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Symmetries in the optical Bloch equations and multiphoton processes
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The optical Bloch equations exhibit symmetries that are directly related to the probabilities of the processes
of absorption and stimulated emission. As a matter of fact, a picture similar to that holding for a two-level
system can be recovered also in multilevel systems and, in particular, for any multiphoton process tuned
between a given couple of levels. Thus, new quantities, such as the generalized Brstefficients, directly
related to the probabilities of the involved process, and atomic level indicators, whose inversion signals the
existence of gain for that given process, can be defined. It is shown how these lead to valuable conceptual
simplifications and to the disclosure of new insights into some popular problems of quantum optics. In
particular, the issue of an efficient gain process to be realized within a multilevel atom-field configuration, a
problem closely related to the widely investigated problem of lasing configurations without population inver-
sion, can be viewed entirely as a rate problem and therefore analyzed with increased confidence.
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[. INTRODUCTION stochastic formulations of the quantum mechanics theory of
measuremenf6]. The ideas that will be presented here,
The optical Bloch equations describe the interaction of arshowing the connection between the symmetries in the OBE
atomic system, schematically represented with a finite, usuand the probabilities of the active multiphoton processes, are
ally small, number of levels, with coherent electromagnetica generalization of those expressed in the previous works
radiations. It is therefore the main tool and the most populaf4,5]. Here we establish a set of rate-balance equations where
model for the investigation of a broad range of phenomendhe probabilities of all the involved multiphoton processes
related to the field of quantum optics. One of its distinctiveappears directly as coefficients in these linear equations.
and successful feature is that of including the influence of th@hese are of the same kind of the equations first derived in
dissipative sources in a very simple, though very general,4] under certain special conditions. In particular, the gain of
way [1]. Therefore, it deals primarily with the density matrix any multiphoton process can be written in the same way as
of the atomic system, although its evolution in time can al-that of a two-level system where the populations are replaced
ternatively be viewed as wave function evolution interruptedby new variables which depend only on the atomic level: in
by stochastic impulsive perturbations having their origin inthis context the generalized Einstdrcoefficients are intro-
the dissipation sources interacting with the atomic systentluced. These equations can be solved for the populations or
[2]. for the level rates beforehand to the calculation of the gain.
One of the first problems where the optical Bloch equa-Thus the analysis of the configuration response to the elec-
tions were used was in the calculation of absorption andromagnetic fields can be set about principally as a rate prob-
emission of atomic systems in the nonlinear regime, as fotem.
example the laser equations, where the Fermi golden rule This paper is organized in the following way. In Sec. I, a
could no longer be applied. A similar kind of problem hassymmetry relation existing in the mathematical structure of
recently recurred in the context of lasing without inversionthe OBE is derived. In Sec. Ill, a physical picture of the
where it was pointed out that the scope of the well-knownmultiphoton processes which relies on the above symmetry
principle of inversion, relating radiation amplification to the relations is presented. The calculations of Bieoefficients
existence of a population inversion in the active mediumfor the two- and three-level configurations are carried out in
does not apply to the case of multilevel lasing configurationsSec. 1V. In particular, in the case of a three-level system, we
[3]. In fact, the optical Bloch equatiof®BE) for such sys- give a closed expression that can be applied to several con-
tems do not explicitly display the symmetries related to abfigurations already studied in the framework of lasing with-
sorption and stimulated emission of photons on which theout inversion. In Sec. V we present two applications of our
standard principle of inversion rests. Thus, the question oéquations. The first one is concerned with quite an old prob-
whether such symmetries are instead hidden in the structutem in quantum optics, i.e., the occurrence of dark reso-
of these equations, or not present at all, has received sonmances in atomic systems. Here it is shown how the well
attention in the pasf4]. An important step showing their known reduction in absorption that is experienced in this
relation with the underlying physical basic mechanisms ofconfiguration can be related to the quenching of the one-
absorption and stimulated emission was carried out by mearnghoton absorption probability to the upper state introduced in
of the quantum jump picture of the dissipation proce$S¢s the present work. In the second examplé, and aV atomic
Such a modeling of the dissipation processes, which appliesonfiguration are investigated in relation to the possibility of
when the dephasing mechanisms are much faster than atonpeoviding efficient gain of radiation in the region of short
evolution, has been shown to play an important role in somavavelength.
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Il. SYMMETRIES IN THE OPTICAL BLOCH EQUATIONS wherep;(t) represents the evolution pfaccording to Eq. 3

A. The Optical Bloch equation with the initial conditionp(0)=|i)(i|. This representation is

We write down, in a rather general form, the optical central to the development of the concepts which will be

Bloch equationOBE) for an atomic system witiN discrete mtroducgd here. : ' .
levels as We will focus here on particular configurations where the

rotating wave transformation, followed by the rotating wave
. approximation, leads to a time-independent Hamiltonian and
p=1[p,HI= > %;PipP,— 2 7PipPi+ > ®P; (1)  to a stationary solution of the OBE. It is well known that this
s ' ' becomes possible when the diagrammatic representation of
or equivalently, in a more compact way, as the atom-field configuration presents no closed loppls
One example of such a configuration is shown in Fig. 1. The
stationary condition can be simplified to

b=—|£p+§i: P, . ) )
Here, we introduce the the Liouvillian operatérwhich can p=2i A, ©
be expressed in terms of the Hamiltonian oper#&toof the
depletion rates of the leve)y;, and of the coherence decay where
vij - Itis customary to term the equation
. . A= f pi(t)dt. 7
p=—1Lp 3) i Opl() )

as to be the free or coherent evolution because it can usualijhus, the quantitied; obey to the equation

be made equivalent to the evolution of an effective atomic

wave function by means of a proper Satliger equation Pi=iLA; (8)
[2]. On the contrary, the second teknP;, whereP; is the S ) ] )

projection operators in the stdie, is associated to the feed- Which is obtained by integrating E(S) from 0 to=.

ing term of the level. The scalar quantitie®; are the level

rates, or input flow, and can be written in terms of the level B. Symmetry of the coefficients(A;)

populations as follows: There is an interesting symmetry concerning the quanti-

ties A defined above. This involves the populations and is
(I)izz i (VP » (4) therefore reminiscent of the original formulation of the prin-
k ciple of inversion in which populations play an important

role. However, in the present case the populations are ficti-

where are the branching probabilities to the levedf a 4 s pecause Eq3), which governs their evolution, does
decay that occurs from the levetind y, is the depletionrate o contain the feeding terms, which are, instead, present in

of the same level. The above expression for the density mMgpg complete evolution equation. Nonetheless, we can state
trix p can be also given an integral representation as that, under such an evolution, the average population in state
. N k, as defined in Eq(7), given that the system starts in state
p(t)= J 2 pi(t—t")d;(t")dt’, (5) is the same of that in the stat.egwen that the system initiate
—o ] in statek. Indeed, we can write

(A k= (Ayii - 9

6 —— The first step necessary to prove this relation concerns the
symmetry of the Liouvillan operatof, i.e., £L=L". To this
5 end we remind the reader that the operafois defined on
the vector space spanned by the vectkysi|=|k,i) asi and
4 k range over the atomic vector space. In this space the scalar
product between two vectors= | i ,1,) = |1 ){i,| and ¢
=|¢1,d2)=|p1){p,|, Which are operators in the original

