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Inelastic transitions in slow heavy-particle atomic collisions
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It is a generally held belief that inelastic transition probabilities and cross sections in slow, nearly adiabatic
atomic collisions decrease exponentially with the inverse of the collision velodibe., oecexp(—constb)].
This notion is supported by the Landau-Zener approximation and the hidden crossings approximation. We
revisit the adiabatic limit of ion-atom collisions and show that for very slow collisions radial transitions are
dominated by the topology of the branch points of the radial velocity rather than the branch points of the
energy eigensurface. This can lead to a dominant power-law dependence of inelastic cross seatiarid/e
illustrate the interplay between different contributions to the transition probabilities in a one-dimensional
collision system for which the exact probabilities can be obtained from a direct numerical solution of the
time-dependent Schiinger equation.
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I. INTRODUCTION proximation as a limiting case when the integrand in the
transition matrix element possesses only a certain class of
lonization in slow ion-atom collisions is still a field of singularities. In the HC approximation, the singularities in
active research, even for systems involving one active eledhe electronic eigenenergy surface in the plane of complex
tron. While molecular coupled-channels calculations haventernuclear separatioR are assumed to determine inelastic
succeeded in describing transitions between bound states, thansitions. This limit is also closely related to the quasiclas-
description of ionization requires large basis set expansionsical (QCL) approximation for strongly forbidden transition
involving a quasidiscretized continuum. In the adiabatic[14]. However, when the transition matrix element possesses
limit, where ionization probabilities become very small, the additional singularities, the standard result of the HC as well
numerical Signiﬁcance of results based on these methods bgs QCL approximation cease to be valid and correction terms
comes questionable. As an alternative, the hidden crossinggise. In the present case of slow ion-atom collisions, addi-
(HC) approximation was propos¢d,2] and has been exten- isna| singularities come about through zeros in the radial
sively used_ln the l"’.‘St dec‘?@@‘lﬂ- A unlque_feature of the velocity vg. These turning pointTP) contributions funda-
HC approximation is t_hat it provides a relat|v_ely s!mple Ole'mentally alter the adiabatic limit. We illustrate and analyze
2??1)22252zlllrlr?ril:;t;;ngazcgzaé:?;g?ﬁgir?glljgi?]tgljciosrtl?ztg-s the underlying physics of hidden crossings and the validity
and the breakdown of different approximations with the help

tion for which other theories have difficulties. This Is.ofamodel for which exact transition probabilities and cross

achieved by recognizing the role of various series of transi-_ " . : X . .
tions that promote low-lying states to the continuum. sections can be obtained from a direct numerical solution of

The HC approximation was derived as an asymptotic limitthe time-dependent Sctdinger equation. To be specific, we

for slow heavy-particle collisions and is assumed to providdoCcus in the following discussion on slow ion-atom colli-
the exact adiabatic limit for transitions within the states ofSions. We emphasize, however, that the main conclusions,
the same symmetry. This relies on the assumption that all thide deviations from an exponential behavior of inelastic tran-
information on slow collisions is contained in the adiabaticsition probabilities in near-adiabatic processes due to singu-
electronic energy surfaces. Assuming a straight line trajeclal'ities in the adiabatic transition elements have wider impli-
tory for the internuclear motion, the HC approximation pre-cations. Applications may include, for example, the response
dicts an exponential decrease of inelastic probabilities andf an atom to the switching on and off of an external(dc
cross sections with the inverse of the collision veloaity a0 electromagnetic field.
[i.e., ocexp(—const))]. Other models of nonadiabatic cou- In Sec. Il, we briefly review the adiabatic perturbation
pling yield similar predictions, including the celebrated theory within the framework of molecular coupled channel
Landau-ZenerLZ) approximation[12—15, and there is a approaches to slow ion-atom collisions. Limiting cases, the
wide-spread “belief” that the exponential behavior should HC approximation, and the QCL approximation and their
be the correct adiabatic limit. However, the validity of the possible breakdown are discussed in Sec. Ill. An application
HC approximation and its variants has never been thorand illustration is presented for an exactly solvable model in
oughly tested for an exactly solvable model. Sec. IV where we also illustrate the underlying physics of
In this work we revisit the adiabatic limit for inelastic “hidden” crossings. Concluding remarks will be given in
collisions. The starting point of our analysis is the adiabaticSec. V. Atomic units are used throughout unless otherwise
perturbation theory within which we identify the HC ap- stated.
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IIl. ADIABATIC PERTURBATION THEORY FOR SLOW whereR(t) is treated as a an external parameter. We will
ION-ATOM COLLISIONS frequently interchangR with t as the control parameter, e.g.,
A. Molecular-orbital coupled-channel approach En(t)=Eq[R(1)].

The time evolution of the collision system can be ob-

_ Consider a typical atomic collision system involving a zined using an expansion of the electronic wave function,
single active electron with coordinaftein the field of two J\P(t» in the adiabatic states
e L

potential wells that are separated by an internuclear distan

R. Ina typical scattering experiment, the electron is initially o R

prepared in a bound state of the two-center quasimolecular \If(r,t)—En: An(D) Xn(F.1), )
field of the potential wells while the internuclear motion has

a well-defined collision velocitw =P;/u, P; and u being  where

the internuclear momentum and the reduced internuclear t

mass, respectively. In the following, we adopt a time- F = [F.R(t)Tex _if dt’ E-TR(t’ 5
dependent approach in which the internuclear motion follows Xn(F = al LR(V] 0 [ R(] ©)
a single classical trajectorﬁ= Ii(t). In particular, we as- . ) .
sume that the collision energy is large enough in comparisofd We have purposely ignored translation factéos sim-

to the characteristic transition energies, such that we can enRlicity) since they should become negligible in the adiabatic
. . . S - . . limit (a treatment with translation factors can be found else-
ploy a straight-line trajectoriR=b+vt, whereb is the im-

pact parameter. This choice is motivated by the fact tha here[2]). Inserting Eq.{(4) into the time-dependent Schro

within a time-dependent approach the steps that lead to th inger equation, one obtains the stan_dard molecular-orbital
o ; oupled-channel§MOCC) approach given by the set of

