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Trapped condensates of atoms with dipole interactions
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We discuss in detail properties of trapped atomic condensates with anisotropic dipole interactions. A prac-
tical procedure for constructing anisotropic low-energy pseudopotentials is proposed and justified by the
agreement with results of numerical multichannel calculations. The time dependent variational method is
adapted to reveal several interesting features observed in numerical solutions of condensate wave function.
Collective low-energy shape oscillations and their stability inside electric fields are investigated. Our results
shed new light into macroscopic coherence properties of interacting quantum degenerate atomic gases.
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I. INTRODUCTION For bosonic systems, another related topic is the conden-
sate stability. Under the SIA, the scattering length takes a
The recent success in atomic Bose-Einstein condensatigeositive or negative value, corresponding to repulsive or at-
(BEC) [1-3] has stimulated great research activities intotractive interactions. Whemy<0 occurs, self-interaction
trapped quantum gasp4]. To a remarkable degree, a single leads to a collapse of BEC in dimensions higher thaadl,
condensate wave function of the macroscopically occupiedhus the resulting condensate is limited by a critical number
ground state, described by the nonlinear Sdhmger equa- of particles[21]. Anlsotr.oplc dipole interactions, on the othe(
tion (NLSE) [5], captures all essential features of its coher-Nand, are more complicated as both attractive and repulsive
ence propertiefs]. In fact, one of the key diagnosis features Intéractions arise aI(_)ng_ different d|reqt|ons. We note that
for BEC, the reversed aspect ratio of a free expanding Con'several_recent investigations ha\(e studied efforts of nonlocal
densate, is described purely by the condensate wave functiditéractions on condensate stabilig2,23.
[7,8]. In the standard treatment for the condensate wave !N this paper, we study properties of trapped BEC of at-
function of interacting atoms, realistic interatomic potential®Ms with dipole interactionf24], arising from either exter-
V(R) is often not directly used. Instead, a contact pseudop nal electric field(induced or permanent magnetic moments

k N ) ] [25]. We propose a practical method for constructing aniso-
tential up6(R), obtained under the so-called shape indepenygpic pseudopotentials that can also be extended for inves-

dent approximatior(SIA) [9] is used. Such an idealization tigation of polar molecular BEG27,28. This paper is orga-
results in tremendous simplification, yet to date, SIA hasyized as following. We first briefly review the usual
worked remarkably well as verified by both theoretical cal-pseydopotential approximation under the SIA. In Sec. Il we
culations and experimental observatigdslo,11. describe and justify in detail a procedure for constructing
Currently available degenerate quantum gases are colgfective low-energy pseudopotentials of anisotropic interac-
and dilute, the interaction is therefore dominatedshyave  tions. In Sec. IIl we provide our numerical procedure for
collisions, described by a single atomic parametgy, the  golying the NLSE with anisotropic dipole interactions. Par-
s-wave scattering lengthif the interatomic potential is iS0-  tjcylar emphasis is put on the careful treatment of the singu-
tropic and short rangettiecaying fast than-1/R® asymp- |5y origin of dipole interactions. We also present and discuss
totically). The complete scattering amplitude is then isotro-resyits from selected numerical calculations. To explain the
pic and energy independent, given tik,k’)=—4mas. for  stability region as well as the interesting aspect ratios ob-
collisions of incoming momenturk state scattering inte’.  served from our numerical calculations, we perform in Sec.
One of the attractive features of atomic degenerate gasd¥ an analytic time dependent variational calculation. We
lies at effective means for control of the atom-atom interaccompare the results obtained with direct numerical solutions
tion [12—14. Indeed, very recently several groups have sucof NLSE. Finally we conclude.
cessfully implemented Feschbach resonafit® 16, thus
enabling a control knob oag. through the changing of an
external magnetic field. Other physical mechanisms also ex-
ist for modifying atom-atom interactions, e.g., the shape ForN trapped spinless bosonic atoms in apotehﬂﬁf),

resonance as proposed in REE7]. In an external electric the second qguantized Hamiltonian is given by
field, interatomic potential is modified by the addition of an

anisotropic(induced dipole interaction. 72

Although anisotropically interacting Fermi system has /= dF\ifT(F)[——VZJth(F)—,u W (r)
been an important area of study, e.g., liqdide [18] and 2M
d-wave paired highF, superconductorg19]. Its bosonic R R A R
counterpart has not been studied in great detail. In particular, +%f de dr' Ut r)vVr—r)w(r)w(r),
we are not aware of any systematic approach for constructing
an anisotropic pseudopotent(&l]. (@)

Il. FORMULATION
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3000 TABLE II. t],™ for "Li.
2000} . (m),(I'm’) (000  (20) (40) (60) (80)
& ool | (00) 0 1.0 0.0 0.0 0.0
5 (20 10 -063 014 0.0 0.0
T ol (40) 0.0 0.14 -0.17 0.057 0.0
"8 (60) 0.0 0.0 0.057 —0.080 0.031
(] —
_1000l | (80) 0.0 0.0 0.0 0.031 0.044
-2000¢ oy .
with t; " (£) the reducedT-matrix elements. They are all
~3000 . ‘ ‘ . energy independent and act as generalized scattering lengths.
0 5 10 15 20 25

The anisotropicdV/g causes the dependence on both incident
and scattered directioflsandk’ =R.