—_— 3 atomic space, is given by T¢(" ), that is,
5 (1ol hrib2) =(Palh1) (W2l b2). (10
—— 1 Now, £ can be splita®= L+ Lp, whereLp , which is the

term accounting for the dissipation, is surely symmetrical
FIG. 1. Multilevel atom-field configuration without closed loops Since it is diagonal. The symmetry of the component corre-
of the kind discussed in this work. The transition 4-5 has been pusponding to the Hamiltonian evolution, i.e., 6f;, is then
in as evidence for purposes related to Sec. Ill. proved as follows. We write
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0 1Luliiy=G [ Lalid I proves Eq(13): by further integrating it over time we get the
. . ., symmetry relations of Eq9).
= HIDAT=[DGHMT

=6, (i"[H|i)= 8 i(jIH[j"). (1D . MULTIPHOTON PROCESSES

Exchanging indiceswith i’ andj with j’ the result does not We now wish to establish a connection between the re-
change sincei’|H|i)=(i|H|i’). This last equality arises sult; obtained in the previous section and the concept of
from the fact that, in configurations without closed loops, itMultiphoton processes. We will first state and later prove a
is possible, by properly choosing the phases of the atomiPicture that is both simple and extremely intuitive, but

states, to make all Hamiltonian matrix elements real: thudvhich, nonetheless, has never received a rigorous proof. To
('[H]Y=([H*[i"y=(i|H|i"}, from which it follows that this end let us consider a given multifield configuration with-

the Liouvillian operator is symmetrical. out closed loops as shown in Fig. 1. Any path between two
The next step is now to prove E€). By recalling that ~ 9IVen levels corresponds to a multiphoton process. If we

the coherent evolution with the initial stai is given by consi.d_er a givgn t'ransition in the structure, as for example
transition 5-4 in Fig. 1, there are several multiphoton pro-

;Ji(t):eﬂa“,i% (12) cesses to which it belongs, namely 5-4, 6-4, 7-4, 5-3, 6-3,
7-3, 5-1, etc. To classify these processes, it is convenient to
it is then sufficient to prove the equality partition all of the levels into absorbing and emitting ones
with respect to a given transition. For example, in the case of
(k,kle " Yi,iy={(i,ile”"k,k). (13)  the transition 5-4, given that the energy of level 5 is greater

than that of level 4, levels 7, 6, 5 are emitting whereas levels
It is to be noted here that, althoughis a symmetrical op- 4, 3, 2, 1 are absorbing ones. Thus, any given transition will
erator, it is, indeed, non-Hermitian because some of its diagee a segment of each multiphoton process initiating in an
onal elements may be complex numbers. Thus, its right andmitting level and ending in an absorbing one. The rate of

left eigenvectors energy in the electromagneti&M) field tuned with this
transition is found, quite simply, by summing the rates of all
Lilly=L[l;), (14 the multiphoton processes to which it belongs. Thus, we can
write the total photon rate on the transition from 5 to 4 as
Ll =L, (15
d
no longer coincide. However, they satisfy the following re- an5,4=2 M i (18
lation 1
) =]1)*. (16)  wherel’ ranges over the emitting nodes andver the ab-

sorbing ones. Moreover, for any multiphoton process its glo-
This is proved by first taking the adjoint of E(L5), I5|1;) bal rate can be written as
=L*[l;)=L*|l;), and next its complex conjugaté/l;)*

=L|l;)*. The Equation(16) follows from this equation and D, D,
from Eq. (14), in the assumption that the spectrum is not My i=Bpi | ———/, (29
degenerate. We avoid here entering into unnecessary details YooY

of degenerate eigenvalues since the final conclusions will
remain unchanged regardless. We can now use an eigenveghere1’ stands for the emitting level, for the absorbing
tor expansion of Eq.(12), based on the completeness level, andy,, andy; the relative depletion rates. The first
il (Lil==Zi|1;)(li]=id and normalization(l;|I;)=(I;|l;)  term of this expression is identified with the stimulated emis-
= ¢; j relations[8], as given by sion rate and the second with the absorption rate. The coef-
ficientsB,, j=B; ,» are shown to coincide with the Einstein
|s> (Is
efficients. It is important to notice that the absorption and
stimulated emission rates are proportional to input fibyof

. coefficients in the limiting case of a two-level system and are
i) therefore named in the following generalized Einst®ino-
— —1lgt .
_ES: e "k k[I (1 4i,T) the involved levels: these quantities are merely what is usu-
ally known as the level rate. Thus

(k,k|e'“|i,i)=<k,k

—1Lt
3

uy]

= e 1Ll 1k k) =il Ek k), .
s Pi’jzi (20)

17 Yi

where the symmetry off has entered in the third step can be interpreted as the probability of the process initiating
of the equality above. In fact, by using E¢L6) we get inleveli and ending in level. These probabilities satisfy the
KKy (g ,iy =k, K)* (i,i|l)* ={i,i[ls)(Ig|k,k).  This  relation
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P.'. Vi d R .
it e Gii=2 (90t > (Rg) @y, (26)
Pj,l Yi dt S o
which was implicitly assumed i4], in the particular case of where the sum has been split into one over the emitting

¥i=7j, and later proved if5] in the more general case. In nodes and the other over the absorbing nodes. Finally we get
the analysis of the multilevel system we will employ both the

expression for the gain in terms of tiBecoefficients and of d N -

the probabilitiesP, according to the better convenience. We gihiiT _z 2 (ds)s’®s+z z (ds)sPsr
also note from Eq(19) that in the case in which the flow in s S

the absorbing and emitting levels is the same, a strong deple-

tion rate of the upper level enhances the stimulated emission, - E (dg)sr Ps= (ds)sPsr = 2 Ms'.s (27)
a feature that, as we know, is at the basis of most of the Ss ss
feasible lasing configurations. and
A. Generalized EinsteinB coefficients ()b — (8. D~ B o, Dy 28
In this subsection, we focus on the mathematical proof of /=S ' ¢ s s 1TSISEeTES s [T T
the picture presented above. To do this, we start from(&q. _ _
applied to the most general atomic configuration, with manyhaving defined
levels and fields tuned between them, an example of which is .
shown in Fig. 1. This gives Bss'=7vs (ds)s=7YsYs/(Ag)st s = ¥sVsr(Agr)ss= Bs’,(s- )
29
N - i A
Pqq= ~ YaPqqT EK 5 QK Pk Pia) (220 The first term ofus ¢ corresponds to the stimulated emission

process rate, whereas the second one corresponds to the ab-
sorption rate. Moreover, by integrating over the time the

which integrated from 0 tee, with the initial state beings), ;
equation

yields
i A d_ . .
(9¢=3 (Aq+ dsg (23 G == 20 nlpidik (30

with the obvious identificationfg)q: ¥q(Ag)qq and (ﬁs)q,k and accounting for the initial condition gn it results
=(112)Qq(Akg— Aqi), the sum above ranging over all the

levelsk that are connected to the levglwith a field (). 2 %:E P =1 (31)

For any level different from the initial one, it helps to picto- K i R

rially associate such an equation with a sink in the leyel

represented byfi(g)q, and with currents F(s)kq going from which gmbodies .the probapilistic meaning .connec.ted to the
the neighboring levelk to the sink Ievelq: Let us now B coefﬁ_ments. It is to be pomtgd out here, in relation to _the
consider a given transition froiinto j and a level which is ~ €Xpansion of these processes in terms of higher order virtual

absorbing with respect to such transition. It is easy to shoWnultiphoton processes initiating irand ending irk, thatB;,
that corresponds to the complete summation of these latter.

