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Clifford algebras and universal sets of quantum gates
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In this paper is shown an application of Clifford algebras to the construction of computationally universal
sets of quantum gates forqubit systems. It is based on the well-known application of Lie algebras together
with the especially simple commutation law for Clifford algebras, which states that all basic elements either
commute or anticommute.
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[. INTRODUCTION The question about universality is widely investigated

[1,2,5-9, but the method discussed in the present work has

In this paper is discussed an algebraic approach to theome special properties. Construction of a universal set of
construction of computationally universal sets of quantumgates use®nly infinitesimal and continuous symmetries of

gates. A quantum gate for a system oh qubits is a unitary ~ group U(2') and does not require such discrete operations as
2"x 2" matrix. It is possible to writéJ =e'", whereH is the ~ Permutations of qubits or basic vectors related to the “clas-

Hermitian 2'X 2" matrix. sical limit of quantum circuits.” The properties of discrete,

A set of quantum gates, is (computationally) universal binary transformations of qubits simply emerge here from

if any unitary matrix can be obtained with given precision asthe structure of |nf|n|te5|ma! tra_nsformatmns of Hilbert
space, i.e., directly from Hamiltonians, ¢f.,9].

a product of matriceb),.. Algebraic conditions of universal-
ity can be described using the Lie algeloraf the Lie group

of unitary matriceq1,2]: if there is a set of Hermitian ma- Il. CLIFFORD ALGEBRAS

tricesH,  and if it is possible to generate a basis of space of A. General definitions

all Hermitian 2'x2" matrices using only the commutators ) ) ) ,
i[H,G]=i(HG—GH), thenU,=exp(H,) are a universal For n-dimensional vector space with a quadratic form

In this paper is presented an alternative approach to theepresent a square root efg(>_<’) [3,4] or, more formally,
construction of a universal set of gates using both Lie and- g(f)l, wherel is the unit of algebr&(. The vector space
Clifford algebras. It is possible because the alget{a" corresponds to the-dimensional subspack of 2l: x—>x
x2™M of all 2"X2" complex matrices is the complex Clif- _yn-1 h Ve F 2_ iy
ford algebra with 2 generators, i.e., there are 2natrices ' 3° X|e|2, WHere x, e - From x’==g(x), ie.,
I, with the property{T,[\} =TI+ '\ =2381 (wherel (Z1Z0%1¢) ZEi,j=oginiXJ_, follow the .mam properties of
is unit matrix and 2" different productsof I', generate a the generators; of the Clifford algebra:

basis of((2"x2") [3,4]. . {ei e} =eie;+ejei=—20;; . (2.)
The 2n matricesI’, are not enough for proof of univer-
sality, because we may not use arbitrargductsof I"), but Let g; be diagonal andj; =+ 1 (the caseg; =0 is not

only commutatorsIn this paper it is shown that by using -gnsidered here. but s€8]). Then
commutators of",, it is possible to generate only ther(2

+n)-dimensional subspace, but it is enough to add only one eei=—eei (1#])), (2.29
elementl’, and the new set is universal, i.e., it generates a . .

n_~;i H n
full 4"-dimensional space(2"). ei2= 1 (2.2b)

All 2n matricesI'y may be chosen to be Hermitian and
the full complex algebra was used for simplification. The
extra Hermitian matrix id" =il 1o5=1T'1I',I'3 or I' 1534, OF ) ,
any such product of three or four differeht, . more than 2 different products of up tm ¢;. A linear span

A constructive proof of universality using the language of°f @ll the products is a full algebral [4]. Let us use the
the Clifford algebras is based on a simple commutation lawOtationse =ei i ...i, = ¢, - -¢,, wherekis the number of
of 4" basic elements: they either commute or anticommutemultipliers orthe orderof ¢, , k=M1).
because any such element is a product of uprtd'R. Direct If there are no algebraic relations other than E2}2),
construction of any D% 2" matrix FIEHKEIFK of the Clif- then the algebra has a maximal dimensidhaad is called
ford basis by commutators ofn2-1 initial elements is theuniversalClifford algebra,i(g), because for any other
shown below in Sec. Il D, theorem 1. Clifford algebra®l with the same metrig(i) there is a ho-

momorphismel(g) —2 (see Ref[4]).
Let us use the notatiogl(l,m) for the diagonal metric
*Email address: qubeat@mail.ru, alex@protection.spb.su Eq. (2.2 with | pluses andn minuses in Eq(2.2b), i.e., for