FIG. 1. as. vs £ for *)K in the electron spin triplet state. We therefore propose a geneftahergy-independenan-
isotropic pseudo potential constructed according to

¢ (10° Viem)

where W(r) and ¥'(r) are atomic(bosoni¢ annihilation

and creation fields. The chemical potenfialguarantees the R R Yllml(ﬁ)
atomic numbeN = [dr¥(r)¥(r) conservation. Verl(R)=Uod(R) + >20m Yiym o 4
The bare potentia¥(R) in Eq. (1) needs to be renormal- e
ized for a meaningful perturbation calculatig®)]. The usual . ) .
treatment is based an effective interaction obtained by a revhose first Born amplitude is
summation of certain classes of interaction diagrd@®-—
31]. Physically the SIA can be viewed as a valid low-energy SRy — 24 v (D L
and low density renormalization scheme, one simply re- Peom(kik") == (4)"ascY oK) Yoo k')
places the bare potentib(l(li) by a pseudopotentia]oﬁ(li) M E 4)?2
whose first order Born scattering amplitude reproduces the 4wkl i Yiym, )
complete scattering amplitude —@g). This gives ug
=47h%ag /M. xz E 7'm Y* (k)Y k'
When an electric field is introduced along the positive & im (11,M) Yim(K) Yy (KT,
axis, an additional term
5
v ﬁ _ YZO(AR) (2) ) ,]_I!m( NRY 1 m’
e(R)=u; R with 77" (1., m) =()"""R| 1},™ (I;,m,). Both
appears in the atom-atom interactidi?7], where u, B (1M =Y [ Y1, Vi)
=—4\(7/5)a(0)a* (0)E2. «(0) is the atomic polarizabil- :
ity, and £ denotes the electric field strength. As was shown :(_1)m\/(2l +1)(21"+1)(21,+1)
before[17], this modification results in a completely new A

form for the low-energy scattering amplitude

( Lol |1)<| K |1)
R . ~ R X -m m m)/\0 0 O ©)
F(KK ) ke —o=47 2t (YK Y m(K'),

Im,I'm’

(3 and
TABLE I. T|,™ =t|,™(2,0)#2%(2,0) for small {,1"). TABLE lll. t,™ for 3%K.

(Im),(I"'m") (000 (20 (40) (60) (80) (Im),(I"'m") ~ (00) (20) (40) (60) (80)
(00) 0 1 0 0 0 (00) 0 1.0 0.0 0.0 0.0
(20) 1 -0.63889 0.14287 0 0 (20) 1.0 -0.64 0.14 0.0 0.0
(40) 0 0.14287 —0.17420 0.05637 0 (40) 0.0 0.15 -0.17 0.085 0.0
(60) 0 0 0.05637 —0.08131 0.03008 (60) 0.0 0.0 0.085 —0.127 0.047
(80) 0 0 0 0.03008 —0.04707 (80) 0.0 0.0 0.0 0.047 —0.074
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TABLE IV. t],™ for “IK. TABLE VI. t|,™ for 8'Rb.

(Im),(1'm") (00) (20) (40) (60) (80) (Im),(1'm") (00) (20) (40 (60) (80)
(00 0 1.0 0.0 0.0 0.0 (00) 0 1.0 0.0 0.0 0.0
(20 1.0 —0.64 0.14 0.0 0.0 (20) 1.0 —0.64 0.15 0.0 0.0
(40 0.0 0.14 -0.17 0.057 0.0 (40) 0.0 0.15 -0.17 0.056 0.0
(60) 0.0 0.0 0.057 —0.081 0.030 (60) 0.0 0.0 0.056 —0.079 0.032
(80) 0.0 0.0 0.0 0.030 —0.047 (80) 0.0 0.0 0.0 0.032 -—0.045

RV = ["dRZj(kR)j 1 (K'R) foom(K K =y 1o (4712723
=, R I1(KR)( orn( Arh?2 00
o X 2 T ViR Y (k). (10
T 2 Im,I’m’
87 3] 3 L 20 ='m' _A'm' 20 -
N =——ITl 1+ = with 7go=—0.023508.7 —ﬂm (2,0)/T are indepen-
2 2 dent of electric field within the perturbative Born approxi-
=1+ 1+ 3 mation as tabulated below.
X ,Fy T J+ 5 772) (7) We find that away from regions shape resonances be

discussed elsewhef82], all numerically computedl,;]m'(é')
values, large enough to justify their inclusions, are actually

can be computed analytically. TheRe/form in Eq. (4) as- all proportional to€2. Thus, we could rewritd (k,k’) as

sures aIIRl' to be k=k’ independenteasily seen by a

change of variable ta=kR in the integral. Putting . - ~ -,
fKK)=(4maXE) 2t Yin(K) Y (k)
Im,1"'m’

faom(K.K ) =F(K,K'), (8) (11)

. e e ’'m’ o l'm’ 20 :
i.e., requiring the Bohn amplitude from the pseudopotential/Ith Scaled quantities,,,” =t,," (£)/tgo(£) now all being

Eq. (4) to be the same as the numerically computed valy&sonstants. We have since compu(ad/m?rically for several
i I'm’ alkali metal isotopes, our results fof," are tabulated be-
f(k,k"), one can solve for aw,lml(é') from knownt, ;" (£) P _F’m

: . . low.
gﬁg?(')nzh's reduces to a set ¢tinder determinediinear The agreement between the first order Born approxima-

tion and the multichannel scattering calculations is remark-
able. We estimate the numerical scattering results to be ac-
curate to a few percentexcept for 3%K), independent of
atoms being bosongvenl,|’) or fermions(oddl,l’). Only
bosonic results are being considered in this paper. This is
S , displayed by noticing the agreement between Table- Ig
ffr aI(I)O(Im) and ('m’) with 1,1"#0, and separatelgis{£) few percentwith Tables II-VI. This interesting observation
=~ Loo(9). applies for all bosonic alkali triplet statedi, 3°4K, and
8587Rb, for up to a field strength of:810° (V/cm) [17,32]
computed by us. Physically, this implies the effect\f is
erturbative wher€ remains smallin a.u). For the conve-
ience of further discussions, we tabulate polarizabilities of
elected atoms in Table VII.

