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Nonadiabatic dynamics: Transitions between asymptotically degenerate states
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Nonadiabatic transitions between asymptotically degenerate potential curves are discussed. Both crossing
and noncrossing two-coupled-Morse-potential systems are studied semiclassically as well as quantum me-
chanically. Conditions for the appearance of a nonadiabatic transition are clarified. The case of inverse power
potentials at infinity is also analyzed. Expressions of nonadiabatic transition probability are obtained.
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[. INTRODUCTION IV by considering different decreasing rates of the potentials
and coupling at infinity within the framework of the pertur-
Nonadiabatic transitions are usually classified into twobation theory. Some specific generalizations will be consid-
cases: the curve crossing case and noncurve-crossing cagéed in Sec. V.
The Landau-Zener-StueckelbefgZS) type curve crossing
and the Rosen-Zener-Demk@RZD) type noncrossing prob- [l. SEMICLASSICAL SOLUTION OF COUPLED
lems represent the most important and well-studied cases MORSE POTENTIALS
[1-7]: Especially, the LZS type of curve crossing problem
has recently been completely solvigg-10]. As an interest-
ing intermediate case, there is an exponential potenti
model, which was first investigated by Nikitin within the 52 g2
time-dependent straightline trajectory framew@ik. After (— M WJrV—E)‘I':O, (2.9
that quite a few investigations have been carried out in at-
tempt to generalize [tL1-14. There is another type of nona- | here
diabatic transition, i.e., the nonadiabatic transition between

First, we will consider the following coupled Morse po-
atiential model:

two tangentially touching potentials. If that occurs at a finite v,

distance, this is nothing but the Renner-Teller type of transi- WZ(xPZ)’

tion [15]. In this report we analyze the touching at infinity,

i.e., a nonadiabatic transition at infinity between asymptoti- Ae ®X4 Be2ax Ge X

cally degenerate potential curves. The transition between as- V—( Ge Ce Dezax)' E>0.

ymptotically degenerate curves induced by Coriolis coupling

is such an example. The degeneracy limit of the RZD model (2.2
is the so-called symmetrical resonance case and does not |n the asymptotic region,

belong to this category, because there is no nonadiabatic

coupling between the two adiabatic potentials in the sym- . A G

metrical resonance case. If the diabatic potentials have a cer- X—%, V—e G c/ 2.3

tain dependence on the coordinate, however, the nonadia-

batic coupling exists, such as in the nondegenerate RZ¥his matrix can be diagonalized by the constant angle rota-
model, although that coupling goes to zero at infinity. In thistion, which indicates that there is no nonadiabatic coupling at
paper we will consider this problem more deeply, and makenfinity. When the diabatic potentials cross at a certain finite
clear the conditions for the appearance of such nonadiabatifistance, we can easily guess that the Landau-Zener type
transition at infinity, depending on the functionalities of the transition occurs there and the Massey type paranitee-
diabatic potentials and coupling there. This paper is orgafined below, plays a role,

nized as follows: in the next section the semiclassical analy-

sis (high-energy approximations carried out for two Morse 5 MG? (2.4
potentials coupled by an exponential function. Both crossing mem— B’ :

and noncrossing cases are discussed and a new expression

for the asymptotic nonadiabatic transition is derived. In Secggcause of the asymptotic degeneracy, however, the situa-
Il quantum-mechanical solutions for a special case is distjon even for the noncrossing potentials cannot be foretold
cussed to confirm the semiclassical result. The origin of th%imply, and actually the parametéralso controls the dy-
appearance of such nonadiabatic transition is clarified in Se¢,gmics at infinity, as we will see. Let us consider here the

high-energy approximation to the model potential given by

Eqg. (2.2), which is introduced by the following representa-
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The amplitudeys is considered to be a slowly varying func-  The linearly independent solutions to EQ.12 are the

tion that satisfies the first-order differential equation, parabolic cylinder functionf18] D _;.;5(Z) andD _;4(iZ),
_— where in terms of the new parameters given in &), the
—i ﬁZﬂ 1+V 2 =0 (2.6 Parameters [see Eq(2.4)] is rewritten as
M dx l/fz ' ' 92
which is in fact the eikonal approximation for the two state = 49-p" (2.16
system. Substituting the variable