HC and QCL approximations as well as to their breakdownCoupled equationkL6]

due to turning point effects become transparent. The time-

dependent approach furthermore lends itself to a straightfor- dA, d

ward generalization to other time-dependent problems such iWZE A {xn(t)|Hg—1i ab(k(t»' (6)

as perturbations by external fields. However, we will present k

in Seg:. IV also calculations_ including thg fully quantum _de- The transition amplitude d8 matrix element for the tran-

scription of the nuclear motion that confirms the conclusmnssmon i f is given by

obtained using a classical trajectdRe=R(t) and rules out

the presence of artifacts due to the impact-parameter ap- St = lim Aq(T). 7

proximation. B

Within a time-dependent approach, the evolution of the
electronic wave functioW(t)) is governed by the time- Where Eq.(6) is solved subject to the initial condition
dependent Schdinger equation

lim An(y)= 6p;- 8
_d[W (1)) 5 E
=g —Hea(RI¥ () &Y ,
Numerical MOCC approaches attempt to solve @gfor

a large but finite number of channdts Apart from trunca-
tion errors(finite k) Eq. (6) is an exact representation of the
original Schralinger equation.
The key ingredient in Eq(6) that determines the time
. Vr% . . evolution is given by the nonadiabatic coupling between the
H[R(t)]=— > + V[ |F=R(t)|[1+ Vp[|F—Rp(t)]1, adiabatic states(y,(t)|Hg—id/dt|x,(t)). In general, the
%) dynamics of the collision system involves both radial and
rotational couplings. For simplicity, we focus in the follow-
ing only on adiabatic radial couplings

with the electronic Hamiltonian

whereV; andVp represent the interaction with the moving
target and projectile potential wells centeredRat and Rp U, -(R)=<¢f(R)|i| #i(R)). 9)
(i.e., R=Rp—Ry7), and we use a coordinate system centered ! drR™

at the center of mass of the collision system. Here we ar
concerned with slow ion-atom collisions in which the time
variation of R(t) (i.e., the radial velocityvg=dR/dt), is
much smaller than the atomic and molecular time scales. d drR

Thus, the time evolution of the state of the electfdt(t)) is (xn(D)|Hg—i m|xk(t))= =i Hun,k(t)
best described in terms of the adiabatic eigensﬂa&géﬁ))
of the Hamiltonian,

Extensions of the present analysis to rotational coupling is
straightforward. We set

t
xex;{i f dt'AEn,k[R(t’)]},
0
Hel(R)| ¢n(R))=En(R)| ¢n(R)), (3) (10)
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where, AE, [R(t)]=E[R(t)]-ER(t)]. Nonadiabatic turn, perturbation theory requires, in general, small changes
transitions are introduced by allowing the perturbation pain the phase of evolution of the wave packgE; (t)dt/A
rameterR(t) and, hence, the Hamiltonian to become slowly <1. Adiabatic perturbation theory is special in the sense that
time-dependent. The key parameter that controls the adiab#-requires weak coupling rather than small actions. There-
ticity of the process is the speed of the parametric deformafore, quasiclassical approximations and perturbation theory

tion, the radial velocity g=|dR(t)/dt|.

B. Perturbation theory

Equation (6) can be approximately solved within the
framework of adiabatic perturbation theory. The fundament
assumption is that is “small,” vr<<1. Consequently, the
coupling between different molecular orbitdlEq. (10)] is
“weak.” To leading order, the electronic wave packet can
follow the adiabatic electronic eigenenergy surfd&¢R)
and is only weakly perturbed whe;(R) approaches an-
other eigenenergy surfade;(R) near an avoided crossing
(AC). As we will discuss below, the concept of avoided
crossings can be generalized to HC. Equati®ncan there-
fore be solved iteratively by settingy,=1 on the right-hand
side giving the first-order perturbation thednp to an over-

all phase [17-19
e Ut i[R(1)]

- v
Si=— | dt—————
" J Joot)

t
Xexp{ —if dt’AEf’i[R(t’)]},
D

t

11

where we have used the explicit time dependeR{e)
=\v??+b? in the radial velocity vg=vt/\b?+ (vt)>.
SinceR(t) is not a monotonic function df, v(t) reverses
its sign at the TP at=0 andR(0). In addition,R(t) is an
even function oft, and Eq.(11) becomes

vt

V(vt)2+b?

o

dt Ut ,i[R(1)]

i

In terms of the parametd®, the S matrix element reads

Sf|i = - 2| Im[

Xex;{—iJ'tdt’AEf,i[R(t’)] (12)
0

R(oe

, ()
2i Im[ L dR U i(R)

(0)
Xex;{i dR’”.

fR AE;i(R")

rRO)  |vr]

Contributions toS;; come from regions wher&; ;(R) is
“large” or AE¢;(R) is “small.” In view of the analytic

Sy,

13

may be closely related, in special cases even coincide, for

near-adiabatic processes. Equatid®) indicates, further-

more, that in addition to singularities of the energy surfaces

also additional singularities in the integrand, specifically in
R, May give additional contributions 18 ; . This observa-

ion will lead us to the development of corrections to the HC

approximation in terms of TP contributions.

