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Local-field corrections to the decay rate of excited molecules in absorbing cavities:
The Onsager model

M. S. Tomasˇ
Rudjer Bosˇković Institute, P.O. Box 180, 10002 Zagreb, Croatia

~Received 31 August 2000; published 18 April 2001!

The decay rate and the classical radiation power of an excited molecule~atom! in the center of a dispersive
and absorbing dielectric sphere, taken as a simple model of a cavity, are calculated adopting the Onsager model
for the local field. The local-field correction factor to the external~radiation and absorption! power loss of the
molecule is found to beu3«(v)/@3«(v)11#u2, with «(v) being the dielectric function of the sphere. How-
ever, local-field corrections to the total decay rate~power loss! of the molecule are found to be much more
complex including those to the decay rate in the infinite cavity medium, as derived recently by Scheelet al.
@Phys. Rev. A60, 4094~1999!#, and similiar corrections to the cavity-induced decay rate. The results obtained
can be cast into general forms that do not rely on the specific cavity shape and molecule position considered.
This suggests the general results for the local-field corrections to the decay rate and to the external power loss
of a molecule in an absorbing cavity that are valid for molecule positions away from the cavity walls.

DOI: 10.1103/PhysRevA.63.053811 PACS number~s!: 42.50.Lc, 42.60.Da, 33.50.2j
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I. INTRODUCTION

Within macroscopic electrodynamics, the decay rateG of
an excited molecule~atom! at a positionr0 in an absorbing
cavity is given by

G5
2v2

\c2
pf i* •Im GI~r0 ,r0 ;v!•pf i , ~1!

with GI (r ,r0 ;v) being the~classical! dyadic Green function
for the system,pf i the relevant dipole matrix element, andv
the transition frequency. This result is most simply obtain
using the classical theory of molecular~radiative! decay@1#
in conjuction with the correspondence principle and exte
ing it straightforwardly to absorbing systems@2#. Within
QED, however, it is derived by employing the quantiz
form of the macroscopic field in absorbing systems obtai
rather recently@3–5# and using the Fermi golden rule@6,7# or
by solving Heisenberg’s equations of motion for the m
ecule and the field in the Markov approximation@8,9#.

Splitting the Green function into the translationally inva
ant partGI0(r2r0 ;v) and the scattering partGIsc(r ,r0 ;v),
the decay rate can be generally expressed as

G5G01Gsc, ~2!

whereG0 is the decay rate as would be in the infinite cav
medium andGsc is the corresponding cavity-induced dec
rate. Upon an appropriate regularization ofGI0(r2r0 ;v), the
rateG0 is given by@2,7#

G05G freeF3

2

«9~v!

u«~v!u2 S c

vRm
D 3

1h~v!G , ~3!

where

«~v!5@h~v!1 ik~v!#2 ~4!
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is the dielectric function of the cavity medium,Rm an effec-
tive molecule-medium distance, and

G free5
4v3upf i u2

3\c3
~5!

is the free-space spontaneous emission~SE! rate. The first
contribution toG0 in Eq. ~3! is identified as the nonradiativ
decay rateGnr

0 due to the near-field mediated transfer of t
molecular energy to the surrounding medium, whereas
second one is the familiar decay rateG rad

0 due to the radiation
losses of the molecule in the medium, i.e., the SE rateGSE

0

@6,10,11#.
For an optically dense cavity medium, the above res

has to be improved by accounting for the difference betw
the macroscopic field used in its derivation and the act
~local! field with which the molecule interacts. Restrictin
ourselves to low-density cavity media in our previous co
sideration of the molecular decay@2# as well as of the spon
taneous emission spectrum@12# in an absorbing planar cav
ity, we ignored this difference implicitly assuming, howeve
that the decay rate corrected for the effect of the local field
an isotropic cavity was of the form

G̃ loc5L@G01Gsc#, ~6!

where L is an appropriate generalization of the local-fie
correction factor in the lossless case. Thus, as suggeste

Barnett et al. for the decay rateG̃ loc
0 in the infinite cavity

@6,7#, one would have

LLor~«!5U«~v!12

3 U2

~7!

in the Lorentz~virtual-cavity! model @13–17# and
©2001 The American Physical Society11-1
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LOns~«!5U 3«~v!

2«~v!11U
2

~8!

in the Onsager~real-cavity! model @18–21# for the local
field. In either case, the effect of the local field would can

when dealing with the normalized rateĜ5G̃ loc /G̃ loc
0 5G/G0.

