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Nonadiabatic dynamics: Transitions between asymptotically degenerate states
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Nonadiabatic transitions between asymptotically degenerate potential curves are discussed. Both crossing
and noncrossing two-coupled-Morse-potential systems are studied semiclassically as well as quantum me-
chanically. Conditions for the appearance of a nonadiabatic transition are clarified. The case of inverse power
potentials at infinity is also analyzed. Expressions of nonadiabatic transition probability are obtained.
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I. INTRODUCTION

Nonadiabatic transitions are usually classified into t
cases: the curve crossing case and noncurve-crossing
The Landau-Zener-Stueckelberg~LZS! type curve crossing
and the Rosen-Zener-Demkov~RZD! type noncrossing prob
lems represent the most important and well-studied ca
@1–7#: Especially, the LZS type of curve crossing proble
has recently been completely solved@8–10#. As an interest-
ing intermediate case, there is an exponential poten
model, which was first investigated by Nikitin within th
time-dependent straightline trajectory framework@1#. After
that quite a few investigations have been carried out in
tempt to generalize it@11–14#. There is another type of nona
diabatic transition, i.e., the nonadiabatic transition betw
two tangentially touching potentials. If that occurs at a fin
distance, this is nothing but the Renner-Teller type of tran
tion @15#. In this report we analyze the touching at infinit
i.e., a nonadiabatic transition at infinity between asympt
cally degenerate potential curves. The transition between
ymptotically degenerate curves induced by Coriolis coupl
is such an example. The degeneracy limit of the RZD mo
is the so-called symmetrical resonance case and does
belong to this category, because there is no nonadiab
coupling between the two adiabatic potentials in the sy
metrical resonance case. If the diabatic potentials have a
tain dependence on the coordinate, however, the nona
batic coupling exists, such as in the nondegenerate R
model, although that coupling goes to zero at infinity. In t
paper we will consider this problem more deeply, and ma
clear the conditions for the appearance of such nonadiab
transition at infinity, depending on the functionalities of t
diabatic potentials and coupling there. This paper is or
nized as follows: in the next section the semiclassical an
sis ~high-energy approximation! is carried out for two Morse
potentials coupled by an exponential function. Both cross
and noncrossing cases are discussed and a new expre
for the asymptotic nonadiabatic transition is derived. In S
III quantum-mechanical solutions for a special case is d
cussed to confirm the semiclassical result. The origin of
appearance of such nonadiabatic transition is clarified in S
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IV by considering different decreasing rates of the potent
and coupling at infinity within the framework of the pertu
bation theory. Some specific generalizations will be cons
ered in Sec. V.

II. SEMICLASSICAL SOLUTION OF COUPLED
MORSE POTENTIALS

First, we will consider the following coupled Morse po
tential model:

S 2
\2

2M

d2

dx2 1V2EDC50, ~2.1!

where

C5S C1

C2
D ,

V5S Ae2ax1Be22ax Ge2ax

Ge2ax Ce2ax1De22axD , E.0.

~2.2!

In the asymptotic region,

x→`, V→e2axS A G

G CD . ~2.3!

This matrix can be diagonalized by the constant angle ro
tion, which indicates that there is no nonadiabatic coupling
infinity. When the diabatic potentials cross at a certain fin
distance, we can easily guess that the Landau-Zener
transition occurs there and the Massey type parameterd, de-
fined below, plays a role,

d5
MG2

\aA2MEuD2Bu
. ~2.4!

Because of the asymptotic degeneracy, however, the s
tion even for the noncrossing potentials cannot be foret
simply, and actually the parameterd also controls the dy-
namics at infinity, as we will see. Let us consider here
high-energy approximation to the model potential given
Eq. ~2.2!, which is introduced by the following represent
tion of the wave vector

C5ceiA2ME/\x. ~2.5!

an
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The amplitudec is considered to be a slowly varying func
tion that satisfies the first-order differential equation,

S 2 i
\A2ME

M

d

dx
1VD S c1

c2
D50, ~2.6!

which is in fact the eikonal approximation for the two sta
system. Substituting the variable

z5e2ax, ~2.7!

we get the system of coupled differential equations w
known in the time-dependent linear potential mod
@1,2,6,7#:

S i
d

dz
1a1bzDc11gc250,

~2.8!S i
d

dz
1c1dzDc21gc150.

The new lower case parameters are defined by the relat

a,b,c,d,g5M
A,B,C,D,G

a\A2ME
. ~2.9!

For the physical model under consideration the coup
equations~2.8! have to be solved in the half~0, `! of the
whole z axis. Interestingly, such a seemingly simple diffe
ence from the ordinary situation of the full axis will lead
an essentially new nonadiabatic dynamics. It should also
noted that the same reduction can be made with use of
Stueckelberg variableT5(V222V11)/2V12 @16,17#, but here
we have to deal with boundary conditions different from t
ordinary ones such as those in Ref.@17#.