For the following discussion it is useful to delimit the
regime of “slow” velocities more precisely: we consider
velocities small compared to the so-called “Massey maxi-
mum” at which typically inelastic transition probabilities
peak,

VRSV <Umac=|AE; ((R—)|a, (14
whereAE; ;(R—) is the asymptotic separation of the en-
ergy levels andR=a is the “adiabatic radius” where atomic
systems effectively begin to coupla£1 a.u.). On the other
hand, our adiabatic limit — 0 is understood to exclude the
threshold region for the breakup of the composite molecular
system, i.e.,

v>2[AE; (R—*)]/u, (15
where the reduced mass of the quasimolecular system is
=10°.

Ill. HIDDEN CROSSING AND QUASICLASSICAL
APPROXIMATIONS

In this section we discuss the approximate evaluation of
Egs.(12) and(13) within the framework of the so-called HC
approximation and show its close connection to the QCL
approximation. It should be emphasized that both approxi-
mations go back to the pioneering work of Landa@] who
realized early on that energy surfaces in the complex param-
eter plane[20] determine, to a considerable degree, fhe
matrix in the near-adiabatic limit.

A. Hidden crossing approximation

An implicit and, as will be shown, sometimes erroneous
assumption of the HC approximation is that tReregion
near the inner turning poinR(0), in Eq.(13) does not yield
a significant contribution to the transition. Specifically, we
assume, for the moment, the coupling does vanish identically
at the turning pointU(R)=0 for R<R(0). We then can

structure of the electronic eigenenergy surface those two

properties are, in fact, intimately connected to each other.
This observation serves as the starting point for the develop-—"

ment of the HC approximation. Generically, perturbation

oo

[ f_ dR Uf’i(R)EX[{i

RAE;;(R")dR’

)

extend the integral over the entire rdabxis to give
SHC= —2i Im } } :

(16)

UR

theory and semiclassical approximations are complementary
to each other. Semiclassical or quasiclassical approximations This integral can be evaluated by contour integration.

require large actionfE; ¢(t)dt/A>1, in natural units. In

Within this approximation, the analytic structure of the en-
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ergy surface and of the coupling matrix element in the com-
plex R determines thé& matrix.

Singularities in the energy surface and in the adiabaticg
coupling-matrix elements are, in fact, intimately connected.
We illustrate this connection with the help of a two-state
model that captures the essence of the pairwise interaction c

{R}

two adiabatic energy curvés(R) andE¢(R) undergoing an R,
avoided crossing with each other. At this point we do not ﬁ

make a distinction between clearly visible ACs or HCs as ST

they possess similar properties in the complex plane. Physi - \ -

cal differences will be discussed later. A critical distance at
which the energy separation between the two adiabatic en
ergy curves is smallest will be denoted By (or Ryc). We
introduce the corresponding two diabatic statgs) and
|,) that do not diagonalized, but, instead, are defined
through a vanishing of the coupling by the operadddR.
By construction, diabatic states are smo(timgularity free
functions ofR nearRac. Note that such a definition of di- the real axigi.e., ImM{R;} smal) or hidden crossings when the
abatic states is only locally meaningful6,21]. distance to the real axis is large. This terminology originates
The adiabatic energies can be obtained by diagonalizatiofiom the fact that in the latter case an avoided crossing is
of the Hamiltonian matrix (with matrix elementsH;x  hardly recognizable in the cut through the energy surface
=(¥j|Hel ) in the diabatic basis as along the real axis. The topology of the adiabatic eigenen-
ergy surface has immediate implications for the nonadiabatic

Re(R}

/
R(t2) R(t)

FIG. 1. Typical evolution path ifR(t) domain in the hidden
crossings method, for a two-state collision system.

Eri(R)=E(R)=AE(i(R), (17 couplings determining electronic transitiof&gs. (6)—(11)].
In order to show this consequence, it is convenient to intro-
ER = Hi(R)+H(R) (19 duce an unitary transformation between the ~diabatic,

2 ' {#i(R)}, and adiabatic basi$¢;(R)}, defined a§22]

AE; i(R)=3\[Hi(R)—H(R) 1>+ 4[Hi(R)[%. (19 @i(R)=cosfy;(R)+sin04(R),

For real values oR, the adiabatic level splitting\ E; ;(R) di(R)=cos0¢;(R)—sin 8y (R), (21
has a local minimum(avoided crossingat Rayc or Ryc
=ReR} where Hij(R)=H(R). The level splitting be- Where
comes zero for complex valueR=R;, R% such that 1 1 12
H;(R)—H¢(R)=*xi2H;;(R). Obviously, expansion of the ing=|—1—
argument of the square root in Ed.9) to first order around sing 2( (1+ 712)12”
R=R., R} yields L L I
AE( (R=R)=C\VR—R., AE (R=R*)=C*\R-R* cost=| 5 1+(1+,7?)17?” (22)
(20)
and
whereC is a constant that depends on the matrix elements of
H and their first derivatives with respectf Equation(20) Hi(R)—H;i(R)
shows that the adiabatic energiesandE; are two Riemann n=n(R)= T 2H(R) (23

sheets of the same multivalued eigenenergy surface and that
the intersection points of the adiabatic energies have thgor definiteness let us assumid(R—)>H;(R— ),
form of square-root branch points. Thus, for the incomingandH;; to be nonzero neaR,c but H;;(R—)—0, for real

phase of the collision, starting on the brangh at E;(R;
=Re[R }+¢€) (wheree is a small positive numbgand mov-
ing on the complexR plane such thaR. is encircled, we
would end up orE; at E;(R,=Re{R.}—¢€) upon return to the
real axis(Fig. 1).

R. The functionn(R) is assumed to be monotonic but oth-
erwise arbitrary. Well known, analytically solvable models
such as the LZ model result from particular choices for
7(R).