7= o ax 2.7 Using the recurrence relation & functions, we obtain
=€ ' two linearly independent solutions to the systéail2) for
we get the system of coupled differential equations wellthe diabatic amplitudes in the following form:

known in the time-dependent linear potential model (1) D 2)
1,2,6,7: 1| _Lid2) —1+i¢8
[ 7 } (¢(21)) e 51/26'”/4Di5(2))’ (2.17
(ld—z+a+bz Y1+9¢2=0, (12))_ o 61’2e3"”4Di5(iZ)) 218
(2.9 W) =e D1 i4i2) '
(' d—z+c+dz) Y29¢9:=0. The adiabatic states can be obtained as usual by the trans-
i . formation
The new lower case parameters are defined by the relation
<P1) cos® —sin@) ,/,1> -
ab.c.d g:MA’B1C’D*G_ 2.9 ®2/ |sin® cos® || 219
ah2ME The rotation angl® is defined by the following expressions:
For the physical model under consideration the coupled 2G
equations(2.8) have to be solved in the halD, «) of the sin20(z)=— > 5+
whole z axis. Interestingly, such a seemingly simple differ- V[(A-C)+(B-D)z]*+4G
ence from the ordinary situation of the full axis will lead to A—C)4+(B—D
an essentially new nonadiabatic dynamics. It should also be cos 2(z) = (A-C)+(B—-D)z . (2.20
noted that the same reduction can be made with use of the JV[(A—C)+(B—D)z]?>+4G?

Stueckelberg variablé = (V,,—V11)/2V1, [16,17], but here
we have to deal with boundary conditions different from the
ordinary ones such as those in Rgf7]. (p<11) _ 1/1(21)
Eliminating ¢, from the system of equations and then ( (1)>—>( 0 )
replacingy; with ¢(z) defined by ¥z

—ell@ 21 o cosp —sing\ [y
U(z2)=€'“Po(2) (2.10 (cpék))_)(sinn cosn)(lﬂék) , z—0 (2.2)

The correlations

2
o

2
o

0
— lﬂ(lz) y L=,

with
with
1 1
{(2)=5(atc)z+ 7 (b+d)2, (2.11 7=0(0), k=12 (2.22
enable us to construct the nonadiabatic transition ma&frix

we obtain the following second-order differential equation which connects the asymptotic adiabatic amplitudes in the
following way:

d?e zz2  ,d-b
W'ﬁ‘ —Z-Ha T+C¥ g gDZO, (212 Ag_k) Bg_k)
in which the following new variable and parameter are intro-
z
1 a—c (k)(zﬂoo)=B(k)eX[{iJ‘ U 2(z)olz)
e A_ _(d_ph)-2 P12 1,2 1, )
Z—a =g @ (d—b)~ = (2.13 0
k _ ak
Without losing generality we can assume e{%z—0)=AY), (2.24
D<B (214 and
2
and _(a+c)  (b+d)z \/ a—c b-d )
_ Ui, 5 + 5 * - —l——2 z| +g
a=¢e (" (d—p) 12 (2.15 (2.29
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We finally find
N__e_ﬂlsm cosy _Sin’)7 e—iﬂ'/451/2D_1+i5(e—iﬂ'/4A) _D_i(g(eiﬂ-MA) e—i§ 0 (2 2@
Sin7] cosy Diﬁ(efiﬂ'MA) eiw/451/2D_1_i5(eiﬂ-/4A) 0 (T '
|
where the new real parametéris introduced, a _ _
S= Z+argDi5(e"”’4A)—argD,Hiﬁ(e*'""‘A).
c—a (2.34
A= (2.27
d-b

The above general expressionR®fepicts the simple be-

and the matching phasgis defined as havior in the high-energy limit as

P=co¢ 7, E—, 2.3
5 AVATHas  [A+|ATv4s T (239
§=mgt g *an 2 - 228 gince in this limitp—0. The other limit fors—0 is given by
It should be noted that <0 (>0) corresponds to the poten- P=H(-4), (2.36

tial crossing(noncrossing case. In terms of the principal

parameters andA, the rotation angle; given by Eq.(2.22 whereH (X) is the Heaviside step function and represents the

can be rewritten as boundary between the crossing <0) and noncrossingX
>0) cases. Another interesting limitks— 0, in which § and
1 0 5112 A—o with Y4 A=const. With use of the asymptotic ex-
n= EarctanT. (2.29  pression of the parabolic cylinder functid s(e~ ™*A) in
this limit, Eq. (2.32 leads to
The transition matrixN in Eq. (2.26 is unitary because of p=cog 7. (2.37)

the Wronskian of thé functions,

A2 A2 52 This indicates that the diabatic states here are mixed with
8D _1xis(e7 ™A)|*+[D s ™A [ =eT each other even &=0, and that the diabatic state represen-
(230 tation considered in Sec. 10.1 of REL] is not appropriate.
The expressioli2.31) is very sensitive to the limit of the
parameterss and A, and depends crucially on the sign &f
Nevertheless, we can find some explicit expressionhl gf
by using the asymptotic expansions of thefunctions and
their recurrence relations. Particularly, we can obtain the fol-

and leads to the following principal expression for the over-
all nonadiabatic transition probability,

P=|Nyy?=|Ny?