M "m’ ’ent
" Amh? |2m 7'1m1(477)7—:mm (Ilvml)Et:mm ) 9
1"

Considerable simplification arises further for bosd¢ies-
miong as only evenodd) (I,I") terms are needed to match
in (9). Figure 1 displays the result of field dependag{£)
4K atoms in the triplet electron spin state. Note the spikes o
shape resonances. The Born amplitude for the dipole termy

Vels What is remarkable is the fact tha@gg(£) andt3)(&) also
— o agree in absolute valud47] except for a slight difference
TABLE V. t;," for ®Rb. (1-69. They are calculated below and tabulated in Table
VIII.
(Im),(I'm") (0O (209 (40 (60) (80)
(00) 0 1.0 0.0 0.0 0.0 TABLE VII. Atomic polarizabilities in(a.u).
(20) 1.0 —0.64 0.14 0.0 0.0 H L Na K Rb
(40 0.0 0.14 -0.17 0.056 0.0
(60) 0.0 0.0 0.056 —0.081 0.030
(80 0.0 0.0 0.0 0.030 -—0.047 a(0) 4.5 159.2 162 292.8 319.2
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TABLE VIIl. Comparison of numerical values of As can be concluded from comparing listed data in all
Up(M/4hi?) (4m)2T50 with —(4m)t5)(£), the cause of the slight tables, we can approximate E@f) by keeping only the,
difference is unclear but within numerical errors. =2, m;=0 term to achieve a satisfactory level of accuracy.
Thus away from shape resonances we take

Born Multichannel
atom M —(4m) 2 &) (a 3\ — 3 5\ /p3
U gz (A7) 2T o) (4m)too(£) (o) Ver(R)=Up8(R) + U, Y, R)/RE, (16)
“Li 3.040x 10°€2 3.238x 10P€2 2 -
' = ' - whereuy=——a andu,= —c(&)ug. The Hamiltonian
K 5.713< 10°€2 5.699¢ 10P£2 0= 3sdE) z ()
K 6.006< 10°€ 2 5.99x 1072 (1) then becomes
**Rb 1.486x 10'%2 1.474x 1092 [ h2 ) .
¥Rb 1.495x 10'% 2 1.512¢ 1092 H= df‘I’T(f){—szJth(r)—M W(r)
u DAy e A A LA
M +7°J dr ()W) W ()W (r)
Up s (47T 8=~ 16m \[720 2¢
[ u; "QrAT_'AT_’rY Q)A ZINAT
=1718< M a?E%a,, (12) +7 drdr’wi(r)w'(r") W (r")Ww(r),
where all overlined quantities are in atomic ur(iésu). (17)

An important parameter in our discussion is the ratio be- R
tweenu, and ug. Since the results from first order Born with R=r—r’. The Heisenberg equation fob(r,t) be-
approximation and the multichannel calculations are abougomes nonlocal. At zero temperature the condensate wave

the same, one can write this ratio as function ¢/J(F,t):<\if(F,t)) obeys the NLSE

2

Uz
C(&)=——2=y€2 13 . .
R " —MV2+vt<r>—u+uo|w(r,t>|2

d
ih g (=) -

where y=1.748< 10 Ya?M/a., and £ is in unit of V/cm.

The vy values for selected atoms are tabulated in Table IX. +u2f dr -, Y
Most atoms possess permanent magnetic dipoles. With

alkali metals, the magnetic dipole mainly originates from

valence electron spin, typically measured in units of Bohr

magneton. It is therefore interesting to compare electric di-

pole interactions with magnetic dipole interactions. The di-V

pole interaction strength between atoms of a permanent ma

netic dipolew is

P(r b,
(18)

with z//(r t) normalized toN (the number of the atom in the
§ondensa1)e

ll. NUMERICAL STUDIES
2_ 2,2 _ —5 2.2.2
w=u up=1.331X10"ueay, (14) In this section we discuss the ground state properties of
trapped condensates based on numerical solutions of NLSE
(18). We start with a detailed analysis of our numerical pro-
cedure for handling the nonlocal dipole interactj@2-25.