Therefore, it takes into account all interferences that may
- - occur between them.
(== 2 (dy), (24
seem B. Rate-balance equations for the level’s populations

wheres’ ranges over the emitting levels of the :ilbove tran- Perhaps the most interesting consequence of viewing the
sition. In fact, by virtue of Eq.(23) and of (g)qk=  optical Bloch equations from the perspective set forth above
—(ﬁs)k,q, the sum in the second part of the above equations that the interaction between atom and field can now be
contains currents that cancel out in any segment except thanderstood in terms of rate processes rather than by means of
in the one corresponding to the chosen transition. In a similaatomic coherences. Thus it is possible to write a balance
way, given an emitting leved’, we can write equation relating the rates in and rates out for each given
atomic level. To show this, let us start from E§), take the
average over the stateand multiply by vy,

(Ng)ij= 2 (dg)s, (25)

. = AD)ik@i+ (A i P 2
wheres now ranges over the absorbing levels. YkPkk g‘k AP+ T AP (32)

Now, by using Eq(6), we can calculate the photon’s rate
on the given transitiom to j by means of the corresponding Upon transforming the last term by means of E8fl), we
off-diagonal matrix elemer9]. We thus find get
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2 IV. B COEFFICIENTS IN SOME SIMPLE SPECIAL CASES
— +d, + =0, 33
T Prk K i#k Hik 33 A. Two-level atomic system

o ] ) We consider now a two-level system driven by a coherent
whose meaning in terms of photon absorption and stimulatege|q with lower and upper levels damped at rajgsand y,,
emission arises quite naturally. The first two terms in thejegpectively. In order to calculate the absorption and stimu-
above equatlon represent, respectively, the .depllet|on rat@gted emission, according to EG29), we must compute
and the input rate of the statledue to the dissipation pro- (A1) 4. The operaton , fulfills the following equationgthe

cesses only. The coherent fields contribute to this balancgqgex 1 has been dropped to simplify the notatipas from
with stimulated emission processes ending in skatgth a Eq. (3) and Eq.(7):

rate P;  ®;=Bj(®;/y;) and with absorption processes

starting in staté with rate P, ; ®,=B,;(®,/y,). The equa- I,

tion above can be solved for the populations or, according to QA=A = mAn=—1,
the needs, directly for the level rates. In this last case the

normalization equatioX;p;; =1 and
I
=y 1ot E(Au_ A3 =0, (38

(I)i:; i YkPkK) (34)
Y111t v2A =1,

can be used to express the populations in term of the rates

that are then put back into E83). where the RW Hamiltonian is given by

C. Limiting cases

Q
It is easy to show that in the limit of small fields one o >
recovers the standard picture of absorption and stimulated H= (39)
emission in which the global gain for each process is propor- g 0
tional to the population difference between its initial and 2

final state. Under these conditions, the rates of the multipho-
ton processes in Eq33) are negligible. Thus we hav@;

= y.pii» and ;. is given by and the substitutiong\ ;,— QO A, and y,,+15— vy, have

been made in the original equations. NoB/= y1y,A 5.

P q)k) Thus
«=Bix |———|=B; i~ P (35
Mik= Bik v e ik (Pii — Pk
B 1
This relation substantiates the naming of generalized Ein- B= 1 1 1’ (40
stein B coefficients adopted for the quantitiBs . ST 1 +y_2
Another limiting case concerns the gain of a two-level
system. We recover here the usual expression for gain pro-
portional to the population inversion. By indicating with 1 Where
the lower level and with 2 the upper one, the following equa-
tions hold: 02/ 1 1 b
s=—| —+ —
b, P, 4 \y2 ¥
(2221

is the saturation rate. For small fields one l&ss. We
notice that, although the coefficieBtis the same, the prob-

—Y2p20t Po— p21=0, (360 anilities for absorptionP,,, and stimulated emissiom®,,,
differ as a consequence of the different relaxation constants
—y1p11tT P1+ pm=0. of the levels 1 and 2 and, in a similar way, the rates of these

two processes also differ.
By multiplying the first one byy,, the second one by,
and by subtracting the resulting equalities and using the ex-

: . B. Three-level atomic system
pression found above fqi,;, we obtain y

We consider a three-level atomic system with stales
|2), and|3) coupled by coherent fields of Rabi frequences

B
,u21=—+)(p22— P11)- (37) Q4, tuned on the transition 1-3, afd,, tuned on the tran-
_ (72_715 sition 2-3. The Hamiltonian, in the rotating wave approxima-
Y172 tion, is given by
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Q, larly useful to describe the response of a three-level configu-
6, 0 > ration to a probe field tuned on one of its transitions when
another field, usually a strong one, is tuned on the remaining
H=| o s & (42) one. A problem that has received considerable attention in
B 2 2| the context of the search of new efficient lasing configura-
Q. O tions in three levels in V oA geometry[10].
12
2 2 1. Analytical features of B, and B;3
We need to determine the operatar. By dropping the The expressions for the factors introduced above are
index 1, to simplify the notation, we have 1
02 Bas= 72P23:—1 1 1 (47)
1
= (A3—Az)— yiA 1= — 1, -+ —+—
2 (A3 30~ v1An S v 73
03 Qff1)y  0f
I 5 (A3~ Agd) = v2A22=0, Fis=5 |\ 7] = —A, (48)
13 2y1713
| ’
_ _ _ - r
naizt 5 (Ass=Asd =0, [ B —] 49)
(43) 2y1 va s
I I !
— v13h 13t EQ%AH_E(ASS_All)Zoa A= y—ig , (50
I3
I I . . . .
— oo —02A 1ot ~(Aag— A y2) =0, where B,; is the B coefficient for the transition between 2
Yahae™ 500 A1F 5(Ass— A2 and 3 driven at the Rabi frequen€), in absence of the field

on transition 1 to 3, or, in any case, when this field is very
1At y2Aot yaAas=1, small. F 5 is the total probability of absorption, i.e., the sum

. o _of a one-photon process probabil®s; with the Raman ab-
where the following substitutions have been made to Obta'@orption process probabilit,,. For small driving fields

the above equations from the original one derived from Equ' i.e., whenPy, is negligible, the one-photon absorption
(3 and Eq. (7): A1p=QaQ5A15 Agz=Q2As; Az p_. coincides withF 5. The Raman factoR can be further
=M1 yieti(617 ) =yotid—y12;  v1sTid  gimplified, such as to be written

—y13; Y3~ 18— y3. We wish now to determine the
quantitiesA ,, and A 55 that are related, through E¢(R9), to

2 ’
the probabilities of the Raman process, connecting stajes R=1— 73, 7/3, l_y Y
with |2), and to the one-photon process, connecting states 2y13 2712| ¥+ 67 Y13
[1) and|3). These equations are solved in Appendix A in 5 o
the most general case. However, as can be seen, the general n 5 (7_12)
expressions are rather complicated and of dubious value. Un- Y1V |y
less a compact expression can be found, the numerical solu-
tion is, at present, to be preferred in the most general case. Y8 i, & Y Y
On the contrary, they lead to simple expressions whegns = o = - T (51)
very small. Indeed, we find YTy v Y13 Vi3
P,=Fi3 Psp R, (44) whiqh results to be the sum of an absorpti_on and a dispersjon
profile both centered at the Raman detuning and both having
ERY width y=7y 1+ Q%4y1,¥15]Y% In the condition in
Pist PlZZFBZﬁ(F_) : (45 which v}, is much smaller thany,;, a situation which is
L found in many experimental occurrences related to this con-
where the primed quantities denote the real part of the comfiguration, the peak of the Raman factor &0 is much
plex quantity within parentheses and greater than the unity due to the prefactey/y1,. Con-
versely, the background term is, in these same conditions,
Qg almost negligible, as is the prefactor of the dispersion profile.
I'y3= yast le (46) We would like to point out here that the factorization of the