1 1 lowing expressions fofA|—c with & fixed:
25—(p—§ cos 2np+ \p(1—p) cosSsin 27, ' ' '
—NL,=Ny=(A eP+A_e P)e ¢ (2.38
(2.31)
with
where ,
A
p:1_efw§/2|Di§(efiﬂ'/4A)|2 (232 ®:T+5IOQ|A| (239)
has the meaning of the overall diabatic-diabatic transitiorFor A— —, we have
probability,
a2 : A =—e T[1+0(A7?)],
iy (X—+*) (2.40
=— . 2.3 112,—(12)ws
P P (=) (233 -_2mPe BT i
INGIDIINE '

It should be noted that Eq2.3]) is the result under the
high-energy approximation, E(.6), and thus represents the On the other hand, wheA—, we have
transition probability for one passage frotw o« to Xx= —

[see Eq.2.23]. The phases represents the interference ef- A = 51/2e(1/2)i77

fect, namely, the phase difference between the two paths in A '

one passage of the two transition regions: one at the crossing

and the other at infinity, and is given by A_=0. (2.4)
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P
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-0.4 0.2 0.0 0.2 0.4
A

. . » . FIG. 2. The same as Fig. 1 except &+ 0.001.
FIG. 1. The overall nonadiabatic transition probabilRyas a

function of A for §=1.0. Solid line: results of Eq2.31), dash-dot

line: result of the Landau-Zener formula. P given by Eq.(2.3)) as a function ofA for §=1.0 (Fig. 1)

and §=0.001 (Fig. 2). The dash-dot line shows the simple
Landau-Zener result.

The physical picture of the transitions expressed by Egs.
(2.42 and (2.45 can be comprehended by using the pertur-

From these expressions the probabiRyin the limit A—
—oo for the crossing case takes the form

P=e 21+ 0(A 2)]—2e "(1—e 279)12 bation theory, which yields
512 ) il 72
e -2 _a—2m8 2 » @ +445d
X5z [1+0(A7?)]cos+(1-e ™) 15. |N12|:51/2J J §v€+46 L. a8
A

(2.42
The phase€() represents the interference phase between thid this expression, Wf can easily see that two regions i_n the
Somplexg plane,{~¢* and{~A, bring about the essential

asymptotic region and the crossing region, and includes als L . . .

the difference of the dynamical phases at the crossing contributions. The proper deformation of the integration con-

point ande, = /2 at infinity tour reproduces both types of transitions, in a certain limit of
a 1

which Egs.(2.42 and (2.45 are obtained. The Landau-
A Zener transition looks like the penetration of complex clas-
Q=Ref (LP+40)Ydi+ o — @, (=eW¥7Z sical trajectories into the “deep shadow” region and the
o (2.43 transition of the type Eq(2.45 looks like the diffraction
' effect at edgg19].

with 7* =2i /3 and The A end contribution to the integral E¢R.46) leads to
=T st slogs—argl(1+i68 0
Pc=7 o9 argl’'(1+i9), P= m, (2.47
(2.49

which agrees with Eq(2.45 in the limit A—~. Figure 3
shows P given by Eq.(2.47 for §>4, which is actually
indistinguishable from the accurate result. This is rather

_m A
(Pa_Ev — .

In the case of noncrossing, we have amazing, because the simple perturbation theory usually
does not work for nonadiabatic transitions, as is well known.
06 The simple perturbation theory works well in the present
P= 26 A—o, (2.43 ; P i i
A case, because the exponential factor, which dominates in the

usual cases, does not appear and the higher-order terms be-
The above result clearly indicates that there are two typesome smaller. Demkov, Ostrovskii, and Solov’ev have also
of nonadiabatic transitions: one is the Landau-Zener typgointed out that when adiabatic potentials cross on the real
transition represented by the first term in E§.42 and the axis, the coupling has no pole and the perturbation theory
second is a new one in the asymptotic region represented kyjives the exact result in the small velocity linf20]. How-
the third term in Eq(2.42 or Eq.(2.495. These two appear ever, they did not discuss such a degeneracy case as was
naturally only in the case of crossing. Figures 1 and 2 showpresented here. It is also interesting to note that the
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0.0012

FIG. 3. The same as Fig. 1 except 6+ 4. The result of Eq.
(2.42 is indistinguishable from the accurate one by Efj31).

asymptotic nonadiabatic transitipngiven by Eq. (2.47)
gives the energy dependenceEat:-0 qualitatively correctly
as

szhz Z(D B)2

P2 [(C=A)Z+ 4G e

E—0, (2.49

although in the close vicinity of the quantum-mechanical
threshold region, this cannot quantitatively correctly repre-