with ug the unit of Bohr magneton. For induced electric
dipoles, the interaction strength is

a?E%=a’E%e%a;. (15) ,
A. The numerical procedure
A typical heavy alkali atom haa~ 200, thus for which a 1 We use steepest descent through a propagation gfLBp.
(mg) magnetic moment corresponds to an effective electriagn imaginary time {t) to find its ground state wave function.
field of 3.3x10°° (a.u), or 1.7<10° (V/cm). Atoms with  With an axial symmetric harmonic trap
large magnetic moments effectively simulates induced dipole

interactions at a high value of equivalent electric fig28]. Vy(r)= —M Vz()\zxz_,_)\ y2+)\ 22, (19)
()=
TABLE IX. Values of parametey for selected atoms with their
field free (€=0) scattering lengths. we rescale Eq(18) by introducing dimensionless units for
— p o p length @,=vA/Mv), energy @v), time (2i/v), and wave
H Li Na “K  “Rb function (yN/a?). We than obtain
y(x100¥)  29x10°® -11 20 22 150 - iw(; t)=Hy(r 1) (20)
dt L 1 1
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with We renormalize) to 1 after each iteration and adjust to
R ) ) ) control the rate of convergence.
H=—V2+(\ x>+ \yy?+\52%) —2u For a cylindrical symmetric trap\=\,=1\,=)\), the

ground state wave function also possesses the cylindrical

symmetry. Therefore the nonlocal term simplifies to

+2(2m)3%pP |w<rit>|2—c<s>f dF'Y%(SR)lw(F',wlZ

(21) 21 oo ZYZO(Q)
o | dirue 202
whereP = y2/mNag./a; and (r,t) is normalized to 1. R
The ground state is found be starting with an arbitrary

random wave function, and propagating E20) in t until it

is stable(apart from its decreasing nojmin practice we B , , . N2
chose an appropriate time st&yt and iterates the Eq20) = | dz'| dp'K(p".p,2' =2)|(p",2")|>, (23
according to
P(r 1+ A =g(r, 1) — (ADAW(r ). (220 with a kernel
|
Ko 02 -2 =— 2 a
Wz —Z)=— - 7 7 ’ ’
PP 7lp—p) 2+ (2~ 25 (p+p )7+ (2~ 271
x| [(p?=p'D)2=2(p%+p'))(2' 22~ 3(2' ~D)™IE Fo
(p+p')?+(2' —2)°
+[(p—p")?+ (2 ~2)°)(2 ~ 2K e (24)
rr (p+p)7+(Z—27])

whereE[ - - -] andK[---] are standard Elliptical integrals.  ever|r—r’|<R. This cutoff is chosen to be small enough
We discretize the,z) plane into a two-dimensional grid - that negligible errors result from the numerically represented
of points such that wave function values at each point bekernel. TypicallyR,~50(a,) taken, which is much smaller

comes a matrix. At each time step the matrix elements arghan the wave function grid size. The rapid varying kernel
updated according to EqR2). The derivatives in the Hamil- (' , 7' 7) is treated with a finer grid. Instead of directly
tonian are evaluated by means of finite-difference mEthOdﬁntegrating overK(p',p.2' —2)|(p',2')|? on the wave

Ty.plcally, t_he ground state can k_)e sufficiently well descrlbec’function grid, we first integrate the kernel separately over the
US;_:E a<95”d of 106200 points in the range0p<5 and fine grid around each of the wave function grid point. Such
At ?irst éight one may naively underestimate the compli-an integration is numerically intensive, but only needs to be
. i . . . performed once for each of the wave function grid point as
cation of Eq.(20) due to the nonlocal interaction term in Eq. Ehe kernel is determined by the geometry of system. The

(21). Several other groups have addressed nonlocal intera . ; .
tions previoush{11,23. There is, however, a significant nu- integrated kernel values on the wave function grid remain the
ith ’ ’ same for different traps and different number of atoms. Fi-

merical challenge with the dipole interaction, which is sin- ) ! ; )
gular at the origin. To accurately represent its detailed@!ly the nonlocal term is approximated by integrating over

structure, an enormously large grid is needed. Although the wave function grid using the product of integrated kernel

Fourier transform into momentum space could simplify thevalues and the wave function.

convolution operation of the nonlocal term. We found it hard ~ For a homogeneous distribution of aligned dipoles, the

to completely avoid the effort of the singularity this way by mean dipole interaction vanishes ¥g(R) averages to zero

going to a momentum representation with a limited coarsgpon integration ovedr or dr’. This property is maintained

grid [25]. Physically, this singularity implies the presence of for our kernel Eq(24) even though we have integrated over

two different length scales for E¢20). We thus developed a (4— ¢') first. We have verified this by noting that the inte-

numerical procedure with two overlaying grids: a coarse gridgration of K(p',p,z' —2) over (p,z) and (p’,z') does van-

for the relatively smooth wave function and a much finerjgp.

grid for computing the nonlocal dipole interaction kernel. For cylindrically symmetric traps, the wave function grid
The kernelK(p’,p,z’' —2) is divergent atr =r’, we thus  as well as the integrated kernel region is as illustrated in Fig.

define a cutoff radiu®; such thattC(p’,p,z’ —z)=0 when- 2. An accurate representation of the integrated kernel re-
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L, 0
-20
> S0
A ] -
N O- 7 -60}
-80
: 5 100, 5
L, [ R
0 o L, 0 . S —
5 -0 L b
FIG. 2. Computation of kernel in arbitrary units. 2 v
g |
g -0.3 v
quires a quadrature operation over a much finer grid for each ® _04 h
of the shaded regions surrounding the wave function grid. As g—o 5
is shown in Fig. 2, there are three different types of shaded £ - .
regions, labeled as 1, 2, and 3. Both types of 1 and 2 are -0.6
boundary terms, which are not needed since they are, respec- -0.7, ; 5 3 i s

tively, atz=*L, andp=0,, where either the wave func-

tion #(p',z') vanishes or the integration measuip’dp’

vanishes. Therefore, we need only to_cpmpute the integratjon FIG. 3. Typical behavior ok(p’.p.0) (8 and the correspond-

of kernel over type 3 elem.em by defining a muclh finer grlding integrated kernel over the wave function gfig). The solid

and use standard_numerl_cal quadrature technl_ques._Wh%@ashea lines are forp=1.0 (3.0).

