which involves
_ max an infinite-dimensional algebra, can be easily adapted to
L1=Lo= 2 ~So(2) [ [E12)~ Eo2)]=0. (39 bosonic systems. Here we only state the final result; for com-
pleteness the derivation is given in Appendix B.
In most of the cases we studieg, is the optimal boundC;, . Let s=0 for A even,s=1 for A odd, anda=(A—s)/2.
. (c) If only a finite numbem,, of discrete levels is present The largest eigenvalue @f(Tz)@(z) is among the eigenvalues
in the two-body spectrum, then E¢37) holds for O<u ) in the maximally paired subspaégee Appendix B These
<n,, whereE, can be taken equal to zero. are given by
(d) Equation(37) holds without any symmetries of the
underlying Hamiltonian. If these are present, they can of . i
course be used to refine the lower bound, e.g., an energy )‘_1+23X2+4k:1'2 a-1 Yk (45)
level E,,(») appearing in Eq(37) can correspond to d,-fold
degenerate  multiplet with  eigenstatese, ) ., © in terms of the solutions of a set af~ 1 nonlinear equations
=1,...d,. If the quantum numbers of the ground statein a—1 variables {1, ... Ya_1),
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1.« X4(1+2s3,5) 1 1 ;

—_ ol 2 B _ — 4 , ¥ (2)) = \/EZO XaChC )= @(n). (49)
47 1-y X5 Yk 1=1,..7a-11#k Yk~ VI @

The maximal pair occupatio§;}* of ¥ ) is again equal

k=1,...a-1. (46) o the largest eigenvalug of an eigenvalue problem in

. . . ) A-fermion space,
The indexB which appears for odd is arbitrary (see Ap-

pendix B. - ' P22 @)| VA= NP a). (50)
The system of equation@6) allows us to determine the ) ) )
maximal occupanC)S[ga)*x for generalA. For small values of For fermion systems, we can use directly the results in

[20]. Let s=0 for A even,s=1 for A odd, anda=(A

A, it can be rewritten in a much simpler form: ' _
—s)/2. We have to solve the set af- 1 nonlinear equations

)\=1+2x2, A=3, in a—1 variables ¥;, ... ,ya-1),
) 1« X3(1-s8,p 1 . 1
X - = _— = ,
2 —azzl, A=4, 2 420 1—ykxi Yk 1=1,..7; a—1;1#k Yk YI
a A—1-4x;
k=1,...a-1 (51
X2(1+28,p) _ _
2 —X > . 5;-1, A=5. Then the relevant eigenvalues of E§0O) corresponding to
a N—1-4x,—2X} the subspace of maximally paired states are given by

The maximal occupation of a pair state depends on the 1
structure of¥ 5, i.e., on the distribution of the, . The two A= 1—25)(%—4 > —. (52
extreme cases ar@) uncorrelated andb) “maximally cor- k=1, a-1 Yk
related.” In the uncorrelated limifa) only one of thex,, is

nonzero, resulting iS5 =A(A—1)/2. The latter limit(b) The simplified secular equations for smalread,

has a flat distribution, i.e., assuming that there 8reSP A=1—2x2 A=3

_ . . B L] 1
states, therx,=1//Q. This case, corresponding to a sche-
matic boson pairing force in a single degenerate shell, can be )
treated analytically since the algebra reduces t¢25Urhe > Xa -1 A=4
resulting maximal eigenvalue B *=a{1+[2(a—1+s)/Q]}. a0 N—1+4x2 ’

In summary, the maximal eigenvalue Axboson space
obeys K2(1— & h
"‘—20‘22 . A=5.
A a>0 N —1+4X,+2X}
a=sig<|, |, (47)

It is again instructive to consider the two limiting cases in

where the upper limit corresponds to an uncorrelated wavée structure ofV(;). In the uncorrelated case, only one of
function and the lower limit is reached as the ladimit ~ the coefficientsx, is nonzero. This corresponds to a two-
of a maximally correlated wave function. bOdy Slater determinant, alﬁg"’)‘le. In the maximally cor-
related case, where all coefficients are equal, the coefficients
V. MODIFICATIONS FOR FIXED-CENTER becomex,|=1//Q if there areQ) SP states. This is equiva-
FERMIONIC SYSTEMS lent to the well-known problem of a schematic fermion pair-
ing force in a single degenerate shell, wif}}*=a{1-[2(a
The basic inequalitie€37) derived in the prceding section —1+9/Q]}.
still hold for fermions. However, the boundaries for the al- |n the large€) limit, we then find that the maximal pair
lowed pair occupation numbers are completely different.  occupation inA-fermion space obeys
The natural orbitals for a two-fermion state come in asso-
ciated pairdy,(X),xa(X)), and a general two-fermion state 1< s[gé)lxs a. (53
W 2 can be written agsee Appendix A 1
Note the different role of correlations for boson and fermion
systems: for boson systems, correlations decrease the maxi-
W(Z)(Xl’XZ)_go Xal Xa(X0) XalX2) = XalX1) Xa(X2) ], rr?al pair occupation gompared to the uncorrelated case; for
(48)  fermion systems they increase it.