PHYSICAL REVIEW A 63 052710

and forA>0,

D_1.i5(e "™ A)=¢l"cosys Vel mAtil

sent the energy dependence because of the semiclassical ap-

proximation (see the discussions in the next seckiofhe

behavior of quantum systems within the framework of adia-

batic perturbation has been studied in the classical paper bKl
Born and FocK21]. Particularly, they have given the esti- (A
mate of the nonadiabatic transition probability for the finite
time interval without any accidental adiabatic potential

crossing on the real axis in the forf=0(T?), whereT is
the large characteristic time. The linear behavidrE,

given by EQq.(2.48), is consistent with this result, because

(2.51
Dis(e ™A)=—e ¥ sinye™el¢, (2.52
where
T= %ﬂf—)smz (m)— I%Z—Sln(Zn)dA
(2.53
and
%f—) co( )+ f%z—sm(zn)dA
(2.549
In both cases oA <0 andA>0, we have
D_1_is(€™A)=D* . (e '™A), (2.55
D_i5(e™A)=D5(e”"™A), (2.56
and
THo=— <l (2.57
In the case ofA<0 from Eq.(2.26 we have
cosy —singy\[ €7cosy  eVsing
_( siny  cosy )(—ei”sinn e”cosn)
iw/2 —iwl/2
X eo e(i)w/z) ||>'<Z(e 0 eicu))/z)
=N, (2.58

mathematically the model considered here has the boundary
at z=0 and does not contain the adiabatic crossing on th&here

real z.

Before closing this section, let us clarify the connection of
the aboveN matrix to the Landau-Zener type nonadiabatic

e

J1—e Zmogits e 7o
o= (2.59
) J1—e 27 ivs|’ ’

transition matrix and derive the corresponding matrix for the

asymptotic nonadiabatic transition. For that we use the fol-
lowing asymptotic expressions of the parabolic cylinder

functions valid atA2+46>1 with 7, v<1. ForA<0,

D_i.+is(e"™A)=€"cos _vem
—1+id 771"(1_|5)
4 eiv sin 7757 1/2e73ﬂ'b‘/4ei wld—i{

(2.49

e~ 7T(3/4ei§

D, (e 1Ay = —g v Sinﬂr(lvz_:-&) §U2a— ol imla+ig

+e "cospe 3L (2.50

w=E&+(8—-8In8)2= f:(52+45)1’2dg. (2.60

cosy —siny\[ €7cosy  €eVsing
~ lsing cosy )\ —e¥sing e i"cosy)’
(2.61
JI—e Z70gids _ oo
|L2= I |, (262
e ﬂ&e iw 1—e 'rrzSe idg
and

¢ps=6—5In 5+ wlA+argl'(i ). (2.63
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The matrixI)L(Z is nothing but the Landau-Zener type nona- N(A>0)=N.,, (2.649
diabatic transition matrix at the avoided crossing ahél

represents the similar matrix including the adiabatic wavewhich gives the asymptotic nonadiabatic transition matrix
propagation from infinity to the crossing point representedand is naturally identical to that in the crossing cage (
by the phasev (see Refs[8-10]). For A>0 we have from <0). For small values of, v the following simple expres-

Eq. (2.2 sion can be obtained:
|
1 1/2 A 51/2
(1 4(A2+45)2) 3 (a7125)7 ' (87445
N..= 512 1 112 A . (2.69
' (A%146) (1 4(AZ+ 4572 "' 2(A%+ 45"
|
The above finding is quite useful, because the nonadiabatic 1 518y sy 2 918y a1
transition matrices describe the transitions in local regions#y =7— [G | 18275 — (2a,—-3) G5 | 1)
and thus can be used in other general even multichannel
problems. Furthermore, the matricgg and|“? can be re- , [d 2 40 L 21858
placed by the far more accurate ones obtained recently (@ =) 2 G214(KZ| v ] 3.9
[8-10].
whereG37 andG37 are the Meijir'sG functions[22] and the
I1l. QUANTUM-MECHANICAL SOLUTION various parameters are defined as
OF A SPECIAL CASE
MD MG
In this section we present the quantum-mechanically ex- K= 51222 L= 27202
. . . . o a
act solution of a special case and discuss the validity of the
semiclassical approximation given in the previous section. If ir iq iq 3.7
we setA=C=B=0 in Eq. (2.2, we can solve Eq(2.1) a =1+, blz— +*—, by, ==
exactly by using the method of Osherov and NakanLg. ' 2 2 2 ' 2

