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Maximum-likelihood reconstruction of completely positive maps
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We present a method for the determination of the completely posfidemap describing a physical device
based on random preparation of the input states, random measurements at the output, and the maximum-
likelihood principle. In the numerical implementation the constraint of completely positivity can be imposed by
exploiting the isomorphism between linear transformations from Hilbert spddesC and linear operators in
K®H. The effectiveness of the method is shown on the basis of some examples of reconstruction of CP maps
related to quantum communication channels for qubits.
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[. INTRODUCTION that are most likely to generate the data one experimenter
observes. Methods based on this principle have been used in
The problem of characterizing a physical device in thethe context of phase measuremént, and to estimate the
quantum domain and of reconstructing input-output relationglensity matrix{8] and some parameters of interest in quan-
has been recently addressed in a number of pade®.  tum optics[2]. The maximum-likelihood principle is quanti-
These issues are obviously interesting for technological purfied by a maximum search of a functional of the unknown
poses. For example, the practical determination of the trangyarameters that correspondgtioe logarithm of the theoret-
formations acting on quantum states is of great relevance ifxa| probability of getting the data one has collected. In the
the new fields of quantum information, computation, _andfollowing we derive the likelihood functional(&) that links
cryptography[3]. In this realm physical objects as optical ¢ eyperimental outcomes with the unknown CP réidpat
fibers, parametric amplifiers, directional couplers, C-Notoracterizes the device. We consider a sequenéeinde-

gates, quantum cloning machines, guantum communicatiogejent measurements on the output, each described by a
channels, etc., should be characterized with very high preciz

: : . ; : = "POVM F (X)), wherex, denotes the outcome at thih mea-
sion. From the theoretical point of view a physical device is ' n
described in terms of a completely positiM€P) map. surement, ant=1,2, ... K. We ‘?"?”O‘e by)|_the state at the
Hence, an experimental method of reconstructing a CP malpPut at thelth run. The probability of getting the string of
would lead to a complete characterization. On the otheputcomes x={xX;,X,, ... X} is then given by p(x)
hand, an effective and reliable technique for the determina=H,ﬁlTr[é‘(pQH(x,)]. The maximum-likelihood principle

tion of a CP map could allow us to check experimentally thesiates that the best estimate of the néamaximizesp(x)

correctness of the theoretical assumptions made in the dgyer the set of completely positive maps. More conveniently,
scription of the physical device. Finally, recall that the struc-,,a can search the maximum of the logarithm, namely, of
ture of CP maps naturally emerges in the theory of open < ' '

systemdg4]. It follows that an experimental technique to es-

timate a CP map also allows us to investigate the interaction L(&)= ;1 INTrLE(p)Fi(X))]. (1)
between different systems, typically a system-reservoir inter-
action.

Here in this report we consider the general problem OfThe likelihood functionalC(€) is concave, and in the present

reconstructing the CP map related to a physical device, withSase 1t1s defined on a convex s_et—the set .Of CP maps. It
out any assumptions on its mathematical form. We propose @/10Ws that the maximum is achieved by a single CP map,
method that resembles ordinary tomography for the use o?" by a closed convex subset of CP maps. .In the last case one
random gquantum measurements at the output, but also erfi@" infer that the data'sample is not sufficiently large, or the
ploys random input states, in order to have the richest statis:t of measurements is nogaorum([9].

tics. The paper is organized as follows. Section Il describes 1€ maximization problem is constrained by completely
the general method, which is based 6 the maximum- positivity and_ trace—preser_vlng propertles of the napA .
likelihood principle andii) a suitable parametrization of CP {race-preserving CP map is a linear map from operators in
maps which is allowed by the isomorphism between lineafilbert spaceH [dim(#)=N] to operators inkC [dim(K)

transformations from Hilbert spacéé to K and linear op- =M1 which can be written equivalently as follows:
erators inNK®H [5,6]. Section Il shows the application of .
the method for characterizing quantum communication chan- &p)= Ek Axp Ay 2
nels. Section IV is devoted to the conclusions.
=Trd(1k®p")S] )
Il. MEASURING QUANTUM DEVICES )
N
T_he maximume-likelihood principle says _that the best esti- => p,Up ut, (4)
mation of some unknown parameters is given by the values n=1
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where

Ek‘, AlA=1,,, (5)

S=0 and Tg[S]=1y, (6)
N2

T UU;1=4; and n; PUIUL=1,, 7)

and T denotes the transposition. Equati@®) is the well-
known Kraus decomposition. Equati@B) exploits the iso-
morphism between linear maps frof to K and linear op-
erators on the tensor-product space H [5,6,10,11. The
operatorS can be written in terms of the mapas follows:

N2

S= 21 V) ®VF (8)

where* denotes the complex conjugation, af\d} is any

orthonormal basis for the space of linear operatorsHyn

namely T[vﬁvj]:aij , and for any operato® one hasO

= Ei'\flTr[VfrO]Vi . Notice also that for linearit}10,12 one

hasS=£&@1(| ¥ )(¥|), where|¥) represents théunnormal-

ized maximally entangled stafel’)=3N_,|n)|n).
Equation(3) can also be written as

Ep)=Tr[(1x®p)S'], ©)

wherel" denotes the partial transpositionty, and then

N2

S'= Zl EVpeV] . (10)
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lem of separability of CP mag4d.4]. For our task—the maxi-
mization of £L(&£)—it is also crucial. The conditio®=0 al-
lows one to write
s=c'c, (12)

whereC is an upper triangular matrix. Moreover, the diago-
nal elements ofC can be chosen as positive. Such
decomposition—referred to as Cholesky decomposition—is
commonly used in linear programmind5]. Similarly, one
has for the matricep|” and the POVM'sF(x))

pI=RIR, Fi(x)=AT(X)A((x). (13)
From Egs.(3), (12), and (13), the logarithmic-likelihood
functional in Eq.(1) rewrites

K

L&) c(c>=|§l In T CTCRIR@AT(x)A(x))]

NM
Iogn;:l [(n[CRI @ AT )Im)2,

K
> (14

=1

where{|n))} denotes an orthonormal basis faf® K. The
expression obtained in E¢l4) for the likelihood functional
automatically satisfies the constraint of completely positivity.
Furthermore, the terms appearing as an argument of the loga-
rithm are explicitly positive, thus assuring the stability of
numerical methods to evaluat{C).

The trace-preserving condition is given in terms of the
matrix Sas Ti[S]=1,,. This can be taken into account by
using the method of undetermined Lagrange multipliers, then
maximizing L' (€)= L(E) —Tr[ (1x® u)S], where u is the
undetermined matrix.= =7 _; u;; |1 )(j|. The multipliersu;;
cannot be easily inferred, except the conditior Jd=K.
Writing Sin terms of its eigenvectors &=3;s?|s,)){(si|,
the maximum likelihood conditio@ £’ (€)/ds;=0 implies

Finally, Eqg. (4) can be shown as follows. Chosen as an or-

thonormal basis {V;}, Eg. (2) rewrites &(p)

2
=S VipV] . with ;=S T AVITTALV,]. The
matrix Q with elementg;; is positive, and it can be diago-
nalizedQ=WDW' with W unitary. Then one has

N2 NG
s<p)=”221 (WDW);;Vip V,-*=n§l paUnp U, (1)

wherep,=(D),,,=0 and{U} is the new orthonormal basis

2
Up=2 (W) V.
For H=K the matricesA, and U, are squared. When

referring to quantum communication channels, the channel is

called bistochastic if aIsEkAkAl:JlH. Moreover, operators
{U,} in Eqg. (4) could be unitary, and in such case tffés-

D T (Fi(x)®ppsi|si)){(sil]
=1 TriL(Fi(x))®p))S]

=Trl(1c® p)si|s){(sil]-
(15)

K

Multiplying by s; and summing ovel gives Tfu]=K.
However, notice that the constraint[B{=N that follows
from Tr[S]=1, isolates a closed convex subset of the set
of positive matrices. Hence, the maximum of the concave
likelihood functional still remains unique under this looser
constraint, and one can chealposteriorithat the condition
Tr[S]=1y is fulfilled. The functional we maximize is then

L(C)=L(C)— %Tr[CTC], (16)

tochasti¢ channel is said to be given by external randomwhere £(C) is given in Eq.(14), and the value of the mul-

fields. For a qubit systenf{=C?) the set of bistochastic and
external-random-field channels coincidis].

tiplier has been obtained through a derivation similar to Eq.
(15). The number of unknown real parameters is given by

The isomorphism between linear maps and operators e$NM)?2. The problem of maximization of functionals as Eq.

tablished in Eqs(3)—(8) or (9) and(10) has been useful for

(16) enters the realm of programming and numerical algebra

the study of positive mapisl0,11 and to address the prob- optimization, where various techniques are kndwAl|.
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IIl. CHARACTERIZATION OF QUANTUM
COMMUNICATION CHANNELS

PHYSICAL REVIEW A 63 054104

TABLE |I. Maximum-likelihood estimation of real and imagi-
nary parts of the matrix elements 8f related to the Pauli channel

. . in Eq. (17), for theoretical valuep,=0.3, p;=0.2, p,=0.4, and
In the following we show the effectiveness of our method, — o 1. Random pure states and projective measurements along

on the basis of some examples of quantum communicatiopandom directions have been used, vtk 30 000 runs. We com-
channels for qubits, i.e{=K=C? In this case KM)®>  pare the estimated value*(i,j) with the theoretical values
=16, and for such a relatively small number of parameterss(ij). The statistical error in the estimation of the matrix ele-
one can efficiently apply the method of downhill simplex ments is around 0.01. For typical values and behavior of the statis-
[15,16 to find the maximum of the logarithmic-likelihood tical errors, see Fig. 1.