From these bounds 083", it follows that the Hall-Post
where the sum runs over distinct pairs. Theare real, posi-  lower bound(28) will never be satisfactory for fermion sys-
tive for >0, and withx,= —x,, normalized a§ax§=1. tems. Even without knowing the structure of the two-body
In second quantized form, this reads eigenstates, it can be replaced by the better bound
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Introducing Jacobi coordinatea=x;—X, and b=xj

EO(A)Ba%) Ev) (549 —R,, a general three-body wave functidifys, can be writ-
! ten as

where v=0,...,2@—1+s). Unfortunately, this bound ~ a3a b
does not in general become the exact result in the limit of¥ 5y(x;,X,,X3) =V 5)(a,b)=f(a,b)+ »f| b+ 343

noninteracting fermions. For a noninteracting fermionic sys-

tem, the new boun(B7) would yield £, =X ,5\E (), where

»=0, ... A(A—1)—1; hence the new bound, though bet- +f
ter, would still not be exact, the reason being that the

2A(A—1) two-particle energiek;; = €;+ €; made with the in terms of a functionf(a,b)=7f(—a,b). The pair wave
A lowest SP energies; are not necessarily the lowest two- function is simply

particle energies.

(57)

W (2)(X1,X2)=g(a)=ng(—a). (58)

V. MODIFICATIONS FOR SELF-BOUND SYSTEMS In terms of these quantities, the pair occupatib6) for

In analogy to the treatment in the previous sections, wet =3 IS rewritten as
try to derive lower bounds for the intrinsis-body ground-
state energy in terms ofi the two-body wave functiops and 3(2)=3J db daddf*(a’,b)g*(a)
energies of relative motion, by considering E6) with
N=2,

g(a') ¥ 5 (a,b)

a’ ~
+ ng ?'f'b ‘P(S)

3a’ b
a2

33" b
a7 72

!

—?-ﬁ‘b

2 2
JICR

We again drop the dependence on the coupling strength,
since it will remain fixed ata=1 for the A-body and at and the maximum must be taken with respect tof &, b)
a=2/A for the two-body quantities. having a fixed normalization,

Apart from the different couplings, there are no differ-
ences with the fixed-center case, and the basic set of in-
equalities Eqs(37) is still valid. The novel complication lies
in deriving an upper bounST(";X) for the pair occupation of a
relative pair wave functionV, in an intrinsic A-particle :3J’ dadb f*(a,b){ff(g)(a,b). (60)
wave function'¥ . Mathematically, this boils down to
finding the absolute maximum of the pair occupation in Eq.
(5) or Eq.(15),

Eomll]= %) E.2)

+g ‘T'(s) , (59

f dxldxzdxsé(Rs)N’(s)(Xl,X2,X3)|2

Performing the variation leads to the secular equation

!

~ ~ a

A AV (a’,b)=f dag‘(a)|g(a’)¥ (a,b)+7ng| =+b

r / (3) (3)
Si2)= N) f dx, dx,dx;dx;8(R,) S(R}) 2
XV sa’_b), ,+b
rour @&z 7379 TS
XWE) (X1, %2) W (2)(Xq ,Xz)J' dxz- - -dXp 4 2 2
* oyl T 3a’ b
XW (a)(X1,X2,Xz, « o Xa) WIA (X1 X5, X3, + - Xa), XW 3| a,— 7 3| (61)
(56)

Introducing the overlap function  G(b)
by varying.\If(A) in the space of translationally invariant = [da g*(a)¥ (3)(a,b) [see Eq.(13)], the secular equation
wave functions of the corre¢ant)symmetry. is transformed to a SP eigenvalue equation of a hermitian

The problem of spectroscopic factors and occupatiomon-local operator,
numbers in self-bound systems is a difficult oisee[14]),
and we did not succeed in finding a general solution to this Aol (X, ! )
problem. The cas&=3 is tractable, however, since it can be (A_l)G(X):ZWJ’ dx’| g% | 5 +x" 9| 5 +x] |G(X'),

transformed into an eigenvalue equation in SP coordinate (62)
space. We neglediso)spin degrees of freedom and only
consider here cases in which the spatial part of the wavevhich can easily be solved numerically.

function is totally symmetric f=1) or antisymmetric Although we cannot yet determine the maximal pair oc-
= —1), though the results can probably be extended to casespation for generah, we can still find a bound foEq ) in
of mixed spatial symmetr{/13]. terms of two-particle quantities that is better than the tradi-
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tional Hall-Post bound Eq27) for N=2. This is done sim-

ply by replacing in the Hall-Post lower bour(@7) for N uF
=3, - e
A(A-1) 3 e
EO(A)[a::L];TEO(:g) K ! (63) - Hartree .-~ - ,."’
the three-body ground-state energy s 3/A] by an im- - =7 Exact " g

proved lower bound obtained by solving E§2).