Eliminating c2 from the system of equations and the
replacingc1 with w(z) defined by

c1~z!5ei z~z!w~z! ~2.10!

with

z~z!5
1

2
~a1c!z1

1

4
~b1d!z2, ~2.11!

we obtain the following second-order differential equation

d2w

dZ2 1S 2
Z2

4
1 ia2

d2b

2
1a2g2Dw50, ~2.12!

in which the following new variable and parameter are int
duced,

Z5
1

a S z2
a2c

d2bD , a452~d2b!22. ~2.13!

Without losing generality we can assume

D<B ~2.14!

and

a5ei ~p/4!~d2b!21/2. ~2.15!
05271
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The linearly independent solutions to Eq.~2.12! are the
parabolic cylinder functions@18# D211 id(Z) andD2 id( iZ),
where in terms of the new parameters given in Eq.~2.9!, the
parameterd @see Eq.~2.4!# is rewritten as

d5
g2

d2b
. ~2.16!

Using the recurrence relation ofD functions, we obtain
two linearly independent solutions to the system~2.12! for
the diabatic amplitudes in the following form:

S c1
~1!

c2
~1!D 5ei z~z!S D211 id~Z!

d21/2eip/4Did~Z! D , ~2.17!

S c1
~2!

c2
~2!D 5ei z~z!S d21/2e3p i /4D2 id~ iZ !

D212 id~ iZ ! D . ~2.18!

The adiabatic states can be obtained as usual by the tr
formation

S w1

w2
D5S cosQ 2sinQ

sinQ cosQ
D S c1

c2
D . ~2.19!

The rotation angleQ is defined by the following expressions

sin 2Q~z!52
2G

A@~A2C!1~B2D !z#214G2
,

cos 2Q~z!5
~A2C!1~B2D !z

A@~A2C!1~B2D !z#214G2
. ~2.20!

The correlations

S w1
~1!

w2
~1!D→S 2c2

~1!

0 D , S w1
~2!

w2
~2!D→S 0

c1
~2!D , z→`,

S w1
~k!

w2
~k!D→S cosh 2sinh

sinh cosh D S c1
~k!

c2
~k!D , z→0 ~2.21!

with

h5Q~0!, k51,2 ~2.22!

enable us to construct the nonadiabatic transition matrixN,
which connects the asymptotic adiabatic amplitudes in
following way:

S A1
~k!

A2
~k!D 5NS B1

~k!

B2
~k!D , ~2.23!

where

w1,2
~k!~z→`!5B1,2

~k! expS i E
0

z

U1,2~z! dzD ,

w1,2
~k!~z→0!5A1,2

~k! , ~2.24!

and

U1,25
~a1c!

2
1

~b1d!z

2
6AS a2c

2
1

b2d

2
zD 2

1g2.

~2.25!
0-2
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We finally find

N52e2pd/4S cosh 2sinh

sinh cosh D S e2 ip/4d1/2D211 id~e2 ip/4D! 2D2 id~eip/4D!

Did~e2 ip/4D! eip/4d1/2D212 id~eip/4D!
D S e2 i j 0

0 ei jD , ~2.26!
-
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where the new real parameterD is introduced,

D5
c2a

Ad2b
~2.27!

and the matching phasej is defined as

j52
d

2
1

DAD214d

4
1d lnS D1AD214d

2 D . ~2.28!

It should be noted thatD,0 (.0) corresponds to the poten
tial crossing~noncrossing! case. In terms of the principa
parametersd andD, the rotation angleh given by Eq.~2.22!
can be rewritten as

h5
1

2
arctan

2d1/2

D
. ~2.29!

The transition matrixN in Eq. ~2.26! is unitary because o
the Wronskian of theD functions,

duD216 id~e7 ip/4D!u21uD6 id~e7 ip/4D!u25epd/2

~2.30!

and leads to the following principal expression for the ov
all nonadiabatic transition probability,

P[uN12u25uN21u2

5
1

2
2S p2

1

2D cos 2h1Ap~12p! cosSsin 2h,

~2.31!

where

p512e2pd/2uDid~e2 ip/4D!u2 ~2.32!

has the meaning of the overall diabatic-diabatic transit
probability,

p5
uc1,2

~1,2!~x→1`!u2

uc2,1
~1,2!~x→2`!u2

. ~2.33!

It should be noted that Eq.~2.31! is the result under the
high-energy approximation, Eq.~2.6!, and thus represents th
transition probability for one passage fromx5` to x52`
@see Eq.~2.23!#. The phaseS represents the interference e
fect, namely, the phase difference between the two path
one passage of the two transition regions: one at the cros
and the other at infinity, and is given by
05271
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4
1argDid~e2 ip/4D!2argD211 id~e2 ip/4D!.

~2.34!

The above general expression ofP depicts the simple be
havior in the high-energy limit as

P5cos2 h, E→`, ~2.35!

since in this limitp→0. The other limit ford→0 is given by

P5H~2D!, ~2.36!

whereH(X) is the Heaviside step function and represents
boundary between the crossing (D,0) and noncrossing (D
.0) cases. Another interesting limit isE→0, in whichd and
D→` with d1/2/D5const. With use of the asymptotic ex
pression of the parabolic cylinder functionDid(e2p/4D) in
this limit, Eq. ~2.32! leads to

p5cos2 h. ~2.37!