Itis clearer from Eq(2.2) that it is possible to generate no
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pseudo-EuclideatMinkowski) spaceR""™. There is a special the spin group It is Spin() for €I(n) and forct, (n). The
notation for Euclidean space&l(n)=¢[(n,0) and €l, (n) group has 2:1 homorphism with S)( For se Spin(n), an
=¢[0on). element of SO) is represented as,:x—sxs™ ! [4].
Complexification of any Clifford algebral((l,m) with | Because only products of an even number of elements of
+m=n is the same complex algeb®&(n,C), because all ¢€l(n) are used in the definition of Spim), the group is a
signs in Eq.(2.2b may be “adjusted” by the substitution subset of even subalgebed®(n)C ¢l(n). In the Euclidean

e—ley. case,CI¥(n) is isomorphic with¢l(n—1) and the property
Let us denote/= /%, , i.e., if =1, thene/=¢,, but if Spin(n+1) is defined as a subset éf(n).
e|2= —1, thene/=ie¢, and so always¢)?=1. Construction of the Spim(+1) group from €i(n) is
sometimes called th&poin group[4], Spoin{)=Spin(n
B. Matrix representations +1).

All complex Clifford algebras in even dimension L€t us consider f+1)-dimensional spacal®V, ie.,
¢(2n,C) are isomorphic with a full algebra of'% 2" com- ~ combinationsy=\+x, xe V. Let A(y)=\?+g(x). The el-
plex matrices3,4]. The simplest cas€l(2,C) is the Pauli ements have an inversex ¢ x)~'=(A—=x)/A(y) if A(y)
algebra. Matricesr, ando, can be chosen as generateys ~ #0. Products oinynumber of such elements with|=1 is
e; ando, isiege;=ceg;. the Spoinf) group[4].

The Pauli algebra is four-dimensional complex algebra The group Spoing) is 2:1 homorphic with SQ{+1).
and can also be considered as eight-dimensional real algebiegr se Spoin(n), an element of SQ(+ 1) is represented as
<1, (3). Prevalent applications of Clifford algebras in the r :y~>sy(s’) ™, whereyzyn+2{‘=’oly|e| and () is the al-
theory of NMR quantum computatidd0,11 are based ona gepra automorphism defined with basis elementseas
real representatior®(, (3) rather than on a complex one :(_1)N(I)e| [4].
¢I1(2,C), discussed in the present work. These two ap-
proaches are very close, but may be different in some of the
details.

There is simple recursive construction of the complex Clifford algebra is Lie algebra with respect to a bracket
Clifford algebra with an even number of generatorsoperationa,b]=ab—ba[4]. Here we prove a result that is
€l(2n,C) with €1(2,C). Forn=1, it is the Pauli algebra, and necessary for the construction of a universal set of gates.

D. Lie algebras and Clifford algebras

if there is some algebrdl(2n,C) for n=1, then Theorem 1L et €i(n,C) be the Clifford algebra and be
. . . even. There are enoughgenerators, , k=0, ... n—1 and
C(2n+2,0)=d(2n,0)&Cl(2L). 23 any element, with A{1)=3 or M(l)=4 to generate ele-
The proof of Eq.(2.3) is as follows: ifeg, . . . o1 are 2 ments of any order only using commutators of thesel
generators of¢l(2n,C), then l,,®¢, and 1,,®e; together ~€lements. _
with 2n elementse,®¢f; are 21+2 generators ofCl(2n A proof of this result has several steps.
+2,0). (i) If there aren elementsg, . . . ,¢,_1, it is possible by
Direct construction of[(2n,C) is [3,4] using commutators to generate also all elements of second
order, i.e.[¢j,¢j]=2¢¢j=2¢; .
;=18 ®ler,®0.8 - ®0, (2.49 (i) If there are all elements of second order and an ele-
— N

ment of third order, for example),, it is possible to gen-
erate any element of third order, i.e.g02n=1[¢012:¢2ml

2eonm=/ ¢01m€1nl, 2epnmz [eonm: eOp]-

n—k—1 k

Popi1=1®---2180,80.8 80, (2.4b (iii) Analogously, if there is any element of ordek21,
n—k—1 k it is possible to generate any element of the same order using
with ¢ 2T, e|2=1, V1e0,...,21—1. More generally, alge- N0 more than R+1 commutators with elements; .

braic properties of elementsused in the paper are the same (iv) If we have all elements of third order, it is possible to

for different matrix representations=MI' )M ~%, wherem  generate any element of fourth ordee;;& = [eij,¢/].
e SU(2"). (v) Analogously, if we have all elements with the order