The physically independent solutions of Eg.1) for diaba-

. . . The principal parametenrsandq are the dimensionless mo-
tic wave functions are obtained as b pal p g

menta in the asymptotic regions of the adiabatic potentials,

Yi = GoU Kz ™), (3.1 2
(2)_G4,1(K22ei7r|62,31) (3 2) r= - E+E = ME (3 8)
djl 2.4 bq ’ . ﬁa y fla’ . .
¢&3):G‘21,2(K22|31va2), (3.3 The diabatic wave functions given by Eq®.1)—(3.6)
' a have the following asymptotic behavior:
(K) _BK g1+ AK G
(21>_LZ[ ;11(KZ em|a1 W~ 2) (2a,—3) Y1 ,=B1d+AT,q for z—0,
(K BRIz A+
GAY K z2eim21-2271 2, (4 ? V= BITEAST, 39
24 Kz%e |bq )t (a—1)"+ >
4,//(2"):0 for z—oxe,
Gy aKz% ”lZ: ‘az)] , (3.4  where
ay.a;-2 g, g, f, r= L g=i(@nax (3.10
(22)_ z]i(KZ eI7T| 28172 _(2a,—3) I PR \/C]T .
31Kz emlaz a1 4| (- 1)%+ Q)T and the an.prIitudeg\i(k) andB{ are connected by the tran-
2 sition matrixN; ; as
4,1 im 82,21 ~
XG5’ (Kz e | )] (3.5 Ai(k):NIJBJ(k)_ (3.11)
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The matrix elementglij can be obtained as
I'(b;—b)I'(b;—by)T'(bz—by)
I'(by—=b3)I'(by—b3)I'(bs—bs)

Xr(az_bs)r(al_bs)
I'(az—=bg)l'(a;—by)

Nll: Kb4_b'z

sinm(b,—b,) sinm(bs—a;)
sinm(b,—a,) sinw(bs—a;)’

(3.12
L TI'(by—byI'(by—by)I'(bz—by,)
bZ—b3 T(b,—b;)T (bg—by)T(bs—by)

I'(az—by)I'(a;—by)
I'(az—bg)I'(a;—by)

lez Kba—by

sinm(by—b,) sinm(b;—a;)
sinm(bz—b,) sinw(bs—a;)’

~ r .
ngz—\/%Kal 1-bs

I'l+b;—a)l'(1+by,—a)l'(1+bsz—a;)
I'(l+a,—a)l'(by—bjy)
XF(1+ bs—ay)l'(a;—bz)T'(a;—ba)
I'(bs—bs)

(3.13

sinm(bs—a,) sinm(b;—a;)
7TSin7T(b3_ bl)

, (3.14

5= bi I'(by—by)I'(by—by)
b?—b3 T'(b,—a;)T (bs—by)
I'(by—Dby)I'(a,—by)I'(a;—by)
T'(b,—b;)T (a,—b,)I(a;—by)

Nop=KP27P

y sinm(bs—Db,) sinm(b;—a;)
sinm(b,—a,) sin(bs;—by)

: (3.19
Nzgz\ﬁKal—l—bl 2|_ 2 I'(1+b;—ay)T(1+b,—a,)
q b?>—b2 T(1+a,—a;)l(b,—b,)

XF(1+ bs—ay)l'(1+bs—ay)l'(a;—by)l'(a;—b,y)
I'(bs—by)I'(bs—by)

sinm(bs—a;)sinm(b;—a,)
’7TSin7T(b3_ bl)

' (3.16

I'(l+b;—a)l'(1+by,—a)l'(1+bsy—ay)
I'(1+b;—a))I'(1+by,—ay)l'(1+bs—a,)
I'(l+by—a)I'(1+a;—a,)I'(a;—by)
I'1l+by—ay)l'(1+a,—ay)

N33= Kai—az

sinm(bz—b;)sin7(b;—a,)
sin 7T(az_ b3)Sin’7T(a2_ bl) '

(3.17

PHYSICAL REVIEW A 63 052710

The adiabatic wave functions have the asymptotic behavior,

¢¥=BY g +A¥q for z—0,

¢19=0, (3.18

e =BYF+AY T  for z—o0,

which define the principal transition matrl; ; connecting
the adiabatic channels as

@19

For the model under consideration the formulas EQsl9
and(2.20 with A=B=C=0, lead to

(k) 0 —-1 (k)
@ ¥
0 A e om
o
o8

0 Sl

RV AR AR

—0. 2
" ),20(3])

Using Egs.(3.9), (3.11), (3.18-3.2}, we obtain

N=TNT !, (3.22
where
1 1
- - —-=_0
V2 V2
T= 1 1 0 (3.23
‘/21 .‘/2,
0, 0, 1

The overall nonadiabatic transition probabili®y takes the
form

N3+ Npg2.