L7 “New bound

VI. NUMERICAL EXAMPLES
A. Trapped boson system with pairing forces

As a first example, we consider a system of spinless
bosons trapped in &hree-dimensionalharmonic-oscillator
well, and interacting with a general monopole pairing force
(see, e.g., Dukelskgt al.[21]). The Hamiltonian reads —14

Hall-Post.”

||||||||||Il\lllllr‘lllllllllll

1 | 1 'l 1 | 1 I 1 | 1 I 1 | 1 | 1 | 1
-05 -0.45 —0.4 -0.35 -0.3 -0.25 -0.2 -0.15 —0.1 —0.05 O

H=2 en2 clintuimt gP'P, (64) g

_ . . . FIG. 1. Ground-state energy of four bosons with Hamiltonian
whereN=0,1, ... is theharmonic-oscillato(HO) quantum (64), in four harmonic-oscillator levels. Solid line: exact result

number and is the orbital angular momentum. For conve- Eo(s). Dashed line: Hartree upper bouﬁ‘&). Dotted line: Hall-

nienpe, we remove the zero-pqint energy from the singlepqgt jower boundZ,. Dot-dashed line: improved lower boun.
particle spectrum and sétw=1, i.e., we takeey=N.

The pair operator in Eq64) is lution. The two-body eigenstates of the collective pairing
type (involving all harmonic-oscillator shellcan be written
PT:% WNEI (chichy) as
T == S Xnim(Blam)) (67)
=> wy> (—D'V2l+1cfecf 1S, (65 @)= 5 gy X Prim) ).
N T

For the purely schematic pairing force, with constan;  and have eigenenergi€s,) that are solutions of
=w, the system is exactly solvable for any finite number of
HO levels, as was demonstrated by Richardg2®]. How- 1 wﬁDN
ever, the schematic force has some unrealistic features due to 20 T E2e (68)
its implicit dependence on the degenerdzy=(N+1)(N 2 =N
+2)/2 of the HO shell$21]. The interaction between boson . . .
The corresponding wave function istym~Wwy/(E(2)

pairs inN and N’ levels is proportional toyDyDy,. For " . .
attractive pairing, e.g., this leads to occupations of the higher .26N)’ these coefficients must be used in B4f) to deter-

levels far exceeding those of the lower ones. This can pgine the maximal ocpupaﬂpn number of this two-boson
cured by takingwy=1/JDy, which is the pairing force we stat,e. T,he noncollective elg_enstates have ener@gg
will consider in our numerical examples. =en,Ten,, and keep their unperturbedharmonic-
In order to have the same notation as in Sec. lll B, we car®scillatop structure, apart from the fact that for a le&hb,
go over to the natural basis f&' by defining new SP states, =2¢€y, the pair wave function must be orthogonal to the
zero-coupled pairE,m(bLm)z. For g<0, the two-body
1 ground state is always collective, whereas the first excited
blyjm=—=imY2rsoIrcl 4+ sgrim)cl,_,,] if m#0, state can be either collective or noncollective, depending on
V2 the interaction strength.
(66) First we study a simple case of four bosons in four HO
blio="Clio: levels (N=0, ...,3), as thedimensionality is still suffi-
ciently small to allow comparison with exact diagonaliza-
in terms of whichPT=2N,mwN(bL|m)2. tion. In Fig. 1 and Fig. 2, results are shown for attractive
The construction in Eq37) of a lower boundZ,, for the  pairing. The weak-coupling regime is displayed in Fig. 1,
A-boson system requires first to solving the two-boson probwhere the exact energy is compared with the Hall-Post lower
lem with the same Hamiltonia(64) but modified SP ener- bound Ly=6E(,) and the new lower bound, = S%)Eq()
giesey=[(N—1)/(A—1)]ey, and we briefly discuss its so- +(6—$‘(§>)<)E1(2). We also plot, as an example of a simple

