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Finiteness of the computational resources is a hindrance to representing the time evolution of an infinitely
extended system. Several numerical techniques are available for mimicking the nonboundedness of the system
despite the restricted Hilbert space of the employed expansion basis set. We present a formulation based on the
outgoing-wave Siegert pseudostates. A harmonic oscillator exposed to a periodic train of impulsive pulses
~‘‘kicks’’ ! demonstrate the efficiency of the Siegert method.
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I. INTRODUCTION

Quantum calculations involving continuum states a
hampered by the finiteness of the basis set intended to
the much bigger true solution space. The truncation nee
for computer calculations then requires mimicking the c
rect behavior of the system beyond the finite boundary. Si
the external solution is usually unknown, one is forced
adopt a reasonable substitute to model the correct physic
the system in the external region. Mismatch of solutions
the outer boundary causes reflection, which, in turn, p
duces interferences with the localized portion of the wa
packet. The finite size of the basis space thus leads eve
ally to a catastrophic collapse of the evaluation of theS ma-
trix. Aspects of reflectionless propagation have been
cussed in Ref.@1# within the framework of pseudostat
expansions. Unlike for grid-based finite-element or fini
difference methods, introduction of ‘‘masking’’ is compl
cated for pseudostate methods. We overcame the refle
of waves off the outer boundary of the Hilbert space us
four alternative methods. The use of outgoing-wave ba
functions was briefly presented as a promising procedur
achieve this goal@1#. We present in the following a mor
detailed account of the formulation of the time-propagat
method based on this outgoing-wave basis set, widely kno
as the Siegert pseudostates~SPS! @2,3#.

The quantum model system that we take up here i
radial harmonic oscillator subject to a train of periodic ha
cycle pulses~HCPs for short! with the d-function profile in
time, a benign artifact readily modifiable to represent a giv
experimental profile. The time-dependent perturbation po
tial is given by

V~ t,z!52zDp(
k51

N

d~ t2kT!,

whereT is the period between successive pulses. Consi
ation of this problem has been motivated by both experim
1050-2947/2001/63~5!/052721~11!/$20.00 63 0527
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tal @4# and theoretical@5# studies of ionization of Rydberg
atoms by a train of HCPs. For simplicity, we limit ourselv
in the following to a radial harmonic-oscillator potentia
This simplified situation actually arises when we diagonal
the atom-field Hamiltonian adiabatically by regardingr, the
electron’s radial distance from the nucleus, as the adiab
variable. Retaining either the highest up-field (Dp,0) or the
lowest down-field (Dp.0) Stark potential, this procedur
results in an effective potential energy operator that yields
effective one-dimensional~1D! representation of the atom
pulse system.

One goal of this paper is to understand the dynam
features of this model system in terms of the operationa
defined ‘‘survival’’ probability against ionization. It may
well be wondered how the survival probability may be mea
ingfully defined for a particle in a harmonic potential that,
face value, is nothing but a bound system. What we hav
mind is a potential that is locally harmonic but becom
perfectly absorptive at some radial distancer 0. Classically,
this situation is realized when the potential flattens out at
cutoff radiusr 0, beyond which it is represented by a consta
~Fig. 1!. Quantum mechanically, such a sharp edge indu
weak but genuine reflection. Representation of perfect
sorption by such a truncated potential is only an approxim
tion in quantum mechanics. In any case, an interesting r
ization of this model would be a magneto-optically trapp
atom. We may denote byPN(n0 :n* ) the probability of the
harmonic oscillator initially in staten0 to remain in states
below n* after being exposed to a train ofN impulsive
pulses. The staten* serves as the upper bound in energ
beyond which we presume the oscillator ‘‘ionizes’’ with n
recovery of flux into lower states. With this definition o
‘‘ionization,’’ the survival probability against ionization is
given byPN(n0 :n* ).

We note in passing that the excitation processes o
simple harmonic oscillator have a history of investigatio
under the title of a ‘‘driven harmonic oscillator.’’ Much is
known about its analytical solutions@6#, in the particular
©2001 The American Physical Society21-1
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case of the sinusoidal driving fields. Such a driving fie
however, imparts no net momentum on the average. In
regard, the present study may be in line with a recent one
periodic kicks of an oscillator by spatially modulated puls
@7# ~see also@8#!.

