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Trapped condensates of atoms with dipole interactions
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We discuss in detail properties of trapped atomic condensates with anisotropic dipole interactions. A prac-
tical procedure for constructing anisotropic low-energy pseudopotentials is proposed and justified by the
agreement with results of numerical multichannel calculations. The time dependent variational method is
adapted to reveal several interesting features observed in numerical solutions of condensate wave function.
Collective low-energy shape oscillations and their stability inside electric fields are investigated. Our results
shed new light into macroscopic coherence properties of interacting quantum degenerate atomic gases.
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I. INTRODUCTION

The recent success in atomic Bose-Einstein condensa
~BEC! @1–3# has stimulated great research activities in
trapped quantum gases@4#. To a remarkable degree, a sing
condensate wave function of the macroscopically occup
ground state, described by the nonlinear Schro¨dinger equa-
tion ~NLSE! @5#, captures all essential features of its coh
ence properties@6#. In fact, one of the key diagnosis featur
for BEC, the reversed aspect ratio of a free expanding c
densate, is described purely by the condensate wave fun
@7,8#. In the standard treatment for the condensate w
function of interacting atoms, realistic interatomic potent
V(RW ) is often not directly used. Instead, a contact pseudo
tential u0d(RW ), obtained under the so-called shape indep
dent approximation~SIA! @9# is used. Such an idealizatio
results in tremendous simplification, yet to date, SIA h
worked remarkably well as verified by both theoretical c
culations and experimental observations@4,10,11#.

Currently available degenerate quantum gases are
and dilute, the interaction is therefore dominated bys-wave
collisions, described by a single atomic parameterasc, the
s-wave scattering length, if the interatomic potential is iso
tropic and short ranged~decaying fast than21/R3 asymp-
totically!. The complete scattering amplitude is then isot
pic and energy independent, given byf (kW ,kW8)524pasc for
collisions of incoming momentumkW state scattering intokW8.

One of the attractive features of atomic degenerate g
lies at effective means for control of the atom-atom inter
tion @12–14#. Indeed, very recently several groups have s
cessfully implemented Feschbach resonance@15,16#, thus
enabling a control knob onasc through the changing of an
external magnetic field. Other physical mechanisms also
ist for modifying atom-atom interactions, e.g., the sha
resonance as proposed in Ref.@17#. In an external electric
field, interatomic potential is modified by the addition of a
anisotropic~induced! dipole interaction.

Although anisotropically interacting Fermi system h
been an important area of study, e.g., liquid3He @18# and
d-wave paired high-Tc superconductors@19#. Its bosonic
counterpart has not been studied in great detail. In particu
we are not aware of any systematic approach for construc
an anisotropic pseudopotential@9#.
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For bosonic systems, another related topic is the cond
sate stability. Under the SIA, the scattering length take
positive or negative value, corresponding to repulsive or
tractive interactions. Whenasc,0 occurs, self-interaction
leads to a collapse of BEC in dimensions higher than 1@20#,
thus the resulting condensate is limited by a critical num
of particles@21#. Anisotropic dipole interactions, on the othe
hand, are more complicated as both attractive and repul
interactions arise along different directions. We note t
several recent investigations have studied efforts of nonlo
interactions on condensate stability@22,23#.

In this paper, we study properties of trapped BEC of
oms with dipole interactions@24#, arising from either exter-
nal electric field~induced! or permanent magnetic momen
@25#. We propose a practical method for constructing ani
tropic pseudopotentials that can also be extended for in
tigation of polar molecular BEC@27,28#. This paper is orga-
nized as following. We first briefly review the usua
pseudopotential approximation under the SIA. In Sec. II
describe and justify in detail a procedure for construct
effective low-energy pseudopotentials of anisotropic inter
tions. In Sec. III we provide our numerical procedure f
solving the NLSE with anisotropic dipole interactions. Pa
ticular emphasis is put on the careful treatment of the sin
lar origin of dipole interactions. We also present and disc
results from selected numerical calculations. To explain
stability region as well as the interesting aspect ratios
served from our numerical calculations, we perform in S
IV an analytic time dependent variational calculation. W
compare the results obtained with direct numerical soluti
of NLSE. Finally we conclude.

II. FORMULATION

For N trapped spinless bosonic atoms in a potentialVt(rW),
the second quantized Hamiltonian is given by

H5E drWĈ†~rW !F2
\2

2M
¹21Vt~rW !2mGĈ~rW !

1 1
2 E drWE drW8Ĉ†~rW !Ĉ†~rW8!V~rW2rW8!Ĉ~rW8!Ĉ~rW !,

~1!
©2001 The American Physical Society07-1
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S. YI AND L. YOU PHYSICAL REVIEW A 63 053607
where Ĉ(rW) and Ĉ†(rW) are atomic~bosonic! annihilation
and creation fields. The chemical potentialm guarantees the

atomic numberN̂5*drWĈ†(rW)Ĉ(rW) conservation.
The bare potentialV(RW ) in Eq. ~1! needs to be renormal

ized for a meaningful perturbation calculation@9#. The usual
treatment is based an effective interaction obtained by a
summation of certain classes of interaction diagrams@29–
31#. Physically the SIA can be viewed as a valid low-ener
and low density renormalization scheme, one simply
places the bare potentialV(RW ) by a pseudopotentialu0d(RW )
whose first order Born scattering amplitude reproduces
complete scattering amplitude (2asc). This gives u0
54p\2asc/M .

When an electric field is introduced along the positivez
axis, an additional term

VE~RW !5u2

Y20~R̂!

