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Local-field corrections to the decay rate of excited molecules in absorbing cavities:
The Onsager model
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The decay rate and the classical radiation power of an excited mol@talg in the center of a dispersive
and absorbing dielectric sphere, taken as a simple model of a cavity, are calculated adopting the Onsager model
for the local field. The local-field correction factor to the extermatliation and absorptigmpower loss of the
molecule is found to b¢3s(w)/[3s(w)+ 1]|%, with e(w) being the dielectric function of the sphere. How-
ever, local-field corrections to the total decay rgiewer los$ of the molecule are found to be much more
complex including those to the decay rate in the infinite cavity medium, as derived recently by &cakel
[Phys. Rev. A60, 4094(1999], and similiar corrections to the cavity-induced decay rate. The results obtained
can be cast into general forms that do not rely on the specific cavity shape and molecule position considered.
This suggests the general results for the local-field corrections to the decay rate and to the external power loss
of a molecule in an absorbing cavity that are valid for molecule positions away from the cavity walls.
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I. INTRODUCTION is the dielectric function of the cavity mediumR,,, an effec-
tive molecule-medium distance, and
Within macroscopic electrodynamics, the decay latef

an excited molecul¢atom at a positionry in an absorbing 40%|psi|2
cavity is given by Ff,ee:—f' (5)
3nc®
2
I'= ﬁpﬁ-lmG(ro,ro;w}pﬂ, (@) is the free-space spontaneous emis<i8B) rate. The first

contribution tol'® in Eq. (3) is identified as the nonradiative
decay ratd"?, due to the near-field mediated transfer of the
molecular energy to the surrounding medium, whereas the

the transition frequency. This result is most simply obtaineoSecond one is the fam|I|§1r decay r‘ﬁ%‘d d‘?e to the radiation
using the classical theory of moleculaadiative decay[1]  |0Sses of the molecule in the medium, i.e., the SE Fele

in conjuction with the correspondence principle and extendl6,10,11. . ) i

ing it straightforwardly to absorbing systenfig]. Within For an optically dense cavity medium, the above result
QED, however, it is derived by employing the quantizedhas to be |mpro_veq by accounting for 'ghe _d|fference between
form of the macroscopic field in absorbing systems obtained® macroscopic field used in its derivation and the actual
rather recently3—5] and using the Fermi golden rul6, 7] or (local) field with which the molecule interacts. Restricting

by solving Heisenberg’s equations of motion for the mc)|_o_ursel\/_es to low-density cavity media in our previous con-
ecule and the field in the Markov approximatif9]. sideration of the molecular dec§g] as well as of the spon-

Splitting the Green function into the translationally invari- tanN€ous emission spectri2] in an absorbing planar cav-
ity, we ignored this difference implicitly assuming, however,

that the decay rate corrected for the effect of the local field in
an isotropic cavity was of the form

with é(r,ro;w) being the(classical dyadic Green function
for the systempy; the relevant dipole matrix element, and

ant partG°(r —ry;w) and the scattering pa@s{r,ro;w),
the decay rate can be generally expressed as

[=T%+1s 2 ~
. _ o _ [ioc=L[T0+T%, (6)
wherel'™™ is the decay rate as would be in the infinite cavity

medium andl'*¢ is the corresponding cavity-induced decay . . o .
_ N _ where £ is an appropriate generalization of the local-field
rate. %PO” an appropriate regularizatiorG(r —ro;w), the  ¢oprection factor in the lossless case. Thus, as suggested by
ratel"” is given by[2,7] ~0 - o .
Barnettet al for the decay ratd’.. in the infinite cavity

o E{g gff(w)( c )3+ " 5 [6,7], one would have
“lwed 57 5|\ T B w) |,
92 le(w)]?\ @Rm g (o422
Liole)= 3 (7
where
e(w)=[n(w)+ix(w)]? (4)  in the Lorentz(virtual-cavity) model[13—17 and
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2 Owing to its intuitive clarity and easy visualization, we
(8) prefer a classical discourse in this work. Therefore, in Sec. Il
we recall the classical approach to the problem of the decay-

in the Onsager(real-cavity model [18-21 for the local ing molecule and rederive E(B) raising, through a plausible

field. In either case, the effect of the local field would cancel@rgument, a question on the completeness of this result for

when dealing with the normalized r fe=T' /T =T/r° absorbing media. In Sec. Il we first obtain formal results for
loc’* loc™ '

The conjecture expressed by Ed§)—(8) has recently the decay rate and the power loss in the external layer of an

been shown to be incorrect for both models for the Iocalexcned molecule in the center of an absorbing multilayered

field, which we indicate in Eq(6) by putting the tilde sign SPrerical system. We then apply these general results to a
. . medium with the Onsager cavity and provide an alternative

onI'. First, Scheel et al.22] demonstrated that, in the Lor- derivation of'_to that given in Ref[8]. Subsequently, b

entz model, a proper inclusion of tliguantum noise polar- loc 9 ' d Y, Dy

ization in the local field led to a more complex

considering an absorbing dielectric sphere with and without
w-dependence of the decay rdf@. in an absorbing, me-

loc
dium than that given by the simple produtit,I'° (see Egs.

the Onsager cavity, we determilg;, and Wy in terms of

the corresponding quantities for the bare sphere. In Sec. IV
(49 and (50) of Ref.[22]). Their result is in full agreement
with TP in absorbing dielectrics derived by Fleischhauer

we briefly illustrate the effect of the local field in this model
using a microscopic approadl23]. In a subsequent work

on T} and the total ratd,.. The main points of this work
are summarized in Sec. V and the necessary mathematical