062107-8



IMPROVED LOWER BOUNDS FOR THE GROUND-STAH . .. PHYSICAL REVIEW A 63 062107

. 0.2 < 2.5 C
= - . Li E
o "Hall-Post (x0.125) 225 Hartree .-
0 015 [ = I
2 . s
= C .-
o § - B 2 = Pt
[(}] \_ '.' - "»
o 01 . ; F e
| . ‘.\_ 175 | R Exact
006 | .,‘I .\‘\l\iew bound E ,
. . < 1.5 — S
.- .~ = s New bour.\q___
0 ---_ MLLLETEFS 125 ,,' U T
Tl F K PR Hall—Post
—005 |- e 'F e
B Tl 075 /)
~—a - 1) s
04 = e ] E S
Hartree (x0.25) C .
| o5
- ‘_’f
-015 o
025
-0.2 AR Ll Ll Ll 0 e b b b b b b e b s L
1072 107! 1 10 102 6 005 01 015 02 025 03 035 04 045 05
-g g
FIG. 2. Relative errors for the ground-state energy of four FIG. 3. See caption to Fig. 1. Case of repulsive pairing.

bosons with Hamiltoniar{64), in four harmonic-oscillator levels.

Dashted line: ga:ttr((ajcal_re§ulj|E%); E;’(“))/ %0(4>_[E"here/50(4) iSDthte ergy; the system will simply tend to make pairs orthogonal to
g;zﬁeznl‘:g}(imo rgve:jnfésuilﬁ-g—oé re)s/uEt/.(O 0@4)/Eoa) - Dot P, and the one-body part of the Hamiltonian can never be
- Imp 0@y =) neglected. Of course, the new boufig (which is the opti-

. . mal £7,) is still better than the convention4l,.
"
upper bound, the enerds(; of the Hartree solution, which Systems with a larger number of particles and/or shells

is known exactly for this system. If the sequence of structurg.,, “ he  gimilarly treated. Results for 1000 bosons in
c%efﬂmentsz is decreasing with, then theHHartree €Nergy 50 harmonic oscillator main shells are shown in Fig. 4, and
E(n) for generalA cange shown to equin/A=eot (A the appreciable improvement of the new lower bound over
—1)g if g<gc, andEn/A=eot(A—1)92—(9c/9)] if  the conventional one is again clear. Rprg’, whereg’ ~
0<d., Wwhere the critical strength isg.=[wp(e;
—€) [/[2(A—1)(Wotwy)]. s o F pp—
Both lower bounds coincide with the exact resultgas i - O e T
—0. For more negative values @ the Hall-Post bound e ERNIURISUURREE S
quickly diverges from the exact result, whereas the improved -
lower bound follows the exact result quite closely. In fact, it —2000 —
is easy to see that the improved lower bound, in contrast tc
the Hall-Post one, becomes exact also in the strong-coupling
limit for all attractive pairing forces. This is because, as _, . |
g— —o, the interaction term increasingly dominates over L
the external potential in the ground-state energy, and the L
lower boundZ; becomes exact for a separable Hamiltonian L
PTP. Figure 2, where we show the relative error with respect -6o00
to the exact energy, demonstrates this explicitly. The kink in r
L4, at g=—5/16~0.3 occurs because at this value of the
coupling strength, the first excited state of the=2 system
changes from a solution of E¢68) to the unpaired solution
€\t e L
We checked that in all case8; is the optimal bound, i.e., =
S5+ Si3>6, by calculatingS]i3) through Eq.(46) for the  —tomo _join oo B P Pt Pt b
second lowest solution of of E@68), or, if the first excited 10°
state is the tripletf,ciy,|), by realizing that the maximal 9
joint occupation number of this triplet is equal to 4 in four-  FIG. 4. Ground-state energio) for A=1000 bosons with
boson space. Hamiltonian (64) in 50 harmonic-oscillator levels. Dashed line:
The results for repulsive pairingg0), shown in Fig. 3, Hartree upper bound. Dotted line: Hall-Post lower boukd Dot-
are less impressive. In this case, we lose the feature that @ashed line: improved lower bourt, , wherep=1 or u=2 (see
g— +o° the two-body force dominates the ground-state eniext).

—8000 HGII—Post:‘:
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—2.6x10 *, we havel,> £, and the optimal lower bound
Ly, is given by L, instead ofZ,; the difference betweef,

and £, is marginal, however, certainly when compared with

Lo.

B. Bosons interacting with power-law potentials

As an example of a self-bound system, we consiéler

spinless bosons in three dimensions, interacting with power-

law potentials,
N 1
Ha=— 52 Vi+gsgnp) 2 Iri—rjlf.  (69)
i i1<ip

Note that physically relevant potentials must hgze — 2 to
ensure an eigenvalue spectrum bounded from below.

In accordance with Eq(63), we try to derive lower
bounds for the three-particle ground-state endzgy,[ 3/A],
in terms of the solutions of the following relative pair Hamil-
tonian:

Hy= (70

32)( 1V2) p
a3/l Tm Vo Tasgp)rt.