R3
, ~2!

appears in the atom-atom interaction@17#, where u2

524A(p/5)a(0)a* (0)E 2. a(0) is the atomic polarizabil-
ity, and E denotes the electric field strength. As was sho
before @17#, this modification results in a completely ne
form for the low-energy scattering amplitude

f ~kW ,kW8!uk5k8→054p (
lm,l 8m8

t lm
l 8m8~E!Ylm* ~ k̂!Yl 8m8~ k̂8!,

~3!

TABLE I. T̄ lm
l 8m85t lm

l 8m8(2,0)/t00
20(2,0) for small (l ,l 8).

( lm),(l 8m8) ~00! ~20! ~40! ~60! ~80!

~00! 0 1 0 0 0
~20! 1 20.63889 0.14287 0 0
~40! 0 0.14287 20.17420 0.05637 0
~60! 0 0 0.05637 20.08131 0.03008
~80! 0 0 0 0.03008 20.04707

FIG. 1. asc vs E for 41K in the electron spin triplet state.
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with t lm
l 8m8(E) the reducedT-matrix elements. They are a

energy independent and act as generalized scattering len
The anisotropicVE causes the dependence on both incid
and scattered directionsk̂ and k̂85R̂.

We therefore propose a general~energy-independent! an-
isotropic pseudo potential constructed according to

Veff~RW !5u0d~RW !1 (
l 1.0,m1

g l 1m1

Yl 1m1
~R̂!

R3
, ~4!

whose first Born amplitude is

f Born~kW ,kW8!52~4p!2ascY00* ~ k̂!Y00~ k̂8!

2
M

4p\2 (
l 1m1

g l 1m1
~4p!2

3(
lm

(
l 8m8

T lm
l 8m8~ l 1 ,m1!Ylm* ~ k̂!Yl 8m8~ k̂8!,

~5!

with T lm
l 8m8( l 1 ,m1)5( i ) l 1 l 8R l

l 8I lm
l 8m8( l 1 ,m1). Both

I lm
l 8m8~ l 1m1!5^Yl 8m8uYl 1m1

uYlm&

5~21!mA~2l 11!~2l 811!~2l 111!

4p

3S l l 8 l 1

2m m8 m1
D S l l 8 l 1

0 0 0D ~6!

and

TABLE II. t̄ lm
l 8m8 for 7Li.

( lm),(l 8m8) ~00! ~20! ~40! ~60! ~80!

~00! 0 1.0 0.0 0.0 0.0
~20! 1.0 20.63 0.14 0.0 0.0
~40! 0.0 0.14 20.17 0.057 0.0
~60! 0.0 0.0 0.057 20.080 0.031
~80! 0.0 0.0 0.0 0.031 20.044

TABLE III. t̄ lm
l 8m8 for 39K.

( lm),(l 8m8) ~00! ~20! ~40! ~60! ~80!

~00! 0 1.0 0.0 0.0 0.0
~20! 1.0 20.64 0.14 0.0 0.0
~40! 0.0 0.15 20.17 0.085 0.0
~60! 0.0 0.0 0.085 20.127 0.047
~80! 0.0 0.0 0.0 0.047 20.074
7-2
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R l
l 85E

0

`

dR
1

R
j l~kR! j l 8~k8R!

5
p

8
h l

GS l 1 l 8

2 D
GS 31 l 82 l

2 DGS l 1
3

2D
3 2F1S 212 l 81 l

2
,
l 1 l 8

2
,l 1

3

2
;h2D ~7!

can be computed analytically. The 1/R3 form in Eq. ~4! as-

sures allR l
l 8 to be k5k8 independent~easily seen by a

change of variable tox5kR in the integral!. Putting

f Born~kW ,kW8!5 f ~kW ,kW8!, ~8!

i.e., requiring the Bohn amplitude from the pseudopoten
Eq. ~4! to be the same as the numerically computed va

f (kW ,kW8), one can solve for allg l 1m1
(E) from knownt lm

l 8m8(E)
@17,32#. This reduces to a set of~under determined! linear
equations

2
M

4p\2 (
l 1m1

g l 1m1
~4p!T lm

l 8m8~ l 1 ,m1![t lm
l 8m8 , ~9!

for all ( lm) and (l 8m8) with l ,l 8Þ0, and separatelyasc(E)
52t00

00(E).
Considerable simplification arises further for bosons~fer-

mions! as only even~odd! ( l ,l 8) terms are needed to matc
in ~9!. Figure 1 displays the result of field dependentasc(E)
41K atoms in the triplet electron spin state. Note the spikes
shape resonances. The Born amplitude for the dipole t
VE is

TABLE IV. t̄ lm
l 8m8 for 41K.

( lm),(l 8m8) ~00! ~20! ~40! ~60! ~80!

~00! 0 1.0 0.0 0.0 0.0
~20! 1.0 20.64 0.14 0.0 0.0
~40! 0.0 0.14 20.17 0.057 0.0
~60! 0.0 0.0 0.057 20.081 0.030
~80! 0.0 0.0 0.0 0.030 20.047

TABLE V. t̄ lm
l 8m8 for 85Rb.

( lm),(l 8m8) ~00! ~20! ~40! ~60! ~80!

~00! 0 1.0 0.0 0.0 0.0
~20! 1.0 20.64 0.14 0.0 0.0
~40! 0.0 0.14 20.17 0.056 0.0
~60! 0.0 0.0 0.056 20.081 0.030
~80! 0.0 0.0 0.0 0.030 20.047
05360
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f Born~kW ,kW8!5u2

M

4p\2 ~4p!2T 00
20

3 (
lm,l 8m8

T̄ lm
l 8m8Ylm* ~ k̂!Yl 8m8~ k̂8!, ~10!

with T 00
20520.023508.T̄ lm

l 8m85T lm
l 8m8(2,0)/T 00

20 are indepen-
dent of electric fieldE within the perturbative Born approxi
mation as tabulated below.