Scheel et al[8] showed that the decay ral& . in the On- background is given in Appendices A and B.
sager model for the local field was also much more complex
in the absorption case than that given by the prodlgd™®
[see Eq.(27) below]. In the classical approach, an excited molecule is repre-

Knowing the decay ratd’} in an infinite cavity(me-  sented by a point dipolp exp(—iwt) at the molecular posi-
dium), it is natural to seek the decay ralg, in a finite  tion r, oscillating with the frequency of the transition,

cavity, i.e., in view of Eq.(2), the cavity-induced rat€},.  The molecular decay ratd& is then related througH

Formally, the calculation of'}y, is most straightforwardly =WI/#% o to the power

performed if one adopts the Onsager model for the local

field. In this model, one assumes the molecule in the center _v % .

of a spherical hole of radius small compared with the transi- W= Elm[p ‘Ero.roie)] ©

tion wavelength often referred to as the Onsager cavity. In ) _ o ) o

view of Eq. (1), the problem then reduces to the calculationlost by the dipole in supporting its own field. Equatid is

of the Green function for the system, with the Onsager cavitfhen obtained, introducing the Green function of the system
at the source position. Owing to the combined symmetry ofhrough

such a composite system, however, this represents a difficult )

task, which for most relevant cavity geometries demands ap- oy @ = .

proximative or numerical method&4]. Therefore, in order Briroiw)= CZG(r,ro,w)-p, (10

to take a(first) step towards determination @f.., in this

work we consider a special case where the molecule is loroting thatG(r,,ro;®) is the diagonal dyadic and using the
cated in the center of an absorbing sphere taken as a simpt@rrespondence principle to Ipt—2ps; [35].

model of a dielectric cavity. High symmetry of this configu-  The dipole field(Green functioh in a cavity can always
ration enables one to perform a simple and exact calculatiobe written as

of I'}y; in the Onsager model as well as of the power loss

WY of the molecule outside the sphere. In turn, these results

(may) provide a lead to the corresponding solutions for awhere[z]
more general configuration. We note that this special con-
figuration has recently been considered by @aal. [21] in 1
their calculation of the local-field corrections to the SE rate EO(R;w):—{
in a purely dispersive medium. We partially adopt their ap- &
proach, generalizing it to an absorbing multilayered spherical o A
system. It should also be noted that owing to the existence of +K2
high-Q resonances and, accordingly, great ability of enhanc- R
ing optical processeg26], dielectric microspheres are very

attractive objects for cavity QED studies. Thus, modificationwith T being the unit dyadicR=r—r,, R=R/R, and
of the decay rate and the radiation intensity of an excited

molecule(atom in or near alosslesg microsphere has been _ (ORI -
theoretically considered in both the wegk27-31 and the k(w)=Ve(w) ==k (0)+ik' (),
strong[9,31,33 molecule-field coupling limit, and experi-

mental observations of modified fluorescence intensity havés the field of the dipole as would be in the infinite cavity
also been reportel83,34]. (medium, and E’(r,ry; ) is the component of the dipole

3e(w)

Lond &)= Ze(w)+1

Il. PRELIMINARIES

E(r,ro;0)=E%R;w)+Er,ry;w), (11)

SR-T
R3

4,
(l—ikR)—?lﬁ(R)

A peikR, (12)

(13
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field scattered from the cavity walls. Owing to the singular o p2[ &"(w) c \3 c
longitudinal (near-field component oE°(R; w) Wo= [( ) +e'(w
3c? |8(w)|2 R, ( )‘URC
o, . 1[3RR-T A4m. 2
B(Ro)=Cl—s 3R -p (19 - §[n<w>s"<w>+x<w>s'<w>]]
it is the calculation of"® that represents a difficult step in R,
determining the decay rate in absorbing systems. (@) +0 c ' (19

To remove the singularity frorEﬁ(R;w) in the spirit of
the macroscopic-field approach, one may average this contn addition to a near-field term, which very much resembles
ponent of the dipole field over an appropriately choserthe corresponding term in Eql7), now we have two new
spherical volumé/,,= (47/3)R3 around the moleculg7] or  absorption terms. The most striking is the appearance of an-
regularize it by lettings(R)— 1NV, [2,25]. In either case, otherR-free term, which therefore persists even in e

one finds that —0 limit. This implies that a corresponding term must ap-
pear in any calculation ofV°, which indicates that Eq17)
1 47 is, in this respect, incomplete.
EP(R;®)|r 0=~ VAL (19 Taking R, in Eq. (18) as a cutoff is equivalent to setting

