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Finiteness of the computational resources is a hindrance to representing the time evolution of an infinitely
extended system. Several numerical techniques are available for mimicking the nonboundedness of the system
despite the restricted Hilbert space of the employed expansion basis set. We present a formulation based on the
outgoing-wave Siegert pseudostates. A harmonic oscillator exposed to a periodic train of impulsive pulses
(“kicks” ) demonstrate the efficiency of the Siegert method.
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I. INTRODUCTION tal [4] and theoretica[5] studies of ionization of Rydberg
atoms by a train of HCPs. For simplicity, we limit ourselves
Quantum calculations involving continuum states arein the following to a radial harmonic-oscillator potential.
hampered by the finiteness of the basis set intended to sparhis simplified situation actually arises when we diagonalize
the much bigger true solution space. The truncation needeghe atom-field Hamiltonian adiabatically by regardinghe
for computer calculations then requires mimicking the cor-electron’s radial distance from the nucleus, as the adiabatic
rect behavior of the system beyond the finite boundary. Sinc@ariaple. Retaining either the highest up-field(<0) or the
the external solution is usually unknown, one is forced tojgest down-field Ap>0) Stark potential, this procedure
adopt a reasonable substitute to model the correct physics pigits in an effective potential energy operator that yields an

the system in the external region. I_\/Iismatqh Of. solutions abfrective one-dimensiondllD) representation of the atom-
the outer boundary causes reflection, which, in turn, pro-

duces interferences with the localized portion of the wa éa ulse system.
u ' rences wi lized porti Wave  one goal of this paper is to understand the dynamical
packet. The finite size of the basis space thus leads eventF- . ) .
. . eatures of this model system in terms of the operationally
ally to a catastrophic collapse of the evaluation of §mma- defined “survival” orobability aqainst ionization. It ma
trix. Aspects of reflectionless propagation have been dis- P y ag ) y

cussed in Ref[1] within the framework of pseudostate yveII be wondered how the survival probability may be mean-

expansions. Unlike for grid-based finite-element or finite-N9fully defined for a particle in a harmonic potential that, at
difference methods, introduction of “masking” is compli- face value, is nothing but a bound system. What we have in
cated for pseudostate methods. We overcame the reflectidRind is @ potential that is locally harmonic but becomes
of waves off the outer boundary of the Hilbert space usingPerfectly absorptive at some radial distange Classically,
four alternative methods. The use of outgoing-wave basiéhis situation is realized when the potential flattens out at the
functions was briefly presented as a promising procedure teutoff radiusr,, beyond which it is represented by a constant
achieve this goall]. We present in the following a more (Fig. 1). Quantum mechanically, such a sharp edge induces
detailed account of the formulation of the time-propagationweak but genuine reflection. Representation of perfect ab-
method based on this outgoing-wave basis set, widely knowgorption by such a truncated potential is only an approxima-
as the Siegert pseudostat&Ps [2,3]. tion in quantum mechanics. In any case, an interesting real-
The quantum model system that we take up here is &ation of this model would be a magneto-optically trapped
radial harmonic oscillator subject to a train of periodic half-atom. We may denote blpy(ny:n*) the probability of the
cycle pulsegHCPs for shopt with the §-function profile in  harmonic oscillator initially in staté, to remain in states
time, a benign artifact readily modifiable to represent a giverbelow n* after being exposed to a train ™ impulsive
experimental profile. The time-dependent perturbation potenpulses. The state* serves as the upper bound in energy,

tial is given by beyond which we presume the oscillator “ionizes” with no
recovery of flux into lower states. With this definition of
N “ionization,” the survival probability against ionization is
V(t,2)=—zAp>, S(t—KT), given by Py(ng:n*).
k=1

We note in passing that the excitation processes of a
simple harmonic oscillator have a history of investigations
whereT is the period between successive pulses. Consideunder the title of a “driven harmonic oscillator.” Much is
ation of this problem has been motivated by both experimenknown about its analytical solution$], in the particular
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4 sentation of each kick amounts, of course, to assuming that

V(I") 1 0)2 2 the pulse duration is short in comparison to the period of the
~ Moy, 0 oscillator.

f 2 Because of the particularly simple dependence of the

kicks on time, the time integral of the interaction term is
characterized only by the momentum transfer. We thus have
the time propagator per kick period as