Raman probability as it occurs in E¢44), although quite
The meaning of the factors appearing in the above expresppealing, is almost accidental and we are unable, at the
sions will be explained below. These expressions are particunoment, to explain it by using simple and intuitive argu-
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and the condition mentioned above can be expressed in terms
of the ratio between the derivative of the real part and imagi-
nary part of the above expression resulting in the inequality
2|6|y | yi5— 6%|<1. This condition is satisfied wheA

>y 1, and the peaks are located at detunings which obey the
relation

TRIR

4 0 8/s 4 515~T. (53

For very strong driving fields, this yield$,;~ d~*+ /2
whereas the peak maximum value is givenAy y 14/(y 13
+y1,) . Different kind of information can be gathered by
calculating the poles of Ij3. By assuming that ;, is the
smallest time constant in the system such as to be neglected
in the above expression$),<y 13 and upon defining&
=y15t18,, the above poles result to bﬁ=iaf and 6_

=i(Q3%/47), respectively. We find

TRIR

4. 0. '51'/73' 4.

29

A
TRIR,

e
\ g
1

T

5 2
() : 1A A 1 8 T
T 50, 56 vm a4y @
—+ié
4y

1 \L The first term of this expression corresponds to the two-level
0. b= e absorption of the probe field on the 1-3 transition in the
-4, 0. &M 4 absence of the driving field. The second one gives rise to a

dip in this profile when the detuning, is within the one-

FIG. 2. This figure shows thé factor, continuous line, and photon linewidth, and to a well-distinguished peak wh&n
Raman factoR, dotted line, for different values of the three-level falls outside of it, as can be shown in FiggbRand Zc).
parameters. The Raman factor is normalized to the quaRiity These peaks occurring at the Raman detuning can be inter-
=73/ 1p- In the casda), §,=0 and(),=1; for the caseb), 5,  preted both on the basis of Eq45) and on the presence of
=3 and(),=1; and for the caséc), 5,=3 and(2,=3. EIT cor- 3 Raman signature iR,3 due Raman resonant multiphoton
responds here to the minimum of theprofile. The fixed param-  processes having the same initial and final state of the one-
eters arey;=1, 7,=0.001,y;=0.01, andy;;=(vi+ ¥;)/2. photon process corresponding Rgs.

Now, as it concerns the features of the Raman probability
ments. In any case it is already well known that the RamarP,,, Eq. (44) tells us that in order to have the maximum
probability does not coincide with the product of the prob-value of this quantity the peaks in the Raman factor and in

abilities of its segment transitions. the A factor must match. To this end it is important to ob-
In Fig. 2, the quantitieR and A are shown for different serve that the Raman fact®is generally peaked ai=0,
values of the configuration’s parameters. The fa&adis- i.e., at Raman resonance: indeed, within the approximation

plays the peculiar doublet structure of the Autler-Townesmade here the ternFgR is given by F3.R=[v,/(7y-

absorption. In fact, 17,3 possesses two simple poles in the 4+ y.) ][ v2/(y2+ 6%)] with 7:92/2,/3,12/3,13_ On the con-
complex plane of the variablé which can be interpreted as trary, the position of thé peaks obeys Eq53) according to
light shifts, or dynamical Stark shift, of the upper dressedyhich greater values o, correspond to smalles values
states|2) and|[3) induced by the strong driving field. The and, by consequence, to better matching. This tells merely

position of the resulting peaks can be identified approxithat off-resonant Raman probability is greater as compared
mately, when the real part is a slowly varying function®f  with the in-resonance probability.

with the vanishing of the imaginary part of;53. This latter

can be explained as a function éfin the following way: V. APPLICATIONS TO SOME POPULAR PROBLEMS IN

QUANTUM OPTICS

.. Qg We present now some physical situation where the con-
Fig=yiatidy+ —— cepts above can be applied. The first one concerns the prob-
4(y1,Ti06) i .
lem of dark resonances, i.e., the disappearance of fluores-
02 cence and absorption that occurs in a three-levedtomic
=yitid+ 5o (y1,—16) (520  system when the detunings satisfy the Raman condition, first
4(y15+0%) reported in[11]. This is at the basis of a wealth of phenom-
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—_

ena in quantum optics ranging from sub-Doppler laser cool-
ing [12] up to the the most recent observation of the anoma-
lous reduction of the speed of light in laser cooled and
noncooled medig13]. We also briefly show how the elec-
tromagnetic induced transparen@lT) can be interpreted in
terms of the multiphoton process probabilities introduced
here. Finally, we discuss the issues of efficiency and profit-
ability of some three-level configurations designed to pro-
vide efficient gain of radiation by means of an additional 305 003 001 001 003 OO
driving field, a subject that has close relations with the in- 3/T
vestigations on lasing configurations operating without popu-
lation inversion[3].

—P-probability
- Population

FIG. 3. Raman and one-photéhprobabilities for a three-level
system inA configuration, with equal Rabi fields, as a function of
the detuningé=§6; with §,=0. Parameter values a@,=(),

A. Dark resonances =0=0.1 andy=10"*. These are all normalized to the decay rate

. : _ . : !
In a three-level system in tha configuration and for I Of the upper state ands; is normalized to /T)°.

values of the detuning corresponding to Raman resonance,

the population of the upper state vanishes and the system Q%[ 1\" I
becomes transparent to the radiation. It is possible to gain 1+ T\~ T
7 . . : . Y12 Q
some insight into this behavior also in the framework of the Pis= , (59)
rate-balance equations that we have developed here. To carry Q%[ 1\ 4
out our calculations, we assume the presence of a spontane- 1+2T 7_12 +2§
ous emission with rat€ from the upper statg8) with equal
branching ratios to the staték) and|2) which, in turn, are 1\
thermalized at a small rate. Thus, the level flow schema is 02 (—)
©,=(I'12)past vp22, Po=(I'12)ps3t yp11, P3=0, and e Y12 , (60)
the balance-rate equation for the upper state can be written as 2r L 292( 1 ) T
_|_ | —— —_
Iy 02

—I'pgz— P3P+ Pps®,=0. (59

and are shown in Fig. 3. They have Lorentzian shapes whose

This, solved forpss, gives
= width is approximatelysg=Q+2y/I". The populations can

v Pygpoot Pogpig now be calculated by using E¢56) and taking into account
P33T W (56)  that, in the conditions contemplated heRy,; and P,; are
s equal. By denoting witlP their common value, we get
Now, for very smally and at Raman resonance whefg (1- P)p33=%P(p11+p22), (61

=§,, it is possible to calculate the absorption probabilities
by using the expressions in Appendix B; then we find \ieh i the limit of small Rabi fields such gs;i+ s