We find that away from regions ofshape resonancesto be

discussed elsewhere@32#, all numerically computedt lm
l 8m8(E)

values, large enough to justify their inclusions, are actua
all proportional toE 2. Thus, we could rewritef (kW ,kW8) as

f ~kW ,kW8!5~4p!t00
20~E! (

lm,l 8m8
t̄ lm

l 8m8Ylm* ~ k̂!Yl 8m8~ k̂8!,

~11!

with scaled quantitiest̄ lm
l 8m85t lm

l 8m8(E)/t00
20(E) now all being

constants. We have since computed~numerically! for several

alkali metal isotopes, our results fort̄ lm
l 8m8 are tabulated be-

low.
The agreement between the first order Born approxim

tion and the multichannel scattering calculations is rema
able. We estimate the numerical scattering results to be
curate to a few percent~except for 39K), independent of
atoms being bosons~evenl ,l 8) or fermions~odd l ,l 8). Only
bosonic results are being considered in this paper. Thi
displayed by noticing the agreement between Table I (; a
few percent! with Tables II–VI. This interesting observatio
applies for all bosonic alkali triplet states7Li, 39,41K, and
85,87Rb, for up to a field strength of 33106 ~V/cm! @17,32#
computed by us. Physically, this implies the effect ofVE is
perturbative whenE remains small~in a.u.!. For the conve-
nience of further discussions, we tabulate polarizabilities
selected atoms in Table VII.

What is remarkable is the fact thatT 00
20(E) andt00

20(E) also
agree in absolute values@17# except for a slight difference
~1–6 %!. They are calculated below and tabulated in Ta
VIII.

TABLE VI. t̄ lm
l 8m8 for 87Rb.

( lm),(l 8m8) ~00! ~20! ~40! ~60! ~80!

~00! 0 1.0 0.0 0.0 0.0
~20! 1.0 20.64 0.15 0.0 0.0
~40! 0.0 0.15 20.17 0.056 0.0
~60! 0.0 0.0 0.056 20.079 0.032
~80! 0.0 0.0 0.0 0.032 20.045

TABLE VII. Atomic polarizabilities in ~a.u.!.

H Li Na K Rb

a(0) 4.5 159.2 162 292.8 319.2
7-3
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u2

M

4p\2 ~4p!2T 00
205216pAp

5
T 00

20a2E 2
M

\2

517183M̄ ā2Ē2a0 , ~12!

where all overlined quantities are in atomic units~a.u.!.
An important parameter in our discussion is the ratio

tween u2 and u0. Since the results from first order Bor
approximation and the multichannel calculations are ab
the same, one can write this ratio as

c~E!52
u2

u0
5gE 2, ~13!

whereg.1.748310217ā2M̄ /āsc and E is in unit of V/cm.
The g values for selected atoms are tabulated in Table I

Most atoms possess permanent magnetic dipoles. W
alkali metals, the magnetic dipole mainly originates fro
valence electron spin, typically measured in units of Bo
magneton. It is therefore interesting to compare electric
pole interactions with magnetic dipole interactions. The
pole interaction strength between atoms of a permanent m
netic dipolem is

m25m̄2mB
251.33131025m̄2e2a0

2 , ~14!

with mB the unit of Bohr magneton. For induced electr
dipoles, the interaction strength is

a2E 25ā2Ē2e2a0
2 . ~15!

A typical heavy alkali atom hasā;200, thus for which a 1
(mB) magnetic moment corresponds to an effective elec
field of 3.331025 ~a.u.!, or 1.73105 ~V/cm!. Atoms with
large magnetic moments effectively simulates induced dip
interactions at a high value of equivalent electric field@25#.

TABLE VIII. Comparison of numerical values o
u2(M /4p\2)(4p)2T 00

20 with 2(4p)t00
20(E), the cause of the sligh

difference is unclear but within numerical errors.

Born Multichannel
atom

u2

M

4p\2 (4p)2T 00
20(a0)

2(4p)t00
20(E)(a0)

7Li 3.0403108Ē 2 3.2383108Ē 2

39K 5.7133109Ē 2 5.6993109Ē 2

41K 6.0063109Ē 2 5.993109Ē 2

85Rb 1.48631010Ē 2 1.47431010Ē 2

87Rb 1.49531010Ē 2 1.51231010Ē 2

TABLE IX. Values of parameterg for selected atoms with thei
field free (E50) scattering lengths.

H 7Li 23Na 41K 87Rb

g(310213) 2.931023 21.1 2.0 2.2 15.0
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As can be concluded from comparing listed data in
tables, we can approximate Eq.~4! by keeping only thel 1
52, m150 term to achieve a satisfactory level of accurac
Thus away from shape resonances we take

Veff~RW !5u0d~RW !1u2Y20~R̂!/R3, ~16!

whereu05
4p\2

M
asc(E) andu252c(E)u0. The Hamiltonian

~1! then becomes

H5E drWĈ†~rW !F2
\2

2M
¹21Vt~rW !2mGĈ~rW !