N| -

Po:|N13|2: (3.29

Using EQgs.(3.11)—(3.17), we finally obtain

r—
coshw( Tq)

r+q

2
[sinhmr(r —q)
2 sinhar(r+q) cosSoo) | -

(3.29

sinhar
sinhzr(r+q)

1
POZESinr’(ZWQ)
sinhar

and
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-12
-10 5 0 5 10
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FIG. 4. The overall nonadiabatic transition probabiRyin the
special case of exponential potential discussed in Sec. Il as a fun
tion of e=2ME/#2a? for the case of ,=1. The ordinate is equal
to In(P) and the abscissa is equal todp(The line “q” is the result
of the exact quantum formula E¢R.31) and the curve “sc” is the
result of the semiclassical approximation, E2.42.

B I 1 r—q I .r—q
Sp=m—arg §+IT +arg IT
r BhA r 9 3.2
+arg §+IT —arg IT . (3.26

In the eikonal semiclassical approximation<f,q and
G2/D<|E|, the above result accurately reduces to

1
Pozi(l—\/l—e*Z”‘gcosSo), (3.27
o rl1 io r io 32
SO—Z+arg > arg > ) (3.28

which coincide with the semiclassical results of E2131) in
the limits A=C andA— 0. At the thresholdj<1, q<r, the
above result, Eq(3.25), gives the energy dependence as

B 41 V2ME
Po—m T (3.29)
with
GZ
\/2M D
Fo=—————. (3.30

ha

The comparison between the quantum results, B®5),
and the semiclassical results, E§.27), is given in Fig. 4

PHYSICAL REVIEW A 63052710

-10 -6

In(€)

FIG. 5. The same as Fig. 4 except that the threshold region is
Cé'mphasized. The line “th” is the result of the approximation Eq.

(3.29.

IV. ORIGIN OF THE ASYMPTOTIC NONADIABATIC
TRANSITIONS

In this section we will try to analyze, in more detail, the
physical origin of the asymptotic nonadaiabatic transition
within the high-energy approximation. Let us consider the
following system of two asymptotically degenerate states:

d u, v
(id—x+(vl uJ)(ﬁ;):o 4.0)
with
Uyo,V
Upp0=—M m (4.2
and
U, V=0 for x—oe. (4.3

Transforming Eq(4.1) into the adiabatic representation by

and Fig. 5. This demonstrates good accuracy of the semiclas-

sical approximation. It is interesting to note that £§.27)
takes a rather unusual form in the lindit- oo,

1
PO oy

(3.31

which actually agrees with E¢2.47) with A=0.

. 2v
sin20 = — ,
\/(Ul_U2)2+4vz
(4.4
u;—u
CosS 20 = L2 ,
V(ug—uy)?+ 402
we obtain
. d e 0y [ O 1d®<P1>
—+ + —_ = .
'ax "l o € "'—1 o) dx|\¢, 0. (49
where
1
elvz=§(u1+u2i\/(ul—u2)2+4v2). (4.6)

Now, we expandJ;—U, andV in terms of certain basis
functionsf,(x), which satisfy the limit Eq(4.3),

052710-8
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ul—uz=n§1 Anfn(x), V:mE:l Bunfm(X). (4.7

In accordance with Eqs4.3), (4.4), (4.6), and (4.7), the
following limits hold true

do

€12, &—>O for x—o0. (4.9

Depending on the decreasing rates of the potential differ-
ence and the coupling, we will consider the following two

cases separately.

A. The case where the nonadiabatic coupling decreases not
slower than the energy splitting

The adiabatic solutions of E¢4.5) take the form

((P(i) - C, ex;{i fxel(x)dx
%

C, exp(ifxez(x)dx) ,

4.9

PHYSICAL REVIEW A 63 052710

On the other hand, if we usg(x)=e~ *"*, we can recover

Eqg. (2.46 and Eq.(2.47). If we use the power basis set

fa(X)=(p/x)", Eq.(4.13 leads to the following expressions:
P=0 for A, or B;#0, (4.14

2h? (AzB3—A3B,)®
- Mp®  (A3+4B))°

E for A;,B,=0, (4.15

and

o 2°h2 (A3Bs—AgBj3)?
- Mp®  (AS+4B3))°

E fOI‘ Al ’Bl ,A2 ,Bz ,A4,B4: O
(4.16

The formula (4.15 applies to the Coriolis coupling and
charge-dipole potentials and the formu(d.16) for the
charge-dipole and charge-quadrupole potentials.

B. The case that the adiabatic potential energy splitting
decreases faster

whereC, , are arbitrary constants. Assuming that the Massey In this case Eq(4.12 loses meaning, because the de-

parameters is much larger than unity, we use the perturba-

tion theory for simplicity. Choosing,=0, we obtain

Ypo=—C1sin® exr{ i Jxel(x)dx

(4.