The conjecture expressed by Eqs.~6!–~8! has recently
been shown to be incorrect for both models for the lo
field, which we indicate in Eq.~6! by putting the tilde sign
on G. First, Scheel et al.@22# demonstrated that, in the Lor
entz model, a proper inclusion of the~quantum! noise polar-
ization in the local field led to a more comple
v-dependence of the decay rateG loc

0 in an absorbing, me-
dium than that given by the simple productLLorG

0 ~see Eqs.
~49! and ~50! of Ref. @22#!. Their result is in full agreemen
with G loc

0 in absorbing dielectrics derived by Fleischhau
using a microscopic approach@23#. In a subsequent work
Scheel et al.@8# showed that the decay rateG loc

0 in the On-
sager model for the local field was also much more comp
in the absorption case than that given by the productLOnsG

0

@see Eq.~27! below#.
Knowing the decay rateG loc

0 in an infinite cavity ~me-
dium!, it is natural to seek the decay rateG loc in a finite
cavity, i.e., in view of Eq.~2!, the cavity-induced rateG loc

sc .
Formally, the calculation ofG loc

sc is most straightforwardly
performed if one adopts the Onsager model for the lo
field. In this model, one assumes the molecule in the ce
of a spherical hole of radius small compared with the tran
tion wavelength often referred to as the Onsager cavity
view of Eq. ~1!, the problem then reduces to the calculati
of the Green function for the system, with the Onsager ca
at the source position. Owing to the combined symmetry
such a composite system, however, this represents a diffi
task, which for most relevant cavity geometries demands
proximative or numerical methods@24#. Therefore, in order
to take a~first! step towards determination ofG loc

sc , in this
work we consider a special case where the molecule is
cated in the center of an absorbing sphere taken as a si
model of a dielectric cavity. High symmetry of this config
ration enables one to perform a simple and exact calcula
of G loc

sc in the Onsager model as well as of the power lo
Wext

loc of the molecule outside the sphere. In turn, these res
~may! provide a lead to the corresponding solutions fo
more general configuration. We note that this special c
figuration has recently been considered by Caoet al. @21# in
their calculation of the local-field corrections to the SE ra
in a purely dispersive medium. We partially adopt their a
proach, generalizing it to an absorbing multilayered spher
system. It should also be noted that owing to the existenc
high-Q resonances and, accordingly, great ability of enha
ing optical processes@26#, dielectric microspheres are ver
attractive objects for cavity QED studies. Thus, modificat
of the decay rate and the radiation intensity of an exci
molecule~atom! in or near a~lossless! microsphere has bee
theoretically considered in both the weak@9,27–31# and the
strong @9,31,32# molecule-field coupling limit, and experi
mental observations of modified fluorescence intensity h
also been reported@33,34#.
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Owing to its intuitive clarity and easy visualization, w
prefer a classical discourse in this work. Therefore, in Sec
we recall the classical approach to the problem of the dec
ing molecule and rederive Eq.~3! raising, through a plausible
argument, a question on the completeness of this result
absorbing media. In Sec. III we first obtain formal results
the decay rate and the power loss in the external layer o
excited molecule in the center of an absorbing multilaye
spherical system. We then apply these general results
medium with the Onsager cavity and provide an alternat
derivation ofG loc

0 to that given in Ref.@8#. Subsequently, by
considering an absorbing dielectric sphere with and with
the Onsager cavity, we determineG loc

sc andWext
loc in terms of

the corresponding quantities for the bare sphere. In Sec
we briefly illustrate the effect of the local field in this mod
on G loc

sc and the total rateG loc . The main points of this work
are summarized in Sec. V and the necessary mathema
background is given in Appendices A and B.

II. PRELIMINARIES

In the classical approach, an excited molecule is rep
sented by a point dipolep exp(2ivt) at the molecular posi-
tion r0 oscillating with the frequency of the transition,v.
The molecular decay rateG is then related throughG
5W/\v to the power

W5
v

2
Im@p* •E~r0 ,r0 ;v!# ~9!

lost by the dipole in supporting its own field. Equation~1! is
then obtained, introducing the Green function of the syst
through

E~r ,r0 ;v!5
v2

c2
GI~r ,r0 ;v!•p, ~10!

noting thatGI (r0 ,r0 ;v) is the diagonal dyadic and using th
correspondence principle to letp→2pf i @35#.

The dipole field~Green function! in a cavity can always
be written as

E~r ,r0 ;v!5E0~R;v!1Esc~r ,r0 ;v!, ~11!

where@2#

E0~R;v!5
1

« F3R̂R̂2 II

R3
~12 ikR!2

4p

3
IId~R!

1k2
II2R̂R̂

R G•peikR, ~12!

with II being the unit dyadic,R5r2r0 , R̂5R/R, and

k~v![A«~v!
v

c
5k8~v!1 ik9~v!, ~13!

is the field of the dipole as would be in the infinite cavi
~medium!, and Esc(r ,r0 ;v) is the component of the dipole
1-2
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LOCAL-FIELD CORRECTIONS TO THE DECAY RATE . . . PHYSICAL REVIEW A 63 053811
field scattered from the cavity walls. Owing to the singu
longitudinal ~near-field! component ofE0(R;v)

Ei
0~R;v!5

1

« F3R̂R̂2 II

R3
2

4p

3
IId~R!G•p, ~14!

it is the calculation ofG0 that represents a difficult step i
determining the decay rate in absorbing systems.

To remove the singularity fromEi
0(R;v) in the spirit of

the macroscopic-field approach, one may average this c
ponent of the dipole field over an appropriately chos
spherical volumeVm5(4p/3)Rm

3 around the molecule@7# or
regularize it by lettingd(R)→1/Vm @2,25#. In either case,
one finds that

Ei
0~R;v!uR→052

1

«

4p

3Vm
p. ~15!