1
u0

2 E drWĈ†~rW !Ĉ†~rW !Ĉ~rW !Ĉ~rW !

1
u2

2 E drWdrW8Ĉ†~rW !Ĉ†~rW8!
Y20~R̂!

R3
Ĉ~rW8!Ĉ~rW !,

~17!

with RW 5rW2rW8. The Heisenberg equation forĈ(rW,t) be-
comes nonlocal. At zero temperature the condensate w

function c(rW,t)5^Ĉ(rW,t)& obeys the NLSE

i\
d

dt
c~rW,t !5F2

\2

2M
¹21Vt~rW !2m1u0uc~rW,t !u2

1u2E drW8
Y20~R̂!

R3
uc~rW8,t !u2Gc~rW,t !,

~18!

with c(rW,t) normalized toN ~the number of the atom in the
condensate!.

III. NUMERICAL STUDIES

In this section we discuss the ground state properties
trapped condensates based on numerical solutions of N
~18!. We start with a detailed analysis of our numerical pr
cedure for handling the nonlocal dipole interaction@22–25#.

A. The numerical procedure

We use steepest descent through a propagation of Eq.~18!
in imaginary time (i t ) to find its ground state wave function
With an axial symmetric harmonic trap

Vt~rW !5
1

2
Mn2~lx

2x21ly
2y21lz

2z2!, ~19!

we rescale Eq.~18! by introducing dimensionless units fo
length (at5A\/Mn), energy (\n), time (2i /n), and wave
function (AN/at

3). We than obtain

2
d

dt
c~rW,t !5Ĥc~rW,t !, ~20!
7-4
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with

Ĥ52¹21~lx
2x21ly

2y21lz
2z2!22m

12~2p!3/2PF uc~rW,t !u22c~E!E drW8
Y20~R̂!

R3
uc~rW8,t !u2G ,

~21!

whereP5A2/pNasc/at andc(rW,t) is normalized to 1.
The ground state is found be starting with an arbitra

random wave function, and propagating Eq.~20! in t until it
is stable~apart from its decreasing norm!. In practice we
chose an appropriate time stepDt and iterates the Eq.~20!
according to

c~rW,t1Dt !5c~rW,t !2~Dt !Ĥc~rW,t !. ~22!
be
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We renormalizec to 1 after each iteration and adjustDt to
control the rate of convergence.

For a cylindrical symmetric trap (lx5ly51,lz5l), the
ground state wave function also possesses the cylind
symmetry. Therefore the nonlocal term simplifies to

E drW8uc~r8,z8!u2
Y20~R̂!

R3

5E dz8E dr8K~r8,r,z82z!uc~r8,z8!u2, ~23!

with a kernel
K~r8,r,z82z!52A5

p

r8

@~r2r8!21~z82z!2#2@~r1r8!21~z82z!2#3/2

3S @~r22r82!222~r21r82!~z82z!223~z82z!4t#EF 4rr8

~r1r8!21~z82z!2G
1@~r2r8!21~z82z!2#~z82z!2KF 4rr8

~r1r8!21~z82z!2G D , ~24!
h
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whereE@•••# andK@•••# are standard Elliptical integrals.
We discretize the (r,z) plane into a two-dimensional grid

of points such that wave function values at each point
comes a matrix. At each time step the matrix elements
updated according to Eq.~22!. The derivatives in the Hamil-
tonian are evaluated by means of finite-difference metho
Typically, the ground state can be sufficiently well describ
using a grid of 1003200 points in the range 0,r,5 and
25,z,5.

At first sight, one may naively underestimate the comp
cation of Eq.~20! due to the nonlocal interaction term in E
~21!. Several other groups have addressed nonlocal inte
tions previously@11,23#. There is, however, a significant nu
merical challenge with the dipole interaction, which is s
gular at the origin. To accurately represent its detai
structure, an enormously large grid is needed. Althoug
Fourier transform into momentum space could simplify t
convolution operation of the nonlocal term. We found it ha
to completely avoid the effort of the singularity this way b
going to a momentum representation with a limited coa
grid @25#. Physically, this singularity implies the presence
two different length scales for Eq.~20!. We thus developed a
numerical procedure with two overlaying grids: a coarse g
for the relatively smooth wave function and a much fin
grid for computing the nonlocal dipole interaction kernel.

The kernelK(r8,r,z82z) is divergent atrW5rW8, we thus
define a cutoff radiusRc such thatK(r8,r,z82z)50 when-
-
re

s.
d

-

c-

-
d
a

e
f

d
r

ever urW2rW8u,Rc . This cutoff is chosen to be small enoug
that negligible errors result from the numerically represen
kernel. TypicallyRc;50(a0) taken, which is much smalle
than the wave function grid size. The rapid varying kern
K(r8,r,z82z) is treated with a finer grid. Instead of directl
integrating over K(r8,r,z82z)uc(r8,z8)u2 on the wave
function grid, we first integrate the kernel separately over
fine grid around each of the wave function grid point. Su
an integration is numerically intensive, but only needs to
performed once for each of the wave function grid point
the kernel is determined by the geometry of system. T
integrated kernel values on the wave function grid remain
same for different traps and different number of atoms.
nally the nonlocal term is approximated by integrating ov
the wave function grid using the product of integrated ker
values and the wave function.

For a homogeneous distribution of aligned dipoles,
mean dipole interaction vanishes asY20(R̂) averages to zero
upon integration overdr̂ or dr̂8. This property is maintained
for our kernel Eq.~24! even though we have integrated ov
(f2f8) first. We have verified this by noting that the inte
gration ofK(r8,r,z82z) over (r,z) and (r8,z8) does van-
ish.