(p,2)#(p',Z'), the integration reduces to a two-dimensional

one which can be easily performed. On the other hand, a _

three-dimensional  integration is needed whemp,z) ferent P values. For comparison we also show the results

=(p’,Z'). In this case we have to carefully implement the from variational calculations to be discussed later.

cutoff radiusR; . The condensate collapse is mainly due to attractive dipole
Figure 3 compares the kernel with the coarse grained ininteractions along the direction of the external field. To mini-

tegrated kernel. Note the significantly different vertical scalemize its total energy, condensed atoms prefer to align along

the attractive directionZ axis), while narrowing its width

along the radially repulsive direction. The collapsing occurs

when the radial width eventually approaches zero with in-
Simple vortex statef33—35 with quantized circulations creasing external field strengfB6].

can also be considered by writing the condensate wave func- Figure 5 shows a vortex state wave function for 1.

p’(units of at)

B. Vortex states

tion in the form The effects of dipole interactions are similar to the ground
R . , state. Asc(&) increases, the vortex state will also collapse.
p(r)=y(r)le™"?, (25  Because of the zero density inside the vortex coggin this
with ¢ the azimuthal angle with respect to theaxis. The 2.4
corresponding Eq(20) for |(r)| is then modified by the
addition ofn?/p? to A of Eq. (21). ol

C. Numerical results & unstable

1. Ground- state wave function

The ground-state properties of trapped condensates with 12}
dipole interactions were first discussed by us in R24].

Our basic findings ardl) condensates become elongated stable T

along the direction of external field and shrank in the or- 08 2 4 6 8 10

thogonal radial direction{2) for given values ofP and \, P

there exists a maximuntcy(P,\) of a threshold field FIG. 4. ¢y, at the highest field value of condensate collapsing for

strength beyond which condensate collapse occurs. Figurex=1. Numerically computed values are in circles connected by a
displays numerically computedy, for A=1 at several dif- dotted line. The solid line is from the variational calculation.
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0.03
s

S = 0.02

o

= s

£ >
N 0.01
0 05 1 15 2 25 3 35 0

p(units of at)

(b)

w(0,2)

z(units of at)
I

|
N

|
w

0 05 1 15 2 25 3 35
p(units of at)

z(units of at)

FIG. 5. n=1 vortex state wave function witfe) no external
electric field and(b) c(£)=2.0. Other parameters afe=10 and
A=1.

FIG. 6. Ground state wave functions wigholid line) and with-
out (dash-dotted line TFA. P=5000, A=1, and c(¢)
=0.7,0.6,0.2 in descending order of wave function values at the
case is much larger than for the ground state. origin.

2. Comparing numerical solutions with TFA The NLSE can then be found from a minimization of the

A useful approximation for the ground state solution of ction[38]
NLSE (18) is the Thomas-Fermi approximatiofTFA).
When the interaction between atoms are repulsive, i.e., with Szf rdrdt. (27)
a positive scattering length, the condensate is expected to
increase its size as compared to the single atom ground state . . - . .
in the trap. With more atoms, the larger the condensate sizd © SimPlify the variational calculation, we restrigt to a
eventually the spatial directives, consequently the kinetic enconvenient family of trial functions and study the time evo-
ergy term becomes negligible. In this limit, TFA is used tolution of the parameters that define the family. A natural
find the ground state wave function by neglecting the kineticchoice is a Gaussian-like function first used in R&g]
energy term in Eq(21). With a SIA interaction term, the
sollition simply takes the shape of the inverted trap potential (XY, 2,0 =A(t) H e [7- no(t)]2/2wzn+inan(t)-%—ir;zﬁn(t)'
V,(r). The nonlocal dipole interaction term, however, pre- n=X.Y.2
vents a simple analytic solution even with the TFA. Typical (28)
N ando(6) -0.2,0.6.0.7 are compared n Fig. 6. WhereA (complex amplitud w,, (width, a, (slope, £,
(curvature radius)~'4, and 7, (center of cloud are varia-
IV. TIME-DEPENDENT VARIATIONAL ANALYSIS tional parameters. This approach, pioneered by Perez-Garcia
) o et al.[38], has since been successfully used for many studies
The time-dependent variational approach can also be usgg trapped condensates, a more recent application attempted
to analyze solutions of Eq18) [37,38. We start by identi- ¢ explain the anomalous behavior in the finite temperature

fying a Lagrangian densitf excitation experimenft39—41.

i au* (1Y) ()] #2 Our goal here is to find equations governing the varia-
L==%| (1) —* (1) +=—|V(r)|? tional parameters. To this aim, we insert Eg8) into Eq.
2 dt at 2M (26) and calculate an effective Lagrangianby integrating

) ) Up, - the Lagrangian density over all space coordinates
VA2 ()]

) |_=<c>=fm £dr, 29
- - Yoo(R - o
+ 2l [ a 0 g (26

RS to arrive at
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IﬁTN A—*—% +§§7} [(ﬁBﬁZﬁMﬁ”Jr%Mvzxf,)
X (W2 +275) + hdn+2 2;,,,8,7 29+ 2'3\2,\/3]
M 2\87¥ W, wyw, 02 N 16w
fdr ex ]3C0f36 1], (30)

where we have used atom number conservation

N =732 A(t)| 2w, (t)wy(t)w,(t) = const. (31

At this point, the variation calculation effectively has
been reduced to a finite dimensional problem, i.e., to solve

the Lagrange equations

dfaL) o _ 32
dt aq Coq

with the notation

qu{WXiWinZ!A!A* !XOYyO!ZOiaX!ay!aZ!ﬁX!By!Bz(}és)