N(1)=2k+1, itis possible to generate any element of order
2k+2, 2¢/,1=[¢ ,¢], wherel & 1.
(vi) If we have an element of fourth order, it is possible to
Most known physical applications of Clifford algebras arégenerate some element of third ordet;;i2= ejjy ¢ (and
due tospin groups The group has 2:1 homorphism with an gq any element of third and fourth orgler
orthogonal(or pseudo-orthogonpgroup and is related to the  (viji) Analogously, if we have an element of ordek-22,
Dirac equatiorj4] and the transformation properties of wave jt ig possible to generate some element of ordet2 [and

C. Spin groups

functions in quantum mechanics. _ so any element with the orderk2 1 or 2k+2, as in the
Each elemenke V (see the definition o¥’ above in Sec.  stepsiii) and (v)].
Il A) has an invers&™ 1= —x/g(x) if g(x)#0. All possible (viii ) We have all elements with order less than or equal

products of arevennumber of such elements witg|=1 is  to 2k, k=2 due to stepsi), (ii), and(iv) and we can prove
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the theorem by recursion: by using a commutator of an eleproach withinfinitesimalparameters [1,2] and an approach
ment with order X—1 and an element with order 3, it is with irrational parameter$5,6]. The smallerr is, the higher
possible to generate an element of ord&r+2 and so any is the precision in the generation of arbitrary unitary gates in

elements of order R+ 1 or 2k+2, as in the stefvii). [1,2]. Due to Eq.(3.1), accuracy may be arbitrarily high if
Note 1.Instead of elements, ... 51, itis possible to  \ye yse gate), = e/ ™ei’ with irrational w/ 7 because for any

use ¢o together with n—1 elements ¢ 1,0 [eo.eo] 7 there exists the natural numbdrande <7 Uf=(U)N. It

=2ep, .. Leog,e0]=2e. should be mentioned that the unitary gates do not necessarily

Note 2.1f nis odd, it is impossible to generate only an p,ye jrrational coefficients even#/ is irrational, for ex-
element with the orden, because due to stdpii) of recur- ampleU, = 0.8+ 0.6 .

T o e o e B . Yl aniher advantage of he clemefsis @ Smpe
' L expression for “commutator gate.” In the usual ca%e?], it

case we need+2 elements, the extra one being ;. is generated as

Note 3.If we use onlyn generators;, then together with

n(n—1)/2 commutator§e, ,¢j]=2¢y;, kK#], it is possible to g TilHiCHIl < g VTHKg THI gl VTHg = 17H)

generaten+n(n—1)/2=n(n+1)/2 elements, because, as

may be checked directly, any new commutators may noand the expression has precisi®f°. For elements{,

generate an element with order more than 2. It is the LiQhere iS an exact construction. |-H‘|:e|"' and HJ: 23’, then

algebra of the spoim) group, because products of ejther[H,,H;]=0 or [H,,H;]=2HH;. The first case is

explee) ~ 1+ ee belong to that group and the dimension of trivial and for the second case due to E8.1),

the group is the same, dim SpomE& dim SOn+1)=n(n

+1)/2. Despite the fact that only elements NV (1)<2 be-

long to thelLie algebra all 4" elementse,, N(l)<n of . . . .

€I(n) belong to thelie groupSpoin() by definition and so Aftgr_constrgctlon of the basis of Herm|t|an matridds

a linear span of these elements is the full Clifford algebra. = ¢ - it is possible to use an expression

Note 4.The theorem was proved rather for the more gen- N

eral case of the Lie algebra of the complex Lie group e2|a|H|:(e(llN)E|a|H|)N~(H e(llN)a|H|)

GL(N,C), N=2"2 of all matricesM, det(M)#0, than for

the unitary group UN) CGL(N,C). The proof for the Lie N

algebrau(N) of the unitary group UNY) is directly implied. (H U /N) .

It is sufficient to choose the initial matrices ir{N) for a

given representation, after which the Lie brackets may proThe expression has accurad(= a2/N).

duce only matrices im(N) for each step of the proof. The approach to a universal set of gatéss more con-
representations af(N). In physical applications, Hermitian y7=¢'™H |t s not a principal limitation, because for physi-
matricesH are used, the Lie brackets aif,b], and the  ca realizations we should know the Hamiltonian to construct
unitary matrices are represented @s-exp(~i7H) due to  the gates. It is also related to the universal quantum simula-
relations with Hamiltonians and a quantum version of PO|S'ti0n [9] in which H is the Hamiltonian and is a real con-

son bracket$12]. In Eq. (2.4), elementsy=1I"|, i¢p12, and  tinuous parameter, the time of “application.”

