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Clifford algebras and universal sets of quantum gates
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In this paper is shown an application of Clifford algebras to the construction of computationally universal
sets of quantum gates forn-qubit systems. It is based on the well-known application of Lie algebras together
with the especially simple commutation law for Clifford algebras, which states that all basic elements either
commute or anticommute.
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I. INTRODUCTION

In this paper is discussed an algebraic approach to
construction of computationally universal sets of quant
gates. A quantum gateU for a system ofn qubits is a unitary
2n32n matrix. It is possible to writeU5eiH , whereH is the
Hermitian 2n32n matrix.

A set of quantum gatesUk is (computationally) universa
if any unitary matrix can be obtained with given precision
a product of matricesUk . Algebraic conditions of universal
ity can be described using the Lie algebrau of the Lie group
of unitary matrices@1,2#: if there is a set of Hermitian ma
tricesHk and if it is possible to generate a basis of space
all Hermitian 2n32n matrices using only the commutato
i @H,G#[ i (HG2GH), then Uk5exp(itHk) are a universal
set of quantum gates ift is small enough.

In this paper is presented an alternative approach to
construction of a universal set of gates using both Lie a
Clifford algebras. It is possible because the algebraC(2n

32n) of all 2n32n complex matrices is the complex Clif
ford algebra with 2n generators, i.e., there are 2n matrices
Gk with the property$Gk ,G l%[GkG l1G lGk52dkl1 ~where1
is unit matrix! and 22n different productsof Gk generate a
basis ofC(2n32n) @3,4#.

The 2n matricesGk are not enough for proof of univer
sality, because we may not use arbitraryproductsof Gk , but
only commutators. In this paper it is shown that by usin
commutators ofGk , it is possible to generate only the (2n2

1n)-dimensional subspace, but it is enough to add only
elementGu and the new set is universal, i.e., it generate
full 4 n-dimensional spaceu(2n).

All 2 n matricesGk may be chosen to be Hermitian an
the full complex algebra was used for simplification. T
extra Hermitian matrix isGu5 iG123[ iG1G2G3 or G1234, or
any such product of three or four differentGk .

A constructive proof of universality using the language
the Clifford algebras is based on a simple commutation
of 4n basic elements: they either commute or anticommu
because any such element is a product of up to 2n Gk . Direct
construction of any 2n32n matrix G I[)kPIGk of the Clif-
ford basis by commutators of 2n11 initial elements is
shown below in Sec. II D, theorem 1.
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The question about universality is widely investigat
@1,2,5–9#, but the method discussed in the present work
some special properties. Construction of a universal se
gates usesonly infinitesimal and continuous symmetries
group U(2n) and does not require such discrete operations
permutations of qubits or basic vectors related to the ‘‘cl
sical limit of quantum circuits.’’ The properties of discret
binary transformations of qubits simply emerge here fro
the structure of infinitesimal transformations of Hilbe
space, i.e., directly from Hamiltonians, cf.@1,9#.

II. CLIFFORD ALGEBRAS

A. General definitions

For n-dimensional vector space with a quadratic for
~metric! g(xW ), the Clifford algebraA is a formal way to
represent a square root of2g(xW ) @3,4# or, more formally,
2g(xW )1, where1 is the unit of algebraA. The vector space
corresponds to then-dimensional subspaceV of A: xW°x
[( l 50

n21xlel , where x, elPV,A. From x252g(xW ), i.e.,
(( l 50

n21xlel)
25( i , j 50

n21 gi j xixj , follow the main properties of
the generatorsel of the Clifford algebra:

$ei ,ej%[eiej1ejei522gi j . ~2.1!

Let gi j be diagonal andgii 561 ~the casegii 50 is not
considered here, but see@3#!. Then,

eiej52ejei ~ iÞ j !, ~2.2a!

ei
2561. ~2.2b!

It is clearer from Eq.~2.2! that it is possible to generate n
more than 2n different products of up ton ei . A linear span
of all the products is a full algebraA @4#. Let us use the
notationseI5ei 1i 2••• i k

[ei 1
ei 2
•••ei k

, wherek is the number of

multipliers or the orderof eI , k5N(I ).
If there are no algebraic relations other than Eq.~2.2!,

then the algebra has a maximal dimension 2n and is called
the universalClifford algebra,Cl(g), because for any othe
Clifford algebraA with the same metricg(xW ) there is a ho-
momorphismCl(g)→A ~see Ref.@4#!.

Let us use the notationCl( l ,m) for the diagonal metric
Eq. ~2.2! with l pluses andm minuses in Eq.~2.2b!, i.e., for
©2001 The American Physical Society02-1
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pseudo-Euclidean~Minkowski! spaceRl ,m. There is a specia
notation for Euclidean space:Cl(n)[Cl(n,0) and Cl1(n)
[Cl(0,n).

