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Symmetries in the optical Bloch equations and multiphoton processes
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The optical Bloch equations exhibit symmetries that are directly related to the probabilities of the processes
of absorption and stimulated emission. As a matter of fact, a picture similar to that holding for a two-level
system can be recovered also in multilevel systems and, in particular, for any multiphoton process tuned
between a given couple of levels. Thus, new quantities, such as the generalized EinsteinB coefficients, directly
related to the probabilities of the involved process, and atomic level indicators, whose inversion signals the
existence of gain for that given process, can be defined. It is shown how these lead to valuable conceptual
simplifications and to the disclosure of new insights into some popular problems of quantum optics. In
particular, the issue of an efficient gain process to be realized within a multilevel atom-field configuration, a
problem closely related to the widely investigated problem of lasing configurations without population inver-
sion, can be viewed entirely as a rate problem and therefore analyzed with increased confidence.
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I. INTRODUCTION

The optical Bloch equations describe the interaction of
atomic system, schematically represented with a finite, u
ally small, number of levels, with coherent electromagne
radiations. It is therefore the main tool and the most popu
model for the investigation of a broad range of phenom
related to the field of quantum optics. One of its distincti
and successful feature is that of including the influence of
dissipative sources in a very simple, though very gene
way @1#. Therefore, it deals primarily with the density matr
of the atomic system, although its evolution in time can
ternatively be viewed as wave function evolution interrup
by stochastic impulsive perturbations having their origin
the dissipation sources interacting with the atomic sys
@2#.

One of the first problems where the optical Bloch equ
tions were used was in the calculation of absorption a
emission of atomic systems in the nonlinear regime, as
example the laser equations, where the Fermi golden
could no longer be applied. A similar kind of problem h
recently recurred in the context of lasing without inversi
where it was pointed out that the scope of the well-kno
principle of inversion, relating radiation amplification to th
existence of a population inversion in the active mediu
does not apply to the case of multilevel lasing configuratio
@3#. In fact, the optical Bloch equations~OBE! for such sys-
tems do not explicitly display the symmetries related to
sorption and stimulated emission of photons on which
standard principle of inversion rests. Thus, the question
whether such symmetries are instead hidden in the struc
of these equations, or not present at all, has received s
attention in the past@4#. An important step showing thei
relation with the underlying physical basic mechanisms
absorption and stimulated emission was carried out by me
of the quantum jump picture of the dissipation processes@5#.
Such a modeling of the dissipation processes, which app
when the dephasing mechanisms are much faster than at
evolution, has been shown to play an important role in so
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stochastic formulations of the quantum mechanics theory
measurement@6#. The ideas that will be presented her
showing the connection between the symmetries in the O
and the probabilities of the active multiphoton processes,
a generalization of those expressed in the previous wo
@4,5#. Here we establish a set of rate-balance equations w
the probabilities of all the involved multiphoton process
appears directly as coefficients in these linear equatio
These are of the same kind of the equations first derived
@4# under certain special conditions. In particular, the gain
any multiphoton process can be written in the same way
that of a two-level system where the populations are repla
by new variables which depend only on the atomic level:
this context the generalized EinsteinB coefficients are intro-
duced. These equations can be solved for the population
for the level rates beforehand to the calculation of the ga
Thus the analysis of the configuration response to the e
tromagnetic fields can be set about principally as a rate p
lem.

This paper is organized in the following way. In Sec. II,
symmetry relation existing in the mathematical structure
the OBE is derived. In Sec. III, a physical picture of th
multiphoton processes which relies on the above symm
relations is presented. The calculations of theB coefficients
for the two- and three-level configurations are carried ou
Sec. IV. In particular, in the case of a three-level system,
give a closed expression that can be applied to several
figurations already studied in the framework of lasing wit
out inversion. In Sec. V we present two applications of o
equations. The first one is concerned with quite an old pr
lem in quantum optics, i.e., the occurrence of dark re
nances in atomic systems. Here it is shown how the w
known reduction in absorption that is experienced in t
configuration can be related to the quenching of the o
photon absorption probability to the upper state introduced
the present work. In the second example, aL and aV atomic
configuration are investigated in relation to the possibility
providing efficient gain of radiation in the region of sho
wavelength.
©2001 The American Physical Society14-1
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II. SYMMETRIES IN THE OPTICAL BLOCH EQUATIONS

A. The Optical Bloch equation

We write down, in a rather general form, the optic
Bloch equation~OBE! for an atomic system withN discrete
levels as

ṙ5ı@r,H#2(
iÞ j

g i j PirPj2(
i

g i PirPi1(
i

F i Pi ~1!

or equivalently, in a more compact way, as

ṙ52ıLr1(
i

F i Pi . ~2!

Here, we introduce the the Liouvillian operatorL which can
be expressed in terms of the Hamiltonian operatorH of the
depletion rates of the leveli ,g i , and of the coherence deca
g i j . It is customary to term the equation

ṙ̂52ıLr̂ ~3!

as to be the free or coherent evolution because it can usu
be made equivalent to the evolution of an effective atom
wave function by means of a proper Schro¨dinger equation
@2#. On the contrary, the second termF i Pi , wherePi is the
projection operators in the stateu i &, is associated to the feed
ing term of the leveli. The scalar quantitiesF i are the level
rates, or input flow, and can be written in terms of the le
populations as follows:

F i5(
k

p i ,k~gkrkk! , ~4!

wherep ik are the branching probabilities to the leveli of a
decay that occurs from the levelk andgk is the depletion rate
of the same level. The above expression for the density
trix r can be also given an integral representation as

r~ t !5E
2`

t

(
i

N

r̂ i~ t2t8!F i~ t8!dt8, ~5!

FIG. 1. Multilevel atom-field configuration without closed loop
of the kind discussed in this work. The transition 4–5 has been
in as evidence for purposes related to Sec. III.
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wherer̂ i(t) represents the evolution ofr̂ according to Eq. 3
with the initial conditionr̂(0)5u i &^ i u. This representation is
central to the development of the concepts which will
introduced here.

We will focus here on particular configurations where t
rotating wave transformation, followed by the rotating wa
approximation, leads to a time-independent Hamiltonian a
to a stationary solution of the OBE. It is well known that th
becomes possible when the diagrammatic representatio
the atom-field configuration presents no closed loops@7#.
One example of such a configuration is shown in Fig. 1. T
stationary condition can be simplified to

r5(
i

N

L iF i , ~6!

where

L i5E
0

`

r̂ i~ t !dt. ~7!

Thus, the quantitiesL i obey to the equation

Pi5 iLL i ~8!

which is obtained by integrating Eq.~3! from 0 to `.

B. Symmetry of the coefficients„L i…kk

There is an interesting symmetry concerning the qua
ties L defined above. This involves the populations and
therefore reminiscent of the original formulation of the pri
ciple of inversion in which populations play an importa
role. However, in the present case the populations are fi
tious because Eq.~3!, which governs their evolution, doe
not contain the feeding terms, which are, instead, presen
the complete evolution equation. Nonetheless, we can s
that, under such an evolution, the average population in s
k, as defined in Eq.~7!, given that the system starts in statei,
is the same of that in the statei, given that the system initiate
in statek. Indeed, we can write

~L i !kk5~Lk! i i . ~9!

The first step necessary to prove this relation concerns
symmetry of the Liouvillan operatorL, i.e., L5L t. To this
end we remind the reader that the operatorL is defined on
the vector space spanned by the vectorsuk&^ i u[uk,i & asi and
k range over the atomic vector space. In this space the sc
product between two vectorsc5uc1 ,c2&5uc1&^c2u andf
5uf1 ,f2&5uf1&^f2u, which are operators in the origina
atomic space, is given by Tr(f1c), that is,

^f1f2uc1c2&5^f1uc1& ^c2uf2&. ~10!

Now, L can be split asL5LH1LD , whereLD , which is the
term accounting for the dissipation, is surely symmetri
since it is diagonal. The symmetry of the component cor
sponding to the Hamiltonian evolution, i.e., ofLH , is then
proved as follows. We write

ut
4-2
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^ i 8, j 8uLHu i , j &5^ i 8u$LHu i &^ j u%u j 8&

5^ i 8u$Hu i &^ j u2u i &^ j uH%u j 8&

5d j , j 8^ i 8uHu i &2d i 8,i^ j uHu j 8&. ~11!