The paper is organized as follows. In Sec. II, the pres
model and its treatment are described, together with
somewhat unfamiliar concept of the Siegert pseudosta
Some mathematical details including the Siegert Gree
functions for this section are relegated to Appendixes. S
tion III discusses the classical phase-space structure of
system, which aids in the interpretation of the quantum ‘‘s
vival’’ probability in Sec. IV. The determination ofPN dem-
onstrates the use of the Siegert pseudostates for the pr
unbounded system. We also compare its efficiency with
other reflection elimination scheme, the masking method
truncated pseudostate expansions.

II. MODEL AND FORMULATION

A. Description of the model

The Hamiltonian for the kicked radial 3D harmonic osc
lator reads

H52
\2

2m

]2

]r 2
1 1

2 mv2r 22rDp(
k51

N

d~ t2kT!, ~1!

where the first two terms represent the HamiltonianH0 of the
radial degree of freedom of the unperturbed 3D harmo
oscillator and the last term represents the interaction Ha
tonian V(t) for the train of electromagnetic pulses to th
atom. The radial wave function must vanish at the originr
50. Here,Dp is the momentum transfer andT is the period
between kicks. Equation~1! can be derived from a diagona
ization of the atom-field Hamiltonian whenr is treated as the
adiabatic variable@9#. This modeling ofV(t) amounts to
taking the highest (Dp,0) or the lowest (Dp.0) of the
eigenvalues of cosu at a fixed value ofr. In a real three-
dimensional situation, they will appear simultaneously w
the other intermediate roots of cosu. The d-function repre-

FIG. 1. Representation of the potential energy of the target
cillator corresponding to the absorptive boundary condition. It
perfectly absorptive in classical mechanics but allows weak refl
tion in quantum mechanics.
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sentation of each kick amounts, of course, to assuming
the pulse duration is short in comparison to the period of
oscillator.

Because of the particularly simple dependence of
kicks on time, the time integral of the interaction term
characterized only by the momentum transfer. We thus h
the time propagator per kick period as

U~0,T!5eir Dp/\e2 iH 0T/\. ~2!

This is exact for the presentd-function representation of the
interaction Hamiltonian. The train ofN kicks is represented
by

UN~0,T!5@eir Dp/\e2 iH 0T/\#N. ~3!

The exponentiation of the coordinate operator is facilita
by the use of the discrete-variable representation~DVR! ba-
sis set@10#. To be specific, we construct a set of coordina
space basis functions$p i(r )%, starting with a set of Legendre
polynomials and the associated Gaussian quadrature
such that

p i~r j !50 unless i 5 j . ~4!

In accordance with the prescription in Appendix B, we ha

E p i~r !eir Dp/\p j~r !dr.eir jDp/\d i j . ~5!

Note that the restriction of the configuration space to with
r<r 0 means that the action of the field is also suppres
outside this range. However, the field outside generally c
tinues to accelerate the particle outward so that the surv
probability is unlikely to be affected by the neglected ex
rior region by our projection method.~This expectation holds
rigorously in classical mechanics.! For the purpose of exam
ining our model problem, we will consistently suppress t
exterior effect of kicks hereafter.

B. Construction of Siegert pseudostates„SPS…

Here we wish to summarize essential facts about the
flectionless propagation by the Siegert pseudostates. Tec
cal details related to the Siegert-pseudostate representati
the Green’s function and its associated time propagator
discussed in Appendixes A and C.

The Siegert boundary condition is an explicit impositio
of the outgoing or incoming wave condition on a sphere w
radiusr 5r 0 dividing the inner and outer region,

S d

dr
2 ik Dc~r !ur 5r 0

50. ~6!

Here and in the following, the functionc(r ) is a radial wave
function, i.e., it is premultiplied byr, which is consistent
with the factorj(r ) for f(r ) of Appendix B so that the term
1/r of Ref. @2# is absent in our case. Remarkably, the so
tions to the Schro¨dinger equation subject to this bounda
condition can be obtained by solving a single complex eig
value problem@2# resulting in a spectral representation of t

s-
s
c-
1-2
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Green’s function with complex-valued eigenenergies.
deed, the advanced Green’s function is found to be

G(2)5 (
n51

N
c(n)c(n)T

En2E
~ ImEn,0!, ~7!

as discussed in Appendix C. This means, upon Laplace tr
form, that the time propagation of the Siegert pseudostate
simply represented by the factor

e2 iEnt/\ ~ ImEn,0! ~8!

for each Siegert state.