We find equations for the center of the condensate
no+ N5 v me=0 (34)
and the condensate widths satisfy

h? N 9
M? W 4\/5773’2M W,

x waywz( A AT fdr

<o -3 ]3"“"5—“”

r

w,, +)\2V2W

(35
The rest of the parameters can be obtained from
BfM, (36)
2hw,,
and
%%( 7o~ "@VZ”). 37

It is convenient to introduce new dimensionless variables

7=t andw . We then arrive at

PHYSICAL REVIEW A 63 053607

1 5
oy, 17 V1679
jd 3cogh—1

r ex 7] 2v r3 ,

(39

whereP= \2/mNag./a;. This equation describes the motion
of a particle with coordinatesy( ,vy,v,) in an effective po-
tential

1 2.2 2 2 1 1 1
U(vy,vy,0,)= (7\ vy +)\ +)\sz)+_ St ot
2\ v vy :
R E \ > gfd*
UxUyUy 167Tb( ) r
3co§0 1
r

For a cylindrically symmetric trap witih,=\,=1, A,
=\, all integrals can be performed analytically to yield

d] 1% 1% UZ[ ( ) ( )]’ ( )
d2

1 P
FUZH\ZUZZU—EJF02—1)5[1—0(5)9('0], (41)

with v,=v,=v, k=v/v,, and

Vo7
f(k)=————=
6(1—«?)?

57

3(1—«?)2

[—4k*—7K?+2+9k*H ()],
(42)

g(k)= [ —2k*+10k%+ 1—9k°H(k)].

H(x)=tanh *\1— k% \1—«?. The equilibrium widths are
then determined by

1
vo=—3+ 5 —[1-c(Ef(xo)],
Vo vgup
(43
5 1 P
NV 0=—5 + 55 [1-c(E)d(ko)].
Uz0 Uqolz0
Usinguv,o and kg, EQ. (43) can be rewritten as
1
KoV20=—73 3 T 32 [1-c(EFf(xo)],
KoUzo  KoUz0
(44)
1

P
— + 57 [1-c(E)g(ko)].

Vo KoUzo

)\ZUZ():
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¥-05

2% & cfe)h

0 5 10 15 20 25 30 0 0.2 0.4 06 08 1
K K
FIG. 7. f(k), 9(«). FIG. 9. Graphic solutions of Eq46) for A=1. Functionsx?

—\2 (solid line) andc(&)h(«) (dashed lingfor different values of
In the following discussion, we consider ondg{£)>0  ¢(&).

case, which implies botP>0 andc(&)>0.
reached in Ref[25] based on a force argument. This inter-

esting feature has also been independently verified by nu-

) o .~ merical solutions based on the FFT algorithm adopted by
First, for simplicity, we assume that our system satisfyggrg)et al. [25].

Thomas-Fermi limit P>1), then we can safely ignore the e can also rewrite Eq45) as

kinetic term and rewrite Eq(44) for «, in the following

form: k?>—N2=c(E)h(k), (46)

A. Equilibrium widths

2 —\ 2
Kol 1=c(£)g(Ko) =M1 C(E)f (ko) ] @9 with h(x) = k?g(x) —\?f(k). Figure 9 shows its graphical
olutions f=1) at several different(&) values.

First, we note thah(x=0)=—\57\?/3. Thus, as long
asc(€)<3/\/5, there will be one and only one root. This
result may not look absolutely clear from the figure because
of plotting constraints, but it can be seen clearly from Eq.
(45). We also find that ag(&) increases, there may exist

Meanwhile, wherc(£)=0, the solution forx in Eq. (45) is  ©N€: WO, Or zero roots fok. Once , is known, one can
Ko=\. This then proves that no matter what the initial field- €2Sily find solutions), andv o, whose stability can also be

free condensate aspect ratio is, the condensate always b(gpcked straightforwardly. It turns out that,' in all our calcu-
come more prolate along the electric field direction, i.e., aplations, whenever only one root far occurs its correspond-

proximately as illustrated in Fig. 8, it expands along the fieldind solution forvg andv is always stable. If there are two
direction but shrinks in the orthogonal direction. As will be "00tS for, the solution for andv,, corresponding to the
discussed in more detail later, the total condensate volumgMallerxo root is a saddle point, thus always unstable, while

actually shrinks with increasing fields because of the attractne other is always stable.
tive dipole interaction. We now consider the. dependence of the condensate

This result, first explained by (ig4] in terms of the mini-  Property. Figure 10 shows the functitrix) at several dif-
mization of total energy, is different from the conclusion

This equation can be solved graphically. From Fig. 7, we>
first note bothf(x) andg(«) are monotonically decreasing
functions bounded betweey /3 and —2./57/3, also the
inequality f(x)>g(«) holds for all k>0. Then for all x
=\, we havex?[1—c(£)g(k)]>N[1—c(&)f(k)], there-
fore, if kg is a solution of Eq(45), it must satisfyxg<<\.