Exchanging indicesi with i 8 andj with j 8 the result does no
change sincê i 8uHu i &5^ i uHu i 8&. This last equality arises
from the fact that, in configurations without closed loops
is possible, by properly choosing the phases of the ato
states, to make all Hamiltonian matrix elements real: th
^ i 8uHu i &5^ i uH1u i 8&5^ i uHu i 8&, from which it follows that
the Liouvillian operator is symmetrical.

The next step is now to prove Eq.~9!. By recalling that
the coherent evolution with the initial stateu i & is given by

r̂ i~ t !5e2ıLtu i ,i &, ~12!

it is then sufficient to prove the equality

^k,kue2ıLtu i ,i &5^ i ,i ue2ıLtuk,k&. ~13!

It is to be noted here that, althoughL is a symmetrical op-
erator, it is, indeed, non-Hermitian because some of its d
onal elements may be complex numbers. Thus, its right
left eigenvectors

l i u l i&5Lu l i&, ~14!

l i~ l i u5~ l i uL, ~15!

no longer coincide. However, they satisfy the following r
lation

u l i)5u l i&* . ~16!

This is proved by first taking the adjoint of Eq.~15!, l i* u l i)
5L 1u l i)5L* u l i), and next its complex conjugate,l i u l i)*
5Lu l i)* . The Equation~16! follows from this equation and
from Eq. ~14!, in the assumption that the spectrum is n
degenerate. We avoid here entering into unnecessary de
of degenerate eigenvalues since the final conclusions
remain unchanged regardless. We can now use an eigen
tor expansion of Eq.~12!, based on the completene
( i u l i&( l i u5( i u l i)^ l i u5 id and normalization^ l i u l j )5( l i u l j&
5d i , j relations@8#, as given by

^k,kue2ıLtu i ,i &5K k,kUe2ıLt(
s

U l sL ~ l su i ,i &

5(
s

e2ı l st^k,ku l s&~ l su i ,i &

5(
s

e2ı l st^ i ,i u l s&~ l suk,k&5^ i ,i ue2ıLtuk,k&,

~17!

where the symmetry ofL has entered in the third ste
of the equality above. In fact, by using Eq.~16! we get
^k,ku l s&( l su i ,i &5^ l suk,k&* ^ i ,i u l s)* 5^ i ,i u l s&( l suk,k&. This
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proves Eq.~13!: by further integrating it over time we get th
symmetry relations of Eq.~9!.

III. MULTIPHOTON PROCESSES

We now wish to establish a connection between the
sults obtained in the previous section and the concep
multiphoton processes. We will first state and later prov
picture that is both simple and extremely intuitive, b
which, nonetheless, has never received a rigorous proof
this end let us consider a given multifield configuration wit
out closed loops as shown in Fig. 1. Any path between t
given levels corresponds to a multiphoton process. If
consider a given transition in the structure, as for exam
transition 5-4 in Fig. 1, there are several multiphoton p
cesses to which it belongs, namely 5-4, 6-4, 7-4, 5-3, 6
7-3, 5-1, etc. To classify these processes, it is convenien
partition all of the levels into absorbing and emitting on
with respect to a given transition. For example, in the case
the transition 5-4, given that the energy of level 5 is grea
than that of level 4, levels 7, 6, 5 are emitting whereas lev
4, 3, 2, 1 are absorbing ones. Thus, any given transition
be a segment of each multiphoton process initiating in
emitting level and ending in an absorbing one. The rate
energy in the electromagnetic~EM! field tuned with this
transition is found, quite simply, by summing the rates of
the multiphoton processes to which it belongs. Thus, we
write the total photon rate on the transition from 5 to 4 a

d

dt
n5,45(

ı8,i

m ı8,i , ~18!

where ı8 ranges over the emitting nodes andi over the ab-
sorbing ones. Moreover, for any multiphoton process its g
bal rate can be written as

m ı8,i5Bı8,i S F ı8

g ı8

2
F i

g i
D , ~19!

where ı8 stands for the emitting level,i for the absorbing
level, andg ı8 and g i the relative depletion rates. The firs
term of this expression is identified with the stimulated em
sion rate and the second with the absorption rate. The c
ficientsBı8,i5Bi ,ı8 are shown to coincide with the EinsteinB
coefficients in the limiting case of a two-level system and
therefore named in the following generalized EinsteinB co-
efficients. It is important to notice that the absorption a
stimulated emission rates are proportional to input flowF i of
the involved levels: these quantities are merely what is u
ally known as the level rate. Thus

Pi , j5
Bi , j

g i
~20!

can be interpreted as the probability of the process initiat
in level i and ending in levelj. These probabilities satisfy th
relation
4-3
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BRUNO ZAMBON PHYSICAL REVIEW A 63 053814
Pi , j

Pj ,i
5

g j

g i
, ~21!

which was implicitly assumed in@4#, in the particular case o
g i5g j , and later proved in@5# in the more general case. I
the analysis of the multilevel system we will employ both t
expression for the gain in terms of theB coefficients and of
the probabilitiesP, according to the better convenience. W
also note from Eq.~19! that in the case in which the flow in
the absorbing and emitting levels is the same, a strong de
tion rate of the upper level enhances the stimulated emiss
a feature that, as we know, is at the basis of most of
feasible lasing configurations.

A. Generalized EinsteinB coefficients

In this subsection, we focus on the mathematical proo
the picture presented above. To do this, we start from Eq.~3!
applied to the most general atomic configuration, with ma
levels and fields tuned between them, an example of whic
shown in Fig. 1. This gives

ṙ̂qq52gqr̂qq1(
k

i

2
Vqk~ r̂qk2 r̂kq!, ~22!

which integrated from 0 tò , with the initial state beingus&,
yields

~ d̂s!q5(
k

~ n̂s!k,q1ds,q ~23!

with the obvious identification (d̂s)q5gq(Ls)qq and (n̂s)q,k
5(ı/2)Vqk(Lkq2Lqk), the sum above ranging over all th
levels k that are connected to the levelq with a field Vqk .
For any level different from the initial one, it helps to picto
rially associate such an equation with a sink in the leveq,
represented by (d̂s)q , and with currents (n̂s)k,q going from
the neighboring levelsk to the sink levelq. Let us now
consider a given transition fromi to j and a levels which is
absorbing with respect to such transition. It is easy to sh
that

~ n̂s! i , j52 (
s8P emi

~ d̂s!s8 , ~24!

wheres8 ranges over the emitting levels of the above tra
sition. In fact, by virtue of Eq.~23! and of (n̂s)q,k5

2(n̂s)k,q , the sum in the second part of the above equat
contains currents that cancel out in any segment except
in the one corresponding to the chosen transition. In a sim
way, given an emitting levels8, we can write

~ n̂s8! i , j5 (
sP abs

~ d̂s8!s , ~25!

wheres now ranges over the absorbing levels.
Now, by using Eq.~6!, we can calculate the photon’s ra

on the given transitioni to j by means of the correspondin
off-diagonal matrix element@9#. We thus find
05381
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dt
ni , j5(

s
~ n̂s! i , jFs1(

s8
~ n̂s8! i , jFs8 , ~26!

where the sum has been split into one over the emitt
nodes and the other over the absorbing nodes. Finally we

d

dt
ni , j52(

s
(
s8

~ d̂s!s8Fs1(
s8

(
s

~ d̂s8!sFs8

5(
s,s8

~ d̂s!s8Fs2~ d̂s8!sFs85(
s8,s

ms8,s ~27!

and

ms8,s5~ d̂s8!sFs82~ d̂s!s8Fs5Bs8,s S Fs8

gs8

2
Fs

gs
D ~28!

having defined

Bs,s85gs ~ d̂s!s85gsgs8~Ls!s8,s85gsgs8~Ls8!s,s5Bs8,s .
~29!

