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Maximum-likelihood reconstruction of completely positive maps
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We present a method for the determination of the completely positive~CP! map describing a physical device
based on random preparation of the input states, random measurements at the output, and the maximum-
likelihood principle. In the numerical implementation the constraint of completely positivity can be imposed by
exploiting the isomorphism between linear transformations from Hilbert spacesH to K and linear operators in
K^ H. The effectiveness of the method is shown on the basis of some examples of reconstruction of CP maps
related to quantum communication channels for qubits.
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I. INTRODUCTION

The problem of characterizing a physical device in t
quantum domain and of reconstructing input-output relati
has been recently addressed in a number of papers@1,2#.
These issues are obviously interesting for technological p
poses. For example, the practical determination of the tra
formations acting on quantum states is of great relevanc
the new fields of quantum information, computation, a
cryptography@3#. In this realm physical objects as optic
fibers, parametric amplifiers, directional couplers, C-N
gates, quantum cloning machines, quantum communica
channels, etc., should be characterized with very high pr
sion. From the theoretical point of view a physical device
described in terms of a completely positive~CP! map.
Hence, an experimental method of reconstructing a CP m
would lead to a complete characterization. On the ot
hand, an effective and reliable technique for the determ
tion of a CP map could allow us to check experimentally
correctness of the theoretical assumptions made in the
scription of the physical device. Finally, recall that the stru
ture of CP maps naturally emerges in the theory of op
systems@4#. It follows that an experimental technique to e
timate a CP map also allows us to investigate the interac
between different systems, typically a system-reservoir in
action.

Here in this report we consider the general problem
reconstructing the CP map related to a physical device, w
out any assumptions on its mathematical form. We propo
method that resembles ordinary tomography for the use
random quantum measurements at the output, but also
ploys random input states, in order to have the richest sta
tics. The paper is organized as follows. Section II descri
the general method, which is based on~i! the maximum-
likelihood principle and~ii ! a suitable parametrization of C
maps which is allowed by the isomorphism between lin
transformations from Hilbert spacesH to K and linear op-
erators inK^ H @5,6#. Section III shows the application o
the method for characterizing quantum communication ch
nels. Section IV is devoted to the conclusions.

II. MEASURING QUANTUM DEVICES

The maximum-likelihood principle says that the best e
mation of some unknown parameters is given by the val
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that are most likely to generate the data one experime
observes. Methods based on this principle have been use
the context of phase measurement@7#, and to estimate the
density matrix@8# and some parameters of interest in qua
tum optics@2#. The maximum-likelihood principle is quanti
fied by a maximum search of a functional of the unknow
parameters that corresponds to~the logarithm of! the theoret-
ical probability of getting the data one has collected. In t
following we derive the likelihood functionalL(E) that links
the experimental outcomes with the unknown CP mapE that
characterizes the device. We consider a sequence ofK inde-
pendent measurements on the output, each described
POVM Fl(xl), wherexl denotes the outcome at thel th mea-
surement, andl 51,2, . . . ,K. We denote byr l the state at the
input at thel th run. The probability of getting the string o
outcomes xW5$x1 ,x2 , . . . ,xK% is then given by p(xW )
5P l 51

K Tr@E(r l)Fl(xl)#. The maximum-likelihood principle

states that the best estimate of the mapE maximizesp(xW )
over the set of completely positive maps. More convenien
one can search the maximum of the logarithm, namely, o

L~E!5(
l 51

K

ln Tr@E~r l !Fl~xl !#. ~1!

The likelihood functionalL(E) is concave, and in the presen
case it is defined on a convex set—the set of CP map
follows that the maximum is achieved by a single CP m
or by a closed convex subset of CP maps. In the last case
can infer that the data sample is not sufficiently large, or
set of measurements is not aquorum@9#.

The maximization problem is constrained by complete
positivity and trace-preserving properties of the mapE. A
trace-preserving CP map is a linear map from operator
Hilbert spaceH @dim(H)5N# to operators inK @dim(K)
5M # which can be written equivalently as follows:

E~r!5(
k

Akr Ak
† ~2!

5TrH@~1K^ rT!S# ~3!

5 (
n51

N2

pnUnr Un
† , ~4!
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where

(
k

Ak
†Ak51H , ~5!

S>0 and TrK@S#51H , ~6!

Tr@Ui
†U j #5d i j and (

n51

N2

pnUn
†Un51H , ~7!

and T denotes the transposition. Equation~2! is the well-
known Kraus decomposition. Equation~3! exploits the iso-
morphism between linear maps fromH to K and linear op-
erators on the tensor-product spaceK^ H @5,6,10,11#. The
operatorS can be written in terms of the mapE as follows:

S5(
i 51

N2

E~Vi ! ^ Vi* ~8!

where* denotes the complex conjugation, and$Vi% is any
orthonormal basis for the space of linear operators onH,
namely Tr@Vi

†Vj #5d i j , and for any operatorO one hasO

5( i 51
N2

Tr@Vi
†O#Vi . Notice also that for linearity@10,12# one

hasS5E^ 1(uC&^Cu), whereuC& represents the~unnormal-
ized! maximally entangled stateuC&5(n51

N un&un&.
Equation~3! can also be written as

E~r!5TrH@~1K^ r!SG#, ~9!

whereG denotes the partial transposition inH, and then

SG5(
i 51

N2

E~Vi ! ^ Vi
† . ~10!