C. Passage between SPS and DVR

The DVR is an orthonormal basis set in the standard se
but the orthonormality of the Siegert pseudostates is defi
differently. This requires knowledge of the somewhat no
trivial SPS-to-DVR transformation.

We may expand a Siegert state as

cn~r !5(
i

ci
(n)p i~r !. ~9!

Consider the inverse problem of representingp i(r ) in terms
of the Siegert pseudobasis$cn(r )%, namely

p i~r !5(
n

bi
(n)cn~r !. ~10!

This leads to the identity

p i~r !5(
n, j

ci
(n)bj

(n)p j~r ! ~11!

demanding

d i j 5(
n

ci
(n)bj

(n) . ~12!

Thus the matricesbj
(n) andci

(n) are mutually inverse, namely
they represent linear transformation of basis sets in the s
dard sense of linear algebra. High roots of the Siegert eig
value problem are numerically unsatisfactory and ca
flaws in time propagation if retained. This difficulty is ci
cumvented by first dropping a certain number of high roo
The inverse of the resultingrectangularmatrix may be ob-
tained by application of the singular-value decomposit
procedure documented in standard textbooks on nume
methods@11#.

For notational convenience, let us write

^cnup i&5ci
(n) , ~13!

^p i ucn&5bi
(n) ~14!

with the understanding that the bra-ket notation here me
strictly the transformation from Siegert states to DVR or
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inverse with the requirement that the transformation matri
are rectangular rather than square. Then the following ho
in the standard manner:

^p i up j&5d i j , ~15!

(
i

up i&^p i u51. ~16!

With this notation, we may write the time propagator b
tween kicks with respect to the Siegert pseudostates as

Um,n~0,T!5(
i

^cmup i&3^p i uexp~r iDp!up i&^p i ucn&

3exp~2EnT!. ~17!

D. Treatment by masking method

In reducing the unphysical reflection, the masking meth
has the merit of relying only on real algorithms and of bei
easy to use. The method multiplies the wave packetC(t,r )
by the profile functionf p(r )(>0) at some appropriate tim
interval Dt. The profile function is effective at somer
.r mask such that

f p~r !H 51 ~r ,r mask!

,1 ~r .r mask!.
~18!

Almost any functional form meeting this condition work
for instance,

f p~r !5cosS p

2 F r 2r mask

r max2r mask
G D ~r .r mask!,

wherer max>rmask>r 0 indicates the outer boundary for mas
ing.

If the masking intervalDt is too coarse, reflection is in
sufficiently reduced, resulting in a poorly convergedS ma-
trix. If it is too fine, it causes a strong reflection as discuss
in Ref. @1# in the context of the quantum Zeno effect. The
exists some optimal choice ofDt found by trial and error.
The prescription of the method is straightforward for mere
suppressing the reflection. Given the wave pac
Cbefore(t,r ) at time t,

Cafter~ t1,r !5 f p~r !Cbefore~ t,r ! ~19!

for t1 infinitesimally greater thant.
For basis expansion methods, unlike for grid-based d

cretization techniques, imposing a mask is more involv
here. We consider the following implementation of th
masking approximation. First, applying the masking imm
diately at the borderr 5r 0 introduces uncertainty in the defi
nition of the border itself. We consider the auxiliary proble
for which the potential is extended beyondr 0, namely

V~r !5 1
2 mv2r 2 ~r ,r 0!
1-3
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5
1

2
mv2r 0

2 ~r 0,r ,r max!. ~20!

As noted in the Introduction, this potential is intended
mimic absorption, if approximate, in quantum mechanics.
make the effect of the kicks in the Siegert and mask
method identical in the exterior region, the kick is set to
on this model system only in the ranger ,r 0.

With this understanding, we solve the stationary states
this model using the trigonometric basis set$hn(r )% defined
by

hn~r !5A 2

r max
sinS np

r max
r D . ~21!