The first term ofms8,s corresponds to the stimulated emissi
process rate, whereas the second one corresponds to th
sorption rate. Moreover, by integrating over the time t
equation

d

dt
Tr~ r̂ i !52(

k
gk~ r̂ i !k,k ~30!

and accounting for the initial condition onr̂, it results

(
k

Bi ,k

g i
5(

k
Pi ,k51, ~31!

which embodies the probabilistic meaning connected to
B coefficients. It is to be pointed out here, in relation to t
expansion of these processes in terms of higher order vir
multiphoton processes initiating ini and ending ink, thatBik
corresponds to the complete summation of these la
Therefore, it takes into account all interferences that m
occur between them.

B. Rate-balance equations for the level’s populations

Perhaps the most interesting consequence of viewing
optical Bloch equations from the perspective set forth ab
is that the interaction between atom and field can now
understood in terms of rate processes rather than by mea
atomic coherences. Thus it is possible to write a bala
equation relating the rates in and rates out for each gi
atomic level. To show this, let us start from Eq.~6!, take the
average over the statek and multiply bygk ,

gkrkk5(
iÞk

gk~L i !kkF i1gk~Lk!kkFk . ~32!

Upon transforming the last term by means of Eq.~31!, we
get
4-4
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2gk rkk1Fk1(
iÞk

m ik50, ~33!

whose meaning in terms of photon absorption and stimula
emission arises quite naturally. The first two terms in
above equation represent, respectively, the depletion r
and the input rate of the statek due to the dissipation pro
cesses only. The coherent fields contribute to this bala
with stimulated emission processes ending in statek with a
rate Pi ,k F i5Bik(F i /g i) and with absorption processe
starting in statek with ratePk,i Fk5Bki(Fk /gk). The equa-
tion above can be solved for the populations or, accordin
the needs, directly for the level rates. In this last case
normalization equation( ir i i 51 and

F i5(
k

pki~gkrkk! ~34!

can be used to express the populations in term of the r
that are then put back into Eq.~33!.

C. Limiting cases

It is easy to show that in the limit of small fields on
recovers the standard picture of absorption and stimula
emission in which the global gain for each process is prop
tional to the population difference between its initial a
final state. Under these conditions, the rates of the multip
ton processes in Eq.~33! are negligible. Thus we haveF i
5g ir i i , andm ik is given by

m ik5Bik S F i

g i
2

Fk

gk
D5Bik ~r i i 2rkk!. ~35!

This relation substantiates the naming of generalized E
steinB coefficients adopted for the quantitiesBik .

Another limiting case concerns the gain of a two-lev
system. We recover here the usual expression for gain
portional to the population inversion. By indicating with
the lower level and with 2 the upper one, the following equ
tions hold:

B S F2

g2
2

F1

g1
D5m21,

2g2r221F22m2150, ~36!

2g1r111F11m2150.

By multiplying the first one byg1, the second one byg2,
and by subtracting the resulting equalities and using the
pression found above form21, we obtain

m215
B

12
~g21g1!

g1g2
B

~r222r11!. ~37!
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IV. B COEFFICIENTS IN SOME SIMPLE SPECIAL CASES

A. Two-level atomic system

We consider now a two-level system driven by a coher
field with lower and upper levels damped at ratesg1 andg2,
respectively. In order to calculate the absorption and stim
lated emission, according to Eq.~29!, we must compute
(L1)22. The operatorL1 fulfills the following equations~the
index 1 has been dropped to simplify the notations!, as from
Eq. ~3! and Eq.~7!:

ı

2
V2~L122L21!2g1L11521,

2g12L121
ı

2
~L112L22!50, ~38!

g1L111g2L2251,

where the RW Hamiltonian is given by

H5S d
V

2

V

2
0
D ~39!

and the substitutionsL12→VL12 and g121ıd→g12 have
been made in the original equations. Now,B5g1g2L22.
Thus

B5
1

1

s
1

1

g1
1

1

g2

, ~40!

where

s5
V2

4 S 1

g12
1

1

g12*
D ~41!

is the saturation rate. For small fields one hasB5s. We
notice that, although the coefficientB is the same, the prob
abilities for absorption,P12, and stimulated emission,P21,
differ as a consequence of the different relaxation consta
of the levels 1 and 2 and, in a similar way, the rates of th
two processes also differ.

B. Three-level atomic system

We consider a three-level atomic system with statesu1&,
u2&, and u3& coupled by coherent fields of Rabi frequenc
V1, tuned on the transition 1-3, andV2, tuned on the tran-
sition 2-3. The Hamiltonian, in the rotating wave approxim
tion, is given by
4-5
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H5S d1 0
V1

2

0 d2
V2

2

V1

2

V2

2
0

D . ~42!

We need to determine the operatorL1. By dropping the
index 1, to simplify the notation, we have

ı
V1

2

2
~L132L31!2g1L11521,

ı
V2

2

2
~L232L32!2g2L2250,

2g12L121
ı

2
~L132L32!50,

~43!

2g13L131
ı

2
V2

2L122
ı

2
~L332L11!50,

2g32L322
ı

2
V1

2L121
ı

2
~L332L22!50,

g1L111g2L221g3L3351,

where the following substitutions have been made to ob
the above equations from the original one derived from
~3! and Eq. ~7!: L12→V1V2L12; L32→V2L32; L13
→V1L13; g121 i (d12d2)5g121 id→g12; g131 id1
→g13; g322 id2→g32. We wish now to determine the
quantitiesL22 andL33 that are related, through Eq.~29!, to
the probabilities of the Raman process, connecting statesu1&
with u2&, and to the one-photon process, connecting st
u1& and u3&. These equations are solved in Appendix A
the most general case. However, as can be seen, the ge
expressions are rather complicated and of dubious value.
less a compact expression can be found, the numerical s
tion is, at present, to be preferred in the most general c
On the contrary, they lead to simple expressions whenV1 is
very small. Indeed, we find

P125F13 P32 R, ~44!

P131P125F135
V1

2

2g1
S 1

G13
D 8

, ~45!

where the primed quantities denote the real part of the c
plex quantity within parentheses and

G135g131
V2

2

4g12
. ~46!

The meaning of the factors appearing in the above exp
sions will be explained below. These expressions are part
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larly useful to describe the response of a three-level confi
ration to a probe field tuned on one of its transitions wh
another field, usually a strong one, is tuned on the remain
one. A problem that has received considerable attention
the context of the search of new efficient lasing configu
tions in three levels in V orL geometry@10#.

1. Analytical features of B21 and B13

The expressions for the factors introduced above are

B235g2P235
1

1

s
1

1

g2
1

1

g3

, ~47!

F135
V1

2

2 S 1

G13
D 8

5
V1

2

2g1g 138
A, ~48!

R5H 11
g3

2g12*

g32

g 328

G13

G 138
J 8

, ~49!

A5S g 138

G 138
D , ~50!

whereB23 is the B coefficient for the transition between
and 3 driven at the Rabi frequencyV2 in absence of the field
on transition 1 to 3, or, in any case, when this field is ve
small.F13 is the total probability of absorption, i.e., the su
of a one-photon process probabilityP13 with the Raman ab-
sorption process probabilityP12. For small driving fields
V2, i.e., whenP12 is negligible, the one-photon absorptio
P13 coincides withF13. The Raman factorR can be further
simplified, such as to be written

R512
g3

2g 138
1

g3

2g 128
H ḡ2

ḡ21d2 F11
g 128

g 138

1
d2

2

g 138 g 328
S g 128

ḡ
D 2G

1
ḡd

ḡ21d2

g 128

ḡ

d2

g 328
S 11

g 128

g 138
2

g 328

g 138
D J ~51!

which results to be the sum of an absorption and a disper
profile both centered at the Raman detuning and both ha
width ḡ5g 128 @11V2

2/4g 128 g 138 #1/2. In the condition in
which g 128 is much smaller thang3, a situation which is
found in many experimental occurrences related to this c
figuration, the peak of the Raman factor atd50 is much
greater than the unity due to the prefactorg3 /g 128 . Con-
versely, the background term is, in these same conditio
almost negligible, as is the prefactor of the dispersion profi
We would like to point out here that the factorization of th
Raman probability as it occurs in Eq.~44!, although quite
appealing, is almost accidental and we are unable, at
moment, to explain it by using simple and intuitive arg
4-6
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ments. In any case it is already well known that the Ram
probability does not coincide with the product of the pro
abilities of its segment transitions.