Scaling laws can be used to write the eigenenergigs of
H} as

2

Amg (71)

BI(B+2)
) 72

E(Z):g(

in terms of the eigenenergieg, of —V2+sgn(@)r~.

PHYSICAL REVIEW A63 062107

Ratio

R I ST N N R N N T IT S N SR
-2 o] 2 4 6 8

10

4

FIG. 5. Lower bounds for the energy of a systemfobosons
interacting with a power-law potential sg8)r . Solid line: relative
improvemenR= (L, — Ly)/| Lo|. The ratioR=R;R; is a product of
two factors[see Eq(75)], which are also plotted. Dashed ling;
=1- Sg](azx)/3 DOt'[ed |ine:R2: ( 7]1(2)_ 7]0(2))/| 770(2)| .

Note that, because of the scaling properties of power-law
potentials, theA dependence of, and £, can be absorbed
in the coefficientC appearing in Eq(74).

In order to compare the new lower bourd with the

For the latter Hamiltonian, we determined numerically theconyentionalc,, we have plotted in Fig. 5 the relative im-

L™=0* ground-state energyngzy and wave function
Woi2)=9(r)Yoo, as well as the energy; () of the first ex-
cited (symmetri¢ state, which had. "=0" for <2 and
L™=2" for g=2.

We also determined the maximal occupatiff;) of the
ground-state paif’y,) in 0* three-boson space, which ac-
cording to Eq.(62) equals the largest eigenvaldeof

(A—l)G(r)sz dr'r"W(r,r")G(r'"). (72)

The operatolW reads
W "= lfl d ' ! i 73
(rr)=3 L axd s gl 5 ), (73

wherex denotes the cosine of the angle betweemdr. We
solved the radial eigenvalue equatit8) on a grid.

The lower bounds(37) for the three-boson energy
Eo(s)[3/A] can now be used, according to E§3), to derive
lower boundsLy<L;<Eg,, for the generalA-boson sys-
tem,

A(A—1) [ 2 \PI(B+2)
ﬁo_Tg(A_mg) 310(2)=3C o2y,
(74)
L1=C(Sy2ym0(2)+[3— So 2yl 71(2)-

provementR=(L,— Ly)!/|Ly| for a range of powers-2
<8<10. Being a ratio,R is independent ofA. It can be
rewritten as a product,

max

el

3

where the contributing factoi®; andR, are related to the
maximal occupation of the ground-state pair and to the en-
ergy difference between the ground and first excited state,
respectively. These factors are also plotted in Fig. 5.

As can be seen from Fig. 5, the relative improvemient
becomes zero for two value8=0 andB=2. ForB=2, itis
R; that vanishes, since the operator in EXB) has an eigen-
value equal to 1 ify(r) ~exp(—r?). This reflects the fact that
the conventional bound, becomes exact for harmonic-
oscillator system§l]. For =0, it is R, that vanishes, since
the pair energy spectrum becomes degeneratg-ast0,
that is, 7,(2y— *1 in this limit (see, e.g.[23]).

Except for extreme values @ (which meansB close to
—2 or positive and large the improvement ofZ; over £,
seems modest, e.g., for the case of gravitating bosgrs (
—1) we findR~1.4%. However, for most power-law poten-
tials, the conventional bound, is already quite a good ap-
proximation to the exact energy of the three-body system, so
any improvement cannot be large on this scale. In Table I,

Li—Ly
| Lol

71(2)~ Mo(2)
|770(2)|

) =R;1Ry,
(75

062107-10



IMPROVED LOWER BOUNDS FOR THE GROUND-STAH . .. PHYSICAL REVIEW A 63 062107

TABLE I. Energies and bounds in a three-body system interact- C. Electrons confined in a harmonic-oscillator well

ing with power-law potentials sg(r#. The Hamiltonian is given . .
by Eq. (69 with A—3 and m—g—1. We compare the lower As an example of a fermion problem, we improve the

boundsZ, and £, with the exact energ¥, s, taken from[1] and boutnds dfemlledt recentlyf_by ju_llleit ?]l' for a_quant_:Jlrr: dot I
properly rescaled. The last column contains the ratif; ( system of electrons confined In a harmonic-oscillator we