Since for the dipole transverse fieldE'
0 (R;v)5E0(R;v)

2Ei
0(R;v) we find

E'
0 ~R;v!uR→05 ik

v2

c2

2

3
p, ~16!

this leads to the total classical dipole power loss

W05
v4upu2

3c3 F3

2

«9~v!

u«~v!u2 S c

vRm
D 3

1h~v!G ~17!

and, accordingly, to the decay rateG0 given by Eq.~3!.
That the above result oversimplifies the frequency dep

dence of the molecular power loss~decay rate! in absorbing
media becomes clear if one tries to obtainW0 using the
Poynting theorem. In this way, by calculating the dipole e
ergy flow Wf

0 through a spherical surface around the dip
and the energyWa

0 absorbed per second in the enclosed v
ume ~see Appendix A!, we find

W05
v4upu2

3c3 F «9

u«u2
u~12 ikRc!e

ikRcu2S c

vRc
D 3

1he22k9RcG ,

~18!

whereRc is ~formally! the lower limit of the radial integra-
tion in Wa

0 . Owing to their characteristic dependence on
dielectric function of the medium, we refer to two terms
this equation as the absorption (;«9) and the radiation
(;h) contribution toW0, respectively. Since this notatio
may associate toWa

0 and Wf
0 as the respective origins o

these contributions, we stress that bothWa
0 and Wf

0 are
needed to obtain each of them, as is clear from the deriva
in Appendix A.

To obtain the dipole power loss from Eq.~18!, the Rc
→0 limit should eventually be taken. However, considerRc
as a small (Rc!l) but finite cutoff for the moment. In this
case, expandingW0 in powers ofvRc /c, we find
05381
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W̃05
v4upu2

3c3 H «9~v!

u«~v!u2
H S c

vRc
D 3

1«8~v!
c

vRc

2
2

3
@h~v!«9~v!1k~v!«8~v!#J

1h~v!1OS vRc

c D J . ~19!

In addition to a near-field term, which very much resemb
the corresponding term in Eq.~17!, now we have two new
absorption terms. The most striking is the appearance of
other Rc-free term, which therefore persists even in theRc
→0 limit. This implies that a corresponding term must a
pear in any calculation ofW0, which indicates that Eq.~17!
is, in this respect, incomplete.

Taking Rc in Eq. ~18! as a cutoff is equivalent to settin
E0(R;v)50 for R,Rc . Since this field does not obey Max
well’s equations, it is clearly incorrect to regardW̃0 as the
dipole power loss, which we have emphasized by using
tilde. On the other hand, extending the macroscopic fi
down to intermolecular distances (Rc→0) is not justified as
the actual field acting on the molecule may largely diff
from it. These ambiguities concerningW0 are naturally re-
solved within an exact macroscopic-field approach in the
lowing section, where we adopt the Onsager~real cavity!
model for the local field and therefore assume the molec
in the center of an empty spherical cavity with the radiusRc
small compared with the transition wavelengthl. Since in
this case, the longitudinal componentEi

0(R;v) of the dipole
field does not contribute to the molecular power loss,
singularity appears in the theory.

III. LOCAL-FIELD CORRECTIONS

Consider an excited molecule~dipole! in the center of an
N-layered spherical system as depicted in Fig. 1. In this ca
the power lossWsc of the molecule may be written as

Wsc5
v

2
Im@p* •E1

sc~r ;v!ur→0#, ~20!

where E1
sc(r ;v)5E1

sc(r ,r0 ;v)ur 0→0 is the scattered part o
the dipole field in the central region. The calculation of t
dipole field in this configuration is outlined in Appendix B
assuming, for simplicity, thatp5pẑ. Using Eq.~B6!, we find
from Eq. ~20! that (k05v/c)

Wsc5WfreeReA«1C1
N , Wfree5

ck0
4upu2

3
, ~21!

whereC1
N is the corresponding reflection coefficient. In th

case of the empty central region (W05Wfree), we therefore

have for the normalized total decay rateĜ5W/Wfree of the
molecule

Ĝ511Re@C1
N#«151 . ~22!
1-3
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Identifying the central sphere with the Onsager cavity, t
general result provides a direct way for inclusion of t
local-field corrections to the decay rate in spherical multila
ered systems.

Of obvious interest is also the radiation powerWN
rad of the

molecule or, generally, the total power lossWN in the outer
region of the multilayer. By comparing Eqs.~A1a! and~B5!,
we see that the dipole fieldEN(r ;v) in this region is the
same as the field produced in the infinite medium~N! of the
dipole (CN

N[CN1
N )

pN5
«1

«N
CN

Np. ~23!

Accordingly, provided that we letp→pN , «→«N , and Rc
→r N21, we can adopt all results concerning the dipo
power loss in an infinite medium derived in Appendix A. F
example, with these replacements, the angular distributio
radiationdWN

rad/dV is obtained by keeping only the radiatio
field (;1/r 2) contribution to Eq.~A2!,

dWN
rad

dV
5hN

ck0
4upu2

8p U«1

«N
CN

NU2

e22kN9 rsin2q, ~24!

the radiation powerWN
rad is given by the last term in Eq.~A3!

and the total power lossWN by Eq. ~18!. Regarding the cen
tral sphere as the Onsager cavity, we see that the local-
correction factor toWN ~andWN

rad) is given byuCN
N/«Nu2 for

«151 and in the limitk0r 15k0Rc!1.