In Fig. 2, the quantitiesR and A are shown for different
values of the configuration’s parameters. The factorA dis-
plays the peculiar doublet structure of the Autler-Town
absorption. In fact, 1/G13 possesses two simple poles in t
complex plane of the variabled which can be interpreted a
light shifts, or dynamical Stark shift, of the upper dress
statesu2& and u3& induced by the strong driving field. Th
position of the resulting peaks can be identified appro
mately, when the real part is a slowly varying function ofd,
with the vanishing of the imaginary part ofG13. This latter
can be explained as a function ofd in the following way:

G135g 138 1 id11
V2

2

4~g 128 1 id!

5g 138 1 id11
V2

2

4~g128
21d2!

~g 128 2 id! ~52!

FIG. 2. This figure shows theA factor, continuous line, and
Raman factorR, dotted line, for different values of the three-lev
parameters. The Raman factor is normalized to the quantityR0

5g3 /g 128 . In the case~a!, d250 andV251; for the case~b!, d2

53 andV251; and for the case~c!, d253 andV253. EIT cor-
responds here to the minimum of theA profile. The fixed param-
eters areg351, g250.001,g150.01, andg i j 5(g i1g j )/2.
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and the condition mentioned above can be expressed in te
of the ratio between the derivative of the real part and ima
nary part of the above expression resulting in the inequa
2udug 128 /ug128

22d2u!1. This condition is satisfied whend
@g 128 and the peaks are located at detunings which obey
relation

d1d'
V2

2

4
. ~53!

For very strong driving fields, this yieldsd1'd'6V/2
whereas the peak maximum value is given byA'g 138 /(g 138
1g 128 ) . Different kind of information can be gathered b
calculating the poles of 1/G13. By assuming thatg 128 is the
smallest time constant in the system such as to be negle
in the above expressions,V2!g 138 and upon definingĝ

5g 138 1 id2, the above poles result to bed15 i ĝ and d2

5 i (V2
2/4ĝ), respectively. We find

1

G13
5

A1

d2d1
1

A2

d2d2
5

1

g13
2

V2
2

4ĝ2

1

V2
2

4ĝ
1 id

. ~54!

The first term of this expression corresponds to the two-le
absorption of the probe field on the 1-3 transition in t
absence of the driving field. The second one gives rise
dip in this profile when the detuningd2 is within the one-
photon linewidth, and to a well-distinguished peak whend2
falls outside of it, as can be shown in Figs. 2~b! and 2~c!.
These peaks occurring at the Raman detuning can be in
preted both on the basis of Eqs.~45! and on the presence o
a Raman signature inP13 due Raman resonant multiphoto
processes having the same initial and final state of the o
photon process corresponding toP13.

Now, as it concerns the features of the Raman probab
P12, Eq. ~44! tells us that in order to have the maximu
value of this quantity the peaks in the Raman factor and
the A factor must match. To this end it is important to o
serve that the Raman factorR is generally peaked atd50,
i.e., at Raman resonance: indeed, within the approxima
made here the termF32R is given by F32R5@g2 /(g2

1g3)#@ ḡ2/(ḡ21d2)# with ḡ5V2 /2Ag 128 /g 138 . On the con-
trary, the position of theA peaks obeys Eq.~53! according to
which greater values ofd1 correspond to smallerd values
and, by consequence, to better matching. This tells me
that off-resonant Raman probability is greater as compa
with the in-resonance probability.

V. APPLICATIONS TO SOME POPULAR PROBLEMS IN
QUANTUM OPTICS

We present now some physical situation where the c
cepts above can be applied. The first one concerns the p
lem of dark resonances, i.e., the disappearance of fluo
cence and absorption that occurs in a three-levelL atomic
system when the detunings satisfy the Raman condition,
reported in@11#. This is at the basis of a wealth of phenom
4-7
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ena in quantum optics ranging from sub-Doppler laser co
ing @12# up to the the most recent observation of the anom
lous reduction of the speed of light in laser cooled a
noncooled media@13#. We also briefly show how the elec
tromagnetic induced transparency~EIT! can be interpreted in
terms of the multiphoton process probabilities introduc
here. Finally, we discuss the issues of efficiency and pro
ability of some three-level configurations designed to p
vide efficient gain of radiation by means of an addition
driving field, a subject that has close relations with the
vestigations on lasing configurations operating without po
lation inversion@3#.

A. Dark resonances

In a three-level system in theL configuration and for
values of the detuning corresponding to Raman resona
the population of the upper state vanishes and the sys
becomes transparent to the radiation. It is possible to g
some insight into this behavior also in the framework of t
rate-balance equations that we have developed here. To
out our calculations, we assume the presence of a spon
ous emission with rateG from the upper stateu3& with equal
branching ratios to the statesu1& and u2& which, in turn, are
thermalized at a small rateg. Thus, the level flow schema i
F15(G/2)r331gr22, F25(G/2)r331gr11, F350, and
the balance-rate equation for the upper state can be writte

2Gr332P13F11P23F250. ~55!

This, solved forr33, gives

r335
g

G

P13r221P23r11

12
P131P23

2

. ~56!

Now, for very smallg and at Raman resonance whered1
5d2, it is possible to calculate the absorption probabilit
by using the expressions in Appendix B; then we find

P135
V1

2

V1
21V2

2 , P235
V2

2

V1
21V2

2 ~57!

and consequently,

r3352
g

G

V2
2r111V1

2r22

V1
21V2

2 , ~58!

from which it is clear that asg→0, r33→0, thus accounting
for the vanishing of the upper state population at Ram
resonance@14#. Thus, the existence of the dark resonan
comes as a result of the quenching of the one-photon abs
tion probabiliesP13 and P23, as compared to their valu
close to the unity when the two fields act separately, see
~40!, or are detuned from Raman resonance. In Appendix
a useful expression forP13 and P12 is obtained under the
conditions of very smallg15g25g, equal Rabi frequencie
V15V25V, g!V2/G!G, and detunings much smalle
thanG, i.e., d1 ,d2!G. These are given by
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,

P135

11
V2

G S 1

g12
D 8

1
gG

V2

112
V2

G S 1

g12
D 8

12
gG

V2

, ~59!

P125
V2

2G

S 1

g12
D 8

112
V2

G S 1

g12
D 8

12
gG

V2

, ~60!

and are shown in Fig. 3. They have Lorentzian shapes wh
width is approximatelydB5VA2g/G. The populations can
now be calculated by using Eq.~56! and taking into accoun
that, in the conditions contemplated here,P13 and P23 are
equal. By denoting withP their common value, we get

~12P!r335
g

G
P~r111r22!, ~61!

which, in the limit of small Rabi fields such asr111r22
'1, leads to

r335
g

G
1S V

G D 2H 12

S V2

G D 2

d21S V2

G D 2J ~62!

with d being the Raman detuning and (V/G)2 ther33 popu-
lation free from interference. The results obtained here
of course, very well known in the literature. However, th
interesting point of this approach is that of making expli
their connection with the quenching of the absorption pro
abilities. This can be interpreted as due to the interferenc
the one-photon process 1-3 with at least a three-photon r
nant with the states 1-3-2-3 in sequence.

B. Electromagnetic induced transparency

It is interesting to recognize that, within our framewor
the conditions for electromagnetic induced transpare

FIG. 3. Raman and one-photonP probabilities for a three-leve
system inL configuration, with equal Rabi fields, as a function
the detuningd5d1 with d250. Parameter values areV15V2

5V50.1 andg51024. These are all normalized to the decay ra
G of the upper state andr33 is normalized to (V/G)2.
4-8
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~EIT! @15#, obtained with increasing driving fields, coincide
with a strong reduction of theB coefficients with respect to
their small fields value. In this situation, no transitions b
tween the prescribed levels takes place and the medium
comes transparent. By inspecting the expressions forP21 and
P13 given above in Eq.~44! and Eq.~45!, as V2→`, we
notice that their vanishing is to be traced back uniquely
the vanishing of the factorA. Indeed, in a three-levelL
system, where the depletion of the lower state is very sm
such as all atoms remains in their lower state (r1151), we
have F15g1 with negligible stimulated emission and th
absorption being equal to ṅ5F135(V1

2/2g 138 )A
5V1

2/2(1/G13)8. To discuss EIT line-shape features 1/G13

can be transformed as follows:

1

G13
5

g 128 1ıd

~g 128 1ıd!~g 138 1ıd1ıd2!1
V2

2

4

5
g 128 1ıd

V2
2

4
S 12

~g 128 1ıd!~g 138 1ıd1ıd2!