The radial coupling between the two adiabatic sthEas

This two-state analysis can be generalized to many statqg9)] takes now the form

with the result that the analytic continuationséf(f,R) and

E,(R) onto the compleR plane for states of the same sym-
metry are various branches of single, multivalued and multi-

ldyp 1

Uf,i(R)ZZﬁm, (29

ply connected eigenfunctions and eigenenergies. The branch
points are the complex points of transition and are calledvhich possesses simple polessat =i. Expandingy to first
either avoided crossings when the branch point lies close torder neaR~R. yields
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7~C(R—R.)/2H 1 R,) +1i, (25) P =exp(—2[Im{w}|), (28)
and inserting this result in E¢24),
i o1 wc=—deRE(R)/vR, (29
Uri(R=Re)~— 7 R-R.’ Uri(R=Rc)~ 7 RR
(26)
& i=Relwg}, (30)

shows that nonadiabatic matrix elements have poles exactly
at the branch points of the eigenenergy surfd@sAlong

the realR axis, Uy ; exhibits peaks in the vicinity oRac or 1N EQ.(29) the contour encircles the branch poiftg. 1)
Ruc=ReR} and determines the region & values here involving the Riemann sheets & and E;. Equation(28)
nonadiabatic transitions take place. displays the exponential decay of probability predicted by

These observations deduced from a two-state analysis cahe HC approximation in the adiabatic limit.
be generalized for any electronic Hamiltonidg(R) that is
a memomorphic function of compleR, i.e., possesses only
isolated branch points in the complex pldi36,8—10. Ac-

cordingly, its eigenfunction f,R) and eigenenergies . ; g S . .
gy 9 sbn(7,R) g g énelastlc transition probability can be alternatively derived

E,(R) have isolated branch points in the complex plane as .- ¢ NS : :
well, which appear in complex-conjugated pairs, as foIIOWSW|th|n the framework of a QCL approximation. Semiclassi-

, . L L= cal or quasiclassical approximations are valid when the po-
from the Schwarz's reflection principle: ¥n(F,R) is real o nia) is smooth on a scale of the de Broglie wavelenth
for real R, then ¢, (F,R*) =7 (7,R) andE,(R*)=E}(R).  Remarkably, this statement remains valid wheris purely
Both ¢,(F,R) andE,(R) are analytic continuations of their imaginary, i.e.JA| is sufficiently small. Dynamical tunneling
respective functions for redR. All adiabatic energy levels processes become guasiclassical when the action along the
are part of a unique, multivalued adiabatic energy surfaceomplex trajectories is large. In the present case this implies
E(R) in the plane of compleXk. Different energy levels
correspond to the intersection of different Riemann sheets of J )
this energy surface with thée(Re{R}) plane[3,6,8—1Q that Im( [E(R)JdRIvR
are connected in the complé&plane in a pairwise fashion.

He is complex symmetric if it is symmetric and Hermitian rpe remarkable observation connected with &) is that

for real R [23]. The eigenfunctionsp,(F,R) form a bior-  classically strongly forbidderisuch as wide-barrier tunnel-
thonormal basi§19,24, i.e., [d®r ¢F (F, R*)¢;(F,R)=4j; . ing) processes are accessible to a quasiclassical approxima-
These functions can be written as¢,(F,R)  ton. » o _

=C,(R) xn(7,R), wherey, are biorthogonal but are notnor-  The transition between two adiabatic potential curves near
malized. At the point of intersectioR=R, of E;(R) and &n AC or HC is formally equivalent to the one-dimensional
E(R), i#], the two eigenfunctiona&i(ﬁ,ﬁc) and ¢1(F,§c) overbarrier reflection problem, transcribed to the time do-

= = main. The transmitted wavgé, corresponds to the propaga-
coincide, and thu§d®r ¢ (7,R¥) ¢;(7,R;) = 1. On the other B p propag

3 - tion on the adiabatic potential surfage,
hand, fd3 x; (7,R%) x;(F,R.)=0 for anyi#j. In order to
satisfy both conditions, the normalization const&(R) .
has to be algebraically singular Bt [2]. These properties ¢~QCL(t2)O<eX;{ _iJ 2 dt’Ei(t’)). (32)
can be directly verified for the two-state systéEys. (21) ' —w
and (22)]. As a consequence of the singularity @(R),
matrix elements of operators that are functions of the differ- - o .

. 3. ks B J Note that, within the QCL approximation preexponential
ential operatorf-(d/dR), /d°r ¢ (F,R*)F¢;(F,R) are also  ¢ac10rs are assumed to be slowly varying compared to the
smgular atR_= R. [2,3]. The most important example is the rapidly varying exponenfEq. (31)]. The turning point(or
radial coupling matrix elemenid; ¢ that possesses poles at yansition point for “overbarrier” reflection lies at complex

Rc [see Eq(26)]. _ _ _ tc (or Re). Analogously, the quasiclassical reflected wave is
With the knowledge of the poles in the coupling matrix given by

elements and the branch points in the energy surface, Eq.
(16) can be evaluated by contour integration. Taking into

account only one branch point connecting two Riemann sur- . ty t 7]
4 P g z//gCL(t)OceXp{—l(f thi(t)+f CEidt+f Efdt”.
% ty te

B. Quasiclassical approximation

As pointed out by Landall4], the adiabatic limit of the

>1. (3D

faces of the two-state system, we find for the contribution
from R; (up to a phase factpr (33

SiT=(PED Pexpli&r, ), (27) _ _ o _
Accordingly, the reflection amplitude is given by the ratio of
where the reflected to transmitted wave,
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rQCL_ zASCL(tz)/zp?CL(tz) This Lorentzian shape just fqllows_ from thg sum of the ma-
trix elements in Eq(26), obtained in the vicinity oR, and
exd —if' Ei(t)dt— [PE«(t")dt'] R:.