This basis set is convenient because the Hamiltonian ca
evaluated analytically, even though it is appallingly slow
convergence, as will be seen later. Likewise, the matrix e
ments ofr in the ranger ,r max as well as the matrix ele
ments of the profile functionf p are expressible analytically
Thus, the action of the profile function on the wave packe
representable by a mere matrix multiplication on the basis
$hn(r )%.

III. CLASSICAL MECHANICS OF THE MODEL
PROBLEM

The classical dynamics of this model system may prov
useful insights into the ‘‘ionization’’ dynamics and, thereb
shed light on quantum dynamics. The correspondence
tween classical and quantum dynamics is expected to b
close in this system as for harmonic systems because cl
cal and quantum expectation values should agree, accor
to Ehrenfest’s theorem. Clearly, in the present case the
respondence can only be approximate due to the anharm
cutoff of the potential atr 0.

The equations of motions can be converted into a disc
map connecting phase-space coordinates of adjacent kic

r n
15r n

2 , ~22!

pn
15pn

21Dp, ~23!

r n11
2 5Ur n

1cosvT1
pn

1

mv
sinvTU[uanu, ~24!

pn11
2 5

an

uanu ~pn
1cosvT2r n

1mvsinvT!. ~25!

In Eqs.~22!–~25!, the superscript6 stands for the infinitesi-
mal time increments6« just after (1) or before (2) the
nth kick. The kick period is denoted byT and the oscillator
frequency byv. The corresponding oscillator period is d
noted by Tv . During the interval in between kicks@nT
1«,(n11)T2«#, the energy of the oscillator,

En5
pn

2

2m
1 1

2 mv2r n
2 , ~26!
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remains constant so that the trajectory travels on an ellips
phase space. One catch, however, is that for a 3D harm
oscillator, the conditionr>0 must be satisfied. Only half o
the ellipse is accessible and the period is given byTv

5p/v. Figure 2 graphically illustrates how each kick affec
the oscillator’s trajectory in phase space. The trajectory
volves on the half-ellipse until the next kick shoves it on
another half-ellipse. In the present case, we consider pos
kicks, Dp.0, pushing the electron radially outward. Th
process continues until the trajectory reaches beyond
half-ellipse that marks the threshold for ionization. More d
tailed insights into the classical phase-space structure ca
extracted from a Poincare´ surface of section~Fig. 3!. The
phase space is covered by concentric elliptically shaped
up to a critical torus where the turning point touches t
transition pointr 0 to the ‘‘continuum.’’ Outside the critical

FIG. 2. Graphical representation as to how the oscillator h
from one ellipse to another upon receiving a kick. It may as w
occur that a subsequent kick is received after several revolution
a particular ellipse.

FIG. 3. Poincare´ surface of sections representing strobosco
snapshots (r n

2 ,pn
2) of an ensemble of trajectories~Table I!, taken

just prior to the kicks. The initial conditions are such that the t
jectories are positioned along the line joining the unique cente
the ellipses and the lower right corner of the figure with an eq
spacing. The dashed ellipses ‘‘ionize’’ whereas the solid ones
main bound. The thick dashed line corresponds to the energy
stant manifold withE53/2\v.
1-4
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torus, the propagation on the ellipse is of finite duration.
soon as the phase point reaches the half-spacer .r 0 for the
first time, the motion on the torus is truncated and the tra
tory is lost. All concentric ellipses are centered about

r center5
Dp

mv2T
, pcenter52

Dp

2
. ~27!

The position of the center can be easily understood in te
of a ‘‘Stark-shifted’’ oscillator. In the case in which sever
kicks occur during one orbital period (T,Tv), the time av-
erage over the perturbation can be represented by a S
field F5Dp/T,

^V&52r
Dp

T
. ~28!

The displaced harmonic oscillator is thus described by
effective Hamiltonian

Heff5
~p2pcenter!

2

2 m
1 1

2 mv2~r 2r center!
2. ~29!