functional. This method has been reliable in the reconstruc=

tion of the density matrix of radiation field and spin systemsi j S (B s})“(i )
[8]. The results in the following simulations have been ob- 1 0.388964638 04
tained using random pure states at the input of the channelr, ©. 0. :
along with a projective measurement in a random direction aj 2 (—0.011561621; 0.0160863415) 0
the output.
The first example is the Pauli channel for qubits 1 3 (—0.00103390675; 0.0164688228) 0
4 1 4 (0.188891975,-0.0241343938 0.2
Ep(p)=21 piTipoi, 17 2 2 (0.617439461,0. 0.6
<
2 3 (—0.182118262,0.000703314322) -0.2
4 = = i i = -
whereX;_,pi=1, 0o=l, ando; (i=1,2,3) denote the cus- 4 (~0.00825923682,0.020653044) 0
tomary Pauli matrices. The positive mat&y reads
3 3 (0.606198593,0. 0.6
+ 0 0 -
PoPa Po™Pa 3 4 (0.00111897098,0.0150693168 0.
s_| O PP TPz O 18 4 4 (0.389230293,0 0.4
. 0 P1—P2 P1t+P2 0 ’ ' - '
Po— P3 0 0 Pot P3

inverse square-root dependence of the statistical error on the

. — / . .
on the lexicographically ordered bas@g), [01), |10), |11),  SiZe of the data samples )y, =K~ 12 in accordance with

where|0) and|1) corresponds to the eigenstatesogfwith (e central limit theorem. , _ _
eigenvalues 1 ane 1, respectively. In the last exampl_e we conspler a nonbistochastic chan-
In Table | we reported the reconstructed matrix element&1€!: namely the amplitude damping channel
of S, as obtained by a Monte Carlo simulation witd £.(p)=M1pM;+M,pM
=30000 runs, for theoretical valugg,=0.3, p;=0.2, p, é e 22
=0.4, andp3=0.1. The trace-preserving property corre- P
sponds to the conditionsS;(1,1)+S,(3,3)=1, S,(2,2) o T
+S,(4,4)=1, and S,(1,2)+S,(3,4)=0, which are clearly N i
satisfied. The estimated values compare very well with the ; N ]
theoretical ones. I
For p;=p,=p3 in Eq. (17), one obtains the depolarizing
channel

(20

0.1
>
/

(M)
/

0.01

T
7/
1

1-\
&(p)=Ap+——1,

5 (19) ; N

100

FEETIT B A AT B R AR TTTT s
4 5
with \=1-4p;. In Fig. 1(circles we reported the statistical 1000 10 10

error (6\) v, in the evaluation of the parameterversus the K
size K of the data sampléwith the theoretical valuex
=0.8). The_ value ofy ha§ been inferred by.the complete related to the depolarizing channel. The picture shows the value of
reconstruction of the matri,. However, notice that one he tatistical error 41),, in the estimation of the parametar

can also implement the maximum-likelihood method uponheoretical valuen=0.8) versus the siz& of the data sample.
assuming the form of the CP map as in EGs) or (19). In" Circles referred to a ML reconstruction without assumptions on the
such a case the space of parameters is reduced to 4 andfdsm of the CP map; triangles are the results when assuming the
respectively. Figure 1 also shows the results obtained by axternal-random-field form. As shown by the dotted interpolating
four-parameters estimatiadftriangles, thus by assuming an line, the asymptotic dependence of the statistical error vefsiss
external-random-field channel. As shown by the interpolatinverse square-root )y <K~ as it is demanded by the central
ing line in the picture, in both cases one has an asymptotitimit theorem.

FIG. 1. Maximum-likelihood(ML) estimation of the CP map

054104-3



BRIEF REPORTS

PHYSICAL REVIEW A 63 054104

(22

-L ' /;/_ 1 0 0 p
d S 0 1-p 0 O
o8 =
/O/ 4 0 0O 0 O
S o Vb 0 0 p
= Q .
e o’ In Fig. 2 we have plotted the estimated vajyg_ of param-
D/ eterp versus its theoretical value, as inferred by the recon-
o struction of the matrixS, throughK=10000 random mea-
o’ surements.
. L L | |
° 0 0.5 1 IV. CONCLUSIONS

We have proposed a method for reconstructing the com-

pletely positive map related to a physical device, based on
FIG. 2. Maximum-likelihood reconstruction of the CP map de- the maximum likelihood principle. The method is very gen-
scribing an amplitude damping channel. The value of the parametegral, does not requira priori knowledge of the mathemati-

p is inferred by reconstructing the positive mat@x in Eq. (22).

cal structure of the CP map, and can be adopted in many

Random pure states at the input and projection along random diredields as quantum optics, spin systems, optical lattices, at-
tions at the output have been used, Witk 10 000 measurements. oms, etc. We have shown some examples of the reconstruc-
The diagonal dotted line represents perfect agreement with the theion of CP maps related to quantum communication chan-

oretical values.

nels, applying the downhill simplex method for the search of

the maximum of the likelihood functional.

with
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