10
| N T e
Electric field -10
_20_ ///// N \\\ i
z o . A=5.17 .
= 4 // N
=301 /// /' \\\
L~ /’/}\,=6 \\\
-d0r A=1 N
-50f
FIG. 8. Condensategpancake shaped in the left and cigar ~60 s -
shaped to the rightalways expands along the direction of an exter- 0 1 2 3 4 5
nally applied electric field and shrinks along the repulsive radial
directions. Darker ellipses are for higher electric fields. FIG. 10. Functiorh(k) for different\ value.
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15

o} ]
= unstable 9 g =
° 8
. 1.2
o i
FIG. 11. ¢y, as a function o\ with TFA. 16
=
ferent\ values. We see that as increases, the maximum E @
value of functionh(x), h, also increases, arit},,,,=0 at E 12 =
\.=5.170169. For thos& values corresponding to a nega- =3 %
tive hax, NO root ofx is found if c(&£) becomes sufficiently >N08 ©
large. But when\=\., at least one root fok exists no o
matter how large &(&) is. This means the condensate can- >
not simply collapse even at these very large electric field 0.4 1
strengths. Physically this implies the increased stability of 12
condensate inside an electric field with increasing values of 10
\. A condensate of a pancake shape is more stable than one |
with a cigar shape. This can be simply understood from the o 1
following argument; The collapse of a condensate under g
electric fields is due to the alignment of atoms along the S o8 %
attractive z-axis direction. A largem\ value prevents such o] <
alignment which increases both kinetic as well as trap poten- E 0.6 %
tial energy, hence increases the stability. In Fig. 11, we dis- g ' ©
play cy, as a function of, which separates the stable and S 0.4
unstable regions. Rigorous numerical calculations, on the =
other hand, find that condensate can still collapse even when 0.2 . . . . 1
A=\.. For example, we found collapse occurs when ¢ 02 04 06 08 1 12
=5000 withA>7, [c(£)>2.0]. This difference maybe due c(e)

to the choice of a simple Gaussian shaped variation function g5 15 Field dependence af, (3), v, v, (b), and normalize
. . L E) Z\ L)

(28). ) ) o volume (c) of condensate foP=10, A=1. Numerically computed
When the system is not in the Thomas-Fermi limit, we reqyits are in circles connected by dotted lines, the solid lines are

have to first solve foik, from equation from variational calculations.
(kg=\g)* of c(&). We see thab, decreases with increasings), and
2_y2_ 2 32 _ 2 : 0 ;
o= M =c(E)[kog(Kko) —A f(KO)]+[ P2 117 Ko the condensate collapses whengoes to zero. Figure 18
s displays the dependence of the condensate volume,on
2 where the volume is defined as the produce of its effective
—c(Ol9(ko)~ of (ko) I} 47 \widths in three separate dimensions. The shrinking volume
increases the condensate density, which in turn can signifi-
and then using cantly increase the three body loss process, providing a po-
tentially useful diagnosis togML5].
2 2 Figure 13 shows,, as a function ofP for different A
1-c(& —N[1—-c(EF M .
V0= <ol 1~ clE)9(xo)] 4[ (&)f(xo)] , values. We see that, for smaller a condensate with a small
A= Ko N\ can be more stable than condensates with laxgerhile

for larger P, a condensate with a largar is always more
andvo= ko to find the equilibrium widths. In this case, stable than condensates with smaNerThis also confirmed
we find possibilities for one, two, three, and four or no rootshy both variational TFA) and numerical calculations.
of ko depending on values @, c(€), and\. The stability After we first submitted this paper, a paper on the same
conditions for these roots, however, are similar to the TFAtopic become availablf26]. We therefore compare our re-
case as discussed before—there is at most only one staldelts with those from Ref26] in the next few figures. Figure
solution. In Fig. 12, we presem,, v, andv,o as functions 14 displays the change of aspect ratio of the ground state for
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2.4

0 10 20 30 40 50

FIG. 13.cy as a function oP, for A =0.5 (solid), 1.0 (dasheg,
and 2.0(dash-dotted ling As P—«, ¢, goes to the value obtained
under TFA.

two extreme values ok=0.1,10 and for a small value of
P=5, and can be directly compared with the Fig. 3 of Ref.
[26]. We note that essentially the same results were obtained
as in Ref.[26] presumably because their neglect of the

PHYSICAL REVIEW A 63 053607

0.1}

(a)

0.08} J\
Nag
0.06} l‘\
00 02 04 06 08
(&)
0.0% 0.2 0.4 0.6 0.8
c(€)
95

s-wave interaction simply correspondsRe=0 of our more
general results.

0.21
0.2r

0.191

560.18' oy

0.17f

0.16}

0.15

10
c(€)
FIG. 14. Field dependence of, and condensate widthgn
insets with units ofa,) for P=5, A=0.1(a) and\ =10 (b). When

A<M\., the volume of condensate decreases w{tf)). It increases
with c(&) when\ >\, causing the condensate to be always stablethe widths are unchanged with time. Whe(€) # 0, conden-

10
c(€)
FIG. 15. The same as in Fig. 14, but now @ 500.

More interestingly, we show in Fig. 15 for a larger value
of P=500. We find the aspect ratio now changes in the
opposite direction with increasing dipole interaction strength.
This reversal of aspect ratio with increasing value® ¢tlue
to increasing in atom numbers sfwave scattering length
ag) is due precisely to the physics of minimizing the total
system free energy discussed earlier in the TFA. This phe-
nomenon was not observed in the simpler model of Ref.
[26]. We also find thak . remains virtually independent &
at the same value as in the TFA: 5.170169, consistent with
Ref.[26].