U(O T):eirAp/ﬁe*iHOT/fz. (2)
L |
2 mar r This is exact for the presedtfunction representation of the
— interaction Hamiltonian. The train df kicks is represented
b
¥y y
UN(O,T):[eirAp/he_iHOT/h]N. (3)

FIG. 1. Representation of the potential energy of the target os-

cillator corresponding to the absorptive boundary condition. It iSThe exponentiation of the coordinate operator is facilitated
perfectly absorptive in classical mechanics but allows weak reflecb the use of the discrete-variable representatidviR) ba-
tion in quantum mechanics. y . P .

sis set{10]. To be specific, we construct a set of coordinate
space basis functiorsr;(r)}, starting with a set of Legendre

case of the sinusoidal driving fields. Such a driving field, . . :
. .polynomials and the associated Gaussian quadrature rule,
however, imparts no net momentum on the average. In th|§uch that

regard, the present study may be in line with a recent one on
periodic kicks of an oscillator by spatially modulated pulses m(r)=0 unlessi=j. (4)
[7] (see alsd8)). n

The paper is organized as follows. In Sec. Il, the presentn accordance with the prescription in Appendix B, we have
model and its treatment are described, together with the
somewhat unfamiliar concept of the Siegert pseudostates.
Some mathematical details including the Siegert Green’s
functions for this section are relegated to Appendixes. Sec-
tion 11l discusses the classical phase-space structure of thiNote that the restriction of the configuration space to within
system, which aids in the interpretation of the quantum “sur+=ry means that the action of the field is also suppressed
vival” probability in Sec. IV. The determination d@®y dem-  outside this range. However, the field outside generally con-
onstrates the use of the Siegert pseudostates for the preséimues to accelerate the particle outward so that the survival
unbounded system. We also compare its efficiency with anprobability is unlikely to be affected by the neglected exte-
other reflection elimination scheme, the masking method forior region by our projection methodThis expectation holds

f 71_i(r)eirAp/ﬁﬁ_j(r)dr:eirjAP/hésij . (5)

truncated pseudostate expansions. rigorously in classical mechanig¢ggzor the purpose of exam-
ining our model problem, we will consistently suppress the
Il. MODEL AND FORMULATION exterior effect of kicks hereafter.

A. Description of the model B. Construction of Siegert pseudostate$SP9

The Hamiltonian for the kicked radial 3D harmonic oscil-  1.re we wish to summarize essential facts about the re-

lator reads flectionless propagation by the Siegert pseudostates. Techni-
52 52 N cal details related to the Siegert-pseudostate representation of
H=—— —+1imwZ2-rAp>, 8(t—kT), (1) the Green's function and its associated time propagator are

2m gr2 k=1 discussed in Appendixes A and C.

The Siegert boundary condition is an explicit imposition
where the first two terms represent the Hamiltortof the  of the outgoing or incoming wave condition on a sphere with
radial degree of freedom of the unperturbed 3D harmonigadiusr =r dividing the inner and outer region,
oscillator and the last term represents the interaction Hamil-
tonian V(t) for the train of electromagnetic pulses to the d |
atom. The radial wave function must vanish at the origin (E_'k) <//(r)|,:r0=0. ©®
=0. Here,Ap is the momentum transfer afdis the period
between kicks. Equatiofl) can be derived from a diagonal- Here and in the following, the functiogi(r) is a radial wave
ization of the atom-field Hamiltonian wheris treated as the function, i.e., it is premultiplied by, which is consistent
adiabatic variablg9]. This modeling ofV(t) amounts to  with the factoré(r) for ¢(r) of Appendix B so that the term
taking the highest {p<<0) or the lowest Ap>0) of the 1/r of Ref.[2] is absent in our case. Remarkably, the solu-
eigenvalues of cog at a fixed value ofr. In a real three- tions to the Schidinger equation subject to this boundary
dimensional situation, they will appear simultaneously withcondition can be obtained by solving a single complex eigen-
the other intermediate roots of c@sThe S-function repre-  value problenj2] resulting in a spectral representation of the
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Green’s function with complex-valued eigenenergies. In-inverse with the requirement that the transformation matrices
deed, the advanced Green'’s function is found to be are rectangular rather than square. Then the following holds
in the standard manner:

N o(memT
=2 (IME,<0) (7) _
© =1 Ep—E neer (il m)= 6, (15)
as discussed in Appendix C. This means, upon Laplace trans- D ) (| =1 19
= 1 = =+
1

form, that the time propagation of the Siegert pseudostates is
simply represented by the factor
With this notation, we may write the time propagator be-

—Ept/h
e o (ImE,<0) (8 tween kicks with respect to the Siegert pseudostates as

for each Siegert state.