2 2 ~1, leads to
Plsz%, stz% (57) 22
02+ Q2 02102 Q
y [Q)\? ?>
and consequently, p33:f+(f) 1—T (62)
2
Ly Q%put Qlpa 0 +( T )
P T orear o

with & being the Raman detuning anf{I")? the p53 popu-

from which it is clear that as—s0 .0 thus accountin lation free from interference. The results obtained here are,
o y » P33 ’ . 9 of course, very well known in the literature. However, the
for the vanishing of the upper state population at Raman

: interesting point of this approach is that of making explicit
resonancg 14]. Thus, the existence of the dark resonanc&qir connection with the guenching of the absorption prob-
comes as a result of the quenching of the one-photon abso

tion probabiliesPy; and P, as compared to their value Bhilities. This can be interpreted as due to the interference of

close to the unity when the two fields act separately, see E(ihe one-photon process 1-3 with at least a three-photon reso-

(40), or are detuned from Raman resonance. In Appendix B, ant with the states 1-3-2-3 in sequence.
a useful expression foP,3 and P, is obtained under the
conditions of very smally; = v,= v, equal Rabi frequencies
0,=0,=0, y<Q?T'<TI, and detunings much smaller It is interesting to recognize that, within our framework,

thanl’, i.e., §;,6,<I". These are given by the conditions for electromagnetic induced transparency

B. Electromagnetic induced transparency
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(EIT) [15], obtained with increasing driving fields, coincides tation into coherent radiation rather than on the absence of
with a strong reduction of thB coefficients with respect to population inversion. The point of view of the atomic re-
their small fields value. In this situation, no transitions be-sponse to coherent radiation introduced here provides a
tween the prescribed levels takes place and the medium b&amework where these issues can be more suitably phrased
comes transparent. By inspecting the expressionBjpand  and assessed. Thus, the question is if there is any advantage
P,5 given above in Eq(44) and Eq.(45), as{Q,—o, we in pursuing radiation amplification by means of three-level
notice that their vanishing is to be traced back uniquely taconfigurations, where both the one-photon process and the
the vanishing of the factoA. Indeed, in a three-leveh Raman process are simultaneously active, instead of through
system, where the depletion of the lower state is very smallhe more simple and conventional two-level system. Before
such as all atoms remains in their lower statg;&1), we  entering into the details of the more complicated three-level
have ®,= vy, with negligible stimulated emission and the systems inA and V configuration, we review some concepts
absorption  being equal to n=F;3=(0Q%/2y|)A relative to a two-level system within the framework of ideas

—02/2(113)". To discuss EIT line-shape featured’sy ~ developed here.

n ransform follows: . - .
can be transformed as follows 1. Lasing efficiency in a two-level system

1 Yi12+10 The gain in a two-level system, with 1 as lower level and
Tia Qg 2 as upper one, can be derived from E86) by assuming,
(y12H18)(y 13t 18+185)+ 1 quite reasonablyp ;= y,p,, and ®,= y,p4;. In the condi-
tion of negligible fields, i.e., whesis the smallest rate in the
yl, 18 (7 1+ 18)(y 15+ 18+15) system, we obtaib; =®,, B=s. If, in addition, y, <7, ,
= Q—g - Q% t-- we havep;,~1, andn= —s, which is related to the natural

absorption cross section=3\?/27. On the contrary, if
y><y; We obtainn=s which represents the upper limit for
(63 the gain. By exactly solving Eq36), one instead gets

=(r1=72)sl(y1ty2t2s). . .
Now, as far as lasing efficiency is concerned, a lasing

4 4

and its real part written as

1\’ 6 system presents some similarities to a thermal engine where
i :_((27324_713)524_ 271,8,6 microscopic disordered energy is transformed into macro-
I'13 Q5 scopic energy. Quite similarly to the thermal engine, where

not all the work done by the highest temperature source is
i, } (64) available work, here not all the photons emitted in the stimu-

lated emission process are useful photons because a fraction

of them is absorbed back in the medium. Thus, we can define

the atomic conversion efficiency ag=n/P,,®, which, as
from Eq. (36), can be written as,=1—(t,/t,), where the
quantitiest;=®; / y; play the same role of the temperature in
—_ (65) a thermal engine. Another important indicator of the lasing
Y15t 2712 efficiency is the pump conversion efficiengy; . It accounts

r the fraction of energy provided by the pumping process

away from the Raman resonance. The results above are, %ﬁat is transformed into stimulated emission radiation. The
course, subjected to the validity of the expansion of (&8), . .y e :
overall conversion efficiency is given, now, by the product

which holds as the modulus of the second term within the” "~ In the ideal which rs onlv when all th
parenthesis is much smaller than the unity. This condition is” ~ 7a”p- € ldeal case, which occurs only when all the
as one can easily see, detuning dependent. As a matter Bymped atoms are engaged in the pumping cycle through the

T ; - upper level, this ratio becomeg,= P @,/®,=P,, i.e., it
Iﬁgt’wsgrpz;iirzfp{gglz%”%éggﬂﬁ; requency region betweendoes coincide with the stimulated emission probability from
1 .

the upper level. The pumping efficiency is a decreasing func-
tion of the pumping rate and for small intensities, in reso-
nance and at threshold, i.e., wherg= y,=T", it is given by

Here we review some of the simplest atomic lasing con-P,;=s/y,=s/I'=Q0?/2I'2. In the case of a very strong
figurations. This analysis has gained momentum in recergpontaneous emissioli, such conversion efficiency be-
years in connection with the lasing without inversion prob-comes very low. This is, indeed, in relation to the well
lem[3,10,18, thus reviving some prospects for efficient am- known limitations connected to gain at small wavelengths,
plification in the region of short wavelengths. However, although it is not often pointed out that in these conditions
some examples in which the absence of population inversiothe excess of energy above the threshold is mostly dissipated
did not warrant the optimal conversion efficiency were sub-and only a small fraction of it is converted into coherent
sequently brought abo{it 7]. This was a stimulus for going radiation. It is trivial to see tha®,,>1/|p|?, where|p| is the
back to the analysis of these mechanisms by focusing morelectric dipole moment of the transition, whereas the stimu-
on the efficiency of the process that transforms atomic excitated emission rate at threshold, given®g/4I", is indepen-

2
’ Qz ! !
T Y12\ T V12713

which can be viewed as a function of whose minimum
occurs at

!
Y12
Omin= — 02

C. Profitability of multilevel lasing configurations
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FIG. 4. Three-level system iA configuration, cas¢a) and V 9= e N
configuration, caséb). 910 8 6 -4 -2 0 2 4 6 8 10

8/T

dent of th_is_ quar_1tity. The ConCIL.JSion is that the de_c_reasing of FIG. 5. One-photon absorptiorR?,3, and Raman stimulated
the transition dipole mom_ent InCcreases the efficiency an(g;ain, P,1, normalized to the standard two level absorption prob-
soften the threshold requirement by leaving unaltered th%bility Q22 We have setl=1.0, y,=10"% y,=0.01, &,
stimulated emission rate at threshold. The above considet=5 g o, =103, %= (%+¥;)/2. In the inseta) the driving field
ations suggest that a metastable state, weakly coupled wit§ o,=0.05, while in the insetb) Q,=0.6. The emerging oF ;5
an interacting state in such a way as to give riseto a Statiorkbsorption peak, aQ, is increased, can be noted.

ary state with a small electric dipole moment, will present a

favorable condition of small threshold and high pumping ef- D, =T pagt yoprs, Po=7yip11, P3=0. (66)
ficiency even within the two-level configuration scheme.