Comparison between Eqs.~28! and~29! yields the condition
for r center @Eq. ~27!#. Likewise, the condition that the kick
preserve the kinetic energy

pDp1
Dp2

2
50 ~30!

defines the symmetry axis in thep direction with pcenter5
2Dp/2 for the momentum just prior to the kick. We note
passing that highly nontrivial phase-space structures em
when the center of ellipser centeris closer to the origin than to
r 0, i.e., r center,r 0/2. Because the map is discontinuous at
origin, the elliptic tori are destroyed. In particular, in the ca
of classical resonances, i.e., the kick periodT is such that

T.
kp

nv
, ~31!

wherek and n are integers and mutually prime, that is, t
fraction k/n is irreducible, some phase-space trajector
travel on an Arnold web@8# whose rich structure and impli
cation for the quantum dynamics is currently under inve
gation and will be presented elsewhere@12#.

The classical phase-space portrait immediately allows
to determine the classical survival of an initial state
which we take in the following the ground state of the fie
free harmonic oscillator. In general, the initial bundle of tr
jectories traveling on off-centered ellipses either all rea
beyondr 0 or all fail to reachr 0. Under a particular circum-
stance~to be specified below!, only a fraction of the trajec-
tories reachr 0 resulting in ionization while leaving behin
the residual trajectories within the ionization boundary. T
survival probability in this event differs from both zero an
unity.

The region of survival is delimited by two tori as upp
and lower bounds that meet the following conditions:~i! they
05272
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both touch the boundary atr 5r 0, ~ii ! one of them touches a
r 50 the maximum~classical! momentum of the initial field-
free torusp5A3\vm ~for the ground state!, and ~iii ! the
other touches the maximum elongation in coordinate sp
r 15A\/mv at p'0. This range of ellipses can be convert
into a range of kick periods,T, for which the classical sur-
vival probability varies between zero and one at fixed k
strengthDp and oscillator frequencyv,

2Dp

mv2

1

r 01r 1
,T,

2Dp

mv2

r 0

r 0
22r 1

2
. ~32!

IV. NUMERICAL DEMONSTRATION

We first examine the convergence of the Siegert ps
dostate method. We focus in the following on the case
positiveDp, that is, the so-called downhill case. Since io
ization for the uphill caseDp,0 should involve angular
degrees of freedom, coupling to other eigenstates of cu
would be required for a realistic representation. We set
parameters as shown in Table I. At the given values ofDp
and T, the survival probability and, likewise, the ionizatio
probability maintain a finite value differing noticeably from
both zero and unity even after over 100 kicks@see Eq.~32!#.
These probabilities may be affected by the occurrence
reflections, which limits the reliability of the quantal calcu
lation. The basis size for the Siegert method is set to 2
although convergence can be attained even with a slig
smaller basis set. This specification is all we need for t
method. For the masking method, the time intervalDt of
masking is such that we apply it ten times duringT, T
510Dt, andr mask is set to 25 andr max530, i.e., the absorb-
ing layer is situated between 25 and 30 a.u. The numbe
basis functions is varied from 500 to 2000 for comparison
rather large number of basis functions are needed to re
sent a sharp potential edge atr 0 on account of the rathe
naive choice of the trigonometric basis set.

Figure 4 shows the survival probability after each kick
a function of timet measured for the particular parameter s
of Table I, where the discrepancy between the mask
method and the Siegert method becomes more pronou
with increasing time. The results with the masking meth
approach that of the Siegert pseudostate method as the
size increases, even though it does so remarkably slo
Each bump in Fig. 4 occurs when the wave packet star
originally from the ground state of the field-free Hamiltonia

TABLE I. Parameters for the kicked harmonic oscillator as us
for numerical implementations.

Definition Value

Oscillator’s mass m51
Oscillator’s angular frequency v51
Initial-state quantum number n51
Boundary distance r 0510
Momentum transfer Dp50.56
Kick time interval T50.1
1-5
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revisits the region nearr 0. The classical survival probabili
ties, superimposed on Fig. 4, display only one drop-off f
lowed by a stable plateau. For the classical calculation,
have employed two different initial ensembles, the stand
microcanonical ensembleP(r ,p)}d„E2H0(r ,p)…, repre-
sented by the initial torus centered at the origin in Fig. 3, a
the Husimi probability distribution P(r ,p)51/2p(r 2