Urnn(OT) = 2 (| i) X (i [ @XR(ri A ) | ) (i )
C. Passage between SPS and DVR !

The DVR is an orthonormal basis set in the standard sense xXexp(—EqT). 17
but the orthonormality of the Siegert pseudostates is defined
differently. This requires knowledge of the somewhat non- D. Treatment by masking method
trivial SPS-to-DVR transformation. . ) ] ]
We may expand a Siegert state as In reducing the unphysical reflection, the masking method

has the merit of relying only on real algorithms and of being
") easy to use. The method multiplies the wave padkét,r)
l,bn(f):Ei ¢ mi(r). ) by the profile functionf ,(r)(=0) at some appropriate time
interval At. The profile function is effective at some
Consider the inverse problem of representingr) in terms ~ ~ "maskSuch that

of the Siegert pseudobadig,(r)}, namely “1 (r<ron)
- mas

f (r)l (18)
— (n) P <1 (r>rmask)-
mi(r)= 2 b n(r). (10
Almost any functional form meeting this condition works,
This leads to the identity for instance,
ma| r—=r
mi(r) =2, c"b{Ma;(r) (11) fp(r)zcos(E _—m“kj) (F>T s
n,j I'max™ 'mas
demanding wherer .= masie I o indicates the outer boundary for mask-
ing.
5= ci(”)bj(”). (12) If the masking intervalAt is too coarse, reflection is in-

= sufficiently reduced, resulting in a poorly converggana-
trix. If it is too fine, it causes a strong reflection as discussed
Thus the matriceb(™ andci(”) are mutually inverse, namely, in Ref.[1]in the context of the quantum Zeno effect. There

they represent linear transformation of basis sets in the staigXists some optimal choice @t found by trial and error.
dard sense of linear algebra. High roots of the Siegert eigenthe prescription of the method is straightforward for merely
value problem are numerically unsatisfactory and caus€uppressing the reflection. Given the wave packet
flaws in time propagation if retained. This difficulty is cir- ¥befordt,1) at timet,

cumvented by first dropping a certain number of high roots.

The inverse of the resultingectangularmatrix may be ob- Wattet,1) = o (N Wherord t,1) (19
tained by application of the singular-value decomposition

procedure documented in standard textbooks on numeric&r t* infinitesimally greater than

methodg 11]. For basis expansion methods, unlike for grid-based dis-
For notational convenience, let us write cretization techniques, imposing a mask is more involved
here. We consider the following implementation of the

<¢/;n|77i):ci(”), (13 masking approximation. First, applying the masking imme-

diately at the border=r, introduces uncertainty in the defi-

(| ) =b(™ (14)  hition of the border itself. We consider the auxiliary problem

for which the potential is extended beyongl namely

with the understanding that the bra-ket notation here means L o
strictly the transformation from Siegert states to DVR or its V(r)=zmo T (r<rg)
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1 22
=5MwTy (ro<r<rma- (20

As noted in the Introduction, this potential is intended to
mimic absorption, if approximate, in quantum mechanics. To
make the effect of the kicks in the Siegert and masking
method identical in the exterior region, the kick is set to act
on this model system only in the rangecry,.

With this understanding, we solve the stationary states for
this model using the trigonometric basis $et,(r)} defined

by
J— 2 H
(1) = \/—r sin ;

nw
r). (21

max

FIG. 2. Graphical representation as to how the oscillator hops
from one ellipse to another upon receiving a kick. It may as well
This basis set is convenient because the Hamiltonian can laigcur that a subsequent kick is received after several revolutions on
evaluated analytically, even though it is appallingly slow ina particular ellipse.
convergence, as will be seen later. Likewise, the matrix ele-

ments ofr in the ranger <r, as well as the matrix ele- o aing constant so that the trajectory travels on an ellipse in
ments of the _proﬁle funct|o.rﬁp are e_xpressmle analytically. _phase space. One catch, however, is that for a 3D harmonic
Thus, the action of the profile function on the wave packet isyggijjator, the conditiom =0 must be satisfied. Only half of
representable by a mere matrix multiplication on the basis sgf,o ellipse is accessible and the period is given Thy