This indicates that the diabatic states here are mixed w
each other even atE50, and that the diabatic state represe
tation considered in Sec. 10.1 of Ref.@1# is not appropriate.

The expression~2.31! is very sensitive to the limit of the
parametersd andD, and depends crucially on the sign ofD.
Nevertheless, we can find some explicit expressions ofN12
by using the asymptotic expansions of theD functions and
their recurrence relations. Particularly, we can obtain the
lowing expressions foruDu→` with d fixed:

2N12* 5N215~A1eiF1A2e2 iF!e2 i j ~2.38!

with

F5
D2

4
1d loguDu. ~2.39!

For D→2`, we have

A152e2pd@11O~D22!#,
~2.40!

A25
~2p!1/2e2~1/2!pd

G~2 id!uDu3 e2~1/4!ip.

On the other hand, whenD→`, we have

A15
d1/2

D3 e~1/2!ip,

A250. ~2.41!
0-3
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From these expressions the probabilityP in the limit D→
2` for the crossing case takes the form

P5e22pd@11O~D22!#22e2pd~12e22pd!1/2

3
d1/2

D3 @11O~D22!#cosV1~12e22pd!
d

D6 .

~2.42!

The phaseV represents the interference phase between
asymptotic region and the crossing region, and includes
the difference of the dynamical phaseswc at the crossing
point andwa5p/2 at infinity,

V5ReE
z*

D

~z214d!1/2dz1wc2wa , z5e~1/4!ipZ

~2.43!

with z* 52iAd and

wc5
p

4
2d1d logd2 argG~11 id!,

~2.44!

wa5
p

2
, D→2`.

In the case of noncrossing, we have

P5
d

D6 , D→`. ~2.45!

The above result clearly indicates that there are two ty
of nonadiabatic transitions: one is the Landau-Zener t
transition represented by the first term in Eq.~2.42! and the
second is a new one in the asymptotic region represente
the third term in Eq.~2.42! or Eq. ~2.45!. These two appea
naturally only in the case of crossing. Figures 1 and 2 sh

FIG. 1. The overall nonadiabatic transition probabilityP as a
function of D for d51.0. Solid line: results of Eq.~2.31!, dash-dot
line: result of the Landau-Zener formula.
05271
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P given by Eq.~2.31! as a function ofD for d51.0 ~Fig. 1!
and d50.001 ~Fig. 2!. The dash-dot line shows the simp
Landau-Zener result.

The physical picture of the transitions expressed by E
~2.42! and ~2.45! can be comprehended by using the pert
bation theory, which yields

uN12u5d1/2U E
D

` ei*zAz214ddz

z214d
dzU. ~2.46!

In this expression, we can easily see that two regions in
complexz plane,z;z* andz;D, bring about the essentia
contributions. The proper deformation of the integration co
tour reproduces both types of transitions, in a certain limit
which Eqs. ~2.42! and ~2.45! are obtained. The Landau
Zener transition looks like the penetration of complex cla
sical trajectories into the ‘‘deep shadow’’ region and t
transition of the type Eq.~2.45! looks like the diffraction
effect at edge@19#.

The D end contribution to the integral Eq.~2.46! leads to

P5
d

~D214d!3 , ~2.47!

which agrees with Eq.~2.45! in the limit D→`. Figure 3
shows P given by Eq. ~2.47! for d.4, which is actually
indistinguishable from the accurate result. This is rath
amazing, because the simple perturbation theory usu
does not work for nonadiabatic transitions, as is well know
The simple perturbation theory works well in the prese
case, because the exponential factor, which dominates in
usual cases, does not appear and the higher-order term
come smaller. Demkov, Ostrovskii, and Solov’ev have a
pointed out that when adiabatic potentials cross on the
axis, the coupling has no pole and the perturbation the
gives the exact result in the small velocity limit@20#. How-
ever, they did not discuss such a degeneracy case as
presented here. It is also interesting to note that

FIG. 2. The same as Fig. 1 except ford50.001.
0-4
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asymptotic nonadiabatic transition, given by Eq. ~2.47!
gives the energy dependence atE→0 qualitatively correctly
as

P52
a2\2

m

G2~D2B!2

@~C2A!214G2#3 E, E→0, ~2.48!

although in the close vicinity of the quantum-mechani
threshold region, this cannot quantitatively correctly rep
sent the energy dependence because of the semiclassic
proximation ~see the discussions in the next section!. The
behavior of quantum systems within the framework of ad
batic perturbation has been studied in the classical pape
Born and Fock@21#. Particularly, they have given the est
mate of the nonadiabatic transition probability for the fin
time interval without any accidental adiabatic potent
crossing on the real axis in the form,P5O(T22), whereT is
the large characteristic time. The linear behaviorP;E,
given by Eq.~2.48!, is consistent with this result, becau
mathematically the model considered here has the boun
at z50 and does not contain the adiabatic crossing on
real z.