= o - It should be noted that the assumptidiEsgs. (35)—(37)]
exp — i/ 2 dUE(t)] were previously used as the leading terms of the expansions
in Rin the immediate vicinity oR; [Egs.(21)—(25)]. Within
IeXF{—tf E[R(t’)]dt’}. (34  the LZ model, the validity of Eqs(35—(37) is assumed
c globally for all R. It is this property that allows for an exact
analytical solution. The global extension to Rllshould not
obscure the fact that the LZ approximation is still only a
I'(gcally applicable model since the underlying assumptions,
the asymptotic divergence of adjacent energy levels of the
same symmetry, i.e]H;;—H,J—» as R—» as well as
H,,=const are unphysical. The significance of this model is
that the exponentially suppressed transition probability can
be determined exactly in complete agreement with E23).
C. Two-state Landau-Zener approximation and (34).
The celebrated LZ approximatidi2,13,15 is a special The limitations concerning the vicinity of the turning
case of a two-state system with a single avoided crossing. Roints andR,c are serious. These were first taken into ac-
results from the following assumptions for the diabatic ma-count by Bykhovskii, Nikitin, and Ovchinnikovg25], who

The contour along which the integral over the multivalued
energy surface is evaluated corresponds to the one shown
Fig. 1. The reflection amplitudeEqg. (34)] is therefore com-
pletely equivalent taS;'C [Eq. (27)]. The quasiclassical ap-
proximation subject to the condition that preexponential fac
tors are set to 1 coincides with the HC approximation.

trix elementgsee Eqs(17)—(19)]: assumed the constant acceleration approximation for the ve-
locity, keeping the linearity of the diabatic terms as well as
H22(R) —H11R=G(R—Rpc) = consX (R—Rxc), constant coupling, like in the LZ model. Further improve-

(35  ment was obtained by Delos and Thorsi#6], who ac-

counted for some effects of variation ldf;, and curvature of
vR=const, (36)  the diabatic terms, as well as for the nuclear acceleration
[27]. The common conclusion was that since the LZ prob-
H12(R) =const. (37) ability increases steeply with velocity, the effect of accelera-

For this set of parameters, the two-state MOCC equationgon is to increase the transition probability at low velocities,
[Eq. (6)] in its diabatic representation can be solved exactly” the vicinity of the turning point. .
and analytically. Expressed in terms of either the diabatic LZ One' important insight that can bg gained from the Lz
parameter§Egs. (35—(37)] or the parameters of the adia- model is that of the degree of localization of the nonadiabatic

batic potential surfaces, the probability for a transition can béransitions. Transitions effectively occur only in a very nar-
row region|AR| outside of which no net transfer of prob-

written as . )
ability between terms takes place. The Lorentzian form of
P = exp( — ) U in Eq. (40) provides an upper bound of the localization
5 range of the transitiondAR|<Im{R}=2H,,/G. For |R
—ext] — 2m|H ) —Rac|>|AR| the adiabatic states become effectively decou-
Gugr pled. However, this estimate does not take into account the
rapidly changing phases involved in the transition probabili-
- _ T|AE,i(Rac)[IM{Rc} ties per unit time in the adiabatic limit—0. For a two-state
ex , (38 ) . ' o
2uR model the relevant phase in the diabatic representation is

. given by [dR[H4(R) —H(R)]/vg. This rapidly oscillat-
where uuo=|AEy,i(Rac)[IM(R)/(2vg) is the Massey param-  jng hhase implies that in the limite— 0 the transition prob-
eter of the transition that determines the ‘“strength” of aability tends to zero. Using Eq¢35—(37) the phase be-
nonadiabatic transition. In Eq438) we exploited the corre- comesG(R—Rac)%(2vg) and the localization length of the
spondence between the parameters in the adiabatic and @iz nsition can be estimated from the distance fréRne

abatic representationsG=AE¢ ;(Rac)/IM{R} and Hi,  \here the phase is of the order of unjsg],
=AE¢i(Rac). The point of intersection of the adiabatic

terms in the compleR plane is given by R.=Rxc

) . v 1/2 |m{R }U (R ) 1/2
+i2H1(Rac)/G. The parameten(R) in Eq. (23) takes the AR~|=R :[—C RUAC (41)
form 5= (R—Rac)/Im{RS, which yields G AE¢i(Rac)

E (R)_E_(R):w\/(R_R )(R—R*) The same result can be obtained from the exact Landau-
f I C c /1 . . . . .
Im{R.} Zener solution. Equatiort41) implies that transitions are
(39  “perfectly” localized (AR—0) in the adiabatic limityr
1 ImiR —0, provided, however, thatz remains constant within the
Usz(R): - m{2 of 5 (40) transition region. The assumptiog=const is also essential
' 2 (R=Re[R:})“+(Im{R.}) and can become a serious limitation K, is close to
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region of the classical turning point. An analysis of such T e e
limitations can be found ifi26,25]. T L
The strong localization of a transition between pairs of //I Cont”bumr:/','\ N
levels is the starting point of the generalization of the HC / \;v/’ \
approximation for multilevel systems. / ;t; t A
RO e (o) 4
D. Multilevel hidden crossing approximation L ifonmbunon Cont”bu“onii 'll
The observation that the pairwise interaction between lev- =0
els is fairly localized, opens up the possibility to describe the o .

evolution for a multilevel system as a sequence of localized

transitions followed by an unperturbed evolution on a given FIG. 2. Contour of integration in the complex time domain to
potential curve until the next crossing occurs. For each loevaluate thes matrix.