A. Infinite medium

To calculate local-field corrections to the decay rate in
infinite medium with the dielectric function«(v), we con-
sider a two-layered system consisting of this medium w
the Onsager cavity cut around the origin. Then, as was d

by Scheelet al. @8#, Ĝ loc
0 is straightforwardly obtained usin

FIG. 1. System considered in this paper. All layers are assu
absorbing and are described by the complex dielectric func
« i(v).
05381
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Eq. ~22! and expanding the reflection coefficientC1
2(1,«;Rc)

given by Eq.~B7! in powers ofr15k0Rc!1. It is very in-
structive to rederive this result by applying the Poynti
theorem to a spherical surface around the molecule enclo
the Onsager cavity and thus determine the power lossWloc

0 of
the molecule. We note that we have performed such a ca
lation in Appendix A to obtain Eq.~18!. Thus,Wloc

0 is given
by this equation provided that we letp→peff , where@cf. Eq.
~23!#

peff5
1

«
C2

2~1,«;Rc!p

and regardRc as the Onsager cavity radius.
Expanding the coefficientC2

2(1,«;Rc) given by Eq.~B8!
for small r15k0Rc , we find

peff5
3«

2«11 F12
10«229«21

10~2«11!
~k0Rc!

2

2 i
2

3

«3/2~«21!

2«11
~k0Rc!

31O$~k0Rc!
4%Gp. ~25!

Owing to the (k0Rc)
23 factor in the first term on the right

hand side~rhs! of Eq. ~18!, in this term we must use

u~12 iA«k0Rc!e
iA«k0Rcpeffu2

5U 3«

2«11U
2F11

1

5
Re

14«11

2«11
~k0Rc!

2

22 Im
«3/2

2«11
~k0Rc!

31O$~k0Rc!
4%G upu2. ~26!

Since the second term on the rhs of Eq.~18! is a well-
behaved function ofk0Rc , in this term it is sufficient to let
peff53«p/(2«11). In this way, for the normalized deca

rate Ĝ loc
0 5Wloc

0 /Wfree we obtain

Ĝ loc
0 5U 3«~v!

2«~v!11U
2H «9~v!

u«~v!u2 F S c

vRc
D 3

1
28u«~v!u2116«8~v!11

5u2«~v!11u2 S c

vRc
D

22
2k~v!u«~v!u21k~v!«8~v!1h~v!«9~v!

u2«~v!11u2
G

1h~v!1OS vRc

c D J . ~27!

The above result coincides with that of Scheelet al. @22#.
This time, however, the origin of various contributions

Ĝ loc
0 along with their separate local-field corrections can

clearly identified. As seen from comparison with Eq.~17!,
while the near-field and the radiation-field terms get mu
plied by LOns as expected@7#, it is the appearance of th

d
n

1-4
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additional absorption terms already signaled in Eq.~19! that

represents essentially new corrections toĜ0 in absorbing me-
dia. Of these two terms, the most interesting is the~usually!
negativeRc-free contribution. This term effectively adds t
the radiation-field contribution (h) to the decay rate in ab
sorbing media and tends to diminish the overall rate.

B. Cavity

Having determinedG loc
0 , the next step is to consider th

decay rateG loc in the general case when the molecule
embedded in an inhomogeneous system, i.e., in a cavity
order to determineG loc , we consider the decaying molecu
in the center of a dielectric sphere of radiusR and the dielec-
tric function«(v) immersed in an external medium with th
dielectric function«ext(v). In this case, the relevant reflec
tion coefficient to be inserted in Eq.~22! is
C1

3(1,«,«ext;Rc ,R) @Eq. ~B10!# corresponding to the spher
with the Onsager cavity. Expanding this coefficient in po
ers ofr115k0Rc , we find that

C1
3~1,«,«ext;Rc ,R!52 i

9«

2«11
~k0Rc!

23

2 i
9«~8«11!

5~2«11!2
~k0Rc!

21

2
9«5/2

~2«11!2

b12b2

b11b2
211O~k0Rc!,

~28!

with b j given by Eq.~B14!. One may recognize that

2b1

b11b2
52C1

2~«,«ext;R!, ~29!

whereC1
2(«,«ext;R) @Eq. ~B7!# is the reflection coefficient o

the system without the Onsager cavity. One may also see

Re
9«5/2

~2«11!2
5U 3«

2«11U
2

h2
18«9

u2«11u4
@~2u«u21«8!k1«9h#

~30!

is equal to theRc-free contribution toĜ loc
0 @Eq. ~27!# and that

analogous results hold for the real parts of the first two te
in Eq. ~28!. Therefore, from Eq.~22! we find

Ĝ loc5Ĝ loc
0 1Ĝ loc

sc , ~31!

where

Ĝ loc
sc 5Re

9«5/2

~2«11!2
C1

2~«,«ext;R! ~32!

is the normalized cavity-induced decay rate with the loc
field corrections.
05381
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The above result forĜ loc
sc can be transformed into a form

similiar to Eq. ~27! for Ĝ loc
0 . Letting A«→A«C1

2(«,«ext;R)

in Eq. ~30!, we see thatĜ loc
sc is obtained from theRc-free

contribution to Ĝ loc
0 upon replacementsh→Ĝsc and k

→2D̂sc, where

Ĝsc5ReA«1C1
2~«,«ext;R! ~33!

is the normalized cavity-induced decay rate@Eq. ~21!# and

D̂sc5
1

2
Im A«1C1

2~«,«ext;R! ~34!

is the normalized classical cavity-induced level shift@36# of
the molecule in the bare sphere. Accordingly, from Eq.~27!
we finally have

Ĝ loc
sc 5U 3«~v!