Before closing this section, let us clarify the connection
the aboveN matrix to the Landau-Zener type nonadiaba
transition matrix and derive the corresponding matrix for
asymptotic nonadiabatic transition. For that we use the
lowing asymptotic expressions of the parabolic cylind
functions valid atD214d@1 with t, v<1. ForD,0,

D211 id~e2 ip/4D!5ei t cosh
A2p

G~12 id!
e2pd/4ei z

1eiv sinhd21/2e23pd/4eip/42 i z,

~2.49!

Did~e2 ip/4D!52e2 iv sinh
A2p

G~12 id!
d1/2e2pd/4e2 ip/41 i z

1e2 i t coshe23pd/4e2 i z, ~2.50!

FIG. 3. The same as Fig. 1 except ford54. The result of Eq.
~2.42! is indistinguishable from the accurate one by Eq.~2.31!.
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and forD.0,

D211 id~e2 ip/4D!5ei t coshd21/2epd/4eip/41 i z,
~2.51!

Did~e2 ip/4D!52e2 iv sinhepd/4ei z, ~2.52!

where

t5
~dh/dD!

d1/2 sin2~h!2E ~dh/dD!2

2d1/2 sin~2h!dD

~2.53!

and

v5
~dh/dD!

d1/2 cos2~h!1E ~dh/dD!2

2d1/2 sin~2h!dD.

~2.54!

In both cases ofD,0 andD.0, we have

D212 id~eip/4D!5D211 id* ~e2 ip/4D!, ~2.55!

D2 id~eip/4D!5Did* ~e2 ip/4D!, ~2.56!

and

t1v52
1

D214d
!1. ~2.57!

In the case ofD,0 from Eq.~2.26! we have

N~D,0!52S cosh 2sinh

sinh cosh D S ei t cosh eiv sinh

2e2 iv sinh e2 i t cosh D
3S eiv/2 0

0 e2 iv/2D I X
LZS e2 iv/2 0

0 eiv/2D
5N`I LZ, ~2.58!

where

I X
LZ5S A12e22pdeifS 2e2pd

e2pd A12e22pde2 ifS
D , ~2.59!

v5j1~d2d ln d!/25E
0

D

~z214d!1/2dz. ~2.60!

N`52S cosh 2sinh

sinh cosh D S ei t cosh eiv sinh

2e2 iv sinh e2 i t cosh D ,

~2.61!

I LZ5S A12e22pdeifS 2e2pdeiv

e2pde2 iv A12e22pde2 ifS
D , ~2.62!

and

fS5d2d ln d1p/41argG~ id!. ~2.63!
0-5
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The matrixI X
LZ is nothing but the Landau-Zener type non

diabatic transition matrix at the avoided crossing andI LZ

represents the similar matrix including the adiabatic wa
propagation from infinity to the crossing point represen
by the phasev ~see Refs.@8–10#!. For D.0 we have from
Eq. ~2.26!
a
on
nn

n

ex
th
.
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e
d

N~D.0!5N` , ~2.64!

which gives the asymptotic nonadiabatic transition mat
and is naturally identical to that in the crossing caseD
,0). For small values oft, v the following simple expres-
sion can be obtained:
N`5S S 12
1

4~D214d!2D 1/2

1 i
D

2~D214d!3/2 i
d1/2

~D214d!3/2

i
d1/2

~D214d!3/2 S 12
1

4~D214d!2D 1/2

2 i
D

2~D214d!3/2

D . ~2.65!
-
ls,

-

The above finding is quite useful, because the nonadiab
transition matrices describe the transitions in local regi
and thus can be used in other general even multicha
problems. Furthermore, the matricesI X

LZ and I LZ can be re-
placed by the far more accurate ones obtained rece
@8–10#.

III. QUANTUM-MECHANICAL SOLUTION
OF A SPECIAL CASE

In this section we present the quantum-mechanically
act solution of a special case and discuss the validity of
semiclassical approximation given in the previous section
we setA5C5B50 in Eq. ~2.2!, we can solve Eq.~2.1!
exactly by using the method of Osherov and Nakamura@12#.
The physically independent solutions of Eq.~2.1! for diaba-
tic wave functions are obtained as

c1
~1!5G2,4

4,1~Kz2eipubq

a1 ,a2!, ~3.1!

c1
~2!5G2,4

4,1~Kz2eipubq

a2 ,a1!, ~3.2!

c1
~3!5G2,4

4,0~Kz2ubq

a1 ,a2!, ~3.3!

c2
~1!5

1

Lz H G2,4
4,1~Kz2eipubq

a1 ,a222
!2~2a223!

3G2,4
4,1~Kz2eipubq

a1 ,a221
!1F ~a221!21S q

2D 2G
3G2,4

4,1~Kz2eipubq

a1 ,a2!J , ~3.4!

c2
~2!5

1

Lz H G2,4
4,1~Kz2eipubq

a2 ,a122
!2~2a123!

3G2,4
4,1~Kz2eipubq

a2 ,a121
!1F ~a121!21S q

2D 2G
3G2,4

4,1~Kz2eipubq

a2 ,a1!J , ~3.5!
tic
s
el

tly

-
e
If

c2
~3!5

1

Lz H G2,4
4,0~Kz2ubq

a1 ,a222
!2~2a223!G2,4

4,0~Kz2ubq

a1 ,a221
!