For cylindrically symmetric traps, the wave function gr
as well as the integrated kernel region is as illustrated in F
2. An accurate representation of the integrated kernel
7-5
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quires a quadrature operation over a much finer grid for e
of the shaded regions surrounding the wave function grid.
is shown in Fig. 2, there are three different types of sha
regions, labeled as 1, 2, and 3. Both types of 1 and 2
boundary terms, which are not needed since they are, res
tively, at z56Lz andr50,Lr where either the wave func
tion c(r8,z8) vanishes or the integration measure*r8dr8
vanishes. Therefore, we need only to compute the integra
of kernel over type 3 element by defining a much finer g
and use standard numerical quadrature techniques. W
(r,z)Þ(r8,z8), the integration reduces to a two-dimension
one which can be easily performed. On the other hand
three-dimensional integration is needed when (r,z)
5(r8,z8). In this case we have to carefully implement t
cutoff radiusRc .

Figure 3 compares the kernel with the coarse grained
tegrated kernel. Note the significantly different vertical sca

B. Vortex states

Simple vortex states@33–35# with quantized circulations
can also be considered by writing the condensate wave f
tion in the form

c~rW !5uc~rW !ue2 inf, ~25!

with f the azimuthal angle with respect to thez axis. The
corresponding Eq.~20! for uc(rW)u is then modified by the
addition ofn2/r2 to Ĥ of Eq. ~21!.

C. Numerical results

1. Ground- state wave function

The ground-state properties of trapped condensates
dipole interactions were first discussed by us in Ref.@24#.
Our basic findings are~1! condensates become elongat
along the direction of external field and shrank in the
thogonal radial direction;~2! for given values ofP and l,
there exists a maximumcM(P,l) of a threshold field
strength beyond which condensate collapse occurs. Figu
displays numerically computedcM for l51 at several dif-

FIG. 2. Computation of kernel in arbitrary units.
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ferent P values. For comparison we also show the resu
from variational calculations to be discussed later.

The condensate collapse is mainly due to attractive dip
interactions along the direction of the external field. To mi
mize its total energy, condensed atoms prefer to align al
the attractive direction (z axis!, while narrowing its width
along the radially repulsive direction. The collapsing occu
when the radial width eventually approaches zero with
creasing external field strength@36#.

Figure 5 shows a vortex state wave function forn51.
The effects of dipole interactions are similar to the grou
state. Asc(E) increases, the vortex state will also collaps
Because of the zero density inside the vortex core,cM in this

FIG. 3. Typical behavior ofK(r8,r,0) ~a! and the correspond
ing integrated kernel over the wave function grid~b!. The solid
~dashed! lines are forr51.0 ~3.0!.

FIG. 4. cM at the highest field value of condensate collapsing
l51. Numerically computed values are in circles connected b
dotted line. The solid line is from the variational calculation.
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case is much larger than for the ground state.

2. Comparing numerical solutions with TFA

A useful approximation for the ground state solution
NLSE ~18! is the Thomas-Fermi approximation~TFA!.
When the interaction between atoms are repulsive, i.e., w
a positive scattering length, the condensate is expecte
increase its size as compared to the single atom ground
in the trap. With more atoms, the larger the condensate s
eventually the spatial directives, consequently the kinetic
ergy term becomes negligible. In this limit, TFA is used
find the ground state wave function by neglecting the kine
energy term in Eq.~21!. With a SIA interaction term, the
solution simply takes the shape of the inverted trap poten
Vt(rW). The nonlocal dipole interaction term, however, pr
vents a simple analytic solution even with the TFA. Typic
solutions to Eq.~18! with and without TFA forP55000,
l51, andc(E)50.2,0.6,0.7 are compared in Fig. 6.

IV. TIME-DEPENDENT VARIATIONAL ANALYSIS

The time-dependent variational approach can also be u
to analyze solutions of Eq.~18! @37,38#. We start by identi-
fying a Lagrangian densityL

L5
i

2
\Fc~rW !

]c* ~rW !

]t
2c* ~rW !

]c~rW !

]t
G1

\2

2M
u¹c~rW !u2

1Vt~rW !uc~rW !u21
u0

2
uc~rW !u4

1
u2

2
uc~rW !u2E drW8

Y20~R̂!

R3
uc~rW8!u2. ~26!

FIG. 5. n51 vortex state wave function with~a! no external
electric field and~b! c(E)52.0. Other parameters areP510 and
l51.
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The NLSE can then be found from a minimization of th
action @38#

S5E LdrWdt. ~27!

To simplify the variational calculation, we restrictc to a
convenient family of trial functions and study the time ev
lution of the parameters that define the family. A natu
choice is a Gaussian-like function first used in Ref.@38#

c~x,y,z,t !5A~ t ! )
h5x,y,z

e2[h2h0(t)] 2/2wh
2

1 ihah(t)1 ih2bh(t),

~28!

where A ~complex amplitude!, wh ~width!, ah ~slope!, bh
(curvature radius)21/2, and h0 ~center of cloud! are varia-
tional parameters. This approach, pioneered by Perez-Ga
et al. @38#, has since been successfully used for many stud
of trapped condensates, a more recent application attem
to explain the anomalous behavior in the finite temperat
excitation experiment@39–41#.