There is nothing new in this, but mentioning it here will help In the condition in which the probe field is negligible, the
one to understand the true scope of the improvement, if anyhalance equations are

obtained with the more complicated configurations, which

will be analyzed in the following. —v1p11t ®1=0,

— yopart By Pouy=
2. Three-levelA configuration Yab22 2 2620, 67
We consider a\ atomic schema with a lower staf#) —paat Pyg®,=0,

and two upper statef?) and|3), closely spaced as shown in ) )
Fig. 4a). The probe field acts on the transition 1-3 whereag"VNich, together with Eqs(66), allow one to prove that>,
the driving field operates on the transition 2-3. In order em-— P2 Using the conditiorpy;+ papt pss=1 one gets

phasize that we discuss a case where the upper level 3 is a 1

strongly decaying one, we |nd|cat'e its decay ratelbyn- b=, = 1 T 1 (68)
stead ofys. The performance of this system largely depends iy P23(— _ _)

on the relaxation mechanisms adopted. For instance, with the Y1 Y2 r vy
schema®3;=7y,p11, ®,=Ip33, and ®,;=0, absorption o )

does not take place because no atoms start their evolution '€ total gain is then given by

the state|1), ®,=0, and the top performance can be ob- .

tained. Needless to say, such performance would never come N31= port pagt M2

about in practice because the relative relaxation schema is b, b, ®,

physically unfeasible. It is also possible to imagine that the =B, (—— —) —Bi3 —

upper level 3 decays to 1 and 2, with branching ratigs Y2 "1

~ 1,5, respectively, as has been dond 5. This configura- 1 1 1

tion also provides a very good performance. However, con- =®2{ 521<—— —) - 513—]

sidering that the two upper levels are closely spaced, it can Y2 N "

be realistic only when the transition 1-3 is a very weak one. =(Py;—F139®5. (69)

If this is the case, i.e., if a slowly decaying and nearly meta-

stable upper lasing level is available, is there any advantagk is now clear that the threshold requires that=y,. Thus,

in using this configuration instead of a two-level configura-only if y,<I'" we can expect a consistent lowering of the
tion operating on the weakly coupled transition 1-3 thatlasing threshold, thus making an almost metastable state a
could instead benefit from the improved performance as outgood candidate to suit this purpose. Beams of metastable He
lined in the preceding section? We will try to answer to thisatoms and pulsed pump field has been experimentally inves-
question in this subsection. However, in the meantime, wéigated in[18] to provide vuv amplification. However, be-
want to start our discussion by dealing with a strong probecause of the destabilization of the mestastable state due to
transition 1-3 that corresponds to short wavelengths. Since the collisions, its realization might not be simple in bulk
is expected that the Raman process will be the dominant ongaseous matter.

for the gain, we could take the most advantage of it by adopt- In Fig. 5, the quantities®,; and F;3, which serve as a

ing a direct pumping mechanism from level 1 to level 2 with basis for the calculation of gain in the configuration dis-

no decay from level 3 to 2 being allowed. Thus, we have cussed here, are shown. In order to obtain the maximum
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Raman probability detuned fields must be employed becaugddere we have used the fact tHaj,< vy, /v3 andR<y3/y;
they allow the best matching between the factdrandR.  for small y,. We also recall that the pump efficiency of a
Both the driving and probe field tuned on the respective trantwo-level system operating on 1-2 transition iBgl
s_itions represents, in this respect, the worst matching cono_lii Qiz’ y17,. In addition, because levels 2 and 3 are closely
tion, as it can be gathered from Fig. 2. For the parameters 'Qpaced, the relatio;,/y,~Q /T’ holds. Thus, inserting

inset(a) the total absorptioffr 15 is negligible and the gainis __. - 0
totally due to Raman stimulated emission. The system ihuthis in Eq.(70), we obtainP;,= Py, [19]. To complete the

operates in a very efficient way because absorption is neargmparison we nof[ice that only fpr strong dr@ving fields can
eliminated, but, as noticed above, this depends, on the basi e rated, be as high as the equivalent one In th_e two—le\{e!
of Eq. (69), solely from the smallness of thg, decay. How- system between levels 1 and 2. Thus, considering the diffi-

over 2 the gain s concemea, s s sl smal becabe CA1s NSc i the experimentl mplementaon of e
is also small. This happens because value$)gf such as g 9 '

those in inseta), do not produce an efficient mixing between vView work_ of M_ompart and Corbalaf20], the _3|mp|e two-
states|2) and|3) such that the decay to the lower level is level configuration results, between the two, in a better over-
dominated by the rate,. In fact, most of the population is all performance.

in state|2) and the rated,=d, are approximately equal to

v,, i.e., to a very small quantity. As a matter of fact, we find ) )
Na= P ®,~71.X0.123<10"3=0.008, in units of the We consider 1 to be the upper lasing level, whereas 2 and

: : R . 3 are a couple of closely spaced lower levels, 1-3 is the probe
natural absorption, by reading the valu from inset(a) transition, and 2-3 the driver transition, all as shown in Fig.

in Fig. 5. In the case of insé€b) the driving field is increased

such as to allow an efficient mixing between the two upper4(b)' The flow schema
levels. This increases the ratdg =®, because of the fast O,= n $,=0. Pa=T 71
decay back to statd ) that occurs from statg). Thus, most L™ Y2P22T V3p33: 2 3=lpu, (7D

of the atoms are found in the lower state and the level rategith ®,=0, implies that no Raman absorption takes place in

become approximately equal tg. For 2,=0.6 we obtain  spite of stimulated Raman emission being active: it can,

©,=0.267<10"“ and, by using the value oP—Fi3  therefore, be considered as an optimal one for the purpose of
~48, gathered from inséb) at the detuning where this dif- obtaining gain. We also assume that pumping to the upper
ference is the greatest one, we calculate the overall gain to bgate takes place both from level 2 and level 3. The rate

approximatelyns;=0.12 times the natural absorption. This is equations in the limit of small probe field are

pedagogical in showing that having most of the atoms in the

3. Three-level V configuration

lower state helps improve the gain via an increase of the —Tppt+®,=0,

upper level rate, a mechanism that is active in most of the

schemes for lasing without inversi¢8,5,10. Unfortunately = Y2p20+ P3P3=0, (72
the driving field cannot be increased indefinitely because a

drastic diminishing of the Raman stimulated emission prob- — vapaat P3— P3P3=0,

ability, caused by a mismatch betwegrandR, corresponds ) o ) ) )
only to a modest increase df, which, on the other hand from which, after trivial manipulations, the following results:

presents a saturating behavior as a functioflgf A com-

parison with a two level system on the transition 1-3 is now Oy=P,= ! . (73
possible. To obtain the same gain with a two level system T B
operating between level 1 and 3 one would need, according ' ys 3y, s

to the expressiony—1I")/(y+T) of the normalized gain, a

pumping ratey=1.25 instead ofy,;=0.01, which is that Thus, the gain of the probe field can be written as

used in insetb). Thus, an improvement in the threshold of a )

factor of about 100 times has been obtained. Ng1=P1P13+ DP1p— P3P5 =Py (F13— P3y). (74
However, in spite of this, it appears evident that this sys- . ] ) ] )

tem operates less efficiently than the individual Raman proNow, this configuration, contrary to the configuration, has

cess because the one-photon process adds extra absorptidrietter performance over the single one-photon process be-