1F ~a121!21S q

2D 2GG2,4
4,0~Kz2ubq

a1 ,a2!J , ~3.6!

whereG2,4
4,1 andG2,4

4,0 are the Meijir’sG functions@22# and the
various parameters are defined as

K5
MD

2\2a2 , L5
MG

2\2a2 ,

~3.7!

a1,2516
ir

2
, b1,25

1

2
6

iq

2
, b3,456

iq

2
.

The principal parametersr andq are the dimensionless mo
menta in the asymptotic regions of the adiabatic potentia

r 5

A2M S E1
G2

D D
\a

, q5
A2ME

\a
. ~3.8!

The diabatic wave functions given by Eqs.~3.1!–~3.6!
have the following asymptotic behavior:

c1,2
~k!5B̃1,2

~k!qQ 1Ã1,2
~k!qW for z→0,

c1
~k!5B̃3

~k!rW1Ã3
~k!rQ, ~3.9!

c2
~k!50 for z→`,

where

qQ , qW , rQ, rW5
1

Aq,r
e6 i ~q,r !ax ~3.10!

and the amplitudesÃi
(k) and B̃j

(k) are connected by the tran

sition matrix Ñi , j as

Ãi
~k!5Ñi , j B̃ j

~k! . ~3.11!
0-6
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The matrix elementsÑi j can be obtained as

Ñ115Kb42b3
G~b12b4!G~b22b4!G~b32b4!

G~b12b3!G~b22b3!G~b42b3!

3
G~a22b3!G~a12b3!

G~a22b4!G~a12b4!

3
sinp~b42b1! sinp~b32a1!

sinp~b42a1! sinp~b32a1!
, ~3.12!

Ñ125Kb42b1
L

b1
22b3

2

G~b12b4!G~b22b4!G~b32b4!

G~b22b1!G~b32b1!G~b42b1!

3
G~a22b1!G~a12b1!

G~a22b4!G~a12b4!

3
sinp~b32b4! sinp~b12a1!

sinp~b32b1! sinp~b42a1!
, ~3.13!

Ñ1352Ar

q
Ka1212b3

3
G~11b12a1!G~11b22a1!G~11b32a1!

G~11a22a1!G~b12b3!

3
G~11b42a1!G~a22b3!G~a12b3!

G~b42b3!

3
sinp~b32a1! sinp~b12a1!

p sinp~b32b1!
, ~3.14!

Ñ225Kb22b1
b2

22b4
2

b1
22b3

2

G~b12b2!G~b32b2!

G~b22a1!G~b32b1!

3
G~b42b2!G~a22b1!G~a12b1!

G~b42b1!G~a22b2!G~a12b2!

3
sinp~b32b2! sinp~b12a1!

sinp~b22a1! sinp~b32b1!
, ~3.15!

Ñ235Ar

q
Ka1212b1

L

b1
22b3

2

G~11b12a1!G~11b22a1!

G~11a22a1!G~b22b1!

3
G~11b32a1!G~11b42a1!G~a22b1!G~a12b1!

G~b32b1!G~b42b1!

3
sinp~b32a1!sinp~b12a1!

p sinp~b32b1!
, ~3.16!

Ñ335Ka12a2
G~11b12a1!G~11b22a1!G~11b32a1!

G~11b12a2!G~11b22a2!G~11b32a2!

3
G~11b42a1!G~11a12a2!G~a12b1!

G~11b42a2!G~11a22a1!

3
sinp~b32b1!sinp~b12a1!

sinp~a22b3!sinp~a22b1!
. ~3.17!
05271
The adiabatic wave functions have the asymptotic behav

w1,2
~k!5B1,2

~k! q←1A1,2
~k!qW for z→0,

w1
~k!50, ~3.18!

w2
~k!5B3

~k!rW1A3
~k! r← for z→`,

which define the principal transition matrixNi , j connecting
the adiabatic channels as

Ai
~k!5Ni , jBj

~k! . ~3.19!

For the model under consideration the formulas Eqs.~2.19!
and ~2.20! with A5B5C50, lead to

S w1
~k!

w2
~k!D→S 0 21

1 0 D S c1
~k!

c2
~k!D , z→`, ~3.20!

S w1
~k!

w2
~k!D→ 1

&
S 21 21

1 21D S c1
~k!

c2
~k!D , z→0. ~3.21!

Using Eqs.~3.9!, ~3.11!, ~3.18–3.21!, we obtain

N5TÑT21, ~3.22!

where

T5S 2
1

&
, 2

1

&
, 0

1

&
, 2

1

&
, 0

0, 0, 1

D . ~3.23!

The overall nonadiabatic transition probabilityP0 takes the
form

P05uN13u25
1

2
uÑ131Ñ23u2. ~3.24!