V2
2

4

1•••D
~63!

and its real part written as

S 1

G13
D 8

5
16

V2
4 H ~2g 128 1g 138 !d212g 128 d2d

1g 128 S V2
2

4
2g 128 g 138 D 1•••J ~64!

which can be viewed as a function ofd whose minimum
occurs at

dmin52d2

g 128

g 138 12g 128
~65!

away from the Raman resonance. The results above ar
course, subjected to the validity of the expansion of Eq.~63!,
which holds as the modulus of the second term within
parenthesis is much smaller than the unity. This condition
as one can easily see, detuning dependent. As a matt
fact, EIT occurs principally in the frequency region betwe
the two peaks of theF13 probability.

C. Profitability of multilevel lasing configurations

Here we review some of the simplest atomic lasing c
figurations. This analysis has gained momentum in rec
years in connection with the lasing without inversion pro
lem @3,10,16#, thus reviving some prospects for efficient am
plification in the region of short wavelengths. Howeve
some examples in which the absence of population inver
did not warrant the optimal conversion efficiency were su
sequently brought about@17#. This was a stimulus for going
back to the analysis of these mechanisms by focusing m
on the efficiency of the process that transforms atomic e
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tation into coherent radiation rather than on the absenc
population inversion. The point of view of the atomic r
sponse to coherent radiation introduced here provide
framework where these issues can be more suitably phr
and assessed. Thus, the question is if there is any advan
in pursuing radiation amplification by means of three-lev
configurations, where both the one-photon process and
Raman process are simultaneously active, instead of thro
the more simple and conventional two-level system. Bef
entering into the details of the more complicated three-le
systems inL and V configuration, we review some concep
relative to a two-level system within the framework of ide
developed here.

1. Lasing efficiency in a two-level system

The gain in a two-level system, with 1 as lower level a
2 as upper one, can be derived from Eq.~36! by assuming,
quite reasonably,F15g2r22 andF25g1r11. In the condi-
tion of negligible fields, i.e., whens is the smallest rate in the
system, we obtainF15F2 , B5s. If, in addition, g1!g2 ,
we haver11'1, andṅ52s, which is related to the natura
absorption cross sections53l2/2p. On the contrary, if
g2!g1 we obtainṅ5s which represents the upper limit fo
the gain. By exactly solving Eq.~36!, one instead getsṅ
5(g12g2)s/(g11g212s).

Now, as far as lasing efficiency is concerned, a las
system presents some similarities to a thermal engine w
microscopic disordered energy is transformed into mac
scopic energy. Quite similarly to the thermal engine, wh
not all the work done by the highest temperature sourc
available work, here not all the photons emitted in the stim
lated emission process are useful photons because a fra
of them is absorbed back in the medium. Thus, we can de
the atomic conversion efficiency asha5ṅ/P21F2 which, as
from Eq. ~36!, can be written asha512(t1 /t2), where the
quantitiest i5F i /g i play the same role of the temperature
a thermal engine. Another important indicator of the lasi
efficiency is the pump conversion efficiencyhp . It accounts
for the fraction of energy provided by the pumping proce
that is transformed into stimulated emission radiation. T
overall conversion efficiency is given, now, by the produ
h5hahp . In the ideal case, which occurs only when all t
pumped atoms are engaged in the pumping cycle through
upper level, this ratio becomeshp5P21F2 /F25P21, i.e., it
does coincide with the stimulated emission probability fro
the upper level. The pumping efficiency is a decreasing fu
tion of the pumping rate and for small intensities, in res
nance and at threshold, i.e., whereg15g25G, it is given by
P215s/g25s/G5V2/2G2. In the case of a very strong
spontaneous emissionG, such conversion efficiency be
comes very low. This is, indeed, in relation to the we
known limitations connected to gain at small wavelengt
although it is not often pointed out that in these conditio
the excess of energy above the threshold is mostly dissip
and only a small fraction of it is converted into cohere
radiation. It is trivial to see thatP21}1/upu2, whereupu is the
electric dipole moment of the transition, whereas the stim
lated emission rate at threshold, given byV2/4G, is indepen-
4-9
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BRUNO ZAMBON PHYSICAL REVIEW A 63 053814
dent of this quantity. The conclusion is that the decreasin
the transition dipole moment increases the efficiency
soften the threshold requirement by leaving unaltered
stimulated emission rate at threshold. The above consi
ations suggest that a metastable state, weakly coupled
an interacting state in such a way as to give rise to a stat
ary state with a small electric dipole moment, will presen
favorable condition of small threshold and high pumping
ficiency even within the two-level configuration schem
There is nothing new in this, but mentioning it here will he
one to understand the true scope of the improvement, if a
obtained with the more complicated configurations, wh
will be analyzed in the following.

2. Three-levelL configuration

We consider aL atomic schema with a lower stateu1&
and two upper states,u2& andu3&, closely spaced as shown i
Fig. 4~a!. The probe field acts on the transition 1-3 where
the driving field operates on the transition 2-3. In order e
phasize that we discuss a case where the upper level 3
strongly decaying one, we indicate its decay rate byG in-
stead ofg3. The performance of this system largely depen
on the relaxation mechanisms adopted. For instance, with
schema F35g1r11, F25Gr33, and F150, absorption
does not take place because no atoms start their evolutio
the stateu1&, F150, and the top performance can be o
tained. Needless to say, such performance would never c
about in practice because the relative relaxation schem
physically unfeasible. It is also possible to imagine that
upper level 3 decays to 1 and 2, with branching ratiosp1
'p2, respectively, as has been done in@5#. This configura-
tion also provides a very good performance. However, c
sidering that the two upper levels are closely spaced, it
be realistic only when the transition 1-3 is a very weak o
If this is the case, i.e., if a slowly decaying and nearly me
stable upper lasing level is available, is there any advan
in using this configuration instead of a two-level configu
tion operating on the weakly coupled transition 1-3 th
could instead benefit from the improved performance as
lined in the preceding section? We will try to answer to th
question in this subsection. However, in the meantime,
want to start our discussion by dealing with a strong pro
transition 1-3 that corresponds to short wavelengths. Sinc
is expected that the Raman process will be the dominant
for the gain, we could take the most advantage of it by ado
ing a direct pumping mechanism from level 1 to level 2 w
no decay from level 3 to 2 being allowed. Thus, we have

FIG. 4. Three-level system inL configuration, case~a! and V
configuration, case~b!.
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F15Gr331g2r22, F25g1r11, F350. ~66!

In the condition in which the probe field is negligible, th
balance equations are

2g1r111F150,

2g2r221F22P23F250, ~67!

2Gr331P23F250,

which, together with Eqs.~66!, allow one to prove thatF1
5F2. Using the conditionr111r221r3351 one gets

F25F15
1

1

g1
1

1

g2
1P23S 1

G
2

1

g2
D . ~68!

The total gain is then given by

ṅ315m211m131m12

5B21 S F2

g2
2

F1

g1
D2B13

F1

g1

5F2H B21S 1

g2
2

1

g1
D2B13

1

g1
J

5~P212F13!F2 . ~69!

It is now clear that the threshold requires thatg1>g2. Thus,
only if g2!G we can expect a consistent lowering of th
lasing threshold, thus making an almost metastable sta
good candidate to suit this purpose. Beams of metastable
atoms and pulsed pump field has been experimentally in
tigated in @18# to provide vuv amplification. However, be
cause of the destabilization of the mestastable state du
the collisions, its realization might not be simple in bu
gaseous matter.