1p2)e2(r 21p2)/2 corresponding to the initial-state wav
function }H1(r )e2r 2/2. The small discrepancy between th
two classical results reflects the influence of the initial qu
tum ground state on the survival probability. The grou
state, dominated by the zero-point fluctuations, is the m
nonclassical state. In the limit of high quantum numbers,
two classical curves would coincide. The stability of t
classical survival probability is not unexpected because
classical motion of the harmonic oscillator, while of
centered, involves no spreading in phase space. By cont
the quantum wave packet broadens as it continues its tr
in phase space. The flux loss thus recurs at each visit to
boundary. The areaA of the torus representing the initia
state~Fig. 3! gives the size of the quantum uncertainty, i.
the size of the quantum unit cell,A'h. It is the size of this
spread that allows additional ionization each time the qu

FIG. 4. Survival probabilityPN(1:50) after each kick as a func
tion of time t. The solid line of a moderate thickness is for th
Siegert method. The thin solid line, the broken line, and the th
solid line are for the masking method with 600, 1000, and 20
basis functions, respectively. The slow convergence of the la
method is presumably due to the trigonometric basis functions.
dotted line represents the result of classical trajectory calculat
using the microcanonical ensemble for initial trajectories, while
chain line uses the Husimi distribution of the initial-state wa
function for generating initial trajectories. Plotted in the low
frame is the time evolution of radial distancer of a typical classical
trajectory.
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tum wave packet approachesr 0.
Snapshots of the wave-packet propagation at differ

times~or number of kicks! are shown in Fig. 5. The upper o
each panel shows the Husimi distribution in relief plot a
the lower in contour plot. The axes are radiusr and momen-
tum p. Notice how a part of the wave packet in the maski
method gets reflected owing to the sharp edge and tend
travel ahead of the wave packet described by Siegert p
dostates. Notice also how a portion of the wave packet of
masking method gets transmitted into the exterior reg
separated from the residue and the reflected wave. This
also be observed in the survival probability shown in Fig.
The difference between the two quantum survival probab
ties is marked in particular by the sagging of the mask
method at each dropoff. Overall, however, the position of
center of gravity remains quite close during the first'100
kicks.

Figure 6 shows the survival probability as a function
the kick periodT. As noted in Sec. III@Eq. ~31!#, resonances
occur as a function ofT. The size of the off-centered ellipse
increases asT approaches a resonance and attains infinity
the resonance. AsT moves away from the resonance, th
ellipse shrinks, eventually falling well within the bounda
located atr 0510. On the basis of the classical dynamics, o
readily deduces the following estimate for the tempo
width of the resonance:

G t.
2Dp

mv2

r 0

r 0
22r 1

2
, ~33!

wherer 1.A\/mv as before. The width may also be define
visually as the area of each depletion dip near a resonanc
Fig. 6 where the survival probability is significantly lowe
than unity. Figure 7 compares this classical formula to
quantum mechanically evaluated temporal width indicat
good agreement.

V. SUMMARY

The Siegert pseudostate method has been shown to b
effective scheme for propagating wave packets in an o
quantum system. Reflections are perfectly suppressed w
out any significant distortion of the wave packet near
boundary. By comparison with a trigonometric basis exp
sion and masking, we found the convergence of the Sie
method to be remarkably fast. Application to the radial h
monic oscillator with a cutoff displayed a limited classica
quantum correspondence. The classical phase-space an
aids in the interpretation of the quantum survival probabil
but noticeable discrepancies appear, mainly due to the
that the initial ground state is highly nonclassical. Furth
application to the problem of Arnold diffusion in ‘‘weak
chaos’’ @8# is envisioned.
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APPENDIX A: CONSTRUCTION OF SIEGERT
PSEUDOSTATES

We work with the Hamiltonian multiplied byr 0
2, employ-

ing the Bloch operator to impose the Siegert boundary c
05272
-

dition on the right-hand edge. Construction of the basis se
terms of DVR is described in Appendix B. The integratio
are carried out overx5(2r /r 0)21 from 21 to 11 to obtain
various matrix elements. The eigensystem then reads

(
j

~2H̃i j 2kB̃i j 1k2C̃i j !c̃ j50,
1-7
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FIG. 5 ~Continued!.
e-

1/1
where

H̃i j 52 1
2 E

21

1

c i8~x!c j8~x!dx1r 0
2E

21

1

c i~x!V~x!c j~x!dx,

B̃i j 5c i~11!c j~11!,

C̃i j 5r 0
2E

21

1

c i~x!c j~x!dx.