E°(R;w)=0 for R<R;. Since this field does not obey Max-

Since for the dipole transverse fiel? (R;w)=E’(R;w) well's equations, it is clearly incorrect to regavd® as the
_ Eﬁ)(R'w) we find e ’ dipole power loss, which we have emphasized by using the

tilde. On the other hand, extending the macroscopic field
2 5 down to intgrmolecglar distanceR{—0) is not justified as
EO(R;w)|q =ikw——p (16) the actual field acting on the molecule may largely differ
L —0 c2 3" from it. These ambiguities concerniny® are naturally re-
solved within an exact macroscopic-field approach in the fol-

this leads to the total classical dipole power loss lowing section, where we adopt the Onsagesal cavity
model for the local field and therefore assume the molecule

o¥p2[3 " (w) c \3 in the center of an empty spherical cavity with the radRys
= — ( ) + 9(w) (17 small compared with the transition wavelength Since in
3¢® |2 |e(w)|? | @R this case, the longitudinal componéift(R; w) of the dipole
field does not contribute to the molecular power loss, no
and, accordingly, to the decay rdf€@ given by Eq.(3). singularity appears in the theory.
That the above result oversimplifies the frequency depen-
dence of the molecular power lo&$ecay ratgin absorbing lIl. LOCAL-FIELD CORRECTIONS

media becomes clear if one tries to obtaW® using the

Poynting theorem. In this way, by calculating the dipole en- Consider an excited moleculdipole) in the center of an
ergy flow W through a spherical surface around the dipoleN-layered spherical system as depicted in Fig. 1. In this case,
and the energyV? absorbed per second in the enclosed vol-the power lossv** of the molecule may be written as

ume (see Appendix A we find

WSC:%|m[p* ~Eic(r;(0)|rﬂo]7 (20

(1)4 2 e 3
_o'pl*] & t e

- —2K"R,
3c® ||e)? ,

1—-ikR;)e'Re 2(—
( ) | OR; where EI{(r; ©) =Ei{(r,ro;w)|; o is the scattered part of
(18 the dipole field in the central region. The calculation of the
) o o dipole field in this configuration is outlined in Appendix B,
whereR; is (formally) the lower limit of the radial integra- assuming, for simplicity, that=p2. Using Eq.(B6), we find
tion in W2. Owing to their characteristic dependence on thesrom Eq. (’20) that (k0=c:)/C) ’

dielectric function of the medium, we refer to two terms in
this equation as the absorption-£”) and the radiation cklpl?
(~n) contribution toW?°, respectively. Since this notation W= W Reve,CY, Wfree:Ty
may associate t(h/\lg1 and VV? as the respective origins of

these contributions, we stress that ba# and Wy are  whereC! is the corresponding reflection coefficient. In the
needed to obtain each of them, as is clear from the derivatiopzse of the empty central regiolVf=W;.g), we therefore

in Appendix A. . -
To obtain the dipole power loss from E@L8), the R, rr:1aovlgcflj)lrethe normalized total decay rdte-W/Wiee of the

—0 limit should eventually be taken. However, consiger
as a small R.<<\) but finite cutoff for the moment. In this
case, expanding/® in powers ofwR./c, we find

(21)

I=1+RegCY, . (22)
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Eqg. (22) and expanding the reflection coefficiemi(l,s;RC)
given by Eqg.(B7) in powers ofp;=koR.<1. It is very in-
structive to rederive this result by applying the Poynting
theorem to a spherical surface around the molecule enclosing
the Onsager cavity and thus determine the power\M%§of

the molecule. We note that we have performed such a calcu-
lation in Appendix A to obtain Eq(18). Thus, W, is given

by this equation provided that we Ipt- pes, where[cf. Eq.

€y (23)]

(
7 -
' per= C3(LeiRo)p

and regardR. as the Onsager cavity radius.
Expanding the coefficiemii(l,s;Rc) given by Eq.(B8)
for small p;=kgR., we find

3¢ 10e?—9e—1

= 1- koR¢)?
FIG. 1. System considered in this paper. All layers are assumed Peit 26 +1 10(2¢+1) (koRe)
absorbing and are described by the complex dielectric function 2 3/2( 1)
2 &7 (e—

gi(w). —Igm(koRc)sl"‘o{(koRc)Al} p. (25

Identifying the central sphere with the Onsager cavity, this
general result provides a direct way for inclusion of theOwing to the koR.) 2 factor in the first term on the right-
local-field corrections to the decay rate in spherical multilay-hand side(rhs) of Eq. (18), in this term we must use
ered systems. _ _

Of obvious interest is also the radiation powgof the (1= iVekoRe)e"#oRepey|?
molecule or, generally, the total power |084, in the outer

. . . 2

region of the multilayer. By comparing Eq#1a) and(B5), | 3¢ 1 lde+1 )

we see that the dipole fiel#y(r; ) in this region is the |2e+1 1+ 5R 2¢+1 (koRe)

same as the field produced in the infinite medi(hh of the 3

, N_ ~N
dipole (CN=Cn-) -2 |mm(koRc)3+o{(koRc)4}}|p|2- (26
€1 N

pN:aCNp' (23 since the second term on the rhs of Ea48) is a well-

behaved function okgR., in this term it is sufficient to let
Accordingly, provided that we lep—py, e—ey, andR; Peir=3ep/(2e +1). In this way, for the normalized decay
—In-1, We can adopt all results concerning the dipole gte10 =V\/°c/Wf we obtain
power loss in an infinite medium derived in Appendix A. For oc: Tloc’ THiree

example, with these replacements, the angular distribution of 2( _n 3
o ad ) . i o 0 3e(w) ‘ e"(w) c
radiationd W/ d( is obtained by keeping only the radiation o= 5 1 5 R
field (~1/r?) contribution to Eq(A2), 2(0)+1] |[e(w)[?| | @R
dwad ckllpl2| e 2 , 28|g(w)|2+168'(w)+1 c
N _ - Kolp| —1C',d e 2Krsir2 9, (24) + 5 =
dQ 87 |ep 5|2e(w)+1] oR;
the radiation powew:2%is given by the last term in EGA3) 2k(w)|e(0)|?+ k(w)e' (0)+ p(w)e"(w)
and the total power los#/y by Eqg.(18). Regarding the cen- —2 |26(w)+ 12
tral sphere as the Onsager cavity, we see that the local-field
correction factor taVy (@andWi2% is given by|CN/ey|? for wR,
e;=1 and in the limitk,r;=koR.<1. +7(w)+0|— ) : (27)
A. Infinite medium The above result coincides with that of Scheehl. [22].