Our goal here is to find equations governing the var
tional parameters. To this aim, we insert Eq.~28! into Eq.
~26! and calculate an effective LagrangianL by integrating
the Lagrangian density over all space coordinates

L5^L&5E
2`

`

LdrW, ~29!

to arrive at

FIG. 6. Ground state wave functions with~solid line! and with-
out ~dash-dotted line! TFA. P55000, l51, and c(E)
50.7,0.6,0.2 in descending order of wave function values at
origin.
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L5
i\N

2 S Ȧ*

A*
2

Ȧ

AD 1
N

2 (
h

F S \ḃh1
2\2bh

2

M
1

1

2
Mn2lh

2 D
3~wh

212h0
2!1S \ȧh1

2\2ahbh

M D2h1
\2

2Mwh
2

1
\2ah

2

M G1
N2

2A8p3/2wxwywz
Fu01u2A 5

16p

3E drW expH 2(
h

h2

2wh
2J 3 cos2 u21

r 3 G , ~30!

where we have used atom number conservation

N5p3/2uA~ t !u2wx~ t !wy~ t !wz~ t !5const. ~31!

At this point, the variation calculation effectively ha
been reduced to a finite dimensional problem, i.e., to so
the Lagrange equations

d

dt S ]L

]q̇ j
D 2

]L

]qj
50, ~32!

with the notation

qj[$wx ,wy ,wz ,A,A* ,x0 ,y0 ,z0 ,ax ,ay ,az ,bx ,by ,bz%.
~33!

We find equations for the center of the condensate

ḧ01lh
2n2h050 ~34!

and the condensate widths satisfy

ẅh1lh
2n2wh5

\2

M2wh
3 2

N

4A2p3/2M

]

]wh

3F 1

wxwywz
S u01u2A 5

16pE drW

3expH 2(
h

h2

2wh
2J 3 cos2 u21

r 3 D G .

~35!

The rest of the parameters can be obtained from

bh5
Mẇh

2\wh
, ~36!

and

ah5
M

\
S ḣ02

h0ẇh

wh
D . ~37!

It is convenient to introduce new dimensionless variab
t5nt andwh5atvh . We then arrive at
05360
e

s

d2

dt2 vh1lh
2vh5

1

vh
3 2P

]

]vh
F 1

vxvyvz
S 12A 5

16p
c~E!

3E drW expH 2(
h

h2

2vh
2J 3cos2u21

r 3 D G ,

~38!

whereP5A2/pNasc/at . This equation describes the motio
of a particle with coordinates (vx ,vy ,vz) in an effective po-
tential

U~vx ,vy ,vz!5
1

2
~lx

2vx
21ly

2vy
21lz

2vz
2!1

1

2 S 1

vx
2 1

1

vy
2 1

1

vz
2D

1
P

vxvyvz
F12A 5

16p
c~E!E drW

3expH 2(
h

h2

2vh
2J 3 cos2 u21

r 3 G . ~39!

For a cylindrically symmetric trap withlx5ly51, lz
5l, all integrals can be performed analytically to yield

d2

dt2 v1v5
1

v3 1
P

v3vz
@12c~E! f ~k!#, ~40!

d2

dt2 vz1l2vz5
1

vz
3 1

P

v2vz
2 @12c~E!g~k!#, ~41!

with vx5vy5v, k5v/vz , and

f ~k!5
A5p

6~12k2!2
@24k427k21219k4H~k!#,

~42!

g~k!5
A5p

3~12k2!2
@22k4110k21129k2H~k!#.

H(k)[tanh21A12k2/A12k2. The equilibrium widths are
then determined by

v05
1

v0
3 1

P

v0
3vz0

@12c~E! f ~k0!#,

~43!

l2vz05
1

vz0
3

1
P

v0
2vz0

2 @12c~E!g~k0!#.

Using vz0 andk0, Eq. ~43! can be rewritten as

k0vz05
1

k0
3vz0

3
1

P

k0
3vz0

4 @12c~E! f ~k0!#,

~44!

l2vz05
1

vz0
3

1
P

k0
2vz0

4 @12c~E!g~k0!#.
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In the following discussion, we consider onlyasc(E).0
case, which implies bothP.0 andc(E).0.

A. Equilibrium widths

First, for simplicity, we assume that our system sati
Thomas-Fermi limit (P@1), then we can safely ignore th
kinetic term and rewrite Eq.~44! for k0 in the following
form:

k0
2@12c~E!g~k0!#5l2@12c~E! f ~k0!#. ~45!

This equation can be solved graphically. From Fig. 7,
first note bothf (k) andg(k) are monotonically decreasin
functions bounded betweenA5p/3 and22A5p/3, also the
inequality f (k).g(k) holds for all k.0. Then for all k
>l, we havek2@12c(E)g(k)#.l2@12c(E) f (k)#, there-
fore, if k0 is a solution of Eq.~45!, it must satisfyk0,l.
Meanwhile, whenc(E)50, the solution fork in Eq. ~45! is
k05l. This then proves that no matter what the initial fiel
free condensate aspect ratio is, the condensate always
come more prolate along the electric field direction, i.e.,
proximately as illustrated in Fig. 8, it expands along the fi
direction but shrinks in the orthogonal direction. As will b
discussed in more detail later, the total condensate volu
actually shrinks with increasing fields because of the attr
tive dipole interaction.

This result, first explained by us@24# in terms of the mini-
mization of total energy, is different from the conclusio

FIG. 7. f (k), g(k).

FIG. 8. Condensates~pancake shaped in the left and cig
shaped to the right! always expands along the direction of an ext
nally applied electric field and shrinks along the repulsive rad
directions. Darker ellipses are for higher electric fields.
05360
e
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e
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reached in Ref.@25# based on a force argument. This inte
esting feature has also been independently verified by
merical solutions based on the FFT algorithm adopted
Goral et al. @25#.

We can also rewrite Eq.~45! as

k22l25c~E!h~k!, ~46!

with h(k)5k2g(k)2l2f (k). Figure 9 shows its graphica
solutions (l51) at several differentc(E) values.