)exp{ifxel(x)dx

With use of Eqs(2.19), (4.4), (4.6), and(4.10 the adiabatic
wave functione, can be expressed as

10

do
—cos0
X

Cy : :
t//1=7 (Upy—€1)SINO +i g

ic, d®

o —sin 20 ex;{ [ fxel(x)dx), (4.1

$2= v dx

which leads to the expression of theymptotic nonadiabatic
transition probability,

Sl _ (d>2 4.12
=|—4<-| =Ilim — , .
P1(X) | (€1~ €)7 | dX
where X is located outside the asymptotic transition region
In terms of the basis functionfs,(x) we have
2
L1 2 (ABm—AmBR fa(X) (%)
2h° | nm=1
P=lim sE.
X— 0 M
{ 2 (AnAn+4BoB) fo() f(X)
n,m=
(4.13

As can be seen from the derivation of E¢.12), this
expression can be formally used to reveal #symptotic
nonadiabatic transitionseven for the models without
asymptotic degeneracy. Particularly, this gives 0 for the

nominator, €;— €,)?, goes to zero faster than the nominator.
Since we cannot discuss the general cases, let us consider a
particular case with A;=A,=B;=B,=0 and f,(x)
=(p/x)". The adiabatic potentials are given by

1 P 3 \M (Ul+U2) L
— + JAZ 2| = - +
€12 2(U1+02— A3+4Bs<x> ﬁ\/ﬁ 2 3
(4.17)
and
d@ AgB4_A4Bg P R
_dX __—A§+4B:23 F__F for x—oo, (41&

In this case, it is possible to find the exact solution as fol-
lows:
transforming the wave function by

®1= ¢1,ﬁ7iix€l'2dxv (4.19
‘we obtain

do .

% + RéLtZ’ZPZ: 01

do .

% Re L%, =0, (4.20
1

with t=—,

X

which can be solved again in terms of the parabolic cylinder

linear potential model, Nikitin model, and Demkov model. functions. The general solution is given by
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~ Ll 12 —i7r/4JZ [ cosxy  siny
- D7 i - - . .
p1=¢€ e Gy l+lv(e X (—Sln)( cosy (5.3
—cp¥2p | il \/I) 4.21) If we choosey as
2 —lv X ’ .
tar? 2 A (5.9
art 2y= , .
. . 2L . 2L B—D
“¢2:e—IL/2X2 ClDiV( e—lw/4\/x_ +C2D_1_iv(elwl4 \/X_) ,
we can transform Eg5.1) to the form of Eq.(2.2) with the
(4.22 replacement of the parameters
where
AC 1 A+C+(D—B)(A—C)—4AG .
R® % (AsBs—A4B3)” V2E 4.23 ) “T[(D-B)Z+4Aq2 | (5.9
V== . .

T2l p (A3+4BDY M
1
- —1(D-RB)2 291/
The nonadaiabatic transition matfikconnecting the am- B.D— 2 {B+DF[(D—B)*+4A%]"2}, (5.6
plitudes of adiabatic waves at—-0 andx—«, is given by

and
1 (I v)1/2
1 iv iv G(D-B)—A(C-A)
4 u _— G . 5.
(2 2) 2 2F(1 2) - [(D—B)2+4A2]1/2 ( 7)
N= \/;efm)m ) o
_ (—iv) 1 Redefining the basic parametet@nd A by
iv 1 iv
211+ | Tls— = [G(D-B)—A(C—A)]?
2 2 2 _ (5.9
(4.24 [(D—B)?+4A?]%? '
The asymptotic nonadiabatic transitioprobability can be and
expressed as
A_(D—B)(C—A)+4AG 59
P=%(1—e’”). (4.25 [(D—B)?+4A%]3 :

we can employ the previous results given in Sec. Il. The
From this expression we obtain again the power-law behavapove analysis makes it possible to consider the two limiting
ior of the probability at low energy, i.eB« JE, which is the cases,A=C=A=0 and D=B=G=0, which represent
principal characteristic feature of the asymptotic nonadiafaster decay of the diabatic potential-energy difference and
batic transition. This indicates that the asymptotic degenthe diabatic coupling, respectively.
eracy of the potential-energy curves creates a new type of
nonadiabatic dynamics with respect to the analytical depen- B. Case(2)

dence of the probability on the collision energy. ) ) )
Let us consider the system described by @dl) with the