To calculate local-field corrections to the decay rate in anThis time, however, the origin of various contributions to

infinite medium with the dielectric functior(w), we con- 10 along with their separate local-field corrections can be
the Onsager cavity cut around the origin. Then, as was donghile the near-field and the radiation-field terms get multi-

by Scheelet al. [8], f,%c is straightforwardly obtained using plied by Lo.s as expected7], it is the appearance of the
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additional absorption terms already siAgnaIed in @) that The above result f0F|oc can be transformed into a form
represents essentially new correcn_onf?on_abs_,orbmg me-  gimiliar to Eq.(27) for Floc Letting ve— VeC2(&, e ex;R)
dia. Of these two terms, the most interesting is (hsually

negativeR_-free contribution. This term effectively adds to N Ed- (30, we see that’ii; is obtained from theR-free
the radiation-field contributionsf) to the decay rate in ab- contribution to F,OC upon replacementSr;Hl“SC and «
sorbing media and tends to diminish the overall rate. —2AS¢ where

B. Cavity ['s°=Re \/S_lC%(S,SeX[; R) (33

Having determined”, the next step is to consider the
decay ratel'|,. in the general case when the molecule is
embedded in an inhomogeneous system, i.e., in a cavity. In - 5
order to determind’,,., we consider the decaying molecule A¥=2Im Ve1Ci(e,exiR) (34)
in the center of a dielectric sphere of radRand the dielec-
tric functione(w) immersed in an external medium with the is the normalized classical cavity-induced level sf@®] of
dielectric functione (). In this case, the relevant reflec- the molecule in the bare sphere. Accordingly, from ExY)
tion coefficient to be inserted in EQ.(22) is  we finally have
C3(1,e60;Re,R) [EQ. (B10)] corresponding to the sphere

is the normalized cavity-induced decay rgEg. (21)] and

with the Onsager cavity. Expanding this coefficient in pow- ~ oo 3e(w) |? ~ s e"(w)
ers of py;=koR., we find that ¢~ | 26 (@) + 1 r _2|8(w)|2
3 212 24 o1 Asc+ " fsc
C(1Le,60uiRe R)= —i 5= (KoRo) ™ 2le(0)P e (0)JA%+ e (0) a5
|2(<:(a))+1|2
. 9e(8e+1) . o
—i —z(kORc) We note that this is not an unexpected result once we have
5(2e+1) ~g . o
learned the correct form of the decay r&i. in the infinite
952 B,— B, medium. In its derivation it is implicitly assumed that the
— 2 B, B —1+0(kgRy), radius of the sphere, i.e., the molecule-mirror distance is
(2e+1)" P1T P2 much larger than the transition wavelengkgRR>1). Under
(29) these circumstances, the molecule-mirror interaction goes
through the radiation-field component of the scattered field
with 8; given by Eq.(B14). One may recognize that and therefore only this field component determines the
25 cavity-induced rate. Thus, the rafg,,J'°¢ as would be ob-
1 =_C§(8:8ext;R)v (29) tained by lettingp— 3ep/(2¢+1) in Eq. (21), is corrected

for an absorption contribution in the same way as is the

5 ) ) o radiation-field contribution to the rafa%c in the infinite cav-
whereCi(e,eex;R) [EQ. (B7)] is the reflection coefficient of

¢ . Y.
the system without the Onsager cavity. One may also see that

B1t B>

C. External region

O¢ 5/2 3 ‘2 18s" ) , ., ) ] .
2= 251 1 n— 4[(2|8| +e')k+e"7] _ To find the Iocal-fleld corrections to thg molecular losses
(28+1) & |2e+1| in the external region, we consider the fid(r;») out-
(30) side the sphere with the Onsager cavity. As already noted,
R this field is equal to the field in the infinite external medium
is equal to theR;-free contribution td“ﬁ)C [Eq.(27)] and that  [Eq. (Ala), with k=K, of the dipole[cf. Eq. (23)],
analogous results hold for the real parts of the first two terms

in EQ. (28). Therefore, from Eq(22) we find

@29 122 PG - CY1e iR, RIP (30

ex
Toe=T0 +175C, 31
foe™ L oc T oc 3) with the coefficientC3(1,e,80.;R¢,R) given by Eq.(B12).
where For smallp,;=KkgR., we find that
; 2
5/2 3 _ _ leext 3e 2
Ce R e e Lo eeni (32 oo ped R RI= T L R 2041 Bt Bz

: . - . +O[(koRe)?], (37)
is the normalized cavity-induced decay rate with the local-
field corrections. with B; given by Eq.(B14). Now
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. 2 with E(r;w) being the external field for the bare sphere.
= Bt B =—C3(¢,60q;R), (38)  Consequently, this implie§g,sas the proper local-field cor-
Je koR P17 P2 rection factor to the external power loss

where C3(¢,e0,;R) is the external-field coefficient of the
system without the Onsager cavifgf. Eq. (B8)]. To the oc_
leading term inkyR;, we therefore have Wext=

2

Sele) (41)