calized transition between levdlandj we can describe the

evolution operatolJ¢ as a direct sum of a unit operator for gegree of approximation, the CCHC method should be
all other levels and a2 2 matrix in the subspadgj) [7,19,  equivalent to Eq(45). The couplingsU;* tend sufficiently

u(él):

_ i) fast to zero atR—, and do not depend on the electron
Uc(Re)=10Ue" (Re) (42) origin (a common problem in some MOCC calculations
with [28]). Note that the asymptotic behavior of the coupling far
from Rac, Ui$c1/R?, is not necessarily correct. However,
/1_PiHjC JPPC exp(i &; ) as long as the transitions are strongly localized about the
’ L (43)  hidden crossings, the actual behavior of the exact nonadia-
VPi; exp(& ;) V1-PT batic coupling far from the crossing is irrelevant. The CCHC
N ) approach should become increasingly inaccurate if the tran-
In Eq. (43) we have used the transition amplitufieq.  sitions are not localized or well separated from each other,
(27)] as off-diagonal element and have unitarized the matrixjepending on the parameters of the system as well as on the
by correcting the diagonal elements for loss of probability.collision velocity.
Between two sequential hidden crossing regions, aand
ty+1, the adiabatic evolution is given by a diagonal matrix
U4 in the adiabatic basis E. TP effects

transition amplitude within adiabatic theofqgs. (12) and
(13)]. As discussed above, the standard HC approximation
(44) results from Eqs(12) and (13) when the singularity abg
] . . =0 in Eq. (12 or, likewise, the fact that the lower limit of
For convenience we have switched in £4¢) from Rto the  he integralR(0) gives a significant contribution in EGL3),
time t as the parameter for the evolution. . is neglected. This is also equivalent to the neglect of the
Consequently, for a collisional system involving many preexponential factor in the quasi-classical approximation
states, the evolution operator can be written as a product (ﬁEQ- (31)]. However, as already noted by Landgid], the
localized transition matricds,19] in the infinitesimal vicin-  hresence of additional singularities in the transition matrix
ity of the hidden crossings and diagonal matrices represengiement near the turning point may give rise to corrections.
ing the adiabatic evolution of the system between transitiony, this section we explicitly determine these contributions
points, 1.e., and show that they can alter the adiabatic limit in a profound
way by modifying the exponential decay behavior.
o o0) = The starting point is the observation that near the turning
U =e0,e) 1;[ Ucltila(ticra L) 49 point, the adiabatic coupling matrix elemewt ;[R(0)], in
general, does not vanish. For any finite value of the coupling
If a large number of branch points and adiabatic energyt the TP,U; ;[R(0)]#0, closing the contour of integration
curves are involved, the direct determination of Etﬁ) in- is more involved than implied by a single branch pd]ﬁ@
volves a comparable level of complexity as the direct nu-1). The analysis of the integration path can be performed
merical solution of the MOCC equatiofEq. (6)]. As an  eijther in the complex or complexR domains. Here we
alternative to Eq(45) a multilevel HC approximation has adopt the formetsee[29] for the lattey. Figure 2 illustrates
therefore been devised by which the MOCC equations arg proper closing of the integration contour. The integrand in
numerically solved, however, with the exact adiabatic coufq. (11) has branch points and single poles at.=
pling matrix elementdJ; ;(R) replaced by localized Lorent- + JRZ=b2, +[(R¥)2—b? originating from the adiabatic
zian (or hidden crossingcouplingsU;f [Eq. (40)] resulting energy surface and nonadiabatic couplishg; . In addition,

from the poles|Eq. (26)] valid only in the vicinity of the the radial velocity in the integrand has branch points at
hidden or avoided crossing. We refer to this method as the

close-coupling hidden crossin@CHC) method. To a good vt,==*ib, (46)

et We return now to the original expression of the two-state
L{d(tk+1,tk)=diag{ eXF( _|f E](t)dt):| ]
ty _
ji=1
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whereb is the impact parameter. As long bls;[ R(0)]+#0,

there is an additional contribution to the transition defined by
the integral over a loop encircling the branch point that does
not originate in the adiabatic energy surface, but in the nona-

diabatic matrix element that contains the radial velocity. A

possible effect of the branch points of the radial velocity was

recognized recently by Ostrovs§0]. However, only the
correction to the dynamical phase of the hidden crossing
transition forbo=0 was considered, missing the TP effect we
described here.

The contour in Fig. 2 has been chosen to avoid the branc
cuts of bothvg and E; ¢, thus keeping integration on a
single-valued Riemann sheet. Using Cauchy’s theorem, th
integral over the whole contour is zefoe., no pole is en-
closed. Therefore, assuming that the integral over the uppe
half plane is zero, th&matrix element for the two-state
system, which is equal to the integral over the real axis
becomes

Sri=Sii TSI (47)

where H? arises from the loops avoiding the branch cuts of
Ui . In addition to the HC contribution, th8 matrix con-
tains a TP correction tern§}, given by the integral over
the loop avoiding the branch cut ok . Sincet in this loop is
purely imaginary, we can define a real variapkevt/i such
that the correction term to th® matrix becomes

_Yy

—2i Re[ fb dy —yz—bz
1y

xexp{——f dy’AEf'i(iy’)H.
v JO

This integral is difficult to evaluate analytically, even if a
Lorentzian couplinglEg. (40)] is assumed. Moreover, the
Lorentzian is not an accurate description of the nonadiabati
matrix element far fromRc. Therefore the actual value of
U; ; needs to be used in the evaluation of the integral in Eq
(48). We have evaluated this integral by the following ex-
pansion that provides a very accurate approximation to th
exact result. Since the integrand in E48) has an integrable
singularity aty=b and decreases exponentially with increas-
ing b, the largest contributions t8"° must arise fromy=b
=0. Thus, assuming thatE¢ ;(R~0)=AE(0)=A is con-
stant and making a change of variables cosiyb,

TP
|

Uy, (iVy?—b?)