— £0)/(Eq(a)— Lo). [13]. The hamiltonian in atomic unitsr{=e=1) reads
2 2,2
B Eoga) Lo c ratio (i (_& w’r] ) PSP,
S22 S e
-1.0 —1.0670 —1.1250 —1.1095 27 ]
—-0.5 —1.4911 —1.5043 —1.4987 42
0.1 3.6383 3.6363 3.6374 57 The harmonic center-of-mass motion can be split off and
05 5.0780 50718 5.0757 ga  treated exactly, and we concentrate on the relative motion.
1.0 6.1323 6.1276 6.1309 71 We consider a system of three electrons with total spin
20 7.3485 7.3485 7.3485 ) S=32, e.g., three spin-up electrons. The spatial wave function
30 8.1228 81163 8.1212 75 is antisymmetric, so the bound derived in Sec. V can be
applied for the energy of the ground state, which h&s
=17,
we compare, for the three-body system with=g=1, the According to Eq(11), with N=2 andA=3, we must first

exact ground-state energsaken from[1]) with the lower ~ construct the ground state of the relative two-body Hamil-
boundsl, and£;, for a few values of3. It is seen that in the tonian,

three-body system, the improved bound removes a sizable

fraction (between 25% and 75%) of the remaining discrep- N, 2 5 w? 5
ancy between the exact energy and the lower-bound of the H2:§ - Vot Tr
Hall-Post type.

It is interesting to notd23] that in the limit 3—0, the i )
power-law potential is related to the case of the logarithmid™ the previous examples, the pair ground state was nonde-
potential, Ir=lim . _(r—1)/B. As a consequence, the ei- generate. In the present case, the lowest antisymmetric eigen-

’ B—0 ' ! o H
stateg(r) forms anL™=1" triplet,

1

genvaluesy,(B) of the Hamiltonian— V2+sgn(8)r? are,
for small 8, connected with the eigenvalueﬁ of the Hamil- B
tonian — V2+Inr via the relation 9,(N=9(1)Y1,(). (8D

L1 Since the pair ground state is now degenerate, we must gen-
7= 5In|,8| ' (76)  eralize Eqg. (59, and maximize thejoint occupancy \
=2 ,S2), of the members of the triplet. This leads in a
which holds up to terms decreasing faster than linedgjn  straightforward fashion to an eigenvalue equation,
Equation (76) shows the origin of the degeneracy in the
power-law eigenvalue spectrum f@—0. This degeneracy

7,(B8)—sgn B)+|p|

r
is absent if we consider directly the logarithmic potential, (AN=1)G,(N=-22 f dr'ig;, TRl
i.e., anA-boson system with Hamiltonian u
r/
. 1 Xg, | =+ (r'
Ap=—=— >, Vi+g Injri—r|. (77) Qui™r Gurnlr’), (82)
2m 45 i<l !
A straightforward analysis then leads to which replaces Eq(62). The overlap functiorG,,,(r) be-
tween the I pair stateg,, and one of the membetg 3, of
A(A-1) L 1 2 the A=3 ground-state 1 triplet has the following tensor
Lo=—593m2)*F35In Amgl |’ structure:
A(A—1) Gu(N=G(Iulv—p[lv)Yy, ,(Q). (83
51279[531(%775(2)+[3_5{)n(%] 77&(2) g g
Substitution into Eq(82) leads, after some angular momen-
+ Znl /= (78  tum algebra, to a radial eigenvalue equation
2 \Amg/ |’
where 75,)=1.0444332, 75, =1.847442, and ST (x—l)G(r)zzf AW e G(Y). (84
=2.986 419. To compare this with the values in Fig. 5, one

can consider, e.g.mAg2~1. The relative improvement
then become®= (L, — Ly)/|Ly|~0.35%. The operatoiV reads
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1 1 lationally invariant. We have applied the formal results to
W(r,r')= E”’f dx[Po(X) = P2(X)] various numerical examples, and demonstrated that signifi-
-t cant improvements are obtained over the conventional lower
r r' bound.
g §+r’ g E+r ) Several problems are still remaining. In the case of self-
X : , (85) bound systems, a method to evaluate the maximal pair occu-
‘LH, r—+r pation in A-particle space is not available féx=4. Also,
2 2 states of mixed spatial symmetry are not yet treated. If the