{7a(r)}- =7l w. Figure 2 graphically illustrates how each kick affects
the oscillator’s trajectory in phase space. The trajectory re-

ll. CLASSICAL MECHANICS OF THE MODEL volves on the half-ellipse until the next kick shoves it onto
PROBLEM another half-ellipse. In the present case, we consider positive

The classical dynamics of this model system may providé('CkS’ Ap>0,. pushing .the electron radially outward. This
process continues until the trajectory reaches beyond the

szﬁggullilgks]tlggrt_]s cI]TItgnttkL]l?n Ig;rls:g%g qr%la?éﬁfeigghégirsg yl_’) §_alf-ellipse that marks the threshold for ionization. More de-

tween classical and quantum dynamics is expected to be giled insights into the classical phase-space structure can be
close in this system as for harmonic systems because CIaSg)_(tracted f“’m a Poincarsurface of §ect|pr(_F|g. 3. The .
cal and quantum expectation values should agree, accordi ase space Is covered by concentnq elllptlpally shaped tori
to Ehrenfest’s theorem. Clearly, in the present case the col= tqt_a cr|t|patl totrUfhwrlere che turglgg tpp(jlnttlzouch?s ;[he
respondence can only be approximate due to the anharmoni@nsition pointro to the “continuum.™ Outside the critica
cutoff of the potential at .

The equations of motions can be converted into a discrete 6
map connecting phase-space coordinates of adjacent kicks,
4
fn=rn. (22)
2
Pa =Py +AP, (23
Po
p+
N LY, —
Ms1= I’nCOSwT-i-mwSIan =|ay|, (29 2
- an + + ; 4
pn+1=m(pn coswT—r, mwsinwT). (25
n
. e 0 2 4 6 8 10
In Egs.(22)—(25), the superscript- stands for the infinitesi- r Py
mal time incrementst ¢ just after (+) or before () the o . _ )
nth kick. The kick period is denoted by and the oscillator FIG. 3. Poincaresurface of sections representing stroboscopic

snapshotsr(, ,p,) of an ensemble of trajectorigable ), taken

just prior to the kicks. The initial conditions are such that the tra-
jectories are positioned along the line joining the unique center of
the ellipses and the lower right corner of the figure with an equal

frequency byw. The corresponding oscillator period is de-
noted by T,. During the interval in between kicksnT
+¢&,(n+1)T—¢], the energy of the oscillator,

2 spacing. The dashed ellipses “ionize” whereas the solid ones re-
En:& + %mwzrﬁ, (26) main bound. Thg thick dashed line corresponds to the energy con-
2m stant manifold withE=3/2%i w.
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torus, the propagation on the ellipse is of finite duration. As TABLE I. Parameters for the kicked harmonic oscillator as used
soon as the phase point reaches the half-spaag for the  for numerical implementations.
first time, the motion on the torus is truncated and the trajec

tory is lost. All concentric ellipses are centered about Definition Value
Oscillator's mass m=1
Ap Ap : : _
r =——,  p —__ (27) Oscillator’'s angular frequency w=1
center 2" center 2 N
mw“T Initial-state quantum number n=1

N ) ) Boundary distance ro=10
The position of the center can be easily understood in termgomentum transfer Ap=0.56
of a “Stark-shifted” oscillator. In the case in which several kick time interval T=01

kicks occur during one orbital period &T,), the time av-
erage over the perturbation can be represented by a Stark

field F=Ap/T, both touch the boundary at=r,, (i) one of them touches at
r =0 the maximun(classical momentum of the initial field-
(V)=—rﬂ. (28) free torusp= 3z wm (for the ground stae and (iii) the
T other touches the maximum elongation in coordinate space

. . ) ) _ r,=+h/me atp~0. This range of ellipses can be converted
The displaced harmonic oscillator is thus described by theyiq 5 range of kick periodsT, for which the classical sur-

effective Hamiltonian vival probability varies between zero and one at fixed kick
strengthA p and oscillator frequency,

_ 2
Heff:(pzpﬂ + %mwz(r - rceme}z- (29

m 2Ap 1 <2Ap ro @2
Comparison between Eq&8) and(29) yields the condition mew? fotr maw? rj—ri
for rcenter [EQ- (27)]. Likewise, the condition that the kicks
preserve the kinetic energy IV. NUMERICAL DEMONSTRATION