First, we note thath(k50)52A5pl2/3. Thus, as long
as c(E),3/A5p, there will be one and only one root. Th
result may not look absolutely clear from the figure beca
of plotting constraints, but it can be seen clearly from E
~45!. We also find that asc(E) increases, there may exis
one, two, or zero roots fork. Oncek0 is known, one can
easily find solutionsv0 andvz0, whose stability can also be
checked straightforwardly. It turns out that, in all our calc
lations, whenever only one root fork occurs its correspond
ing solution forv0 andvz0 is always stable. If there are tw
roots fork, the solution forv0 andvz0 corresponding to the
smallerk0 root is a saddle point, thus always unstable, wh
the other is always stable.

We now consider thel dependence of the condensa
property. Figure 10 shows the functionh(k) at several dif-

-
l

FIG. 9. Graphic solutions of Eq.~46! for l51. Functionsk2

2l2 ~solid line! andc(E)h(k) ~dashed line! for different values of
c(E).

FIG. 10. Functionh(k) for different l value.
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S. YI AND L. YOU PHYSICAL REVIEW A 63 053607
ferent l values. We see that asl increases, the maximum
value of functionh(k), hmax also increases, andhmax50 at
lc55.170169. For thosel values corresponding to a neg
tive hmax, no root ofk is found if c(E) becomes sufficiently
large. But whenl>lc , at least one root fork exists no
matter how large ac(E) is. This means the condensate ca
not simply collapse even at these very large electric fi
strengths. Physically this implies the increased stability
condensate inside an electric field with increasing value
l. A condensate of a pancake shape is more stable than
with a cigar shape. This can be simply understood from
following argument; The collapse of a condensate un
electric fields is due to the alignment of atoms along
attractivez-axis direction. A largerl value prevents such
alignment which increases both kinetic as well as trap po
tial energy, hence increases the stability. In Fig. 11, we
play cM as a function ofl, which separates the stable an
unstable regions. Rigorous numerical calculations, on
other hand, find that condensate can still collapse even w
l>lc . For example, we found collapse occurs whenP
>5000 withl.7, @c(E).2.0#. This difference maybe due
to the choice of a simple Gaussian shaped variation func
~28!.

When the system is not in the Thomas-Fermi limit, w
have to first solve fork0 from equation

k0
22l25c~E!@k0

2g~k0!2l2f ~k0!#1H ~k0
42l0

2!4

P4k0
2 $12k0

2

2c~E!@g~k0!2k0
2f ~k0!#%J 1/5

, ~47!

and then using

vz05P
k0

2@12c~E!g~k0!#2l2@12c~E! f ~k0!#

l22k0
4

,

and v05k0vz0 to find the equilibrium widths. In this case
we find possibilities for one, two, three, and four or no roo
of k0 depending on values ofP, c(E), andl. The stability
conditions for these roots, however, are similar to the T
case as discussed before—there is at most only one s
solution. In Fig. 12, we presentk0 , v0, andvz0 as functions

FIG. 11. cM as a function ofl with TFA.
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of c(E). We see thatv0 decreases with increasingc(E), and
the condensate collapses whenv0 goes to zero. Figure 12~c!
displays the dependence of the condensate volume oE,
where the volume is defined as the produce of its effec
widths in three separate dimensions. The shrinking volu
increases the condensate density, which in turn can sig
cantly increase the three body loss process, providing a
tentially useful diagnosis tool@15#.

Figure 13 showscM as a function ofP for different l
values. We see that, for smallerP, a condensate with a sma
l can be more stable than condensates with largerl; while
for larger P, a condensate with a largerl is always more
stable than condensates with smallerl. This also confirmed
by both variational~TFA! and numerical calculations.

After we first submitted this paper, a paper on the sa
topic become available@26#. We therefore compare our re
sults with those from Ref.@26# in the next few figures. Figure
14 displays the change of aspect ratio of the ground state

FIG. 12. Field dependence ofk0 ~a!, v0 , vz0 ~b!, and normalize
volume~c! of condensate forP510, l51. Numerically computed
results are in circles connected by dotted lines, the solid lines
from variational calculations.
7-10
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TRAPPED CONDENSATES OF ATOMS WITH DIPOLE . . . PHYSICAL REVIEW A 63 053607
two extreme values ofl50.1,10 and for a small value o
P55, and can be directly compared with the Fig. 3 of R
@26#. We note that essentially the same results were obta
as in Ref. @26# presumably because their neglect of t
s-wave interaction simply corresponds toP50 of our more
general results.

FIG. 13. cM as a function ofP, for l50.5 ~solid!, 1.0 ~dashed!,
and 2.0~dash-dotted line!. As P→`, cM goes to the value obtaine
under TFA.

FIG. 14. Field dependence ofk0 and condensate widths~in
insets with units ofat) for P55, l50.1 ~a! andl510 ~b!. When
l,lc , the volume of condensate decreases withc(E). It increases
with c(E) whenl.lc , causing the condensate to be always sta
05360
.
ed

More interestingly, we show in Fig. 15 for a larger valu
of P5500. We find the aspect ratio now changes in t
opposite direction with increasing dipole interaction streng
This reversal of aspect ratio with increasing values ofP ~due
to increasing in atom numbers ors-wave scattering length
asc) is due precisely to the physics of minimizing the tot
system free energy discussed earlier in the TFA. This p
nomenon was not observed in the simpler model of R
@26#. We also find thatlc remains virtually independent ofP
at the same value as in the TFA: 5.170169, consistent w
Ref. @26#.