Using Eqs.~3.11!–~3.17!, we finally obtain

P05
1

2
sinh~2pq!

sinhpr

sinhp~r 1q! S coshpS r 2q

2 D
sinhpS r 1q

2 D

1

sinhpS r 2q

2 D
coshpS r 1q

2 D 12Asinhp~r 2q!

sinhp~r 1q!
cos~S0Q!D ,

~3.25!

and
0-7
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S05p2argGS 1

2
1 i

r 2q

2 D1argGS i
r 2q

2 D
1argGS 1

2
1 i

r 1q

2 D2argGS i
r 1q

2 D . ~3.26!

In the eikonal semiclassical approximation, 1!r ,q and
G2/D!uEu, the above result accurately reduces to

P05
1

2
~12A12e22pd cosS0!, ~3.27!

S05
p

4
1argGS 12

id

2 D2argGS 1

2
2

id

2 D , ~3.28!

which coincide with the semiclassical results of Eq.~2.31! in
the limitsA5C andD→0. At the thresholdq!1, q!r 0 the
above result, Eq.~3.25!, gives the energy dependence as

P05
4p

e2pr 021

A2ME

\a
~3.29!

with

r 05

A2M
G2

D

\a
. ~3.30!

The comparison between the quantum results, Eq.~3.25!,
and the semiclassical results, Eq.~3.27!, is given in Fig. 4
and Fig. 5. This demonstrates good accuracy of the semic
sical approximation. It is interesting to note that Eq.~3.27!
takes a rather unusual form in the limitd→`,

P0→
1

~8d!2 , ~3.31!

which actually agrees with Eq.~2.47! with D50.

FIG. 4. The overall nonadiabatic transition probabilityP in the
special case of exponential potential discussed in Sec. II as a f
tion of e52ME/\2a2 for the case ofr 051. The ordinate is equa
to ln(P) and the abscissa is equal to ln(e). The line ‘‘q’’ is the result
of the exact quantum formula Eq.~2.31! and the curve ‘‘sc’’ is the
result of the semiclassical approximation, Eq.~2.42!.
05271
s-

IV. ORIGIN OF THE ASYMPTOTIC NONADIABATIC
TRANSITIONS

In this section we will try to analyze, in more detail, th
physical origin of the asymptotic nonadaiabatic transiti
within the high-energy approximation. Let us consider t
following system of two asymptotically degenerate states

S i
d

dx
1S u1 v

v u2
D D S c1

c2
D50 ~4.1!

with

u1,2,v52M
U1,2,V

\A2ME
~4.2!

and

U1,2,V→0 for x→`. ~4.3!

Transforming Eq.~4.1! into the adiabatic representation by

sin 2Q52
2v

A~u12u2!214v2
,

~4.4!

cos 2Q5
u12u2

A~u12u2!214v2
,

we obtain

F i
d

dx
1S e1 0

0 e2
D 1 i S 0 1

21 0D dQ

dx G S w1

w2
D50, ~4.5!

where

e1,25
1

2
~u11u26A~u12u2!214v2!. ~4.6!

Now, we expandU12U2 and V in terms of certain basis
functions f n(x), which satisfy the limit Eq.~4.3!,

c-
FIG. 5. The same as Fig. 4 except that the threshold regio

emphasized. The line ‘‘th’’ is the result of the approximation E
~3.29!.
0-8
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U12U25 (
n51

Anf n~x!, V5 (
m51

Bmf m~x!. ~4.7!

In accordance with Eqs.~4.3!, ~4.4!, ~4.6!, and ~4.7!, the
following limits hold true

e1,2,
dQ

dx
→0 for x→`. ~4.8!

Depending on the decreasing rates of the potential dif
ence and the coupling, we will consider the following tw
cases separately.

A. The case where the nonadiabatic coupling decreases not
slower than the energy splitting

The adiabatic solutions of Eq.~4.5! take the form

S w1
0

w2
1D 5S C1 expS i Ex

e1~x!dxD
C2 expS i Ex

e2~x!dxD D , ~4.9!

whereC1,2 are arbitrary constants. Assuming that the Mas
parameterd is much larger than unity, we use the perturb
tion theory for simplicity. ChoosingC250, we obtain

c252C1 sinQ expS i Ex

e1~x!dxD ,

~4.10!

c15
C1

v S ~u22e1!sinQ1 i
dQ

dx
cosQ DexpS i Ex

e1~x!dxD .

With use of Eqs.~2.19!, ~4.4!, ~4.6!, and~4.10! the adiabatic
wave functionw2 can be expressed as

w25
iC1

2v
dQ

dx
sin 2Q expS i Ex

e1~x!dxD , ~4.11!

which leads to the expression of theasymptotic nonadiabatic
transition probability,

P5U w2~`!

w1
0~X!

U2

5 lim
x→`

1

~e12e2!2 S dQ

dx D 2

, ~4.12!

whereX is located outside the asymptotic transition regio
In terms of the basis functionsf n(x) we have

P5 lim
x→`

2\2

M

F (
n,m51

~AnBm2AmBn! f n~x! f m8 ~x!G2

F (
n,m51

~AnAm14BnBm! f n~x! f m~x!G3 E.

~4.13!

As can be seen from the derivation of Eq.~4.12!, this
expression can be formally used to reveal theasymptotic
nonadiabatic transitionseven for the models withou
asymptotic degeneracy. Particularly, this givesP50 for the
linear potential model, Nikitin model, and Demkov mode
05271
r-

y
-

.