Apz_ We first examine the convergence of the Siegert pseu-
pAp+ T‘O (30 dostate method. We focus in the following on the case of

positive Ap, that is, the so-called downhill case. Since ion-

defines the symmetry axis in thedirection with peenie ization for the uphill caseAp<0 should involve angular
— Ap/2 for the momentum just prior to the kick. We note in degrees of freedom, coupling to other eigenstates offcos
passing that highly nontrivial phase-space structures emergeould be required for a realistic representation. We set the
when the center of ellipse.qnriS Closer to the origin than to parameters as shown in Table I. At the given valuea pf
lo, 1.6, centei <l o/2. Because the map is discontinuous at theand T, the survival probability and, likewise, the ionization
origin, the elliptic tori are destroyed. In particular, in the caseprobability maintain a finite value differing noticeably from
of classical resonances, i.e., the kick perioé such that both zero and unity even after over 100 kigkse Eq(32)].
These probabilities may be affected by the occurrence of
reflections, which limits the reliability of the quantal calcu-
lation. The basis size for the Siegert method is set to 200,
although convergence can be attained even with a slightly
wherek andn are integers and mutually prime, that is, the smaller basis set. This specification is all we need for this
fraction k/n is irreducible, some phase-space trajectoriesmethod. For the masking method, the time intersal of
travel on an Arnold wel8] whose rich structure and impli- masking is such that we apply it ten times durifig T
cation for the quantum dynamics is currently under investi-=10At, andr 55 iS Set to 25 and ,,,,=30, i.e., the absorb-
gation and will be presented elsewh¢gie)]. ing layer is situated between 25 and 30 a.u. The number of

The classical phase-space portrait immediately allows ubasis functions is varied from 500 to 2000 for comparison. A
to determine the classical survival of an initial state forrather large number of basis functions are needed to repre-
which we take in the following the ground state of the field- sent a sharp potential edge gt on account of the rather
free harmonic oscillator. In general, the initial bundle of tra-naive choice of the trigopnometric basis set.
jectories traveling on off-centered ellipses either all reach Figure 4 shows the survival probability after each kick as
beyondr or all fail to reachr,. Under a particular circum- a function of timet measured for the particular parameter set
stance(to be specified beloy only a fraction of the trajec- of Table I, where the discrepancy between the masking
tories reaclr resulting in ionization while leaving behind method and the Siegert method becomes more pronounced
the residual trajectories within the ionization boundary. Thewith increasing time. The results with the masking method
survival probability in this event differs from both zero and approach that of the Siegert pseudostate method as the basis
unity. size increases, even though it does so remarkably slowly.

The region of survival is delimited by two tori as upper Each bump in Fig. 4 occurs when the wave packet starting
and lower bounds that meet the following conditiofisthey  originally from the ground state of the field-free Hamiltonian

k
T=— (31

Nw'’
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tum wave packet approacheg
Snapshots of the wave-packet propagation at different

. 600 bases Ap=0.56(a.u.) times(or number of kicksare shown in Fig. 5. The upper of

0.8} P 1000 bases r=10(a.u.) each panel shows the Husimi distribution in relief plot and
. — 2000 bases the lower in contour plot. The axes are radiuand momen-
Classical

Survival Probability
o o
EN o

Siegert State

t
V4

(microcanonical)

Classical

/S// (Husimi)

tum p. Notice how a part of the wave packet in the masking
method gets reflected owing to the sharp edge and tends to
travel ahead of the wave packet described by Siegert pseu-
dostates. Notice also how a portion of the wave packet of the
masking method gets transmitted into the exterior region

02} = 1 separated from the residue and the reflected wave. This can
N also be observed in the survival probability shown in Fig. 4.
0O £ 75 i 20 The Qifference l_:)etwegn the two quantum survival probapili-
10 ties is marked in particular by the sagging of the masking
method at each dropoff. Overall, however, the position of the
g 8 center of gravity remains quite close during the firs100
g6 kicks.
é 4 Figure 6 shows the survival probability as a function of
fa) the kick periodT. As noted in Sec. II[Eq. (31)], resonances
2 occur as a function of. The size of the off-centered ellipses
0 0 5 10 15 20 increases a3 approaches a resonance and attains infinity at
. the resonance. A3 moves away from the resonance, the
Time ¢ (a.u.)

ellipse shrinks, eventually falling well within the boundary
FIG. 4. Survival probabilityPy(1:50) after each kick as a func- 10Cated aro=10. On the basis of the classical dynamics, one
tion of time t. The solid line of a moderate thickness is for the '€adily deduces the following estimate for the temporal