2«~v!11U
2H Ĝsc22

«9~v!

u«~v!u2

3
2@2u«~v!u21«8~v!#D̂sc1«9~v!Ĝsc

u2«~v!11u2 J . ~35!

We note that this is not an unexpected result once we h

learned the correct form of the decay rateĜ loc
0 in the infinite

medium. In its derivation it is implicitly assumed that th
radius of the sphere, i.e., the molecule-mirror distance
much larger than the transition wavelength (k0R@1). Under
these circumstances, the molecule-mirror interaction g
through the radiation-field component of the scattered fi
and therefore only this field component determines

cavity-induced rate. Thus, the rateLOnsĜ
sc, as would be ob-

tained by lettingp→3«p/(2«11) in Eq. ~21!, is corrected
for an absorption contribution in the same way as is

radiation-field contribution to the rateĜ loc
0 in the infinite cav-

ity.

C. External region

To find the local-field corrections to the molecular loss
in the external region, we consider the fieldEext

loc(r ;v) out-
side the sphere with the Onsager cavity. As already no
this field is equal to the field in the infinite external mediu
@Eq. ~A1a!, with k5kext] of the dipole@cf. Eq. ~23!#,

pext
loc5

1

«ext
C3

3~1,«,«ext;Rc ,R!p, ~36!

with the coefficientC3
3(1,«,«ext;Rc ,R) given by Eq.~B12!.

For smallr115k0Rc , we find that

C3
3~1,«,«ext;Rc ,R!52

i«ext

A«k0R

3«2

2«11

2

b11b2

1O@~k0Rc!
2#, ~37!

with b j given by Eq.~B14!. Now
1-5
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i«ext

A«k0R

2

b11b2
52C2

2~«,«ext;R!, ~38!

where C2
2(«,«ext;R) is the external-field coefficient of th

system without the Onsager cavity@cf. Eq. ~B8!#. To the
leading term ink0Rc , we therefore have

pext
loc5

3«

2«11

«

«ext
C2

2~«,«ext;R!p5
3«

2«11
pext, ~39!

wherepext is the corresponding effective dipole moment f
the bare sphere@cf. Eq. ~23!#. Accordingly, for the externa
field we have

Eext
loc~r ;v!5

3«~v!

2«~v!11
Eext~r ;v!, ~40!
en

c
ch
el
n

ng
n

e

ly

05381
with Eext(r ;v) being the external field for the bare spher
Consequently, this impliesLOns as the proper local-field cor
rection factor to the external power loss

Wext
loc5U 3«~v!

2«~v!11U
2

Wext. ~41!

Note that hereWext is generally given by Eq.~18!, with k
5kext andRc5R.

D. Other systems

We end this section with a remark on a~plausible! gener-
alization of the results obtained. Using Eqs.~10! and ~B6!,
we see that Eqs.~28! and~29! lead to the following relation:
GI loc
sc ~r0 ,r0 ;v!5 ik0F2 i

9«

2«11
~k0Rc!

232 i
9«~8«11!

5~2«11!2
~k0Rc!

211
9«5/2

~2«11!2
21G 2

3
II1S 3«

2«11D 2

GIsc~r0 ,r0 ;v!

~42!
ular
he
n-

en
out
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ing
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between the Green-function element

GI loc
sc ~r0 ,r0 ;v!5 ik0C1

3~1,«,«ext;Rc ,R!
2

3
II ~43!

for the sphere with the Onsager cavity, and the Gre
function element

GIsc~r0 ,r0 ;v!5 ik0A«C1
2~«,«ext;R!

2

3
II ~44!

for the bare sphere. In Eq.~42! any reference to the specifi
system considered in its derivation is formally lost, whi
implies that this equation could be taken as a general r
tionship between the equal-point Green-function eleme
for a system with and without the Onsager cavity valid forr0
away from a system interface. Complementi
GI loc

sc (r0 ,r0 ;v) with the free-space Green-function eleme

GI free(r0 ,r0 ;v) and noting that ImGI free(r0 ,r0 ;v)
5 ik0(2/3)II, through Eq.~1! one immediately obtains th
normalized molecular decay rate as given by Eqs.~27!, ~31!,

and ~35!, with Ĝsc and D̂sc in Eq. ~35! now expressed in
terms of the Green function for the bare system as

Ĝsc5
3c

2v
p̂•ImGIsc~r0 ,r0 ;v!•p̂,

~45!

D̂sc52
3c

4v
p̂•ReGIsc~r0 ,r0 ;v!•p̂,

wherep̂ gives the direction of the transition. Consequent
at first sight, there is no reason why Eqs.~35! and ~45!
-

a-
ts

t

,

should not be taken as the general result for the molec
decay rate in an absorbing cavity valid for all positions of t
molecule away from the cavity walls and for all transitio
dipole orientations. Similarly, in view of Eq.~10!, it appears
that Eq.~40! indicates a rather general relationship betwe
the Green-function elements for a system with and with
the Onsager cavity,

GI loc~r ,r0 ;v!5
3«~v!