In Fig. 5, the quantitiesP21 and F13, which serve as a
basis for the calculation of gain in theL configuration dis-
cussed here, are shown. In order to obtain the maxim

FIG. 5. One-photon absorption,P13, and Raman stimulated
gain, P21, normalized to the standard two level absorption pro
ability V1

2/G2. We have setG51.0, g251024, g150.01, d2

55.0, V151023, g i j 5(g i1g j )/2. In the inset~a! the driving field
is V250.05, while in the inset~b! V250.6. The emerging ofF13

absorption peak, asV2 is increased, can be noted.
4-10
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Raman probability detuned fields must be employed beca
they allow the best matching between the factorsA and R.
Both the driving and probe field tuned on the respective tr
sitions represents, in this respect, the worst matching co
tion, as it can be gathered from Fig. 2. For the parameter
inset~a! the total absorptionF13 is negligible and the gain is
totally due to Raman stimulated emission. The system t
operates in a very efficient way because absorption is ne
eliminated, but, as noticed above, this depends, on the b
of Eq. ~69!, solely from the smallness of theg2 decay. How-
ever, as the gain is concerned, this is still small becauseF2
is also small. This happens because values ofV2, such as
those in inset~a!, do not produce an efficient mixing betwee
statesu2& and u3& such that the decay to the lower level
dominated by the rateg2. In fact, most of the population is
in stateu2& and the ratesF25F1 are approximately equal to
g2 , i.e., to a very small quantity. As a matter of fact, we fi
ṅ315P21F2'71.30.1233102350.008, in units of the
natural absorption, by reading the value ofP21 from inset~a!
in Fig. 5. In the case of inset~b! the driving field is increased
such as to allow an efficient mixing between the two up
levels. This increases the ratesF15F2 because of the fas
decay back to stateu1& that occurs from stateu3&. Thus, most
of the atoms are found in the lower state and the level ra
become approximately equal tog1. For V250.6 we obtain
F250.26731022 and, by using the value ofP212F13
'48, gathered from inset~b! at the detuning where this dif
ference is the greatest one, we calculate the overall gain t
approximatelyṅ3150.12 times the natural absorption. This
pedagogical in showing that having most of the atoms in
lower state helps improve the gain via an increase of
upper level rate, a mechanism that is active in most of
schemes for lasing without inversion@3,5,10#. Unfortunately
the driving field cannot be increased indefinitely becaus
drastic diminishing of the Raman stimulated emission pr
ability, caused by a mismatch betweenA andR, corresponds
only to a modest increase ofF2 which, on the other hand
presents a saturating behavior as a function ofV2. A com-
parison with a two level system on the transition 1-3 is n
possible. To obtain the same gain with a two level syst
operating between level 1 and 3 one would need, accord
to the expression (g2G)/(g1G) of the normalized gain, a
pumping rateg51.25 instead ofg150.01, which is that
used in inset~b!. Thus, an improvement in the threshold of
factor of about 100 times has been obtained.

However, in spite of this, it appears evident that this s
tem operates less efficiently than the individual Raman p
cess because the one-photon process adds extra absor
Moreover, one might ask whether a one-photon two-le
process between the same initial and final states 1 an
could provide an even better performance of the Raman
cess alone. Indeed, by performing this comparison one m
notice that the atomic efficiency of both processes is
same, i.e.,ha512(g2 /g1). On the contrary, the pump ef
ficiency of the Raman process will be given by

P215
g1

g2
P125

g1

g2
F13P32R<

g1

g2

V1
2

2g1
S 1

G13
D 8g2

g3

g3

g1
5

V1
2

Gg1
.

~70!
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Here we have used the fact thatF32<g2 /g3 andR<g3 /g1
for small g2. We also recall that the pump efficiency of
two-level system operating on 1-2 transition isP21

0

5V12
2 /g1g2. In addition, because levels 2 and 3 are clos

spaced, the relationV12/g2'V1 /G holds. Thus, inserting
this in Eq. ~70!, we obtainP21

0 >P21 @19#. To complete the
comparison we notice that only for strong driving fields c
the rateF2 be as high as the equivalent one in the two-le
system between levels 1 and 2. Thus, considering the d
culties intrinsic in the experimental implementation of t
multilevel lasing configurations, as enlisted in the recent
view work of Mompart and Corbalan@20#, the simple two-
level configuration results, between the two, in a better ov
all performance.

3. Three-level V configuration

We consider 1 to be the upper lasing level, whereas 2
3 are a couple of closely spaced lower levels, 1-3 is the pr
transition, and 2-3 the driver transition, all as shown in F
4~b!. The flow schema

F15g2r221g3r33, F250, F35Gr11, ~71!

with F250, implies that no Raman absorption takes place
spite of stimulated Raman emission being active: it c
therefore, be considered as an optimal one for the purpos
obtaining gain. We also assume that pumping to the up
state takes place both from level 2 and level 3. The r
equations in the limit of small probe field are

2Gr111F150,

2g2r221P32F350, ~72!

2g3r331F32P32F350,

from which, after trivial manipulations, the following result

F35F15
1

1

G
1

1

g3
1P32S 1

g2
2

1

g3
D . ~73!

Thus, the gain of the probe field can be written as

ṅ315F1P131F1P122F3P315F1~F132P31!. ~74!

Now, this configuration, contrary to theL configuration, has
a better performance over the single one-photon process
tween 1 and 3 because it can benefit from the additional g
due to the Raman process. Thus making the Raman st
lated emission as big as possible would provide the ma
mum benefit in terms of lasing gain. A similar effect can
induced, on the basis of Eq.~21!, by increasingg2.

We now investigate both the threshold condition and
magnitude of the gain obtained with this system. We th
consider the ratio

r th5
F13

P31
5

P121P13

P31
5

g3

g1
S 1

12F32R
D ~75!
4-11
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showing that the most favorable condition occurs for d
tuning close to the Raman resonance whereR is peaked. This
ratio becomes, in the limit of strong driving fields, equal
r th5@(g21g3)/G#@(G1g2)/G#, how it can be gathered
from Eqs.~49! and~47!, indicating that gain in this condition
can be obtained only if the lower state relaxations are cl
to the upper state relaxationG, a result that is not surprising
However, we point out that for reasonable relaxation para
eters this condition is fulfilled forV2 ranging around rathe
prohibitive values of about some hundreds ofG. Indeed we
have numerically verified that the gain condition can be m
even by decreasingg2 and g3 to very small values, given
that V2 and the detuningsd2 are further increased. Thus w
can conjecture that, no matter how small the decay rate
the lower levels are, it is always possible, by increasing
driving field intensity and detuning, to maker th.1. How-
ever, if we look at the probe gain profile near the Ram
condition, this appears flat and, in particular, undistingui
able from zero. In other words, such gain takes place at
quencies where the medium is already transparent and
sorption can hardly be distinguished from gain. Th
behavior is related to the shape ofF13 profile as discussed in
Sec. IV B 1. We recall here thatF13 is almost zero every-
where except for two peaks located at detunings related
d1(d12d2)'V2

2/4. Thus, whenV2 is strong the above de
tunings depart from the Raman condition and the ove
stimulated emission, given byF13, together with absorption
P31, becomes very small.

However, for more reasonable values ofV2, but still not
too small, the location of theA peak can be made to fa
within the Raman detuning range that, in turns, widens asV2
increases. Here, as from our initial assumption of strong
cay of the upper state, we assume a very small decayg3 of
the lower state (g3!g15G51). In this way a competition
between the Raman stimulated emission and the one-ph
absorption takes place. We then calculate numerically
maximum gain by means of a gradient algorithm that op
ates the space of the parametersd1 , d2, andV2. The results,

FIG. 6. Maximum gain of the V configuration in the space of t
parametersd1 , d2, and V2 as a function ofg2 with g351024,
continuous line, andg350.01, dotted line. The inset~a! shows the
gain peak corresponding tog250.5. In this caseV2567.25, d2

541.92, and the maximum occurs at the detuningd1560.6. It is
possible to verify that these values satisfy the relationd1(d12d2)
'(V2/2)2. The inset~b! shows the values ofV2 and d2 corre-
sponding to the maximum gain as a function ofg2. We have set
G51.0 andg351024 in both ~a! and ~b!.
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plotted in Fig. 6 as a function ofg2, is, in this way, inde-
pendent of all the system parameters and has a unive
character. We notice that, for values ofg2 approximately
below 0.13G, the gain obtained can be considered rath
negligible. Indeed, by identifying the effective threshold
the intercept on the coordinate axis of the straight line t
gent to the upper rectilinear portion of this curve we obtai
threshold value forg2'0.33G. In the inset~a! of Fig. 6 it is
shown how the gain profile looks like as a function of t
probe detuning. The gain reported here as a function ofg2
corresponds to the tracking of this peak in the parame
space of the V configuration. Inset~b! of this same figure
shows how the driving field parametersV2 andd2 must be
changed in order to fulfill the maximum gain condition.