Finally, Eq. ~4! can be shown as follows. Chosen as an
thonormal basis $Vi%, Eq. ~2! rewrites E(r)

5( i , j 51
N2

qi j VirVj
† , with qi j 5(kTr@AkVi

†#Tr@Ak
†Vj #. The

matrix Q with elementqi j is positive, and it can be diago
nalizedQ5WDW† with W unitary. Then one has

E~r!5 (
i , j 51

N2

~WDW†! i j Vir Vj
†5 (

n51

N2

pnUnr Un
† , ~11!

wherepn5(D)nn>0 and$Un% is the new orthonormal basi

Un5( i 51
N2

(W) ikVi .
For H[K the matricesAk and Un are squared. When

referring to quantum communication channels, the chann
called bistochastic if also(kAkAk

†51H . Moreover, operators
$Un% in Eq. ~4! could be unitary, and in such case the~bis-
tochastic! channel is said to be given by external rando
fields. For a qubit system (H5C 2) the set of bistochastic an
external-random-field channels coincide@13#.

The isomorphism between linear maps and operators
tablished in Eqs.~3!–~8! or ~9! and~10! has been useful fo
the study of positive maps@10,11# and to address the prob
05410
-

is

s-

lem of separability of CP maps@14#. For our task—the maxi-
mization ofL(E)—it is also crucial. The conditionS>0 al-
lows one to write

S5C†C, ~12!

whereC is an upper triangular matrix. Moreover, the diag
nal elements of C can be chosen as positive. Suc
decomposition—referred to as Cholesky decomposition—
commonly used in linear programming@15#. Similarly, one
has for the matricesr l

T and the POVM’sFl(xl)

r l
T5Rl

†Rl , Fl~xl !5Al
†~xl !Al~xl !. ~13!

From Eqs. ~3!, ~12!, and ~13!, the logarithmic-likelihood
functional in Eq.~1! rewrites

L~E![L~C!5(
l 51

K

ln Tr@C†C„Rl
†Rl ^ Al

†~xl !Al~xl !…#

5(
l 51

K

log (
n,m51

NM

z^^nuC„Rl
†

^ Al
†~xl !…um&& z2, ~14!

where $un&&% denotes an orthonormal basis forH^ K. The
expression obtained in Eq.~14! for the likelihood functional
automatically satisfies the constraint of completely positivi
Furthermore, the terms appearing as an argument of the l
rithm are explicitly positive, thus assuring the stability
numerical methods to evaluateL(C).

The trace-preserving condition is given in terms of t
matrix S as TrK@S#51H . This can be taken into account b
using the method of undetermined Lagrange multipliers, th
maximizing L8(E)5L(E)2Tr@(1K^ m)S#, where m is the
undetermined matrixm5( i , j 51

N m i j u i &^ j u. The multipliersm i j

cannot be easily inferred, except the condition Tr@m#5K.
Writing S in terms of its eigenvectors asS5( isi

2usi&&^^si u,
the maximum likelihood condition]L8(E)/]si50 implies

(
l 51

K
Tr@„Fl~xl ! ^ r l…si usi&&^^si u#

Tr@~Fl~xl ! ^ r l !S#
5Tr@~1K^ m!si usi&^^si u#.

~15!

Multiplying by si and summing overi gives Tr@m#5K.
However, notice that the constraint Tr@S#5N that follows
from TrK@S#51H isolates a closed convex subset of the
of positive matrices. Hence, the maximum of the conca
likelihood functional still remains unique under this loos
constraint, and one can checka posteriori that the condition
TrK@S#51H is fulfilled. The functional we maximize is then

L̃~C!5L~C!2
K

N
Tr@C†C#, ~16!

whereL(C) is given in Eq.~14!, and the value of the mul-
tiplier has been obtained through a derivation similar to E
~15!. The number of unknown real parameters is given
(NM)2. The problem of maximization of functionals as E
~16! enters the realm of programming and numerical alge
optimization, where various techniques are known@15#.
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III. CHARACTERIZATION OF QUANTUM
COMMUNICATION CHANNELS

In the following we show the effectiveness of our meth
on the basis of some examples of quantum communica
channels for qubits, i.e.,H5K5C 2. In this case (NM)2

516, and for such a relatively small number of paramet
one can efficiently apply the method of downhill simple
@15,16# to find the maximum of the logarithmic-likelihoo
functional. This method has been reliable in the reconstr
tion of the density matrix of radiation field and spin syste
@8#. The results in the following simulations have been o
tained using random pure states at the input of the chan
along with a projective measurement in a random directio
the output.