2e(w)+1

3 ¢ 3¢
loc_ 2 Py . . .
Pext— et 1 acg(s,sext,R)p—28+lpext, (39 Note that heréW,,, is generally given by Eq(18), with k
=Kgy aNdR.=R.
wherep.y is the corresponding effective dipole moment for
the bare sphergcf. Eq. (23)]. Accordingly, for the external

field we have

D. Other systems

We end this section with a remark orn(gausible gener-
£ 1 ) = 3e(w) E. (1) (40  alization of the results obtained. Using E¢$0) and (B6),
extlr @ 2e(w)+1 % 1 @) we see that Eq$28) and(29) lead to the following relation:

& i i % emye o@D L o 9¢5/2 1%, 3 265 _
loc(F0:To; @) =iko| =i 5= (KoR¢) —lm oRe) 2er1? H[3 Tlzert ro.ro;o)
(42)
|
between the Green-function element should not be taken as the general result for the molecular

) decay rate in an absorbing cavity valid for all positions of the
=sc C N 3 ) Lo molecule away from the cavity walls and for all transition-
GloclF0:10; @) =1koC1(L12,8ex;Re, R)31 (43 dipole orientations. Similarly, in view of Eq10), it appears

_ ) that Eq.(40) indicates a rather general relationship between
for the sphere with the Onsager cavity, and the Greenthe Green-function elements for a system with and without
function element the Onsager Cavity,

T 38(0))

G(ro,rg;w)=iko\eC(e,e -R)E did Sl
0:'0> 0 1\ e Cexts 3 28(m)+1

(44) Gloclr T o )= GSqr,ro; ), (46)

for the bare sphere. In E¢42) any reference to the specific wherer is in the external layer and, is in the cavity. If this
system considered in its derivation is formally lost, whichrelation holds£o.{ ¢) as the local-field correction factor for
implies that this equation could be taken as a general relahe molecular external power loss in the general case would
tionship between the equal-point Green-function elementghen be its immediate consequence. Of course, as already
for a system with and without the Onsager cavity validrfor  stressed, these conjectures cannot be proved without the cal-
away from a system interface. ~Complementingculation of the exact Green function for the system including
éfgc(ro,ro;w) with the free-space Green-function elementthe Onsager cavity at the source position.

G™e(ro,ro;w) and noting that InG™(rg,ry;w)

=iko(2/3)T, through Eq.(1) one immediately obtains the IV. DISCUSSION

normalized molecular decay rate as given by Egg), (31), To illustrate the effect of the local field on the decay rate
and (35), with I'*® and A%¢ in Eq. (35 now expressed in in absorbing cavities, we exploit the above simple model and
terms of the Green function for the bare system as consider the decaying molecule in the center of an absorbing

dielectric sphere surrounded by a#r (= 1). The dielectric
e 3Cf’ IMES{(r 9.1 g:)- P function of the sphere is modeled as
_Z : 0:'0> i
QZ
(45 e(w)=ept — 5 (47)

- 3c. - - > 2 .
ASCI—Ep-ReGSC(rO,rO;w)-p, wp— W T lwy

A whereegy, is the backgroundhigh-frequency dielectric con-
wherep gives the direction of the transition. Consequently,stant, wg and y are, respectively, the center frequency and
at first sight, there is no reason why Eq85) and (45  the width of the absorption resonance, and its strength is
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6.0 10.0 : . .
40 80
20t ™ A\ 60 L
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= 00 ST
"s
20 20t
40 . ‘ . ‘ 0.0 , ) )
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W/, 0o,
FIG. 2. Cavity-induced decay rate witholid line) and without FIG. 3. Total decay rate witiupper solid ling and without

(dashed ling local-field corrections. The radius of the spheréRis  (jower solid ling local-field corrections for the system described in
=\o/m and the material parameters afg=5, 1=0.50o, andy  Fig. 2. The dotted line represents the macroscopic decay rate with
=0.1wg. the usual local-field correction factor. The Onsager cavity radius is
R.=0.1\ andR,,=R;.

controlled byQ?2. In this analysis, a relatively large back-
ground dielectric constant,=5 is chosen to strengthen the R, figuring in o [Eq. (3)] is equal to the Onsager cavity
cavity effect of the sphere. . A A

The effects of the local field on the cavity-induced rate ard’ adius, Ry=R;. Away from the .resonanceﬂoc gnd T .
, o A - merely reproduce the corresponding curves of Fig. 2, with
illustrated in Fig. 2, where the ratd§?, [Eq(32)] andI'®

[Eq. (33)] are compared for the system witholid line) and values enhanced by the off-resonance infinite-cavity decay
without (dashed lingthe Onsager cavity, respectively. Away "at€S Fioc=Lond2) \/S—b_:A"l, and = @2.2'2’ respec-
from the resonance, the system is lossless and, owing to tH€ly: As before, the situation around, is different. For
cavity effect of the sphere, the tW8E) rates exhibit familiar 1S Rc and the medium parameters chosen, the absorption
oscillations with o, with the amplitudes of oscillations contributions tal'p; [Eq. (27)] and T3S, [Eq. (35)] are (still)
scaled by the usual local-field correction factfp,d ) small compared with the corresponding radiation contribu-
=1.85[cf. Eq. (35]. A somewhat different effect of the tions. Accordingly,
local field is observed in the region of the resonance