Complexification of any Clifford algebraCl( l ,m) with l
1m5n is the same complex algebraCl(n,C), because all
signs in Eq.~2.2b! may be ‘‘adjusted’’ by the substitution
ek→ i ek .

Let us denoteeI
s[AeI

2eI , i.e., if eI
251, theneI

s5eI , but if
eI

2521, theneI
s5 i eI and so always (eI

s)251.

B. Matrix representations

All complex Clifford algebras in even dimensio
Cl(2n,C) are isomorphic with a full algebra of 2n32n com-
plex matrices@3,4#. The simplest caseCl(2,C) is the Pauli
algebra. Matricessx andsy can be chosen as generatorse0 ,
e1 andsz is i e0e15e01

s .
The Pauli algebra is four-dimensional complex alge

and can also be considered as eight-dimensional real alg
Cl1(3). Prevalent applications of Clifford algebras in th
theory of NMR quantum computation@10,11# are based on a
real representationCl1(3) rather than on a complex on
Cl(2,C), discussed in the present work. These two
proaches are very close, but may be different in some of
details.

There is simple recursive construction of the comp
Clifford algebra with an even number of generato
Cl(2n,C) with Cl(2,C). For n51, it is the Pauli algebra, an
if there is some algebraCl(2n,C) for n>1, then

Cl~2n12,C!>Cl~2n,C! ^ Cl~2,C!. ~2.3!

The proof of Eq.~2.3! is as follows: ife0 , . . . ,e2n21 are 2n
generators ofCl(2n,C), then 12n^ e0 and 12n^ e1 together
with 2n elementsek^ e01

s are 2n12 generators ofCl(2n
12,C).

Direct construction ofCl(2n,C) is @3,4#

~2.4a!

~2.4b!

with el,G l , el
251, ; l P0, . . . ,2n21. More generally, alge-

braic properties of elementsel used in the paper are the sam
for different matrix representationsel,MG lM

21, whereM
PSU(2n).

C. Spin groups

Most known physical applications of Clifford algebras a
due tospin groups. The group has 2:1 homorphism with a
orthogonal~or pseudo-orthogonal! group and is related to th
Dirac equation@4# and the transformation properties of wa
functions in quantum mechanics.

Each elementxPV ~see the definition ofV above in Sec.
II A ! has an inversex2152x/g(xW ) if g(xW )Þ0. All possible
products of anevennumber of such elements withugu51 is
05430
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the spin group. It is Spin(n) for Cl(n) and forCl1(n). The
group has 2:1 homorphism with SO(n). For sPSpin(n), an
element of SO(n) is represented asr s :x°sxs21 @4#.

Because only products of an even number of element
Cl(n) are used in the definition of Spin(n), the group is a
subset of even subalgebraCle(n),Cl(n). In the Euclidean
case,Cle(n) is isomorphic withCl(n21) and the property
Spin(n11) is defined as a subset ofCl(n).

Construction of the Spin(n11) group from Cl(n) is
sometimes called theSpoin group@4#, Spoin(n)>Spin(n
11).

Let us consider (n11)-dimensional spacel1% V, i.e.,

combinationsy5l1x, xPV. Let D(y)[l21g(xW ). The el-
ements have an inverse (l1x)215(l2x)/D(y) if D(y)
Þ0. Products ofanynumber of such elements withuDu51 is
the Spoin(n) group @4#.

The group Spoin(n) is 2:1 homorphic with SO(n11).
For sPSpoin(n), an element of SO(n11) is represented a
r s :y°sy(s8)21, wherey5yn1( l 50

n21ylel and (8) is the al-
gebra automorphism defined with basis elements aseI8
5(21)N(I )eI @4#.

D. Lie algebras and Clifford algebras

Clifford algebra is Lie algebra with respect to a brack
operation@a,b#[ab2ba @4#. Here we prove a result that i
necessary for the construction of a universal set of gates

Theorem 1.Let Cl(n,C) be the Clifford algebra andn be
even. There are enoughn generatorsek , k50, . . . ,n21 and
any elementeI with N(I )53 or N(I )54 to generate ele-
ments of any order only using commutators of thesen11
elements.

A proof of this result has several steps.
~i! If there aren elementse0 , . . . ,en21, it is possible by

using commutators to generate also all elements of sec
order, i.e.,@ei ,ej #52eiej[2ei j .

~ii ! If there are all elements of second order and an e
ment of third order, for examplee012, it is possible to gen-
erate any element of third order, i.e., 2e01m5@e012,e2m#,
2e0nm5@e01m ,e1n#, 2epnm5@e0nm ,e0p#.

~iii ! Analogously, if there is any element of order 2k11,
it is possible to generate any element of the same order u
no more than 2k11 commutators with elementsei j .