(48)

sff=-2ib Rg[ J dzcoshz Uy (ib sinhz)
0
Xexp—A coshz)], (49)

whereN =bA/v. ExpandingU; ; in powers ofb,

PHYSICAL REVIEW A63 052702

o o dUg;
U ;(ib sinhz)=U; ;(0) +ib sinhz '
, ’ dR 0

(ib sinhz)? d*Uy |

2 dR2 |0’L , (50
&ne finds[31]
. * v n
h S{i=—2ib Kl(y\)uf'i(o)Jrn}::l (_l)nbn<K)
e
(2n—=1!! gz2n
r WK“H()‘)dR_zn Uf,i\Rzz ) (51

whereK; are modified Bessel functions of the second kind.
Equation(51) provides not only an expansion mbut also
an expansion im/A. ForU¢ ;(0)# 0 one obtains as the lead-
ing term in the adiabatic limit

TP e _ Ab
St il,—o——2ibU¢;(0)Ky . (52

v

Transitions near the turning point take place effectively only
inside the adiabatic cutoff radiusdefined by

Ab
N=—=1,
v

(53

i.e., when the characteristic frequeney=v/b of the pertur-
bation is at least of the order of the energy dapetween the
energy levels near the turning point. This adiabatic cutoff
radius for TP contributions is to be distinguished from the
adiabatic radius. For small impact parametexs<1, the TP
transition amplitude exhibits an effective power-law depen-
dence on the velocity. In particular, S{"], _o—
=2iU¢;(0)v/A and, thus, the transition probability is pro-
portional tov? in that limit. Interestingly, Born and Fock
[17] predicted that the transition probability in the adiabatic
iI:'i\mit between two adiabatic states with noncrossing energy
evels cannot be larger than of orderidf The exactly solv-
able one-dimension&l D) model of two collidings-function
potentials moving with constant speed<vt) yields transi-
tion probability proportional taw? [32]. These predictions
are consistent with our findings. In turn, for large impact
parameters(i.e., A>1), the TP transition amplitude de-
creases exponentially as exp\)=exp(—bA/v).

Clearly, the TP amplitude provides the dominant contri-
bution to theS matrix for small impact parameters and small
collision velocities. However, when/A <b<2|R.| the HC
contribution can dominate since it is independenb afhile
the TP contribution decreases exponentially viith

The total cross section due to the TP contributiomthe
region where the HC contribution is negligible because of its
exponential decreaséollows from Eq.(51) as[31]
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02/2\ 2 Uf-(O) * , , itly included in the numerical evaluation of the MOCC equa-
ofi=2%7 T) 3—"A2—+ (—1)n*tn 2(ntn?) tions [Eq. (6)] since for Lorentzian coupling elements we
nn’=1 have in general t5[R(0)]# 0. SinceU{4[R(0)] will differ

from the exactJ¢ ;[R(0)], TP corrections must be explicitly
built into the CCHC calculation. If we want to recover the
pure S{'" matrix excluding TP contributions from the nu-

' , merical CCHC scheme, we have to subtract the incorrect TP
X(dzn/d RP"U¢ )| roo(d®™ /dR?" Uf,i)|R—0] (54 contribution

A2+n+n’

(n+1)!(n"+1)!(2n—1)11 (2n’ —1)!! (vzlz)“+“’
(n+n'+3)(2n)!(2n")! A

AE; ;(0)
HC__ qCCHC, 9ipy 1 |HC fii
which reduces in the adiabatic limit, whéh ;(0)#0, to Sri =S+ 21bUy (0)K1< v b)' ®)

o 64 | U;.(0) ‘2 152 2 The error of the CHCC method is given by the difference
ofT,Fi’=27rf db b|S{f(b)|?~ 37 AE’I ol |\ xE 07/ - between the tru&l; ; near the turning point and the coupling
0 1i(0) ri(0) matrix elememeH’ic extrapolated to the turning point. Con-

(59 sequently, the approximat® matrix corrected for turning

Remarkably, this contribution increases with the fourthPOINt effects is therefore given by

power ofv, or equivalently, with the square of the equiva- AE;(0)

lent kinetic energy of the electron in units of the energy gap S{'°*TP=SFtHC+ 2ib[ UYC(0) - Ufyi(O)]Kl( x b).
atR=0. Its size is controlled by the ratio of the nonadiabatic

coupling to the energy splitting &=0. Asv—0, this term, (58)
unlike the exponentially suppressed HC contribution, givesyternatively, one can improve the CCHC method by cor-
the dominant adiabatic limit for the inelastic cross section. Ifrecting the coupling matrix element used in the numerical
U i=0, as is the case for symmetric ion-atom collision sys-integration of Eq.(6) as

tems(e.g.,H" +H), the TP contribution to the cross section

is given by the higher orders in the expansion in the impact UFC" TA(R)=UFH(R,R.) +[ U, (0)— UHH(0)]
parameter and the cross section is proportional®@and to ' ' '

the square oti>U; ;(0)/dR?|,. Explicitly, ><exp< _AE,i(0) R) 59
— RJ:
e 9 o |PULRIR)? [ 302 | | | | | S
of i~ X2 A ’ = A . (56)  This approximate form incorporates this correction within
5 [AE:i(R)] |R:O E+i(0) the “radius of nonadiabaticity” of the TP.