The conclusion is that the condition for obtaining gain
this V configuration is just a little better than that corr
sponding to the gain in a simple two-level atomic system,
does not differ too much from it. However, it must b
pointed out that all this occurs in the presence of a rat
artificial pumping schema that trades off its physical fea
bility for efficiency. On the other hand, the other gain regim
also reported here, which can be obtained with much low
decay rates of the lower states, needs extremely high
almost certainly, unfeasible values of the driving field a
are so small as to be practically indistinguishable from
condition of transparency that the bare medium displays

4. Multilevel configurations

Considering the disappointing results obtained for
three-level systems, in terms of efficiency and physical f
sibility of the gain process, we would be tempted to exte
such findings also to the case of a more general multile
configuration. However, no rigorous proof that excludes p
sible favorable cases can be given here. All we can do is o
a very approximate reasoning. We simply notice that o
equations deal with the level rates: these are essentially fl
or currents which obey conservation laws as in the case
the currents in an electric circuit. In turn, the presence
strong driving fields modifies the prexisting branching geo
etry, as can be gathered from Eq.~33!. However, by consid-
ering a group of upper levels and one of lower ones, w
driving fields connecting only levels in the same group,
remains substantially true that the current rising to a se
upper levels comes also back down. A more delicate qu
tion concerns how the flows are branched within the group
upper and lower levels. If there are no strong imbalances
the flows to the levels are roughly the same, only small
cay rates of the upper levels will give a chance for the qu
tities t i5F i /g i to be inverted in order to provide gain. Thu
the simple rule of thumb at the basis of the conventio
laser operations of the two-level system turns out to ho
probably also for the operations of more complicated mu
level systems.

VI. CONCLUSIONS

In this paper we have studied the symmetries in the o
cal Bloch equations which are associated with the absorp
and stimulated emission processes. This has allowed u
4-12
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establish a set of balance-rate equations which are usefu
describing the response of an atomic system to coheren
diations and, more importantly, to recover the symmetr
between absorption and stimulated emission known to h
for a two-level system. In particular, it is found that for an
single multiphoton process the gain is depends on the dif
ence of the quantitiest i5F i /g i between the initial and fina
levels of the process. Physically meaningful parameters, s
as the generalized EinsteinB coefficients or the probabilities
of multiphoton processesPi j , appear directly in these equa
tions, thus making the analysis of the atomic response c
ceptually more simple and physically intuitive. In fact, he
the coherence-related effects that have played such a ce
role in the investigation of some configurations operat
without population inversion, are already included in the c
culation of the theB coefficients and have, therefore, th
same effects on both absorption and stimulated emission
cesses. What instead determines the emergence of the l
condition is to be searched for in the rate processes gove
by the equations that we have introduced here. Impor
issues, such as the efficiency of a given lasing configurat
are thus more easily tackled. Regarding the two applicati
of the concepts presented here, the analysis of the dark r
nance reveals, quite explicitly, through the use of the ra
balance equations, how it can be considered the result o
quenching of the one-photon absorption probabilities due
the interference between virtual multiphoton processes c
necting the lower to the upper state. In the other applicat
the analysis of theL configuration reported here shows
dramatic increase of the efficiency over the standard t
level configuration. However, this is not really a substan
improvement since it can be shown to depend entirely on
presence of a slowly decaying upper state present in the
figuration. Thus, an even better performance can be obta
more directly by using this last state as upper state o
two-level configuration. A similar analysis, carried out f
the V configuration, reveals that the threshold condition c
be made only slightly better than that corresponding to
two-level configuration but not yet enough to represen
substantial improvement toward devising feasible lasing
erations at short wavelengths. This points to the conclus
that, perhaps, the conventional concepts at the basis o
two-level lasing operations represent a more viable alte
tive at these wavelengths. A possibility of this kind could
given by a two-level system which operates on a wea
coupled transition obtained, for example, by a Stark coup
of a metastable state. However, this may not be easy in
gaseous matter due to the collisions that make these s
highly unstable. On the contrary, a collection of cold me
stable atoms, such as those obtained nowadays in se
laboratories where cooling techniques are successfully
plied, could be more suited to this purpose.

APPENDIX A: SOLUTION OF OBEs IN A THREE-LEVEL
SYSTEM

We report here the equations relative to a three-level s
tem as they were written down in Sec. IV B,
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ı
V1

2

2
~L132L31!2g1L11521,

ı
V2

2

2
~L232L32!2g2L2250,

2g12L121
ı

2
~L132L32!50, ~A1!

2g13L131
ı

2
V2

2L122
ı

2
~L332L11!50,

2g32L322
ı

2
V1

2L121
ı

2
~L332L22!50,

g1L111g2L221g3L3351.

These can be solved by first eliminating the coheren
which can be expressed in terms of the diagonal elemen
the equations above,

L135
ı

2D H S g321
V1

2

4g12
D ~L112L33!1

V2
2

4g12
~L332L22!J ,

~A2!

L325
ı

2D H V1
2

4g12
~L112L33!1S g131

V2
2

4g12
D ~L332L22!J ,

where

D5g13g321
V1

2

4g12
g131

V2
2

4g12
g32. ~A3!

By inserting these equations in the first two, we obtain
following equations:

2
V1

2

g1
$B1V2

2 C%P111H 11
~V1V2!2

g2
CJ P121H 1

1
V1

2

g3
@B1C~V1

22V2
2#%P1350,

~V1V2!2

g1
P112H 11

V2
2

g2
~A1CV2

2!J P12

1
V2

2

g3
$A1C~V2

22V1
2!%P1350, ~A4!

P111P121P1351,

in which the following quantities have been defined:

A5
1

2 S g13

D D 8
5

1

2uDu2 ~g13* D!8,

B5
1

2 S g32

D D 8
5

1

2uDu2 ~g32* D! 8, ~A5!

C5
1

2 S 1

4g12D
D 8

5
1

8uDu2 S D

g12*
D 8

.

4-13
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In solving the above equations one could follow the sugg
tions of @21#. One thus finds

P115H 11V2
2S 1

g2
1

1

g3
DA1

V1
2

g3
B1F 1

g3
~V1

22V2
2!2

1
1

g2
V2

4GC1
~V1V2!2

g2g3
PJ Y S,

P125
~V1V2!2

g1
H P

g3
1CJ Y S,

P135
V1

2

g1
H V2

2

g2
P1A1C~V1

22V2
2!J Y S, ~A6!

with

P5AB1V1
2AC1V2

2BC ~A7!

and

S511V2
2S 1

g2
1

1

g3
D ~A1CV2

2!

1V1
2S 1

g1
1

1

g3
D ~B1CV1

2!1~V1V2!2H S 1

g1g2
1

1

g1g3

1
1

g2g3
D P22

C

g3
J . ~A8!

In evaluating the factorP, one can keep in mind the follow
ing equality:

(
i

ReS ai

( asbs
D ReS bi

( asbs
D 5(

i

Re~ai !Re~bi !

u( as bsu2
.

~A9!

It is not difficult now, to provide an expression forP12 and
P13 in the condition of smallV1. In the case ofS the last
two terms vanish andA1C V2

25 1
2 (1/g32)8. Thus

S511s S 1

g2
1

1

g3
D , ~A10!

wheres5V2
2/2(1/g32)8 is the saturation rate in the transitio

2-3. Now,P12 is found to be

P125
V1

2V2
2

4g1g3

H S 1

g32
D 8

1
g3

2

1

g12g32

G13

J 8

1

S
~A11!

whereasP13 is given by

P135
V1

2

2g1
S 1

G13
D 8

2P12. ~A12!