Herec i(x)5j(x)p i(x) with the multiplier functionj(x) of
Eq. ~B2!, andV(x) pertains to the atomic potential that d
termines the target atom. The value ofH̃i j can be evaluated
with Eq. ~B1!. Definingcj5@r 0j(xj )# c̃ j , we get

Ci j 5r 0
22j~xi !

21C̃i j j~xj !
215d i j
05272
FIG. 6. Survival probability as a function of kick periodT. Note
the occurrence of 1/2, 1/3, and 2/3 resonances in addition to
resonance.
1-8
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so that we deal with orthonormalized basis functions of
standard type. With this redefinition of the coefficient vect

Hi j 5r 0
22j~xi !

21H̃i j j~xj !
21,

Bi j 5r 0
22j~xi !

21B̃i j j~xj !
21.

The eigensystem now reads

(
j

~2Hi j 2kBi j 1k2d i j !cj50.

The above is equivalent to a linear system

S 2H 0

0 21D S c

kcD 5kS B 21

21 0 D S c

kcD .

Let us rewrite this equation as

KSn5knrSn ,

where

K5S 2H 0

0 21D ,

r5S B 21

21 0 D ,

in matrix notation, and

Sn5S cn

kncn
D .

The matricesH, B, and1 being real, it holds that ifkn is an
eigenvalue, so iskn* , and likewise for the correspondin
eigenvectorsSn andSn* .

One possible and practically straightforward normaliz
tion is then

FIG. 7. Evolution of the width of the 1/1 depletion dip as
function of Dp. The solid line shows the estimate by classical m
chanics as described in the text. The crosses show the widths
merically obtained on the basis of the visual gap in the surv
probability curve.
05272
e
,

-

Sm
T rSn5c(m)TBc(n)2~km1kn!c(m)Tc(n)

522kmdmn . ~A1!

Completeness thus reads

(
n51

2N
1

2kn
SnSn

T5S 0 1

1 2BD .

Note the summation runs over all the 2N roots@2#. Attention
must be paid to the expressions for physical quantities so
no explicit dependence on the normalization will appear a
the particular case of the Green’s function in Appendix C

APPENDIX B: APPROXIMATE EVALUATION OF
MATRIX ELEMENTS

Equipped with the Gaussian quadrature associated wi
selected orthogonal system of functions, the discrete varia
representation~DVR! method@10# realizes a discretized spa
tial representation of the coordinate space. Obviously, c
sical polynomials are the first candidate for the orthogo
system because of the precise knowledge of their vari
integrals and of the celebrated Christoffel-Darboux formu
which yields an explicit transformation to DVR. Othe
choices of basis functions are possible and have been
plored by other authors@13,14#.

To set up the Siegert eigenvalue problem, we exploit
DVR method for approximately evaluating the matrix el
ments of differential operators. It must be noted, though, t
a formally exact evaluation of various matrix elements
possible and is contained in an appendix of the paper
Tolstikhin et al. @2#.

For the purpose of constructing Siegert pseudostates
Legendre polynomials are a natural choice for basis set s
they give a meaningful matrix representation of the Blo
operator. In accordance with Ref.@2#, we define the normal-
ized basis set$fn(x)%,

fn~x!5A 1

hn21
Pn21~x! ~n51,2, . . . ,N!,

wherehn21 is the normalization constant. Upon discretiz
tion, the coordinatex becomes represented in terms of t
Gaussian grid points$xi%, namely the roots ofPN(x)50,
where i 51,2, . . . ,N. The associated DVR basis function
$p i(x)% are smooth over the interval@21,1# and satisfy

p i~xj !5A 1

Wi
d i j ,

whereWi is the Gaussian-quadrature weight associated w
PN(x). The DVR basis functionp i(x) is merely a properly
normalized Lagrange multiplier function,

p i~x!5A 1

Wi
)
j Þ i

~x2xj !