@l TilH Hall2— o= mHHy — i (m/2)H g Hyg — i (m/2)H;

=€

eo123 (@ndiey, seeNote J, i.e., all¢]", are Hermitian. In The description with an exponent may be even more com-
more general mathematical application§N) are skew- plete, because by usir it is possible to find a uniquél
Hermitian matricesA™=—A and “i” multipliers are not  =exp(H), but by usingU it is not always possible to restore
present in the expressions for the commutators and the ex because there are mary's for the sameU. A simple
ponentg 4], becauseA=iH. example isU=io,® o with two arbitrary two Pauli matri-

ces:U= ei m(0,®1+100g) — ei TOER0g.
Ill. APPLICATION TO QUANTUM GATES

A. Universal set of quantum gates B. Two-qubit quantum gates

Now let us discuss the construction of universal gates -t US show how to build a universal set of one- and
more directly. Instead of Lie algebrg2"), we should work two-qubit gates.usmg Erc](2.4). For exampl_e, it may gerlﬁ
with Lie group U(2"). Then an element” corresponds to a fi gat?;_elxpéve.d)_, where ¢ are e, le—1 Wit
unitary gateU/=exp(e). One of the advantages of ele- = """’ » andiega:
mentse/” is the analytical expression for the exponent: eO:Jl®(n71)®0'x, (3.29

UT=€"el =cog 7)+i sin(7)e’ . (3.1 1
I I i—ezk,2k+1=1®(n7k71)® o,®1°K, (3.2b

Equation(3.1) is valid for any operator with the property
¢?=1 and it is true for all 4 basis elements’. 1

_ —1®(n—k=-2) ®k
It is also possible due to Ed3.1) to combine the ap- 2122 =1 @ox@ox@l™,  (3.29
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1 8(n-2) whereA=y2mE/#. Let the dimension of one particle mo-
Teo1= 1 ®oy@1 (3.2d0  tion be v=2 for simplicity, N=2n. _
Let us consider a full basigs,(x)=€'®* on Hilbert
with k=0, ... n—1 orn—2. The elements were discussed spaceL of wave functionsye £. Herep,xe RN and (p,x) is
in Note 1 and it was shown that they generate the full Liethe scalar product. The plane wawgg correspond ta par-
algebrau(2"). ticles with definite momenta. © € SO(N), then a transfor-
mation defined on the basis 8%, : ¢p— ¢op is asymmetry
C. Nonuniversal set of quantum gates of Eq.(3.3). Itis an analog of the classical transition between
two configurationsvith the same total kinetic energy “bil-
r\iard balls” conservative logi¢14].
.o o The general Dirac operatd4#] is the first-order differen-

Produc_ts of gateslk=t_a ek=COS(7'):—|ekS|n(T) generatg a  iial operator@N=2iN:‘01iek(&/axk) with a property@ﬁ,z
group Spin(2+1)=Spoin()CU(2") due toNote 31tis  _ " f 15 use the Dirac operator for factorization of Eq.
an interesting example of nonuniversality when only one ex-(3_3)’
tra gate likee' Te012 may produce a universal set with “an
exponential improvement” from a subgroup dim Spoinj2
=n(2n+1) to a full group dim U(2)=22",

This result is more important if the extra ga#&e with ) .
N(1)=3 or N (1)=4 has a different physical nature from the_n each component o is a solution of Eq(3.3) and the
the gates with\/ (1)=1 and A/ (1)=2. It is not clear from action of the Spinl) group onW correspond$4] to SON)

Eq. (3.2 why the extra gate Eq3.2d is simply one gate. symmetry2,, described above and it has some analog in the

But this is not so for physical systems wittatural Clifford  classical physics of billiard balls. A SpoiNj group is rep-
and spin structure. resented less directly, but it can be considered as a symmetry

A possible reason is the Schilinger equation for between two stationary solutions withifferent total ener-
n particles without interaction [13]: i%(dylot) — 9I€S.

In [2], an interesting question was raised, asking whic
sets of gates areot universal(and why.

(@N_)\)(QN"‘)\)‘II(X(), B ,XN_]_):O, (34)

=1%23"_,(A,/m,) ¢, or usingm,=m and the Laplacian The example above shows that it is possible to find some

Ay with N=vn variables, it is possible to write for station- classical correspondence for elements NV (1)=2 of the

ary solutions with total energg, Spin group and maybe for generatdv(1) =1 of the Spoin

group, but the special element witti (1) =3 does not have
(ANHAD) P(Xg, « .. Xn—1)=0, (3.3 some allusion with classical physics.
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