Siegert method. The thin solid line, the broken line, and the thickWVidth of the resonance:
solid line are for the masking method with 600, 1000, and 2000
basis functions, respectively. The slow convergence of the latter
method is presumably due to the trigonometric basis functions. The
dotted line represents the result of classical trajectory calculations

using the microcanonical ensemble for initial trajectories, while the s . .
chain line uses the Husimi distribution of the initial-state waveWhererl_ filmw as before. The width may also be defined

function for generating initial trajectories. Plotted in the lower VI_suaIIy as the area of _each deple’gl_on dlp near a resonance in
frame is the time evolution of radial distancef a typical classical Fig. 6 V\_/here_ the survival probab!hty IS s_|gn|f|cantly lower
trajectory. than unity. Flgure_ 7 compares this classical forml_JIa_to j[he
quantum mechanically evaluated temporal width indicating
good agreement.

2Ap g

— 55 (33
mw? r3—r?

revisits the region near,. The classical survival probabili-
ties, superimposed on Fig. 4, display only one drop-off fol-
lowed by a stable plateau. For the classical calculation, we
have employed two different initial ensembles, the standard
microcanonical ensembld(r,p)e« S(E—Hq(r,p)), repre-
sented by the initial torus centered at the origin in Fig. 3, an
the Husimi probability distribution P(r,p)=1/27(r?
+p?) e~ (rP+pA)2

V. SUMMARY

The Siegert pseudostate method has been shown to be an
Oeffective scheme for propagating wave packets in an open
quantum system. Reflections are perfectly suppressed with-
i N out any significant distortion of the wave packet near the
corresponding to the initial-state wave o ndary. By comparison with a trigonometric basis expan-
function «H,(r)e "2 The small discrepancy between the sjon and masking, we found the convergence of the Siegert
two classical results reflects the influence of the initial quanmethod to be remarkably fast. Application to the radial har-
tum ground state on the survival probability. The groundmonic oscillator with a cutoff displayed a limited classical-
state, dominated by the zero-point fluctuations, is the mosguantum correspondence. The classical phase-space analysis
nonclassical state. In the limit of high quantum numbers, theids in the interpretation of the quantum survival probability
two classical curves would coincide. The stability of the put noticeable discrepancies appear, mainly due to the fact
classical survival probability is not unexpected because thehat the initial ground state is highly nonclassical. Further
classical motion of the harmonic oscillator, while off- application to the problem of Arnold diffusion in “weak
centered, involves no spreading in phase space. By contragtaos” [8] is envisioned.

the quantum wave packet broadens as it continues its travel
in phase space. The flux loss thus recurs at each visit to the
boundary. The ared of the torus representing the initial
state(Fig. 3 gives the size of the quantum uncertainty, i.e., This work was supported in part by a Grant-in-Aid for
the size of the quantum unit cel\~h. It is the size of this Exploratory Research, Ministry of Education, Science and
spread that allows additional ionization each time the quanCulture, Japan, by the NSF, the DCS, OBES, U. S. DOE,

ACKNOWLEDGMENTS

052721-6



SIEGERT-PSEUDOSTATE REPRESENTATIONFO. . PHYSICAL REVIEW A 63 052721

Siegert States Masking Method

10 Kicks

02 , 02
Kicks |o.15

FIG. 5. Comparison of Siegert and masked wave packets using the Husimi distribution. Both relief and contour plots are shown for the
indicated instances of kick. Differences arise due to the reflection incurred by the model potential for the latter method, particularly near
r=rq, where the harmonic potential is abruptly truncated. The masked wave packet tends to advance slightly. Note the change in vertical
scale in relief plots as time elapses.

managed by UT-Battelle, LLC, under Contract No. DE- dition on the right-hand edge. Construction of the basis set in

ACO05-000R22725, and the FWF-SFB016. terms of DVR is described in Appendix B. The integrations
are carried out ovex=(2r/ry)—1 from — 1 to + 1 to obtain
APPENDIX A: CONSTRUCTION OF SIEGERT various matrix elements. The eigensystem then reads
PSEUDOSTATES
We work with the Hamiltonian multiplied byg, employ- Z (2Tt — KBy + chij)cj:O7

ing the Bloch operator to impose the Siegert boundary con- j
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Siegert States Masking Method

60 Kicks

0.2
0.15
0.1
0.05

) . P (r,p)
0.2 90 Kicks | 02
. 0.15

0.1
0.05

P (rp)
0.2

0.15
0.1
0.05

o 4
4 5 -4 p(au) )
rau) © 10 738 rauy © 10 738

FIG. 5 (Continued.