Moreover, one might ask whether a one-photon two-levefween 1 and 3 because it can benefit from the additional gain

process between the same initial and final states 1 and @ue to the Raman process. Thus making the Raman stimu-

could provide an even better performance of the Raman prdated emission as big as possible would provide the maxi-

cess alone. Indeed, by performing this comparison one mu§fum benefit in terms of lasing gain. A similar effect can be

notice that the atomic efficiency of both processes is thdnduced, on the basis of E1), by increasingy,.
same, i.e.;7;=1—(y,/7v,). On the contrary, the pump ef- We now investigate both the threshold condition and the

ficiency of the Raman process will be given by magnitude of the gain obtained with this system. We thus
5 ) consider the ratio
Y1 Y1 Y1 Ql( 1 )’72 ys Q1
Pyi=—Pi,=—F P Rs——| | ——=——.
2y Py B T 2y (T va e Iy rtth—laz Piot Prs _ ﬁ( ! ) (75)
(70 P31 P31 y1\1-FzR
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0.03 plotted in Fig. 6 as a function of,, is, in this way, inde-

s pendent of all the system parameters and has a universal
character. We notice that, for values @§ approximately
below 0.IXT", the gain obtained can be considered rather
negligible. Indeed, by identifying the effective threshold as
the intercept on the coordinate axis of the straight line tan-
gent to the upper rectilinear portion of this curve we obtain a
threshold value fory,~0.3XTI". In the inset(a) of Fig. 6 it is
shown how the gain profile looks like as a function of the
probe detuning. The gain reported here as a functiowy,of
corresponds to the tracking of this peak in the parameter
space of the V configuration. Inséb) of this same figure
shows how the driving field parametels, and 6, must be
changed in order to fulfill the maximum gain condition.

Norm.Gain

o

FIG. 6. Maximum gain of the V configuration in the space of the
parameterss;, 5,, and ), as a function ofy, with y;=10"*%,

continuous line, and/3=0.01, dotted line. The inséd) shows the . . L L
gain peak corresponding tg,=0.5. In this case,=67.25, 5, The conclusion is that the condition for obtaining gain in

=41.92, and the maximum occurs at the detundigr 60.6. It is this V configuration is just a little better than that corre-

possible to verify that these values satisfy the relasefs, — 5,) sponding to _the gain in a simple tvv_o-level atomic_ system, but
~(Q,/2)2. The inset(b) shows the values of2, and &, corre-  does not differ too much from it. However, it must be

sponding to the maximum gain as a functionyf We have set Pointed out that all this occurs in the presence of a rather
I'=1.0 andys=10"* in both (a) and (b). artificial pumping schema that trades off its physical feasi-
bility for efficiency. On the other hand, the other gain regime
showing that the most favorable condition occurs for de-also reported here, which can be obtained with much lower
tuning close to the Raman resonance wiig peaked. This decay rates of the lower states, needs extremely high and,
ratio becomes, in the limit of strong driving fields, equal to almost certainly, unfeasible values of the driving field and
Frin=[(vat+ y3)/T][(I'+v5)/T'], how it can be gathered are so small as to be practically indistinguishable from the
from Egs.(49) and(47), indicating that gain in this condition condition of transparency that the bare medium displays.
can be obtained only if the lower state relaxations are close
to the upper state relaxatidi a result that is not surprising. 4. Multilevel configurations
However, we point out that for reasonable relaxation param- Considering the disappointing results obtained for the
eters t_h_is condition is fulfilled fof), ranging around rather ip aa_jevel systems, in terms of efficiency and physical fea-
prohibitive values of about some hundredslofindeed we  gjpjjity of the gain process, we would be tempted to extend
have numencally_venﬂed that the gain condition can be met,ch findings also to the case of a more general multilevel
even by decreasing, and y; to very small values, given cqnfiguration. However, no rigorous proof that excludes pos-
thatQ), and the detunings; are further increased. Thus we gjpe favorable cases can be given here. All we can do is only
can conjecture that, no matter how sr_nall the _decay rates of very approximate reasoning. We simply notice that our
the lower levels are, it is always possible, by increasing the,quations deal with the level rates: these are essentially flows
driving field intensity and detuning, to makg>1. How- o cyrrents which obey conservation laws as in the case of
ever, if we look at the probe gain profile near the Ramane cyrrents in an electric circuit. In turn, the presence of
condition, this appears flat and, in partpular, undlstmgwsh-strong driving fields modifies the prexisting branching geom-
able from zero. In other words, such gain takes place at freétry, as can be gathered from E83). However, by consid-
quencies where the medium is already transparent and alting a group of upper levels and one of lower ones, with
sorption can hardly be distinguished from gain. Thisqying fields connecting only levels in the same group, it
behavior is related to the shapeféf; profile as discussed in  remains substantially true that the current rising to a set of
Sec. IVB1. We recall here thdt,; is almost zero every- nner |evels comes also back down. A more delicate ques-
where except for two peaks located at detunings related byjo concerns how the flows are branched within the group of
81(81— 8,)~Q5/4. Thus, when(), is strong the above de- ypper and lower levels. If there are no strong imbalances and
tunings depart from the Raman condition and the overalthe flows to the levels are roughly the same, only small de-
stimulated emission, given Wy, 3, together with absorption cay rates of the upper levels will give a chance for the quan-
P31, becomes very small. titiest;=®; / y; to be inverted in order to provide gain. Thus,
However, for more reasonable values(®$, but still not  the simple rule of thumb at the basis of the conventional
too small, the location of thé\ peak can be made to fall |aser operations of the two-level system turns out to hold,

within the Raman detuning range that, in turns, widen@as  probably also for the operations of more complicated multi-
increases. Here, as from our initial assumption of strong detevel systems.

cay of the upper state, we assume a very small degayf

the lower state 3<y,=I'=1). In this way a competition
between the Raman stimulated emission and the one-photon
absorption takes place. We then calculate numerically the In this paper we have studied the symmetries in the opti-
maximum gain by means of a gradient algorithm that oper<al Bloch equations which are associated with the absorption
ates the space of the parametéys &,, and(),. The results, and stimulated emission processes. This has allowed us to

VI. CONCLUSIONS
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establish a set of balance-rate equations which are useful for Qi

describing the response of an atomic system to coherent ra- |7(Al3_A31)_ y1A 1= —1,
diations and, more importantly, to recover the symmetries

between absorption and stimulated emission known to hold 0?2

for a two-level system. In particular, it is found that for any |7(A23—A32) —y,A5,=0

single multiphoton process the gain is depends on the differ-

ence of the quantities= ®,/y; between the initial and final

levels of the process. Physically meaningful parameters, such 712A12+ (A13=A32)=0, (A1)
as the generalized Einstelhcoefficients or the probabilities

of multiphoton processeB;; , appear directly in these equa- I |

tions, thus making the analysis of the atomic response con- — Y1313t EQSAIZ_ 5 (Ags= A1) =0,
ceptually more simple and physically intuitive. In fact, here

the coherence-related effects that have played such a central

I I
role in the investigation of some configurations operating = Y323~ §Q§A12+ >(Aag=A29)=0,
without population inversion, are already included in the cal-

culation of the theB coefficients and have, therefore, the Y1A 11+ YoM gt yaAge=1