~xi2xj !
,

-
u-
l

1-9
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but its practicality is far-reaching. The explicit transform
tion matrix between$p i(x)% and $fn(x)% derives from the
Christoffel-Darboux formula, namely Eq.~C9! of Ref. @2#,

fn~x!5(
i 51

N

Tnip i~x!,

p i~x!5 (
n51

N

Tnifn~x!,

where Tni , an orthogonal matrix, readily proves to b
AWifn(xi).

Let us first recall that the matrix of an operator that do
not involve derivatives is diagonal in DVR,

E
21

1

p i~x!g~x!p j~x!dx.(
k

WkA 1

Wi
d ikA 1

Wj
d jkg~xk!

5g~xi !d i j .

Doing the same with a differential operator of the for
(d/dx)j(x)p i(d/dx)j(x)p j , we get

j8~xi !
2d i j 1j~xi !j8~xi !AWip j8~xi !

1j~xj !j8~xj !AWjp i8~xj !1(
k

j~xk!
2p i8~xk!p j8~xk!.

~B1!

In practice, we set

j~x!5r 5
r 0

2
~11x! ~B2!

in order to ensure the vanishing boundary condition ar
50. It is straightforward to evaluate (d/dx)p i(xk) with high
precision by way of (d/dx)fn(xi) using fn(xi) and
fn21(xi). So oncefn(xi) is tabulated for all the pairs o
(n,i ), we have the matrix elements of the differential ope
tor with respect to DVR to the precision afforded by t
Gaussian quadrature. However, the computational burde
this case is not lessened significantly despite DVR on
count of the triple summation in the last term of Eq.~B1!.

APPENDIX C: SIEGERT REPRESENTATION OF THE
GREEN’S FUNCTION

The Green’s function is formally given by (K2kr)21,
whose spectral representation is

G5(
n

Sn^Sn
TuruSn&

21Sn
T

kn2k
. ~C1!

Substituting the block-matrix representations ofK andr, and
decomposingG into

G5S G11 G12

G21 G22
D ,

we can formally identify G115
1
2 (H2E)21 @where H

5 i\(]/]t) as defined in Eq.~1!# by simply considering the
inverse of
05272
s

-

in
c-

K2kr5S 2H2kB k

k 21D .

However, we also need to identify the proper branches
energy E in order to separate the retarded and advan
Green’s functions. Meanwhile, the block of Eq.~C1! corre-
sponding toG11 is

G (1)5 (
n51

2N
c(n)c(n)T

2kn~kn2k!
.

The form corresponding to the other branch ofk derives
from (K1kr)21, and is given by

G (2)5 (
n51

2N
c(n)c(n)T

2kn~kn1k!
.

The sumG (1)1G (2) reduces to

(
n51

2N
c(n)c(n)T

En2E
,

which upon Laplace transform is readily seen to consist
the retarded and advanced Green’s functions. Separatinkn

and kn* , which are both poles, we get the retarded and
vanced Green’s functions, respectively,

G(1)5 (
n51

N
c(n)c(n)T

En2E
~ ImEn.0!, ~C2!

G(2)5 (
n51

N
c(n)c(n)T

En2E
~ ImEn,0!, ~C3!

where the sum now runs overN eigenvalues ofEn . In evok-
ing time propagation with respect to the Siegert pseudosta
we must keep to the retarded Green’s function such
ImEn,0.

To end this appendix, we give a simple illustrative de
onstration of the advanced Green’s function based on
Siegert pseudostates. It is the photoionization cross sec
of hydrogen given by

FIG. 8. Photoionization cross sections of hydrogen. The so
line by the Siegert Green’s function. The broken line by the we
known analytical formula~see text!.
1-10
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s5
4p

c
\v Im(

n

^0uduc(n)&^c(n)Tudu0&
En2E

,

whered is the dipole operator andu0& is the initial ground
state, which is volume-normalized to unity. We compare
-

J

,
,
g,

t

ler

05272
Fig. 8 the photoionization cross sections calculated acco
ing to the above formula with those of the analytical o
@15#. The agreement is good considering the rather wide
ergy spectrum covered by 150 basis functions. The box
r 0 is 400 a.u. An artifact due to the use of the finite basis
is visible near threshold in the form of sawtoothed structur
in
, S.
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