where 1 - -
t t
Fi=—1 [ wioow 2 [* Z 1/3 | 2/3
Hij=—2 1¢i(x)¢j(x)dX+r0 llﬂi(X)V(X)lﬁj(X)dX, = 08 1
- - [s]
3 8 el Kn=1/2
Bij=i(+1)(+1), %‘
g Ap=0.56(a.u.)
. 1 g 04 / 100Kicks
Cij :rgﬁll/fi(x)wj(x)dx- 7 1/1 r=10(a.u.)
02 — Siegert States
Here ;(X) = é(X) mi(x) with the multiplier functioné(x) of | {777 Classical
Eqg. (B2), andV(x) pertains to the atomic potential that de- % 1 2 3 4 5 6
termines the target atom. The value7df, can be evaluated Kick period T' (a.u.)

with Eq. (B1). Definingc;=[roé(x;)]c;, we get FIG. 6. Survival probability as a function of kick peridd Note

_y 1 1 the occurrence of 1/2, 1/3, and 2/3 resonances in addition to 1/1
Gij=ro “é(xi) ~Cijé(x5) =6 resonance.
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S o6 SrpSy=cMTBc — (i + k) cMTcM

\:& +Quantum estimate Tt

s 05 \ = —2KmOmn- (A1)

S 04

= 7 Completeness thus reads

{1? 03 Fr+ N 0o 1

hag + T:

; 0.2 nzl 2KnSnSn (1 _B)

£ o | |

o Note the summation runs over all th&Zoots[2]. Attention

T 0f G : == 5 5 must be paid to the expressions for physical quantities so that
= X ) ' no explicit dependence on the normalization will appear as in

M tum T fer Ap (a.u. . L .
omentum Transfer Ap (a.u.) the particular case of the Green’s function in Appendix C.

FIG. 7. Evolution of the width of the 1/1 depletion dip as a
function of Ap. The solid line shows the estimate by classical me-  APPENDIX B: APPROXIMATE EVALUATION OF

chanics as described in the text. The crosses show the widths nu- MATRIX ELEMENTS
merically obtained on the basis of the visual gap in the survival
probability curve. Equipped with the Gaussian quadrature associated with a

selected orthogonal system of functions, the discrete variable
so that we deal with orthonormalized basis functions of theepresentatiofDVR) method[10] realizes a discretized spa-
standard type. With this redefinition of the coefficient vector,tial representation of the coordinate space. Obviously, clas-

sical polynomials are the first candidate for the orthogonal

Hij=rg 2&(x) Y Hi &%) 7, system because of the precise knowledge of their various
integrals and of the celebrated Christoffel-Darboux formula,
Bij=rq §(x) 1[5”5()() 1 which vyields an explicit transformation to DVR. Other
choices of basis functions are possible and have been ex-
The eigensystem now reads plored by other authoril3,14.
To set up the Siegert eigenvalue problem, we exploit the
E (2Hij—KBij+K25ij)Cj=0- DVR method for approximately evaluating the matrix ele-

ments of differential operators. It must be noted, though, that
a formally exact evaluation of various matrix elements is

The above is equivalent to a linear system possible and is contained in an appendix of the paper by
Tolstikhin et al. [2].

2n 0 C B —1\/c For the purpose of constructing Siegert pseudostates, the

0 —-1/lwe) X1 =1 0 || c Legendre polynomials are a natural choice for basis set since

they give a meaningful matrix representation of the Bloch
operator. In accordance with R¢2], we define the normal-

Let us rewrite this equation as ) :
ized basis sef¢p,(x)},

KSh= knpSy,
1
where bn(X)= \/h_Pn—l(X) (n=12,... N),
n
2H O ) o ) _
K= , whereh,_, is the normalization constant. Upon discretiza-
0 -1 tion, the coordinatex becomes represented in terms of the
B -1 Gaussian grid point$x;}, namely the roots oPy(x)=0,
p:( ) wherei=1,2,... N. The associated DVR basis functions
-1 0/ {m;(x)} are smooth over the interval-1,1] and satisfy
in matrix notation, and \F
c. mi(X))= Wi5ij ,
Sh= KnCn/ ' : . . . .
n=n whereW, is the Gaussian-quadrature weight associated with

The matrices, 53, and1 being real, it holds that ik, is an  Pn(X). The DVR basis functionr;(x) is merely a properly
eigenvalue, so isc*, and likewise for the corresponding "°malized Lagrange multiplier function,
eigenvectorss, andS;, .