=w,. For the medium parameters chosen, the sedabe

sorption term on the rhs of Eq.35) is small compared with

the first one. Moreover, according to our calculatiohiS,

cannot be distinguished on this scale fratg,d s over a N
wide range of the parametefs and y. The cavity-induced 'atel’ as well, so that
rate in this frequency region is therefofagain predomi-

nantly determined by the product @¥,,s andI's®. Each of [~ p+TsC (49)
these quantities exhibits a characteristic asymmetric disper-

sion aroundwg. In addition, since for this radiusRwq/c _ -
—2) the sphere nearly corresponds to the first-order enl he different shapes of the curves in Fig. 3 when compared

hancement cavity with respect to the SE rateatwy in the with those in Fig. 2 in this region are_therefore caused by the
lossless (0=0) case, the medium is nearly in resonance("’momalow5 dispersion of the supeflmposatbnsn and 7,

with the sphere. As a consequence, instead of a peak neegspectively. This also explains why;,. (upper solid ling
w=wg, as would appear in the nonabsorbin@=0) case, practically cannot be distinguished on this scale from the

owing to the resonant absorption, the ralg§ andI'*ex-  decay ratel’,,c=Lond  (dotted ling, although the corre-
hibit asymmetric double-peak structures, which very muchsponding absorption contributions to these rates are different
resemble the “cavity-polariton” part of the SE spectrum in [cf. Eqgs.(27) and(3)]. We note that Eq948) and (49) hold

the bad-cavity casgl2]. for a range of the Onsager cavity radii and/or medium pa-

Figure 3 represents the total decay rdigs [Eq. (31) in ~ rameters. In these cases, our previous conjecture concerning
o . - _ the local-fiel tions to th te,
conjuction with Eqs(27) and (32)] and " [Eq. (2) in con- e local-field corrections to the decay rate, as expressed by

N . K _ Eqg. (6), remains(approximately valid.
WCt'On with Eqs.(3) and (3.3)] with and W'thOUt the local- With decreasing the Onsager cavity radius, the absorption
field corrections, respectively, along with the decay rate,

= R ontribution to the decay rate becomes gradually the domi-
Ioc=Lond” [Egs.(6) and(8)] with the local-field correction nant contribution with the leading near-field term equal to
factor assumed in our previous wdrk,12]. In plotting these the nonradiative rate of the molecule. In Fig. 4 we represent
curves, we have taken that the molecule-medium distanctie situation wherd; is still large enough, so that nonradi-

T i~ Lond 7+ 19 (48)

holds. ForR,,~R., the same conclusion applies to the decay
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50.0 - - - responding result in the lossless case, the local-field correc-
p tions to the total decay rat@ower los$ of the molecule are
400 | \ . found to be much more complex. The total decay rate is
found to consist of the decay rate for the infinite sphere, as
300 | \ . very recently obtained for an absorbing medium in Ré&f,

8 and of the cavity-induced rate for which we have obtained a
= o0l i similar expression. When expressed in terms of the Green
~ function for the sphere, these results become formally system

100 b i independent. This suggests the general results for the local-
field corrections to the decay rate and to the external power
loss of a molecule in an absorbing cavity and located away

0.0 t t .
0.0 05 1.0 15 2.0 from the cavity walls.
W/,

FIG. 4. Same as in Fig. 3. but for the Onsager cavity radius APPENDIX'A: DIPOLE POWER LOSS

R:.=0.03\. To calculateW?® using the Poynting theorem, it is conve-
nient to rewrite the dipole electromagnetic field in spherical

ative and radiative contributions 10, are of the same order coordinates. Withl =1t + 88+ ¢¢ in Eq. (12), letting the
of magnitude. In this regime, the decay rate may approxiorigin be at the dipole site and assuming, for simplicity, that

mately be written as p=pz, we have k,= w/c)
~ & R I 2h(11)(kr) ~
T'oc~Lon W(kORC)_3+ n+T5°. (50) E%(r; w)=ikk§p] ——————cosdr
&
. -, . . - hg_l)(kr) 1 . ~
The difference betweeh,; (upper solid ling andI" (lower + " —hg )(kr) |sin9 8y, (Ala)
solid line) this time arises not only because of the overall r

extra factorLqps, but also because of the 3/2 times larger

nonradiative contribution td" [cf. Egs.(27) and (3)]. This
3/2 factor in the corresponding nonradiative rates also leads

BO(r; ) =k?koh{M(kr)px r=k?koph{P(kr)sin 9 ¢,
(Alb)

to a significantly larger decay raid,. (dotted ling than the ~ Where

true ratel’ |, (upper solid ling. We note, however, that the gz ez i
hV(z)=-i—, h(z2=-—|1+-=
0 z' 1 z z

comparison betweeﬁm, T, and1~“|OC is given here only for
illustrative purposes as their difference is a consequence of
our arbitrary inputR,,=R.. Indeed, in addition to demand- are the spherical Hankel functions of the first kind. The ra-
ing, on physical grounds, the same order of magnitude foflial component of the Poynting vector
R, andR., any other relation between these parameters may c
also be assumed. _ _ P(r;0)= —ReE%(r; w) X[B(r; ) ]*

Of course, owing to the strong increase of the 8m
R.-dependent terms, for even smalky the decay rate]?,(gjc

largely exceeds the cavity-induced rdfg., so thatT is then easily found to be

%Fl‘f,c holds. For a detailed discussion of the decay rate in ¢ [KEp|? hO(kr)
this regime, we therefore refer the reader to R&f. r-P(r;o)=—=—Im _ 1 +h§(kr)
87 g\fe* kr
V. SUMMARY X[h{(kr)]* sir?d. (A2)