B. Evolution of widths

The evolution of condensate widths are found by numeri-
cally integrating Eq(41). Assuming initiallyc(&)=0, v(0)
=vg, V(0)=v,, andv(0)=v,(0)=0, we can apply an
electric field suddenly or slowly far>0. Under stable con-
ditions for the widths, we choose to apply electric field sud-
denly. Otherwise the electric is increased linearly within a
ramp-up time, and then kept constant. First, for the stable
case, Fig. 16 shows condensate widths evolution up to
=30 (it has been calculated up te- 1000). Whenc(£)=0,
the condensate remains at its initially equilibrium state, and
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1.8

-
n

-
o

v{units of at)
S
v(units of at)

o
n

0.8

, o 5 10 15 20 25
t(units of 1/v) t(units of 1/v)

2.6

24 A it 2 l" i " .r\\

2.2

vz(unlts of at)
N

vz(units of at)

1gbt weoud o

1'60 10 20 30

t{units of 1/v)

10 15 20 25
t(units of 1/v)

FIG. 16. Evolution of condensate widths f&t=10, A=1,
v(0)=v,(0)=1.63359 at(&)=0.0(solid line), c(£) =0.4 (dashed
line), andc(&) =0.8 (dash-dotted ling

FIG. 17. Evolution of condensate widths @t£)=1.0 (>cy
=0.9989), for electric field ramp-up tim&=5 (solid ling), 10
(dashed ling and 20(dash-dotted lings Other parameters are
=10, x=1, andv(0)=v,(0)=1.63359.
sate widths oscillate with time, and prolonged numerical

propagation indicates that we always have0 andv,>0, Uy, U U
i.e., the condensate is stable.

We also see from these figures that the oscillation ampli- Uiz Un Uis], (48)
tudes increased with increasing&). Then finally at some Uiz Uz Ugs

stage, we could arrive at<0 or v,<0, signaling the con-
densate collapse. Figure 17 indeed displays such cases when
a linear ramp-on of the external electric field is applied. whereU;;=U;; due to nature of commuting derivative op-
erations with different coordinates, amgh;=U,, and U5
C. Small amplitude shape oscillations =U,; due to the cylindrical symmetry. We find the oscilla-

Once the equilibrium widths are found from numerically ion frequencies to be
solving Egs(44), small amplitude oscillations can be studied
by evaluating the matrix of the second order derivatives of
the equivalent potentidll (vy,vy,v,) Eq.(39). We find that v1=yU11— Uy,
it takes the following symmetric form:

1
V3= E [U11+ U ot Ugg® JUT + U T+ Ugg+ 8UT3+2U 13U 15— 2U 53U 33— 2U 15U 352, (49
|
where the expression for the matrix elemeld{sare listed in V. CONCLUSION

Appendix A. Typical results and mode structure identifica-

tions[38] are given in Fig. 18. We see that mode 1 and mode In conclusion, we have performed a detailed study of

3 are doubly degenerate whef&)=0. This is due to the trapped condensates with dipole interactions. We have devel-
additional symmetryJ;=Usz andU,=U 5 for A=1. oped a general scheme for constructing effective pseudo-
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4 ‘ ‘ PHY-9722410. The computation of this work is partially
supported by NSF through a grant for the ITAMP at Harvard
University and Smithsonian Astrophysical Observatory.

[
(4}

W

X
Yy
o
%2.5 Lo
% P ”v.L APPENDIX: U-MATRIX ELEMENTS
g t
% 15 mode 2 | After tedious calculations, we find that
S
= &r
05 3 5mc(€)
U11:1+ _4+ — [321) +14]1) U
0 . ‘ . ‘ 4 2 2\3 0% z0
) 05 1 15 2 25 Vo wvglg 24(v5—vp)

FIG. 18. Electric field dependence of the shape oscillation fre- —54v3v %+ 1608, — 9(1w3+4v2)vgH (vo /v )] |,
quencies. Other parameters &e 1 andA=1.

Al
potentials for anisotropic interactiofél], which guarantees A

the agreement between the first order Born scattering ampli-

tude from the pseudopotential and the complete scattering 3 P J5mc(€)

amplitude obtained from a multichannel collision calcula- Uzs=A°+ —+ —— | 2— ———— 3[4v0 120505
tion. Our theory has been applied to the study of induced V20 Uolzo 3(vz0~v0)

electric dipole interactions and can also be directly extended

to magnetic dipole interactions as well as permanent electric +5W v+ 208~ 9(vi+4v2)viv 2 H(vo /v )] |,
dipole interactions of trapped moleculgx7].

Finally we provide a reality check for prospects of experi-
mental observations of the electric field induced interaction
effects. Though the required fields are relatively high, there

(A2)

are evidences they can be created with current laboratory p \/ﬁc( &)

technology. In Ref[42] fields of up to 2<10° (V/cm) were U= - 5551606+ 5152~ 3030
used to slow a molecular beam. Go{#t8] used fields up to UoVz0 24(v 70— vp)

4.6x 10° (V/cm) in the measurement of atomic tensor polar-

izability, while Marruset al. [44] reported fields up to f0 186 _ 45,6

(V/cm). What is perhaps most encouraging is a recent experi- 8z~ 4%cH(vo/vz0)] (A3)

ment for cooling molecule beams with time-dependexiia-

batic from the view point of atomic internal dynamjidields

of up to 10 (V/cm) [45]. We also note that at the high fields and
being discussed in this paper, the tunneling ionization of at-
oms remain infinitesimally smaJ#6].

P V5mc(€)
Uis=—— S[405— 360505~ 150505,
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