2«~v!11
GIsc~r ,r0 ;v!, ~46!

wherer is in the external layer andr0 is in the cavity. If this
relation holds,LOns(«) as the local-field correction factor fo
the molecular external power loss in the general case wo
then be its immediate consequence. Of course, as alre
stressed, these conjectures cannot be proved without the
culation of the exact Green function for the system includ
the Onsager cavity at the source position.

IV. DISCUSSION

To illustrate the effect of the local field on the decay ra
in absorbing cavities, we exploit the above simple model a
consider the decaying molecule in the center of an absorb
dielectric sphere surrounded by air («ext51). The dielectric
function of the sphere is modeled as

«~v!5«b1
V2

v0
22v22 ivg

, ~47!

where«b is the background~high-frequency! dielectric con-
stant,v0 and g are, respectively, the center frequency a
the width of the absorption resonance, and its strength
1-6



-
e

ar

y
t

pe

e

c
n

c
in

at

n

y

ith
cay

tion

u-

ay

red
the

the

rent

pa-
rning
d by

tion
mi-
to
ent
i-

in
with
s is

LOCAL-FIELD CORRECTIONS TO THE DECAY RATE . . . PHYSICAL REVIEW A 63 053811
controlled byV2. In this analysis, a relatively large back
ground dielectric constant«b55 is chosen to strengthen th
cavity effect of the sphere.

The effects of the local field on the cavity-induced rate

illustrated in Fig. 2, where the ratesĜ loc
sc @Eq.~32!# and Ĝsc

@Eq. ~33!# are compared for the system with~solid line! and
without ~dashed line! the Onsager cavity, respectively. Awa
from the resonance, the system is lossless and, owing to
cavity effect of the sphere, the two~SE! rates exhibit familiar
oscillations with v, with the amplitudes of oscillations
scaled by the usual local-field correction factorLOns(«b)
.1.85 @cf. Eq. ~35!#. A somewhat different effect of the
local field is observed in the region of the resonancev
.v0. For the medium parameters chosen, the second~ab-
sorption! term on the rhs of Eq.~35! is small compared with

the first one. Moreover, according to our calculations,Ĝ loc
sc

cannot be distinguished on this scale fromLOnsĜ
sc over a

wide range of the parametersV and g. The cavity-induced
rate in this frequency region is therefore~again! predomi-

nantly determined by the product ofLOns and Ĝsc. Each of
these quantities exhibits a characteristic asymmetric dis
sion aroundv0. In addition, since for this radius (Rv0 /c
52) the sphere nearly corresponds to the first-order
hancement cavity with respect to the SE rate atv5v0 in the
lossless (V50) case, the medium is nearly in resonan
with the sphere. As a consequence, instead of a peak
v5v0, as would appear in the nonabsorbing (V50) case,

owing to the resonant absorption, the ratesĜ loc
sc and Ĝsc ex-

hibit asymmetric double-peak structures, which very mu
resemble the ‘‘cavity-polariton’’ part of the SE spectrum
the bad-cavity case@12#.

Figure 3 represents the total decay ratesĜ loc @Eq. ~31! in

conjuction with Eqs.~27! and ~32!# and Ĝ @Eq. ~2! in con-
juction with Eqs.~3! and ~33!# with and without the local-
field corrections, respectively, along with the decay r

Ĝ̃ loc5LOnsĜ @Eqs.~6! and~8!# with the local-field correction
factor assumed in our previous work@2,12#. In plotting these
curves, we have taken that the molecule-medium dista

FIG. 2. Cavity-induced decay rate with~solid line! and without
~dashed line! local-field corrections. The radius of the sphere isR
5l0 /p and the material parameters are«b55, V50.5v0, andg
50.1v0.
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Rm figuring in Ĝ0 @Eq. ~3!# is equal to the Onsager cavit

radius, Rm5Rc . Away from the resonance,Ĝ loc and Ĝ
merely reproduce the corresponding curves of Fig. 2, w
values enhanced by the off-resonance infinite-cavity de

rates Ĝ loc
0 5LOns(«b)A«b.4.1 and Ĝ05A«b.2.2, respec-

tively. As before, the situation aroundv0 is different. For
this Rc and the medium parameters chosen, the absorp

contributions toĜ loc
0 @Eq. ~27!# and Ĝ loc

sc @Eq. ~35!# are~still!
small compared with the corresponding radiation contrib
tions. Accordingly,

Ĝ loc'LOns~h1Ĝsc! ~48!

holds. ForRm'Rc , the same conclusion applies to the dec

rate Ĝ as well, so that

Ĝ'h1Ĝsc. ~49!