B. Evolution of widths

The evolution of condensate widths are found by nume
cally integrating Eq.~41!. Assuming initiallyc(E)50, v(0)
5v0 , vz(0)5vz0, and v̇(0)5 v̇z(0)50, we can apply an
electric field suddenly or slowly fort.0. Under stable con-
ditions for the widths, we choose to apply electric field su
denly. Otherwise the electric is increased linearly within
ramp-up time, and then kept constant. First, for the sta
case, Fig. 16 shows condensate widths evolution up tt
530 ~it has been calculated up tot51000). Whenc(E)50,
the condensate remains at its initially equilibrium state, a
the widths are unchanged with time. Whenc(E)Þ0, conden-.

FIG. 15. The same as in Fig. 14, but now forP5500.
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S. YI AND L. YOU PHYSICAL REVIEW A 63 053607
sate widths oscillate with time, and prolonged numeri
propagation indicates that we always havev.0 andvz.0,
i.e., the condensate is stable.

We also see from these figures that the oscillation am
tudes increased with increasingc(E). Then finally at some
stage, we could arrive atv,0 or vz,0, signaling the con-
densate collapse. Figure 17 indeed displays such cases
a linear ramp-on of the external electric field is applied.

C. Small amplitude shape oscillations

Once the equilibrium widths are found from numerica
solving Eqs.~44!, small amplitude oscillations can be studie
by evaluating the matrix of the second order derivatives
the equivalent potentialU(vx ,vy ,vz) Eq. ~39!. We find that
it takes the following symmetric form:

FIG. 16. Evolution of condensate widths forP510, l51,
v(0)5vz(0)51.63359 atc(E)50.0 ~solid line!, c(E)50.4 ~dashed
line!, andc(E)50.8 ~dash-dotted line!.
a
d

05360
l

i-

hen

f

S U11 U12 U13

U12 U11 U13

U13 U13 U33

D , ~48!

whereUi j 5U ji due to nature of commuting derivative op
erations with different coordinates, andU115U22 and U13

5U23 due to the cylindrical symmetry. We find the oscilla
tion frequencies to be

n15AU112U12,

FIG. 17. Evolution of condensate widths atc(E)51.0 (.cM

50.9989), for electric field ramp-up timeT55 ~solid line!, 10
~dashed line!, and 20~dash-dotted lines!. Other parameters areP
510, l51, andv(0)5vz(0)51.63359.
n2,35
1

A2
@U111U121U336AU11

2 1U12
2 1U33

2 18U13
2 12U11U1222U11U3322U12U33#

1/2, ~49!
of
vel-
do-
where the expression for the matrix elementsUi j are listed in
Appendix A. Typical results and mode structure identific
tions@38# are given in Fig. 18. We see that mode 1 and mo
3 are doubly degenerate whenc(E)50. This is due to the
additional symmetryU115U33 andU125U13 for l51.
-
e

V. CONCLUSION

In conclusion, we have performed a detailed study
trapped condensates with dipole interactions. We have de
oped a general scheme for constructing effective pseu
7-12
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TRAPPED CONDENSATES OF ATOMS WITH DIPOLE . . . PHYSICAL REVIEW A 63 053607
potentials for anisotropic interactions@41#, which guarantees
the agreement between the first order Born scattering am
tude from the pseudopotential and the complete scatte
amplitude obtained from a multichannel collision calcu
tion. Our theory has been applied to the study of induc
electric dipole interactions and can also be directly exten
to magnetic dipole interactions as well as permanent elec
dipole interactions of trapped molecules@27#.

Finally we provide a reality check for prospects of expe
mental observations of the electric field induced interact
effects. Though the required fields are relatively high, th
are evidences they can be created with current labora
technology. In Ref.@42# fields of up to 23105 ~V/cm! were
used to slow a molecular beam. Gould@43# used fields up to
4.63105 ~V/cm! in the measurement of atomic tensor pola
izability, while Marruset al. @44# reported fields up to 106

~V/cm!. What is perhaps most encouraging is a recent exp
ment for cooling molecule beams with time-dependent~adia-
batic from the view point of atomic internal dynamics! fields
of up to 107 ~V/cm! @45#. We also note that at the high field
being discussed in this paper, the tunneling ionization of
oms remain infinitesimally small@46#.
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APPENDIX: U-MATRIX ELEMENTS

After tedious calculations, we find that

U11511
3

v0
4 1

P

v0
4vz0

F22
A5pc~E!

24~vz0
2 2v0

2!3
@32v0

61141v0
4vz0

2

254v0
2vz0

4 116vz0
6 29~11v0

214vz0
2 !v0

4H~v0 /vz0!#G ,

~A1!

U335l21
3

vz0
4

1
P

v0
2vz0

3 F22
A5pc~E!

3~vz0
2 2v0

2!3
@4v0

6212v0
4vz0

2

151v0
2vz0

4 12vz0
6 29~v0

214vz0
2 !v0

2vz0
2 H~v0 /vz0!#G ,

~A2!

U125
P

v0
4vz0

F12
A5pc~E!

24~vz0
2 2v0

2!3
@16v0

6151v0
4vz0

2 230v0
2vz0

4

18vz0
6 245v0

6H~v0 /vz0!#G , ~A3!

and

U135
P

v0
3vz0

2 F12
A5pc~E!

6~vz0
2 2v0

2!3
@4v0

6236v0
4vz0

2 215v0
2vz0

4

12vz0
6 145v0

4vz0
2 H~v0 /vz0!#G . ~A4!
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