In this work we have calculated the decay rate and the_ . . L
classical external power loss of an excited molecule locate his determlpes the angular distribution of the energy flow
in the center of an absorbing and dispersive dielectric spher@W/dQ=r%r-P(r;w) through a spherical surface of radius
by adopting the Onsagdreal cavity model for the local I around the dipole. Upon integration over the angles, we
field. We have found that the external fields of a dip@las-  therefore have
sically representing the moleculealculated with and with- _ " 3 1o
out the Onsager cavity scale witl @v)/[ 2¢(w) +1)]. This _olpl? " [(1—ikr)e"|*  wkg|p|
immediately gives|3s(w)/[2e(w)+1]|? as the correct f(r)= 3 W '3 tn—g ¢
local-field correction factor for th&adiation and absorption (A3)
power loss of the molecule outside the sphere in the absorb-
ing case. Whereas this result could have been guessed on theThe dipole energy absorbed per second within the volume
basis of a straightforward analytical continuation of the cor-V, of the sphere is given by

—2k"r
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_ 98 [ B0 o) [2
WA(r) gwfvrd rE%(r;0)|2. (A4)
With
[K®lp[*[ [hiP(kn)|? (k)
Ofp- 2 __
|EO(r;w)|%= off A= ‘COSZ{)-F o

2

—h(kr) sinzﬁ}

and performing the angular integration, we have

w|p|? &" (T 3 ) A
ry= — | dr|—=|(1—ikr)e'kr|2
aln) 3 Talt)e, L4|( e’

k/2_k//2_kn|k|2r
_2 5

efzk”r + |k|462k”r} )
r

(A5)

Partially integrating the first term and noticing that the re-
maining integrals involving the near field of the dipole can-

cel, we obtain

r

[(1—ikr)e'®r|?
3

w|p|2 N
Wg(r)zTE{_

r

wk8| p|2 (e_ 2k//RC

t—g— —e 2, (A6)

This, together with Eq(A2), gives Eq.(18) for the total

dipole power losaV?(r) +W2(r).

APPENDIX B: DIPOLE FIELD IN MULTILAYERED
SPHERICAL MEDIA

Generalizing the result for an infinite mediufiEq.

(Alb)], the magnetic field of a dipole oscillating along the \yith CN =0.

axis in the center of aiN-layered spherical systefirig. 1]
can be written in the form

B(r;w)=g.k3pf(r)sind ¢. (B1)

Through

E(r;mw)=———VXB(r;w),

Ko (r)

the electric field is therefore given by

2f(r) oS — [r f( r]

E(r;a))=ik (r) ;

—sin 60}
(B2)

PHYSICAL REVIEW A 63 053811

with the prime denoting the derivative of the function in the
brackets. The general form of the functié(r) in the Ith
layer is

f|<r>=h&”(klr)é.ﬁcmh&”(klr)+C|N_h‘f><k|r>,( )
B3

whereh{’(z) are spherical Hankel functions. The last two
terms here are the solutions of the homogeneous Maxwell’'s
equationg37] and give the scattered fiel*{r;w) in the
system. The regularity of this field at the origin demands that
cl, =c)_=c2, while the outgoing-wave condition at in-
finity demands tha€)_=0. The rest of the coefficienB],

are determined from the boundary conditions

1
fi(r)=f.a(r)  and —[rf(r)]rl S,

at the layer interfaces. The scattered field in the central layer
is, therefore, generally given by

2j1(kqr -
J1(kq )cosﬁr
kqr

- Weﬂnﬁb}, (B4)
1

ES(r;0)= iklkSpCT[

where j,(z) is the spherical Bessel function. In the other
layers it is given by E;=E}
2h{B(kr) .
e

E/(r;m)=ik kop\/> kT Ccosr

krh{V(kr)]’ .
_[l 1k£|)]sin190]
|

2hP(kr) .
N { =L cosor

k|r
krhPkn)1
k|r
Specially, since j4(z)/z—1/3 and

[zj1(D)] /2—>2/3 for smallz, the scattered field in the center
of the system is given by
SC/p- QL 2AN2

ForN=2, we find (p;=Kk;r,)

1
Cl(er.e2ir) =5 {e2iP(p2)[p1h{"(p1)]' —e1h(py)
X[p2h(p2)]'}, (B7)

i82

2 N
Csi(e1,82:r7) oD’ (B8)
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where

C§(81,82,83;r1,r2):ﬁ, (Bllb)
) ) 1P2— az2P1
D=z1j1(p1)[p2n"(p2)] —22h{(p2)[paia(p1)]'-
(Bg) 3 i83
C 1 1 ; L :__—1 Blz
For N=3, we have f;;=kir;) 3+(81,82,831T1,12) p22 a1Bor— azB (B12
C§(81182183;r11r2) Where
1 ip11, . i , ;
:jl(pll) aj:_8_2{81J1(P11)[P21h(1])(f’21)] _SZhS.J)(le)
y Bzh(ll)(pzﬁ—ﬁlh(f)(pzl)_h(l)( ) X[puaia(p1n]'}, (B13)
a1Br—ayB; 1Py
and
(B10)
B, Bi=23h{V(p32)[ p221{ (p22) 1" — 220 (p20)
Cli(e1,80,85iM1, 1)) =—————, (Bll ,
2+(81 £2:83:11 2) a1,82—a2,81 ( ED X[p32hg_1)(p32)] . (814)

[1] See, for example, R. R. Chance, A. Prock, and R. Silbey, Adv[20] R. J. Glauber and M. Lewenstein, Phys. Rev.48 467

Chem. Phys37, 1(1978; G. W. Ford and W. H. Weber, Phys. (1991.
Rep.113 195(1984. [21] Chang-qgi Cao, W. Long, and H. Cao, Phys. Lett282 15
[2] M. S. Tomasand Z. Lenac, Phys. Rev. 6, 4197(1997; M. (1997).