two-body energy spectrum contains a continuum part, the
whereP, are the Legendre polynomials. associated pair strength does not contribute to the lower
We checked that for a HQp wave function, g(r)  bound in the present work; a better treatment of the con-
~r exp(-r?), the maximal eigenvalue of Eq84) yields tinuum part would be very interesting, as it would lead to the
A=3, which equals the number of pairs in the=3 system. derivation of improved bounds for the critical coupling
This means that the Hall-Post boury already coincides strength[2—4] needed to achieve binding in many-body sys-
with the exact result for HO systems, as could be expectetEms.
from the discussion if13]. In general, further improvements could be made by more
In the presence of the electron-electron repulsion, the paiiefined approximations to the distributid),,, of the pair
wave function is distorted from the HO shape, and we find @ccupations over the various pair states. In the present work,
maximal eigenvalué. =2.901 644 foro=0.01. The lowest this occupation is maximized for each pair state separately;
energies of the HamiltoniafB0) are €,=0.05560837 for in reality, of course, they are interrelated, as they reflect oc-
the (p-wave ground state ande;=0.06171271 for the cupations within the sam&-particle state. Such a refinement
(f-wave first excited antisymmetric state. For the Hall-Postis needed in particular for the fermion case, since the nonin-
bound, we thus findCo=3€,=0.1668, in agreement with teracting limit is at present not reproduced.
[13]. This is already quite a good bound compared with the The present work can also be rephrased in terms of ab-
exact three-body ground-state enerds;=0.1680, as Stract many-body theory. The-particle ground-state energy
quoted in[13]. The new bound improves this t6;=\e, N Eds.(23) and(26) is expressed as
+(3—\)€e;=0.1674.
For =10, which is closer to a pure harmonic-oscillator 0 )
system, we find\=2.999780, e,=18.32273, ande; Boey=Tr{Hzalp™}, (86)
=31.147 20, yielding bound£,=54.968 and{,;=54.971,
to be compared with the exact reskig),=54.973, quoted in where a=1/(A—1) or a=2/A for fixed-center and self-
[13]. bound systems, respectively. Minimizing the right-hand side
In conclusion, by taking the structure of the pair waveof Eq. (86) over all A-representable two-body densities
function into account we are able to halve the remainingwould yield the exach particle energy. The full set of exact
deviation between the Hall-Post-type lower bound and theonditions for A representability are of course unknown.
exact result. Minimizing the right-hand side of Eq86) over all two-body
densities that comply with Bmited set of A-representability
conditions will then yield a lower bound for th&-particle
energy. The conventional bound, can be seen as the
Motivated by the renewed interest in lower bounds for thelowest-order approximation in this scheme, since only the
ground-state energy of many-body systems, we have devehormalization condition Tfp?}=A(A—1)/2 is required
oped a method to improve the existing lower bounds of thdor the two-body density matrix in E¢86). The improved
Hall-Post type. The method is based on an exact sum rule fdrounds in this work can be viewed as imposing additional
the energy in terms of two-body occupation numbg  conditions on the natural pair occupation numbers of the
equivalently, spectroscopic factors related Ao{2)-particle  two-body density matrix in this scheme.
removal in the A-particle ground state. The pair occupation
numbers that enter the sum rule refer to the two-body eigen-
states of the two-body cluster Hamiltonian in the conven- ACKNOWLEDGMENTS

tional Hall-Post decomposition of the many-body Hamil-  This work was supported by the Fund for Scientific

tonian. We find that it is possible to derive upper bounds folResearch—Flander§FWO-Viaanderen and the Research
these pair occupation numbers, without detailed knowledgeg ouncil of Ghent University.

of the structure of thé\-particle wave function. These upper
bounds, or maximal pair occupancies, do depend on the
structure of the pair state, and can be used to obtain strictAPPENDIX A: NATURAL ORBITAL REPRESENTATION
lower bounds to thé\-particle energy that are better than the FOR PAIR STATES
conventional one.

We have studied both the bosonic and fermionic sector,
and developed a framework for both fixed-center systems In a general SP basis, a two-boson state can be expanded
and self-bound systems, where the wave functions are tranas

VIl. SUMMARY

1. Two-boson states
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1 An identical analysis to that in the bosonic case leads in
| 2)=—= > Caﬁclcg, (A1)  the natural basis to matricd(®) that are now unitary and
V2 B antisymmetric, and can be brought to a canonical form by a
real orthogonal transformation. IIE“’Xz)\X, thenD(@X*
where C,z=Cg, is a (compley symmetric matrix, and = —AX* (becauseD(®)" = —D(®) 7). So theTelgenvaIues/
Tr{CCT}zEanCaBF: 1 fixes the normalization. vectors come in pairsy( X),(—\,X*), whereX'X*=0. For
The Hermitian one-body density matrix reads such a pair, we may transform from the eigenvector basis

X,X* to the real basis X,=(X+X*)/{2,X_=(X
—X*)/i\/2. The 2x 2 diagonal block in the&,X* represen-

Paﬁ=<‘1’(2)|CI;Ca|‘1’(z)>=2; Ca}\czw (A2) tation is transformed as

()\ 0 0 —ix A6

0o -x/ lix o) (A6)
The transformation to the real basis vectofs ,X_ is

again real orthogonal, and corresponds to an allowed unitary

transformation on the SP basis. In this basi{®)

p'=UTpU, C'=UTCU*. (A3)  =6,Vpa.l2exp(6,), wheren,n are associated pair states

and .= 6,+ 7. Apart from an overall sign, the phase can be

. . absorbed in the SP states. As a result, the desired canonical
We can always make a unitary transformation to the natus, ., of a two-fermion state reads

ral SP basis that diagonalizes the one-body density matrix

In this basisp is real, and as a consequence the commutators 1

[_C,CT]=[p,C]_=O vanish. It follows that in the natural ba- | ,))=-— > Xa(CLCT;— C%CZ)D: 23 Xaclca%
sisC is block-diagonal, eachx n block C(*) corresponding J2 &0 a>0

to ann-fold degenerate,,,, . (A7)