The different shapes of the curves in Fig. 3 when compa
with those in Fig. 2 in this region are therefore caused by
~anomalous! dispersion of the superimposedLOnsh and h,

respectively. This also explains whyĜ loc ~upper solid line!
practically cannot be distinguished on this scale from

decay rateĜ̃ loc5LOnsĜ ~dotted line!, although the corre-
sponding absorption contributions to these rates are diffe
@cf. Eqs.~27! and~3!#. We note that Eqs.~48! and~49! hold
for a range of the Onsager cavity radii and/or medium
rameters. In these cases, our previous conjecture conce
the local-field corrections to the decay rate, as expresse
Eq. ~6!, remains~approximately! valid.

With decreasing the Onsager cavity radius, the absorp
contribution to the decay rate becomes gradually the do
nant contribution with the leading near-field term equal
the nonradiative rate of the molecule. In Fig. 4 we repres
the situation whereRc is still large enough, so that nonrad

FIG. 3. Total decay rate with~upper solid line! and without
~lower solid line! local-field corrections for the system described
Fig. 2. The dotted line represents the macroscopic decay rate
the usual local-field correction factor. The Onsager cavity radiu
Rc50.1l andRm5Rc .
1-7
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ative and radiative contributions toĜ loc are of the same orde
of magnitude. In this regime, the decay rate may appro
mately be written as

Ĝ loc'LOnsF «9

u«u2
~k0Rc!

231h1ĜscG . ~50!

The difference betweenĜ loc ~upper solid line! and Ĝ ~lower
solid line! this time arises not only because of the over
extra factorLOns, but also because of the 3/2 times larg

nonradiative contribution toĜ @cf. Eqs. ~27! and ~3!#. This
3/2 factor in the corresponding nonradiative rates also le

to a significantly larger decay rateĜ̃ loc ~dotted line! than the

true rateĜ loc ~upper solid line!. We note, however, that th

comparison betweenĜ loc , Ĝ, andĜ̃ loc is given here only for
illustrative purposes as their difference is a consequenc
our arbitrary inputRm5Rc . Indeed, in addition to demand
ing, on physical grounds, the same order of magnitude
Rm andRc , any other relation between these parameters m
also be assumed.

Of course, owing to the strong increase of t
Rc-dependent terms, for even smallerRc the decay rateG loc

0

largely exceeds the cavity-induced rateG loc
sc , so that G loc

'G loc
0 holds. For a detailed discussion of the decay rate

this regime, we therefore refer the reader to Ref.@8#.

V. SUMMARY

In this work we have calculated the decay rate and
classical external power loss of an excited molecule loca
in the center of an absorbing and dispersive dielectric sph
by adopting the Onsager~real cavity! model for the local
field. We have found that the external fields of a dipole~clas-
sically representing the molecule! calculated with and with-
out the Onsager cavity scale with 3«(v)/@2«(v)11)]. This
immediately gives u3«(v)/@2«(v)11#u2 as the correct
local-field correction factor for the~radiation and absorption!
power loss of the molecule outside the sphere in the abs
ing case. Whereas this result could have been guessed o
basis of a straightforward analytical continuation of the c

FIG. 4. Same as in Fig. 3. but for the Onsager cavity rad
Rc50.03l.
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responding result in the lossless case, the local-field cor
tions to the total decay rate~power loss! of the molecule are
found to be much more complex. The total decay rate
found to consist of the decay rate for the infinite sphere,
very recently obtained for an absorbing medium in Ref.@8#,
and of the cavity-induced rate for which we have obtaine
similar expression. When expressed in terms of the Gr
function for the sphere, these results become formally sys
independent. This suggests the general results for the lo
field corrections to the decay rate and to the external po
loss of a molecule in an absorbing cavity and located aw
from the cavity walls.

APPENDIX A: DIPOLE POWER LOSS

To calculateW0 using the Poynting theorem, it is conve
nient to rewrite the dipole electromagnetic field in spheri
coordinates. WithII5 r̂ r̂1ûû1f̂f̂ in Eq. ~12!, letting the
origin be at the dipole site and assuming, for simplicity, th
p5pẑ, we have (k05v/c)

E0~r ;v!5 ikk0
2pH 2h1

(1)~kr !

kr
cosq r̂

1Fh1
(1)~kr !

kr
2h0

(1)~kr !GsinqûJ , ~A1a!

B0~r ;v!5k2k0h1
(1)~kr !p3 r̂5k2k0ph1

(1)~kr !sinqf̂,
~A1b!

where

h0
(1)~z!52 i

eiz

z
, h1

(1)~z!52
eiz

z S 11
i

zD
are the spherical Hankel functions of the first kind. The
dial component of the Poynting vector

P~r ;v!5
c

8p
ReE0~r ;v!3@B0~r ;v!#*

is then easily found to be

r̂•P~r ;v!5
c

8p
Im

uku6upu2

«A«*
F2

h1
(1)~kr !

kr
1h0

(1)~kr !G
3@h1

(1)~kr !#* sin2q. ~A2!

This determines the angular distribution of the energy fl
dWf

0/dV5r 2r̂•P(r ;v) through a spherical surface of radiu
r around the dipole. Upon integration over the angles,
therefore have

Wf
0~r !5

vupu2

3

«9

u«u2
u~12 ikr !eikr u2

r 3
1h

vk0
3upu2

3
e22k9r .

~A3!

The dipole energy absorbed per second within the volu
Vr of the sphere is given by

s

1-8
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Wa
0~r !5

v«9

8p E
Vr

d3r uE0~r ;v!u2. ~A4!