S. Tomasibid. 51, 2545(1995.

[3] T. Gruner and D.-G. Welsch, Phys. Rev.58, 1818(1996);

H. T. Dung, L. Kndl, and D.-G. Welsch,ibid. 57, 3931
(1999; S. Scheel, L. Knih, and D.-G. Welschjbid. 58, 700
(1998.

[4] R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers, Phys.
Rev. A52, 4823(1995; R. Matloob and R. Loudoribid. 53,
4567(1996; R. Matloob, ibid. 59, 1 (1999.

[5] A. Tip, Phys. Rev. A56, 5022(1997); 57, 4818(1998.

[6] S. M. Barnett, B. Huttner, and R. Loudon, Phys. Rev. L&f.
3698(1992.

[7] S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, J. Phys.

[22] S. Scheel, L. Knlh, D.-G. Welsch, and S. M. Barnett, Phys.
Rev. A60, 1590(1999.

[23] M. Fleischhauer, Phys. Rev. 80, 2534(1999.

[24] See, e.g., O. J. F. Martin, C. Girard, and A. Dereux, Phys. Rev.
Lett. 74, 526(1995; A. Rahmani, P. C. Chaumet, F. de Fornel,
and C. Girard, Phys. Rev. B6, 3245(1997).

[25] P. de Vries, D. V. van Coevorden, and A. Lagendijk, Rev.
Mod. Phys.70, 447 (1998.

[26] SeeOptical Processes in Microcavitiesdited by R. K. Chang
and A. J. CampilldWorld Scientific, Singapore, 1996

[27] H. Chew, J. Chem. Phy87, 1355(1987; Phys. Rev. A38,

B 29, 3763(1996.
[8] S. Scheel, L. Knlh, and D.-G. Welsch, Phys. Rev. B0, 4094
(1999; 61, 069901E) (2000. There is an obvious misprint in

3410(1988.
[28] K. G. Sullivan and D. G. Hall, Phys. Rev. B0, 2708(1994).
[29] W. Jhe and K. Jang, Phys. Rev.58, 1126(1996.

Eq. (53) of this reference: in the second term on the rhs of this[30] V. V. Klimov, M. Ducloy, and V. S. Lethokov, J. Mod. Opt.

equation 16g(wp) should stay instead of E(wa)-
[9] H. T. Dung, L. Kndl, and D.-G. Welsch, Phys. Rev. A2,

053804(2000.

[10] Y. Lee and M. Yamanishi, Phys. Rev. 32, 2312(1995.

[11] G. Juzelimas, Phys. Rev. &5, R4015(1997).

[12] M. S. Tomasand Z. Lenac, Phys. Rev. 80, 2431(1999.

[13] H. A. Lorentz, Ann. Phys(Leipzig) 9, 641(1880.

[14] L. Lorenz, Ann. Phys(Leipzig) 11, 70 (188J).

[15] R. H. Pantell and H. E. Puthofffundamentals of Quantum
Electronics(Wiley, New York, 1962, Chap. 2.

[16] J. E. Sipe and J. Van Kranendonk, Phys. Rev9A1806
(1974.

[17] J. Knoester and S. Mukamel, Phys. Rev4®, 7065(1989.

[18] L. Onsager, J. Am. Chem. So88, 1486(1936.

[19] E. Yablonovitch, T. J. Gmitter, and R. Bhat, Phys. Rev. Lett.

61, 2546(1988.

43, 2251(1996; 43, 549 (1996.

[31] Fam Le Kien, Nguyen Hong Quang, and K. Hakuta, Opt.

Commun.178 151 (2000.
[32] V. V. Klimov, V. S. Letokhov, and M. Ducloy, Phys. Rev. A
56, 2308 (1997; V. V. Klimov, M. Ducloy, and V. S.
Letokhov, J. Mod. Opt44, 1081 (1997; Phys. Rev. A59,
2996(1999.
[33] H.-B. Lin, J. D. Eversole, C. D. Merritt, and A. J. Campillo,
Phys. Rev. A45, 6756(1992.

[34] M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, J.

Chem. Phys97, 7842(1992; M. D. Barnes, C-Y. Kung, W.

B. Whitten, J. M. Ramsey, S. Arnold, and S. Holler, Phys.

Rev. Lett.76, 3931(1996.

[35] L. I. Schiff, Quantum MechanicsMcGraw-Hill, New York,

1968, Chap. 11.

[36] Using the reaction-force type of argumerisee, e.g., Ref.

053811-10



LOCAL-FIELD CORRECTIONS TO THE DECAY RAE. ..

[28]), the classical cavity-induced frequency shifis®
=A w7y, of the molecule normalized to itdree-spacgra-
diative damping rateyy can be given as

A%~ — (3/4kg|p|>)Rep* - ES{(rq,ro; ).

PHYSICAL REVIEW A 63053811

With ES(r,,r,;®) from Eq.(B6), this gives Eq(34) for A%,
while using Eq(10) one obtains the general result given in Eq.
(45).

[37] J. D. Jackson(Classical ElectrodynamicéWiley, New York,
1979, Chap. 16.

053811-11