For such a block, the matri®(®¥)=C(®)2/p,,, is a uni- _ - _
tary and symmetric matrix, which can be diagonalized by aVh€rex,=\p../2 is real and positive and the summation
real orthogonal transformation. IndeedXiis an eigenvector >0 is made over distinct pairs.
of D@ with eigenvalue \, then D(®X=\X implies
D@x* = \X*, becaus® (@ =D@ " andr* =\ L. So ei-
ther X=X* is real or \ is degenerate with eigenvectors APPENDIX B: MAXIMAL PAIR OCCUPANCY FOR A
X,X*, which can be replaced by an orthogonal pair from the GENERAL NUMBER OF BOSONS
real linear combinationX , = (X+ X*),X_=(X—=X*)/i.

Since the transformation to the basis of real eigenvectorfzOr
of Cis real orthogonal, it also corresponds, according to Eq.
(A3), to an allowed unitary transformation on the SP basis.
In this basis,C{?)= 6mm/paal2 exp(6,). The phase can be 1
absorbed in the SP states. As a result, the desired canonical [P o) = —= > X, (ch)?))y= ‘P22)|>’ (B1)
form of a two-boson state reads \/5 a

or, in matrix notationp=2CCT.
Under a unitary transformatim;T=2aUaa,c£ to a new
SP basis, the matricgsand C transform as

We follow here closely the reasoning by Penal. [20]
the fermion pairing problem.
A two-boson statéV ,) is expressed in its natural basis as

where thex, are real and positive, anﬁaxizl. The con-

_ T 12 struction of the eigenvalues of the, @) operator then
¥ 2) 2 ; XalCa) ), (Ad) proceeds as follows.
The uncorrelated\-boson states in the natural SP basis
read
wherex,= Vp,./2 is real and positive.
+
— T\ pj
2. Two-fermion states |‘I’(A)>—i1;[l (cHP), (B2
In a general SP basis, a two-fermion state can be ex-

panded as where>;p;=A, and can be classified according to the bro-

ken pairs they contain, i.e., with;=2m;+r; andr,=0 or

1 r;=1, we can construct the corresponding vacyQinof the
_ T .1 i
¥ (2)) = 2 aEB CapCalpl), (AS) 4, operator,
+
whereC,;=Cg, is a(compley antisymmetric matrix, and 0)= I B3
TrHCCh=1. [0y=11 (eH))- (B3)
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Obviously, the<pz2)qp(2) operator does not connedtboson
states belonging to a different vacuuf). For our purpose,
we may takg0)=|) (the zero-boson statéf A=2a is even
and|0)=cf|)=|B) if A=2a+1 is odd, whereg is one of
the single-boson states.

Next we introduce generalized operators,

T(y)——E

Zal—

2(c D2,

N(y)= Z

(B4)

1
cc+2

which obey the commutator algebra

YiN(y1) —Y2N(y2)

(y,)]=
Le(y), e (y2)]=2 ViV ;

<PT(Y1) - QDT(yz)
Yi—Y2

[N(y1),¢"(y2)]=2 (B5)

One can now show that for a suitable choice of variable€yi, - - .

,Ya_1, the vector

|V =0"(0)e"(yy) -

yll'.

¢'(Ya-1)[0) (B6)

PHYSICAL REVIEW A63 062107

is an eigenvector of the(0)¢(0)= (p%z)qa(z) operator.

Using the commutation relatio85), one finds
a—1 1
1(0)@(0)| W ()= 2/\(0)+42 )|‘I’(A)>
a—1
2 2
+22 | Ay =~ E
k=1 Yo k=1 Yk Yie
(k" #k)
a—1
x¢'(@¢'0 [1 ¢'ylo),  (B7)
(i#k)

whereA (y) is the eigenvalue foK(y) acting on the vacuum
0),

(B8)

1
A(y)= =+S8,5]-
) ; 1-yx2\2 B)

For evenA, |0)=]|) ands=0; for odd A, |0)=|8) ands
=1

The second term in EqB7) vanishes if the variables
Ya_1) are solutions of the set46) of nonlinear
equations, whereas the coefficient in front of the first term
yields the corresponding eigenval(#5) of the ¢'(0)¢(0)
operator.
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