V. GENERALIZATIONS following potential matrix elements:

In this section we will investigate three kinds of general- U1~ Uz2=Ane "+ Ape” ™, V=Be "+ Bye
izations. (5.10

with n,m>0 andm>n, which do not lead to any loss of

A. Case(1) generality. We can further assunBg,=0, since a constant
First, let us consider the following potential system: angle rotation can eliminate this term without losing gener-
) ) ality in the same way as in the previous case. Transforming
Ve Ae “+Be "™ Ge “+Ae 5.1 the wave function by
| Ge '+ Ae 2 Ce ™+De 2%/’ ' L
Yr=e iy, ,, (5.13
This can be transformed into other diabatic potential systems
by a constant angléw) rotation defined by and changing the variable by
Vg=RVR! (5.2 X=g nex, (5.12
with we obtain the following equation:
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d%y i ¢ 5 The above differential equation can be solved exactly in
Wzl— n—(’AT,1+A XM= n’“) 1y “ 1// terms of the confluent hypergeometric functions. We choose
o . . h
(5.13 the following particular solution
where U1=X¥ (a,c,iaxX), (5.21)
. y AB 514 where
yD— . " |
fivaME a=(a+ Jai+4b?), c=1+iaj+4b: (5.22
The special case oh=2n leads to the type discussed in Sec.
Il and can be solved exactly. and the function¥ (a,c,ia,X) is theW-confluent hypergeo-
metric function[18]. The solution(5.21) has the suitable
C. Case(3) asymptotic behavior as
Using the same method as above, we can solve some _ -
cases of the following potential system: lim |zp1|2=exp{§(a1+ Vai+4b?)|. (5.23
X—ow
T N T C L ) o _
Ui=Ua=Aq 3| TAILS] V=B S| TBI L) The second diabatic function takes the form
(5.19

Yp=ib X121t 12Xy (a+ 1 clia,X),  (5.29
with k,1>0 andl>k. In the same way as above, the term

containingB, can be absorbed by a constant angle rotatioryvhich satisfies the following boundary condition:

and thus we can assuni®=0 without loss of generality. )

Using the same transformation given by E§.11) and the lim 4,=0. (5.29
variable change, X

k-1 The above boundary conditions given by E(s23 and
X= P 5.1 (5.25 enable us to write the nonadiabatic transition probabil-
< (5.19 ;
ity as

we can obtain

o
P=ex;{ — 5 (a;+ Vai+4bi)

dz’;]ﬁ A XI K/k—1 dwl_'_ n p 0
T ( k ) (k= 1)2¢ X lim |sin® (X)W (a,c,ia,X) +ib; cos®(X)
(5.17) X
XW(a+1c,ia,X)|?, (5.26

whereA andB are defined in the same way as above by Eq.

(5.14. In this model, the special case ot 2k—1 leads to  which, with the help of the asymptotic formula of the
the same equation as E(p.13 with the correspondences W-confluent hypergeometric functidi8], leads to the fol-

a—1/p andn—k—1. In particular, the cases with=2, | lowing final compact expression:

=3 andk=3, =5 can be solved not only exactly in terms

of the N matrix given by Eq.(2.26), but also perturbatively o 5 5

by the formulag4.15 and (4.16). sinh- (vai+4bi—ay)

The model withk=1 should be considered separately. P= exp{——(aﬁ \/a1+4b2)

H 2 2
Using the variable transformation, sinhar\/ai+4b7

(5.27

, (5.18 This formula gives the nonadiabatic transition probability for
the crossing ¢,<<0) and noncrossinga;>0) diabatic po-
tentials. However, the probabiliti? is exponentially small
when the collision energy tends to zero. This indicates that

o~ ) the asymptotic nonadiabatic transitiofis absent in this

d*yy, (1-ia; d‘/’l 51 model in accordance with the discussion in Sec. IV A.

dax? X '%2)7gx X2 2= (.19 The inverse power potential models that satisfy the con-

dition of Sec. IVB and induce thasymptotic nonadiabatic

we obtain

where the following abbreviations are used: transitions are given by the condition
AL ALB] 3k—1
al,az,blz%. (5.20 == (5.29
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which can be solved in terms of the parabolic cylinder typetransition in various practical collision processes. The ex-
functions. plicit expression of the asymptotic nonadiabatic transition
matrix was obtained. This describes the localized transition
VI. CONCLUSION between two degerate states in asymptotic region and thus,
as for the similar matrices for the other types of transitions

A new type of nonadiabatic transition between two as{g g 1(, this can be used for other general even multichannel
ymptotically degenarate potentials has been found, analyzedyoplems. It is, however, more desirable to express this ma-

coupled by an exponential function was mainly utilized for

the analysis, but some other potential forms were also em-
ployed to formulate the general conditions. It was shown that
the transition depicts an interesting power-law type of energy This work was partially supported by a Grant-in-Aid for
dependence at low energies. This is quite a unique propertgcientific Research on Priority Area “Molecular Physical
in contrast with the ordinary types of nonadiabatic transi-Chemistry” and Grant No. 10440179 from The Ministry of
tions. Probably, more attention should be paid to this type oEducation, Science, Culture, and Sports of Japan.
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