~iv! If we have all elements of third order, it is possible
generate any element of fourth order, 2ei jkl 5@ei jk ,el #.

~v! Analogously, if we have all elements with the ord
N (I )52k11, it is possible to generate any element of ord
2k12, 2eI ø l5@eI ,el #, wherel ¹I .

~vi! If we have an element of fourth order, it is possible
generate some element of third order, 2ei jk5@ei jkl ,el # ~and
so any element of third and fourth order!.

~vii ! Analogously, if we have an element of order 2k12,
it is possible to generate some element of order 2k11 @and
so any element with the order 2k11 or 2k12, as in the
steps~iii ! and ~v!#.

~viii ! We have all elements with order less than or eq
to 2k, k>2 due to steps~i!, ~ii !, and~iv! and we can prove
2-2
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the theorem by recursion: by using a commutator of an
ment with order 2k21 and an element with order 3, it i
possible to generate an element of order 2k12 and so any
elements of order 2k11 or 2k12, as in the step~vii !.

Note 1.Instead of elementse0 , . . . ,en21, it is possible to
use e0 together with n21 elements el 21,l : @e0 ,e01#
52e1 , . . . ,@el 21 ,el 21,l #52el .

Note 2. If n is odd, it is impossible to generate only a
element with the ordern, because due to step~vii ! of recur-
sion it would be generated only from an even element w
the ordern11, but there are no such elements. So in t
case we needn12 elements, the extra one beinge0, . . . ,n21.

Note 3.If we use onlyn generatorsei , then together with
n(n21)/2 commutators@ek ,ej #52ek j , kÞ j , it is possible to
generaten1n(n21)/25n(n11)/2 elements, because, a
may be checked directly, any new commutators may
generate an element with order more than 2. It is the
algebra of the spoin(n) group, because products o
exp(eek)'11eek belong to that group and the dimension
the group is the same, dim Spoin(n)5dim SO(n11)5n(n
11)/2. Despite the fact that only elementseI , N (I )<2 be-
long to the Lie algebra, all 4n elementseI , N (I )<n of
Cl(n) belong to theLie groupSpoin(n) by definition and so
a linear span of these elements is the full Clifford algebr

Note 4.The theorem was proved rather for the more g
eral case of the Lie algebra of the complex Lie gro
GL(N,C), N52n/2 of all matricesM, det(M )Þ0, than for
the unitary group U(N),GL(N,C). The proof for the Lie
algebrau(N) of the unitary group U(N) is directly implied.
It is sufficient to choose the initial matrices inu(N) for a
given representation, after which the Lie brackets may p
duce only matrices inu(N) for each step of the proof.

It should be mentioned that there are two traditions
representations ofu(N). In physical applications, Hermitian
matricesH are used, the Lie brackets arei @a,b#, and the
unitary matrices are represented asU5exp(2itH) due to
relations with Hamiltonians and a quantum version of Po
son brackets@12#. In Eq. ~2.4!, elementsel5G l , i e012, and
e0123 ~and i ekl , seeNote 1!, i.e., all eI

s , are Hermitian. In
more general mathematical applications,u(N) are skew-
Hermitian matricesA†52A and ‘‘i ’’ multipliers are not
present in the expressions for the commutators and the
ponents@4#, becauseA, iH .

III. APPLICATION TO QUANTUM GATES

A. Universal set of quantum gates

Now let us discuss the construction of universal ga
more directly. Instead of Lie algebrau(2n), we should work
with Lie group U(2n). Then an elementeI

s corresponds to a
unitary gateUI

t[exp(iteI
s). One of the advantages of ele

mentseI
s is the analytical expression for the exponent:

UI
t5ei teI

s
5cos~t!1 i sin~t!eI

s . ~3.1!

Equation ~3.1! is valid for any operator with the propert
e251 and it is true for all 4n basis elementseI

s .
It is also possible due to Eq.~3.1! to combine the ap-
05430
-

h
s

t
e

-

-

r

-

x-

s

proach withinfinitesimalparameterst @1,2# and an approach
with irrational parameters@5,6#. The smallert is, the higher
is the precision in the generation of arbitrary unitary gates
@1,2#. Due to Eq.~3.1!, accuracy may be arbitrarily high i

we use gatesUI5eiÃeI
s

with irrationalÃ/p because for any
t there exists the natural numberN and«,t: UI

«5(UI)
N. It

should be mentioned that the unitary gates do not necess
have irrational coefficients even ifÃ/p is irrational, for ex-
ampleUI50.810.6eI

s .
Yet another advantage of the elementseI

s is a simpler
expression for ‘‘commutator gate.’’ In the usual case@1,2#, it
is generated as

ei t i [Hk ,Hl ]'eiAtHkeiAtHleiAtHke2 iAtHl,

and the expression has precisionO(t1.5). For elementseI
s ,

there is an exact construction. IfHI5eI
s and HJ5eJ

s , then
either @HI ,HJ#50 or @HI ,HJ#52HIHJ . The first case is
trivial and for the second case due to Eq.~3.1!,

ei t i [HI ,HJ]/25e2tHIHJ5ei (p/2)HIei tHJe2 i (p/2)HI.