With

uE0~r ;v!u25
uku6upu2

u«u2
F4Uh1

(1)~kr !

kr
U2

cos2q1Uh1
(1)~kr !

kr

2h0
(1)~kr !U2

sin2qG
and performing the angular integration, we have

Wa
0~r !5

vupu2

3

«9

u«u2ERc

r

drF 3

r 4
u~12 ikr !eikr u2

22
k822k922k9uku2r

r 2
e22k9r1uku4e22k9r G .

~A5!

Partially integrating the first term and noticing that the
maining integrals involving the near field of the dipole ca
cel, we obtain

Wa
0~r !5

vupu2

3

«9

u«u2 F2
u~12 ikr !eikr u2

r 3 G
Rc

r

1h
vk0

3upu2

3
~e22k9Rc2e22k9r !. ~A6!

This, together with Eq.~A2!, gives Eq.~18! for the total
dipole power lossWf

0(r )1Wa
0(r ).

APPENDIX B: DIPOLE FIELD IN MULTILAYERED
SPHERICAL MEDIA

Generalizing the result for an infinite medium@Eq.
~A1b!#, the magnetic field of a dipole oscillating along thez
axis in the center of anN-layered spherical system@Fig. 1#
can be written in the form

B~r ;v!5«1k0
3p f~r !sinqf̂. ~B1!

Through

E~r ;v!5
i

k0«~r !
¹3B~r ;v!,

the electric field is therefore given by

E~r ;v!5 ik0
2p

«1

«~r ! F2 f ~r !

r
cosq r̂2

@r f ~r !#8

r
sinqûG ,

~B2!
05381
-
-

with the prime denoting the derivative of the function in th
brackets. The general form of the functionf (r ) in the l th
layer is

f l~r !5h1
(1)~k1r !d l11Cl 1

N h1
(1)~klr !1Cl 2

N h1
(2)~klr !,

~B3!

whereh1
( i )(z) are spherical Hankel functions. The last tw

terms here are the solutions of the homogeneous Maxw
equations@37# and give the scattered fieldEsc(r ;v) in the
system. The regularity of this field at the origin demands t
C11

N 5C12
N [C1

N/2, while the outgoing-wave condition at in
finity demands thatCN2

N 50. The rest of the coefficientsCl 6
N

are determined from the boundary conditions

f l~r l !5 f l 11~r l ! and
1

« l
@r f l~r !# r l

8 5
1

« l 11
@r f l 11~r !# r l

8

at the layer interfaces. The scattered field in the central la
is, therefore, generally given by

E1
sc~r ;v!5 ik1k0

2pC1
NF2 j 1~k1r !

k1r
cosq r̂

2
@k1r j 1~k1r !#8

k1r
sinqûG , ~B4!

where j 1(z) is the spherical Bessel function. In the oth
layers it is given by (El5El

sc)

El~r ;v!5 ik1k0
2pA«1

« l
FCl 1

N H 2h1
(1)~klr !

klr
cosq r̂

2
@klrh1

(1)~klr !#8

klr
sinqûJ

1Cl 2
N H 2h1

(2)~klr !

klr
cosq r̂

2
@klrh1

(2)~klr !#8

klr
sinqûJ G , ~B5!

with CN2
N 50. Specially, since j 1(z)/z→1/3 and

@z j1(z)#8/z→2/3 for smallz, the scattered field in the cente
of the system is given by

E1
sc~r ;v!ur→05 ik1k0

2C1
N 2

3
p. ~B6!

For N52, we find (r i5kir 1)

C1
2~«1 ,«2 ;r 1!5

1

D
$«2h1

(1)~r2!@r1h1
(1)~r1!#82«1h1

(1)~r1!

3@r2h1
(1)~r2!#8%, ~B7!

C21
2 ~«1 ,«2 ;r 1!5

i«2

r1D
, ~B8!
1-9
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where

D5«1 j 1~r1!@r2h1
(1)~r2!#82«2h1

(1)~r2!@r1 j 1~r1!#8.
~B9!

For N53, we have (r i j 5kir j )

C1
3~«1 ,«2 ,«3 ;r 1 ,r 2!

5
1

j 1~r11!

3Fb2h1
(1)~r21!2b1h1

(2)~r21!

a1b22a2b1
2h1

(1)~r11!G ,
~B10!

C21
3 ~«1 ,«2 ,«3 ;r 1 ,r 2!5

b2

a1b22a2b1
, ~B11a!
dv
.

ys

ys

hi

tt
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C22
3 ~«1 ,«2 ,«3 ;r 1 ,r 2!5

2b1

a1b22a2b1
, ~B11b!

C31
3 ~«1 ,«2 ,«3 ;r 1 ,r 2!52

i«3

r22

2

a1b22a2b1
, ~B12!

where

a j52
ir11

«2
$«1 j 1~r11!@r21h1

( j )~r21!#82«2h1
( j )~r21!

3@r11j 1~r11!#8%, ~B13!

and

b j5«3h1
(1)~r32!@r22h1

( j )~r22!#82«2h1
( j )~r22!

3@r32h1
(1)~r32!#8. ~B14!
.
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while using Eq.~10! one obtains the general result given in E
~45!.
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