The first example is the Pauli channel for qubits

Ep~r!5(
i 51

4

pis irs i , ~17!

where( i 51
4 pi51, s0[1, ands i ( i 51,2,3) denote the cus

tomary Pauli matrices. The positive matrixSp reads

Sp5S p01p3 0 0 p02p3

0 p11p2 p12p2 0

0 p12p2 p11p2 0

p02p3 0 0 p01p3

D , ~18!

on the lexicographically ordered basisu00&, u01&, u10&, u11&,
whereu0& and u1& corresponds to the eigenstates ofsz with
eigenvalues 1 and21, respectively.

In Table I we reported the reconstructed matrix eleme
of Sp as obtained by a Monte Carlo simulation withK
530 000 runs, for theoretical valuesp050.3, p150.2, p2
50.4, and p350.1. The trace-preserving property corr
sponds to the conditionsSp(1,1)1Sp(3,3)51, Sp(2,2)
1Sp(4,4)51, andSp(1,2)1Sp(3,4)50, which are clearly
satisfied. The estimated values compare very well with
theoretical ones.

For p15p25p3 in Eq. ~17!, one obtains the depolarizin
channel

Ed~r!5lr1
12l

2
1, ~19!

with l5124p1. In Fig. 1~circles! we reported the statistica
error (dl)ML in the evaluation of the parameterl versus the
size K of the data sample~with the theoretical valuel
50.8). The value oflML has been inferred by the comple
reconstruction of the matrixSp . However, notice that one
can also implement the maximum-likelihood method up
assuming the form of the CP map as in Eqs.~17! or ~19!. In
such a case the space of parameters is reduced to 4 a
respectively. Figure 1 also shows the results obtained b
four-parameters estimation~triangles!, thus by assuming an
external-random-field channel. As shown by the interpo
ing line in the picture, in both cases one has an asympt
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inverse square-root dependence of the statistical error on
size of the data sample (dl)ML}K21/2, in accordance with
the central limit theorem.

In the last example we consider a nonbistochastic ch
nel, namely the amplitude damping channel

Ea~r!5M1rM11M2rM2 ~20!

TABLE I. Maximum-likelihood estimation of real and imagi
nary parts of the matrix elements ofSp related to the Pauli channe
in Eq. ~17!, for theoretical valuesp050.3, p150.2, p250.4, and
p350.1. Random pure states and projective measurements a
random directions have been used, withK530 000 runs. We com-
pare the estimated valuesSp

est( i , j ) with the theoretical values
Sp

th( i , j ). The statistical error in the estimation of the matrix el
ments is around 0.01. For typical values and behavior of the st
tical errors, see Fig. 1.

i j Sp
est( i , j ) Sp

th( i , j )

1 1 ~0.388964638,0.! 0.4

1 2 (20.011561621,20.0160863415) 0

1 3 (20.00103390675,20.0164688228) 0

1 4 ~0.188891975,-0.0241343938! 0.2

2 2 ~0.617439461,0.! 0.6

2 3 (20.182118262,0.000703314322) 20.2

2 4 (20.00825923682,0.020653044) 0

3 3 ~0.606198593,0.! 0.6

3 4 ~0.00111897098,0.0150693168! 0.

4 4 ~0.389230293,0.! 0.4

FIG. 1. Maximum-likelihood~ML ! estimation of the CP map
related to the depolarizing channel. The picture shows the valu
the statistical error (dl)ML in the estimation of the parameterl
~theoretical valuel50.8) versus the sizeK of the data sample.
Circles referred to a ML reconstruction without assumptions on
form of the CP map; triangles are the results when assuming
external-random-field form. As shown by the dotted interpolat
line, the asymptotic dependence of the statistical error versusK is
inverse square-root (dl)ML}K21/2, as it is demanded by the centra
limit theorem.
4-3
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with

M15S 1 0

0 Ap
D and M25S 0 A12p

0 0
D . ~21!

The corresponding positive matrixSa writes

FIG. 2. Maximum-likelihood reconstruction of the CP map d
scribing an amplitude damping channel. The value of the param
p is inferred by reconstructing the positive matrixSa in Eq. ~22!.
Random pure states at the input and projection along random d
tions at the output have been used, withK510 000 measurements
The diagonal dotted line represents perfect agreement with the
oretical values.
A

d
r

et

hi,

05410
Sa5S 1 0 0 Ap

0 12p 0 0

0 0 0 0

Ap 0 0 p

D . ~22!

In Fig. 2 we have plotted the estimated valuepML of param-
eter p versus its theoretical value, as inferred by the rec
struction of the matrixSa throughK510 000 random mea
surements.

IV. CONCLUSIONS

We have proposed a method for reconstructing the co
pletely positive map related to a physical device, based
the maximum likelihood principle. The method is very ge
eral, does not requirea priori knowledge of the mathemati
cal structure of the CP map, and can be adopted in m
fields as quantum optics, spin systems, optical lattices,
oms, etc. We have shown some examples of the recons
tion of CP maps related to quantum communication ch
nels, applying the downhill simplex method for the search
the maximum of the likelihood functional.
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