On the other hand, if we usef n(x)5e2anx, we can recover
Eq. ~2.46! and Eq. ~2.47!. If we use the power basis se
f n(x)5(r/x)n, Eq.~4.13! leads to the following expressions

P50 for A1 or B1Þ0, ~4.14!

P5
2\2

Mr2

~A2B32A3B2!2

~A2
214B2

2!3 E for A1 ,B150, ~4.15!

and

P5
23\2

Mr2

~A3B52A5B3!2

~A3
214B3

2!3 E for A1 ,B1 ,A2 ,B2 ,A4 ,B450.

~4.16!

The formula ~4.15! applies to the Coriolis coupling an
charge-dipole potentials and the formula~4.16! for the
charge-dipole and charge-quadrupole potentials.

B. The case that the adiabatic potential energy splitting
decreases faster

In this case Eq.~4.12! loses meaning, because the d
nominator, (e12e2)2, goes to zero faster than the nominato
Since we cannot discuss the general cases, let us consi
particular case with A15A25B15B250 and f n(x)
5(r/x)n. The adiabatic potentials are given by

e1,25
1

2 S v11v26AA3
214B3

2S r

xD 3 AM

\A2E
D 5

~v11v2!

2
6

L

x3 ,

~4.17!

and

dQ

dx
52

A3B42A4B3

A3
214B3

2

r

x2 52
R

x2 for x→`. ~4.18!

In this case, it is possible to find the exact solution as f
lows:

transforming the wave function by

w̃1,25w1,2e
2 i *xe1,2dx, ~4.19!

we obtain

dw̃1

dt
1ReiLt 2

w̃250,

dw̃2

dt
2Re2 iLt 2

w̃150, ~4.20!

with t5
1

x
,

which can be solved again in terms of the parabolic cylin
functions. The general solution is given by
0-9
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w̃15eiL /2x2
eip/4Fc1n1/2D211 inS e2 ip/4

A2L

x D
2c2n21/2D2 inS eip/4

A2L

x D G , ~4.21!

w̃25e2 iL /2x2Fc1DinS e2 ip/4
A2L

x D 1c2D212 inS eip/4
A2L

x D G ,
~4.22!

where

n5
R2

2L
5

\

r

~A3B42A4B3!2

~A3
214B3

2!5/2

A2E

AM
. ~4.23!

The nonadaiabatic transition matrixN connecting the am-
plitudes of adiabatic waves atx→0 andx→`, is given by

N5Ape2pn/4S 1

GS 1

2
1

in

2 D
~ in!1/2

21/2GS 12
in

2 D
2

~2 in!1/2

21/2GS 11
in

2 D
1

GS 1

2
2

in

2 D D .

~4.24!

The asymptotic nonadiabatic transitionprobability can be
expressed as

P5
1

2
~12e2pn!. ~4.25!

From this expression we obtain again the power-law beh
ior of the probability at low energy, i.e.,P}AE, which is the
principal characteristic feature of the asymptotic nonad
batic transition. This indicates that the asymptotic deg
eracy of the potential-energy curves creates a new typ
nonadiabatic dynamics with respect to the analytical dep
dence of the probability on the collision energy.

V. GENERALIZATIONS

In this section we will investigate three kinds of gener
izations.

A. Case„1…

First, let us consider the following potential system:

V5S Ae2ax1Be22ax Ge2ax1Le22ax

Ge2ax1Le22ax Ce2ax1De22axD . ~5.1!

This can be transformed into other diabatic potential syste
by a constant angle~v! rotation defined by

VR5RVR21 ~5.2!

with
05271
v-

-
-
of
n-

-

s

R5S cosx sinx

2sinx cosx
D . ~5.3!

If we choosex as

tan2 2x5
2L

B2D
, ~5.4!

we can transform Eq.~5.1! to the form of Eq.~2.2! with the
replacement of the parameters

A,C→ 1

2 S A1C6
~D2B!~A2C!24LG

@~D2B!214L2#1/2 D , ~5.5!

B,D→ 1

2
$B1D7@~D2B!214L2#1/2%, ~5.6!

and

G→ G~D2B!2L~C2A!

@~D2B!214L2#1/2 . ~5.7!

Redefining the basic parametersd andD by

d5
@G~D2B!2L~C2A!#2

@~D2B!214L2#3/2 ~5.8!

and

D5
~D2B!~C2A!14LG

@~D2B!214L2#3/4 , ~5.9!

we can employ the previous results given in Sec. II. T
above analysis makes it possible to consider the two limit
cases,A5C5L50 and D5B5G50, which represent
faster decay of the diabatic potential-energy difference
the diabatic coupling, respectively.