same effects on both absorption and stimulated emission pro-
cesses. What instead determines the emergence of the lasihgese can be solved by first eliminating the coherences
condition is to be searched for in the rate processes governdghich can be expressed in terms of the diagonal elements in
by the equations that we have introduced here. Importarihe equations above,

issues, such as the efficiency of a given lasing configuration, | QZ QZ

are thus more easily tackled. Regarding th_e two appllcatlonsAlsz_{ ( Yot )(Au A33)+ (A33 Ay f,

of the concepts presented here, the analysis of the dark reso- 2A

nance reveals, quite explicitly, through the use of the rate- (A2)
balance equations, how it can be considered the result of the 2 Qz

quenching of the one-photon absorption probabilities due to Agz—ﬁ{ (A11 Azm)+| Y13t 7 )(A33 22)},
the interference between virtual multiphoton processes con- Y12

necting the lower to the upper state. In the other applicationynere

the analysis of the\ configuration reported here shows a

dramatic increase of the efficiency over the standard two- Q% Qg
level configuration. However, this is not really a substantial A=y13ysrt mhﬁ 4y, 22
improvement since it can be shown to depend entirely on the

presence of a slowly decaying upper state present in the coBy inserting these equations in the first two, we obtain the
figuration. Thus, an even better performance can be obtaind@llowing equations:

more directly by using this last state as upper state of a

(A3)

2 2
two-level configuration. A similar analysis, carried out for _Q_ {B+02 C}P;+{1 +M CiPp+i{1
the V configuration, reveals that the threshold condition can 71 Y2
be made only slightly better than that corresponding to the 02
two-level configuration but not yet enough to represent a +_1[B+C(Q§_Q§]}p13:0’
substantial improvement toward devising feasible lasing op- 3
erations at short wavelengths. This points to the conclusion ) 5
that, perhaps, the conventional concepts at the basis of the (2,07) p 1+ &(AJFCQZ) p
two-level lasing operations represent a more viable alterna- Y1 0% 2 12
tive at these wavelengths. A possibility of this kind could be 02
given by a two-level system which operates on a weakly 252 2_02 _
coupled transition obtained, for example, by a Stark coupling Y {A+C(Q5-07)}P13=0, (Ad)

of a metastable state. However, this may not be easy in bulk
gaseous matter due to the collisions that make these states Pt Pt P=1,
highly unstable. On the contrary, a collection of cold meta-;

n which the following quantities have been defined:
stable atoms, such as those obtained nowadays in several

laboratories where cooling techniques are successfully ap- 1/ y3\ "’

i i i A=5|5| =5 (i)
plied, could be more suited to this purpose. 2| A 2[AP'N

— E 7_3,2 ,_ 1 * ’ A5
APPENDIX A: SOLUTION OF OBEs IN A THREE-LEVEL 21 A - 2|A|2(732A) ’ (AS)
SYSTEM

We report here the equations relative to a three-level sys- C= E( 1 ) = 1 (A*)

tem as they were written down in Sec. IV B, 2\4yA 8|AI%\ Y12
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In solving the above equations one could follow the sugges-

tions of[21]. One thus finds

2

03
A+—B+
Y3

P]/E,
2
o0 P o) /s
Y1 Y3

0203 .
Pia=—1—P+A+C(Q%-0%) S, (A6)
Y1 Y2

1 1
_+_
Y2 73

(0,0,)?
Y273

P11: [ 1+Q§

1
%m%—ﬂéf

1

+—Q5|C+

with
P=AB+QiAC+Q3BC (A7)
and
S=1+02 ! + 1)(A+CQZ)
2 Y2 V3 2
Y (B+CQ1H+ (0,0 )2(( A
! Y1 73 ! e Y1iY2  Y1Y3
1 C
+ P—2—i. (A8)
Y273 Y3

In evaluating the factoP, one can keep in mind the follow-
ing equality:

S Re a; R b; =3 Re(ai)Re(bi).
' > abs >abs] |2 ashy?
(A9)

It is not difficult now, to provide an expression fér, and
P15 in the condition of small};. In the case of the last
two terms vanish and+C Q3=3(1/y;,)’. Thus

1 1
_+_
Y2 V3

S=1+s , (A10)

Wheres=Q§/2(1/732)’ is the saturation rate in the transition
2-3. Now, P4, is found to be

( 1 )' ys 1 '
202 ) |\ | + &
29192 Y32 2 y1Y3 - (AL1)
12 4y, v, T 2
whereasP 3 is given by
P Q% ( ! )’ P (A12)
l3_27’1 I3 12

By further manipulating the above expression, one gets
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Y3 E I3

Ppo=Fi3 Fzp {1+ — —, (A13
291, yi, T,

where F;,=P3,=5s/y33 coincides with the probability of
the transition from 3 to 2 whil& 5 is given by
F Q%( ! ), (A14)
e 2y1\I'13
with

2
2

3= vy3+ —. (A15)
13~ Y13 P

The last factor in Eq(A13) can be further transformed to
yield

~ )
Y
R=1_ 73, n 73, AZY . 1+_}2
2y13 2712| ¥?+ 6 Y13
52 1\ 2 ¥é vi, & 1
2 (7_12) LY YR, v
Y13¥s |y Y+ v v Yis
’yf
__32)] (A16)
Y13
with
QZ 1/2
~ , 2
y=vi 1+ —— (A17)
4y12Y 13

APPENDIX B: THREE-LEVEL SYSTEM IN A
CONFIGURATION AND DARK RESONANCE

In the case in which the upper state decays with a spon-
taneous emission raté; to the lower staté1l) and with a
rate I', to the lower statg2) and the lower levels have
decaysy, = y,=v, the transverse relaxation rates are

r . .
71325""51, Y32= 5 105,

Yo=Y +i(81— 8)=y+iéd (B1)

with I'=T";+T',+ v. In this case the quantities, B, C, and
P are given by

[(5/"+4]

2 ’ 2
R EV 152

!

F+Q§ 1
24\,

Y12

al

(B2)
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oaurlllz] +# 77 |-l
_2|A|2 2 2127 4y 4 \yo) |\2
8(61+68,) T
_5152+M§H, (B3)
o ! (1)'{(r)2+55+r Q5+03 52)}
8lal2 v (12 22yl 4 ’
(B4)
5 1 [(r)Z 02+03 1>T} (5
a2l 12 4\ 2

In the condition of();=0Q,=Q and §,=0 one finds

A 1 r31 02 1 ’2 452 28%\ 482
“Aaplz) |ty 12T T T )
B_1 r31921'2252
2P\ 2) |t arl e AT
C_1 r\?/1\"1 0% 28
"8l [y F T T
P—ﬁl <r21+QZ 1),] (B6)
4|A| 2 I\ vy '
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Now, in order to calculate thB (5 through Eq.(A6) in the
conditions ofy— 0, we must calculatd, B, andC up to the
zero order iny andP to the first order iny. By doing so we
get

1 3 52
AZzW(E) T
B 1 (T3
~2|A)2 2]
c 1 [T\ 1 02 6
T 2]A12\ 2] Y2+ 8%\ 212 12
P= L ( 21+QZ L) (B7)
2|Al%\ 2 riy, |
Thus we find
P+ LA
QZ
Pis= (B8)
T oioyct Liate)
-y Iy

from which, making the assumption of small detunifigthe
first of the two expressions in E¢60) can be obtained.
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