By further manipulating the above expression, one gets
05381
s-
P125F13 F32 H 11

g3

2g12*
g32

g 328

G13

G 138
J 8

, ~A13!

where F325P325s/g3S coincides with the probability of
the transition from 3 to 2 whileF13 is given by

F135
V1

2

2g1
S 1

G13
D 8

~A14!

with

G135g131
V2

2

4g12
. ~A15!

The last factor in Eq.~A13! can be further transformed t
yield

R512
g3

2g 138
1

g3

2g 128
H ĝ2

ĝ21d2 F11
g 128

g 138

1
d2

2

g 138 g 328
S g 128

ĝ
D 2G1

ĝd

ĝ21d2

g 128

ĝ

d2

g 328
S 11

g 128

g 138

2
g 328

g 138
D J ~A16!

with

ĝ5g 128 S 11
V2

2

4g 128 g 138
D 1/2

. ~A17!

APPENDIX B: THREE-LEVEL SYSTEM IN L

CONFIGURATION AND DARK RESONANCE

In the case in which the upper state decays with a sp
taneous emission rateG1 to the lower stateu1& and with a
rate G2 to the lower stateu2& and the lower levels have
decaysg15g25g, the transverse relaxation rates are

g135
G

2
1 id1 , g325

G

2
2 id2 ,

g125g1 i ~d12d2!5g1 id ~B1!

with G5G11G21g. In this case the quantitiesA, B, C, and
P are given by

A5
1

2uDu2 H F S G

2 D 2

1d1
2GFG

2
1

V1
2

4 S 1

g 12
D 8G

1
V2

2

4 S 1

g12
D 8F S G

2 D 2

2d1d22
d~d11d2!

g

G

2G J ,

~B2!
4-14
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B5
1

2uDu2
H F S G

2 D 2

1d2
2GFG

2
1

V2
2

4 S 1

g12
D 8G1

V1
2

4 S 1

g12
D 8F S G

2 D 2

2d1d21
d~d11d2!

g

G

2G J , ~B3!

C5
1

8uDu2
S 1

g12
D 8H S G

2 D 2

1d1d21
G

2g S V1
21V2

2

4
2d2D J ,

~B4!

P5
1

4uDu2
H S G

2 D 2

1
V1

21V2
2

4 S 1

g12
D 8G

2J . ~B5!

In the condition ofV15V25V andd250 one finds

A5
1

2uDu2 S G

2 D 3H 11
V2

2G S 1

g12
D 8S 21

4d2

G2
2

2d2

gG D1
4d2

G2 J ,

B5
1

2uDu2 S G

2 D 3H 11
V2

2G S 1

g12
D 8S 21

2d2

gG D J ,

C5
1

8uDu2 S G

2 D 2S 1

g12
D 81

g H g1S V2

G
2

2d2

G D J ,

P5
1

4uDu2 S G

2 D 2H 11
V2

G S 1

g12
D 8J . ~B6!
S

pt

c.

s

to
b
b
en

05381
Now, in order to calculate theB 13 through Eq.~A6! in the
conditions ofg→0, we must calculateA, B, andC up to the
zero order ing andP to the first order ing. By doing so we
get

A5
1

2uDu2 S G

2 D 3S 114
d2

G2D ,

B5
1

2uDu2 S G

2 D 3

,

C5
1

2uDu2 S G

2 D 3 1

g21d2 S V2

2G2 2
d2

G2D ,

P5
1

2uDu2 S G

2 D 2F11
V2

G S 1

g 12
D 8G . ~B7!

Thus we find

P135

P1
g

V2
A

G1g

G2g
P12gC1

g

V2
~A1B!

~B8!

from which, making the assumption of small detuningd, the
first of the two expressions in Eq.~60! can be obtained.
-

nd

.

by

p-

d

de-
@1# R.K. Wangness and F. Bloch, Phys. Rev.89, 728 ~1953!; C.
Cohen Tannoudji,Frontiers in Laser Spectroscopy, Les
Houches XXVII, edited by R. Balian, S. Haroche, and
Liberman~North-Holland, Amsterdam, 1977!.

@2# P. Zoller, M. Marte, and D.F. Walls, Phys. Rev. A35, 198
~1987!; G. Nienhuis, J. Stat. Phys.53, 417~1988!; J. Dalibard,
Y. Castin, and K. Mo” lmer, Phys. Rev. Lett.68, 580 ~1992!.

@3# A.S. Zibrov et al., Phys. Rev. Lett.75, 1499 ~1995!; G.G.
Padmabanduet al., ibid. 76, 2053 ~1996!, and references
therein.

@4# B. Zambon, Phys. Rev. A47, R38 ~1993!; B. Zambon, Phys.
Lett. A 172, 426 ~1993!.

@5# C. Cohen Tannoudji, B. Zambon, and E. Arimondo, J. O
Soc. Am. B10, 2107~1993!.

@6# L. Fonda, G.C. Ghirardi, and A. Rimini, Nuovo Cimento So
Ital. Fis., B 18, 1 ~1973!; N. Gisin, Phys. Rev. Lett.52, 1657
~1994!.

@7# P. Visser and G. Nienhuis, Quantum Semiclassic. Opt.9, 621
~1997!.

@8# P.M. Morse and H. Feshbach,Methods in Theoretical Physic
~McGraw-Hill, New York, 1953!.

@9# In the equivalent quantum jump picture approach, similar
that used in@5#, the absorption and emission are calculated
appealing to the quantum nature of the EM field. Here,
contrast, we depict this latter as being classical and work
tirely within the framework of the OBE.
.

.

y
y
-

@10# O. Kocharovskaya and P. Mandel, Phys. Rev. A42, 523
~1990!.

@11# G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Ci
mento Soc. Ital. Fis., B36, 5 ~1976!; G. Orriols, ibid. 53, 1
~1979!.

@12# J. Lawall, S. Kulin, B. Saubamea, N. Bigelow, M. Leduc, a
C. Cohen-Tannoudji, Phys. Rev. Lett.75, 4194 ~1995!, and
references therein.

@13# M.O. Scully, Phys. Rev. Lett.67, 1855~1991!; L.V. Hau, S.E.
Harris, Z. Dutton, and C.H. Behroozi, Nature~London! 397,
594 ~1999!; D.F. Phillips, A. Fleischhauer, A. Mair, R.L
Walsworth, and M.D. Lukin, Phys. Rev. Lett.86, 783 ~2001!.

@14# The P probabilities above can also easily be determined
means of the approach in@5# where Eq.~3! is made equivalent
to a Schro¨dinger evolution with HamiltonianHeff and Pi j

5g j*0
`z^ j ue2 iH efftu i & z2dt. For a two-level system with zero

damping of the lower state, we haveP2250 andP1251 as a
result of Eq.~31!. For the three-level system with zero dam
ing of the lower state, by introducing the statesua&5V1u1&
1V2u2& and ud&5V2u1&2V1u2& as the absorbing state an
the dark state, respectively, we havePa,351 andPd,350 as a
consequence of the fact that the dark state is completely
coupled from the upper stateu3&, i.e., Heffud&50. Thus ex-
pressingu1&5V1ua&1V2ud&, we find Eq.~57!.

@15# S.E. Harris, Phys. Today50„7…, 36 ~1997!, and references
therein.
4-15



rg

m

ro
ed

ssi-

BRUNO ZAMBON PHYSICAL REVIEW A 63 053814
@16# P.B. Sellin, C.C. Yu, J.R. Bochinski, and T.W. Mossbe
Phys. Rev. Lett.78, 1432~1997!.

@17# B. Zambon, Phys. Rev. A58, 690 ~1997!.
@18# B. Cheng, M. Francesconi, F. Gianmanco, F. Strumia, O. To

masi, and M. Tosetti, Opt. Commun.97, 183 ~1993!.
@19# The much larger value of the Raman stimulated emission p

ability P21 with respect to the bare one-photon stimulat
05381
,

-

b-

emission probability, this last given byV1
2/G, is to be attrib-

uted to a small decay of the coherence betweenu1& and u2&
with respect to the coherence decay betweenu1& and u3&.

@20# J. Mompart and R. Corbalan, J. Opt. B: Quantum Semicla
cal Opt.2, R7 ~2000!.

@21# J. Schnakenberg, Rev. Mod. Phys.48, 571 ~1976!.
4-16