B. Case„2…

Let us consider the system described by Eq.~4.1! with the
following potential matrix elements:

U12U25Ane2nax1Ame2max, V5Bne2nax1Bme2max

~5.10!

with n,m.0 andm.n, which do not lead to any loss o
generality. We can further assumeBm50, since a constan
angle rotation can eliminate this term without losing gen
ality in the same way as in the previous case. Transform
the wave function by

c1,25e2 i *xe1,2dxc̃1,2, ~5.11!

and changing the variable by

X5e2nax, ~5.12!

we obtain the following equation:
0-10
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d2c̃1

dX2 2
i

na
~Añ1Am̃Xm2n/n!

dc̃1

dX
1

Bñ
2

n2a2 c̃150,

~5.13!

where

Ã,B̃52M
A,B

\A2ME
. ~5.14!

The special case ofm52n leads to the type discussed in Se
II and can be solved exactly.

C. Case„3…

Using the same method as above, we can solve s
cases of the following potential system:

U12U25AkS r

xD k

1Al S r

xD l

, V5BkS r

xD k

1Bl S r

xD l

,

~5.15!

with k,l .0 and l .k. In the same way as above, the ter
containingBl can be absorbed by a constant angle rotat
and thus we can assumeBl50 without loss of generality.
Using the same transformation given by Eq.~5.11! and the
variable change,

X5S r

xD k21

, ~5.16!

we can obtain

d2c̃1

dX2 2
ir

k21
~Ak̃1Al̃X

l 2k/k21!
dc̃1

dX
1

Bñ
2r2

~k21!2 c̃150,

~5.17!

whereÃ andB̃ are defined in the same way as above by E
~5.14!. In this model, the special case ofl 52k21 leads to
the same equation as Eq.~5.13! with the correspondence
a→1/r and n→k21. In particular, the cases withk52, l
53 andk53, l 55 can be solved not only exactly in term
of the N matrix given by Eq.~2.26!, but also perturbatively
by the formulas~4.15! and ~4.16!.

The model withk51 should be considered separate
Using the variable transformation,

X5S r

xD l 21

, ~5.18!

we obtain

d2c̃1

dX2 1S 12 ia1

X
2 ia2D dc̃1

dX
1

b1

X2 c̃150, ~5.19!

where the following abbreviations are used:

a1 ,a2 ,b15
~A1̃,Al̃ ,B1̃!r

l 21
. ~5.20!
05271
.

e

n

.

.

The above differential equation can be solved exactly
terms of the confluent hypergeometric functions. We cho
the following particular solution

c̃15XaC~a,c,ia2X!, ~5.21!

where

a5
i

2
~a11Aa1

214b1
2!, c511 iAa1

214b1
2 ~5.22!

and the functionC(a,c,ia2X) is theC-confluent hypergeo-
metric function @18#. The solution~5.21! has the suitable
asymptotic behavior as

lim
X→`

uc̃1u25expFp2 ~a11Aa1
214b1

2!G . ~5.23!

The second diabatic function takes the form

c̃25 ib1X2 ia11ae2 ia2XC~a11,c,ia2X!, ~5.24!

which satisfies the following boundary condition:

lim
X→`

c̃250. ~5.25!

The above boundary conditions given by Eqs.~5.23! and
~5.25! enable us to write the nonadiabatic transition proba
ity as

P5expF2
p

2
~a11Aa1

214b1
2!G

3 lim
X→`

usinQ~X!C~a,c,ia2X!1 ib1 cosQ~X!

3C~a11,c,ia2X!u2, ~5.26!

which, with the help of the asymptotic formula of th
C-confluent hypergeometric function@18#, leads to the fol-
lowing final compact expression:

P5expF2
p

2
~a11Aa1

214b1
2!G sinh

p

2
~Aa1

214b1
22a1!

sinhpAa1
214b1

2
.

~5.27!

This formula gives the nonadiabatic transition probability f
the crossing (a1,0) and noncrossing (a1.0) diabatic po-
tentials. However, the probabilityP is exponentially small
when the collision energy tends to zero. This indicates t
the asymptotic nonadiabatic transitionis absent in this
model in accordance with the discussion in Sec. IV A.

The inverse power potential models that satisfy the c
dition of Sec. IV B and induce theasymptotic nonadiabatic
transitions, are given by the condition

l 5
3k21

2
, ~5.28!
0-11
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which can be solved in terms of the parabolic cylinder ty
functions.

VI. CONCLUSION

A new type of nonadiabatic transition between two a
ymptotically degenarate potentials has been found, analy
and formulated semiclassically and quantum mechanica
The conditions for the appearance of this type of transit
were clarified. The model of the Morse type potentia
coupled by an exponential function was mainly utilized f
the analysis, but some other potential forms were also
ployed to formulate the general conditions. It was shown t
the transition depicts an interesting power-law type of ene
dependence at low energies. This is quite a unique prop
in contrast with the ordinary types of nonadiabatic tran
tions. Probably, more attention should be paid to this type
li-

s

c-

ys

05271
e

-
d,

y.
n

-
t
y

rty
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f

transition in various practical collision processes. The
plicit expression of the asymptotic nonadiabatic transit
matrix was obtained. This describes the localized transit
between two degerate states in asymptotic region and t
as for the similar matrices for the other types of transitio
@8,9,10#, this can be used for other general even multichan
problems. It is, however, more desirable to express this
trix in a more general form, namely, not in terms of th
particular parameters of model potentials but in terms
adiabatic potentials. This requires a further study.
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