After construction of the basis of Hermitian matricesHI

5eI
s , it is possible to use an expression

e( Ia IHI5~e(1/N)(
I
a IHI !N'S) e(1/N)a IHI D N

[S) UI
a I /ND N

.

The expression has accuracyO((a I
2/N).

The approach to a universal set of gatesU is more con-
venient and constructive if we know the Hermitian matrixH,
Ut5ei tH. It is not a principal limitation, because for phys
cal realizations we should know the Hamiltonian to constr
the gates. It is also related to the universal quantum sim
tion @9# in which H is the Hamiltonian andt is a real con-
tinuous parameter, the time of ‘‘application.’’

The description with an exponent may be even more co
plete, because by usingH it is possible to find a uniqueU
5exp(iH), but by usingU it is not always possible to restor
H because there are manyH ’s for the sameU. A simple
example isU5 isa ^ sb with two arbitrary two Pauli matri-
ces:U5eip(sa ^ 111^ sb)5eipsa ^ sb.

B. Two-qubit quantum gates

Let us show how to build a universal set of one- a
two-qubit gates using Eq.~2.4!. For example, it may be 2n
11 gates exp(iteI), where eI are e0 , i el 21,l with l
51, . . . ,2n21, andi e012:

e051^ (n21)
^ sx , ~3.2a!

1

i
e2k,2k1151^ (n2k21)

^ sz^ 1^ k, ~3.2b!

1

i
e2k11,2k1251^ (n2k22)

^ sx^ sx^ 1^ k, ~3.2c!
2-3
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1

i
e01251^ (n22)

^ sx^ 1 ~3.2d!

with k50, . . . ,n21 or n22. The elements were discusse
in Note 1, and it was shown that they generate the full L
algebrau(2n).

C. Nonuniversal set of quantum gates

In @2#, an interesting question was raised, asking wh
sets of gates arenot universal~and why!.

Products of gatesUk
t5ei tek5cos(t)1iek sin(t) generate a

group Spin(2n11)>Spoin(2n),U(2n) due toNote 3. It is
an interesting example of nonuniversality when only one

tra gate likeei te012
s

may produce a universal set with ‘‘a
exponential improvement’’ from a subgroup dim Spoin(2n)
5n(2n11) to a full group dim U(2n)522n.

This result is more important if the extra gateei teI
s

with
N (I )53 or N (I )54 has a different physical nature from
the gates withN (I )51 andN (I )52. It is not clear from
Eq. ~3.2! why the extra gate Eq.~3.2d! is simply one gate.
But this is not so for physical systems withnatural Clifford
and spin structure.

A possible reason is the Schro¨dinger equation for
n particles without interaction @13#: i\(]c/]t)
5 1

2 \2(a51
n (Da /ma)c, or using ma5m and the Laplacian

DN with N5nn variables, it is possible to write for station
ary solutions with total energyE,

~DN1l2!c~x0 , . . . ,xN21!50, ~3.3!
on

,

N.
er

05430
h

-

wherel[A2mE/\. Let the dimension of one particle mo
tion ben52 for simplicity, N52n.

Let us consider a full basisfp(x)[ei (p,x) on Hilbert
spaceL of wave functionscPL. Herep,xPRN and (p,x) is
the scalar product. The plane wavesfp correspond ton par-
ticles with definite momenta. IfOPSO(N), then a transfor-
mation defined on the basis asSO :fp→fOp is a symmetry
of Eq. ~3.3!. It is an analog of the classical transition betwe
two configurationswith the same total kinetic energyin ‘‘bil-
liard balls’’ conservative logic@14#.

The general Dirac operator@4# is the first-order differen-
tial operator DN5( i 50

N21i ek(]/]xk) with a property DN
2 5

2DN . If to use the Dirac operator for factorization of E
~3.3!,

~DN2l!~DN1l!C~x0 , . . . ,xN21!50, ~3.4!

then each component ofC is a solution of Eq.~3.3! and the
action of the Spin(N) group onC corresponds@4# to SO(N)
symmetrySO described above and it has some analog in
classical physics of billiard balls. A Spoin(N) group is rep-
resented less directly, but it can be considered as a symm
between two stationary solutions withdifferent total ener-
gies.

The example above shows that it is possible to find so
classical correspondence for elementseI , N (I )52 of the
Spin group and maybe for generatorsN (I )51 of the Spoin
group, but the special element withN (I )53 does not have
some allusion with classical physics.
-
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