One possible and practically straightforward normaliza-
tion is then

_ 1 (X=X%;)
TN W o)
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but its practicality is far-reaching. The explicit transforma- 5 0.8
tion matrix betweer 7;(x)} and{¢,(x)} derives from the 30_7 —— Siegert Green’s function
Christoffel-Darboux formula, namely EQC9) of Ref. [2], 206 ...... analytical formula
N o
$n(X)= 2, Toimi(x), g 05
=1 ® 0.4
N Q 03
o 0.
mi()= 2 Toibn(X), %0_2
where T,;, an orthogonal matrix, readily proves to be % 0.1
VWi (X). g o 02 04 06 08 1
Let us first recall that the matrix of an operator that does 2 : . ' -
o Energy £ (a.u.)

not involve derivatives is diagonal in DVR,

1 1 1 FIG. 8. Photoionization cross sections of hydrogen. The solid
f 17Ti(X)9(X)7Tj(X)dX2§ Wi\ -9k Vg dik9 (%) line by the Siegert Green'’s function. The broken line by the well-

- ! ] known analytical formuldsee text

=g(X;) djj .
. . . . 2H—«kB «
Doing the same with a differential operator of the form K—kp= .
(d/dx) &(x) ri(d/dx) &(x) 7, we get K -1
FiyN2s NPT iy However, we also need to identify the proper branches of
& (x)70 +60x)¢ (X')\/W'WJ(X') energy E in order to separate the retarded and advanced
) , ) Green'’s functions. Meanwhile, the block of Ee1) corre-
FEODE CNW ] )+ 25 6000 (3 7] (). sponding t0G, is
2N T
(B1) G- c(Mcm |
In practice, we set n=1 2Kn(Kp— K)
ro The form corresponding to the other branch rofderives
E)=r=5(1+x) (B2)  from (K+«p) 1, and is given by

2N
in order to ensure the vanishing boundary conditionr at 9(2)=E cMeMT

=0. Itis straightforward to evaluatel{(dx) 7;(x,) with high = 2kn(Knt k)
precision by way of ¢/dx)¢,(x;) using ¢,(x;) and
dn_1(X;). So onceg,(x;) is tabulated for all the pairs of The sumg M+ g @ reduces to

(n,i), we have the matrix elements of the differential opera- N () ()T

tor with respect to DVR to the precision afforded by the c’c

Gaussian quadrature. However, the computational burden in -1 Ep—E’

this case is not lessened significantly despite DVR on ac- . ) ]
count of the triple summation in the last term of EBL). which upon Laplace transform is readily seen to consist of

the retarded and advanced Green'’s functions. Separating

. .
APPENDIX C: SIEGERT REPRESENTATION OF THE and «}; , which are both poles, we get the retarded and ad-

GREEN’S FUNCTION vanced Green’s functions, respectively,
The Green’s function is formally given byki—«p) (+)—§N: cMcMT
whose spectral representation is G "~ & E,—E (ImE,>0), (€2

T ~1gT
GZE Sn<sn|p|sn> Sn. (Cl) N C(n)C(n)T
0 Kn— K c=> (IME,<0), (C3)
n=1 En_E
Substituting the block-matrix representationsoéndp, and
decomposings into where the sum now runs ovbreigenvalues oE,. In evok-
ing time propagation with respect to the Siegert pseudostates,
_(Gll Glz) we must keep to the retarded Green’s function such that
G, Gy’ ImE,<O.

To end this appendix, we give a simple illustrative dem-
we can formally identify G;=3(H—E)™! [where H onstration of the advanced Green’s function based on the
=if(alat) as defined in Eq(l)] by simply considering the Siegert pseudostates. It is the photoionization cross section
inverse of of hydrogen given by
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c™My(cMT|d|0) Fig. 8 the photoionization cross sections calculated accord-
E_E ; ing to the above formula with those of the analytical one
n [15]. The agreement is good considering the rather wide en-
ergy spectrum covered by 150 basis functions. The box size
whered is the dipole operator an@) is the initial ground r, is 400 a.u. An artifact due to the use of the finite basis set
state, which is volume-normalized to unity. We compare inis visible near threshold in the form of sawtoothed structures.

4 o|d
a=%ﬁwlm2< | |
n
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