lNOtfe that Ft?f@lé._ (:63. are Va:!d '”es'o‘?c“‘l’e Oe‘;;he ga”'cu' IV. NUMERICAL TESTS FOR AN EXACTLY
ar form of the adiabatic coupling matrix elemeu ;(R) or SOLVABLE MODEL

the shape of the potential curvés ;(R). Furthermore, the
expressions for the TP transition probability and the cross In this section we present results of the first detailed nu-
section are independent of the existence of a branch poimherical test for the validity of the HC approximations and its
between the adiabatic energies. Theref@¢,not only pro-  variants as well as for the significance of TP contributions.
vides a correction to the adiabatic behavior predicted by th&Ve perform this test for a simple 1D model of a symmetric
HC theory but also yields nonzero transition probabilities forcollision in which the target and the projectile are repre-
pairs of adiabatic levels that are not connected by branckented by harmonic wells,
points and, therefore, vanish within the LZ or HC approxi-
mations. In principle, the TP and HC contributions to the
transition amplitude could overlap. However, since the width
AR of HC and LZ transitions become very small as-0
[see Eq.(41)], the overlap can be, in most cases, safely newherex andp are the position and momentum of the electron
glected. with respect to the center of mass of the collision system. In
Up to this point we have only considered TP contributionsorder to mimic the radial velocity in a 3D collision, we use
to the S matrix for a two-level system. It may be useful to the parametric dependend®@=\v?*+b?, which corre-
extend the description of the TP transitions to multilevel HCsponds to a 3D straight-line internuclear motion for a given
approximations. The underlying idea is that the TP transitiorimpact parametei.
is approximately localized near the turning point. Therefore, The advantage of studying this simple collision system is
one can simply add one more local time-evolution matrixthat exact transition probabilities can be easily obtained by
aroundt=0 [see Eq(45)]. The additional local time evolu- numerically solving the time-dependent Satirger equa-
tion can be constructed by adding all the two-state TFtion (TDSE)
Smatrix elements among all states coupled. Within the 5
CCHC method described in the previous section, the TP-like e _
contribution, even though not necessarily correct, is implic- 15t Voo =Her?, p(x,), (62)

2

p? 1 R\?
He(R)=7+5 |X|—§) , (60)
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FIG. 3. Adiabatic energy terms for the double harmonic oscil- k|G 4. Schematic diagram of the total electronic poterigialid
lator (solid lines. The energies are shifted down in 0.5 a.u. so that"ne)’ and the ground-state ener@y, (horizontal solid lines and

the termsEy tend toN for R—0. The top of the potential barrier, \yaye functiong, (dashed lingfor two internuclear distances. The
V(R) (dashed lingis compared with the positions of the hidden top of the potential barriel,, is also depicted.

crossings connecting adjacent energy te(sudid circles connected

with vertical lines. curves connected by branch points. On the real axis, hidden

crossings can be characterized by the fact that for the mini-
whereV, , is the electronic wavefunction for a given impact mal distance between energy curves at the hidden crossings,
parameter and a given collision velocity. Moreover, this sys-AE(Ryc), is of the same order as the average energy level
tem can serve as a model system to illustrate the significanaspacingAE of nearest neighbors,
and the physical origin of hidden crossings since this system _
features only HCs of th€-type [3] while narrow avoided AE(Ruc)=AE. (62
crossings are absent. The obvious drawback of this model is
that no conclusions as to the quantitative significance of thdhis is to be contrasted with narrow avoided crossings where
scattering amplitudes and, specifically, of turning point ef-
fects can be drawn. As this model strongly differs from the AE(RAC)<E. (63
atomic Coulomb systems, the importance of a particular pro-
cess at a given velocity cannot be determined. This should be The physical origin of hidden crossings is obviously

kept in mind as we present numerical results in atomic unitsejosely connected to the existence of a barrier separating the
two wells, as indicated by the close correlation between the
R-dependence of the barrier tog,=R?/8 and the position
A. Hidden crossings in the adiabatic eigenenergy curves of the series of HC'$Fig. 3. Unlike Coulomb systemi34],
The “molecular” adiabatic eigenstatesgy(R)) and  the barrier top in the present case does not form a saddle but

eigenenergiesEy(R) of He(R) [Eq. (60)] are well known @ cusp(Fig. 4. The existence of HC in the present case
and can be found in quantum mechanics text bdsks, e.g., illustrates that the detailed analytic form of the barrier, in

[33]). The presence of hidden crossings in the system adgarticular the presence of saddles, is irrelevant for the forma-

pears to have been overlooked. These energy levels are o‘%gn of HC's. The hidden crossings emerge when the top of

picted in Fig. 3. In the limitR—0, the system becomes a ;rﬁ T;OV;?%hzaggeznﬂﬁqssif ttr?: g:;s;mmeﬁgg toefrg].cglolirsiz);]-
single harmonic oscillator witlEy— (N+0.5). In turn, for bie. g g gp

) .[Fig. 4(@)] the target and the projectile are close and an elec-
R— oo the system develops into two well-separated harmomé g. 4] N prol

. ) ron wave function is shared between the two centers, being
wells with Ey— ([N/2]+0.5), where] ] denotes the integer 5ecyiar in character. A single classically allowed region

part. The only exact symmetry for the adiabatic wave func+q; the electronic motion extends over both wells. While the
tions is the reflection symmetry with respect to the origin ofcenters are receding, the rising potential barrier crosses the
coordinates X=0). This yields two sets of mutually nonin- molecular energy level and splits the classically allowed re-
teracting adiabatic molecular states defined with even angion into two separate domaifiBig. 4(b)]. Semiclassically,
odd integersN, for the symmetric and antisymmetric wave the addition of two turning points leads to a jump of the
functions, respectively. Maslov index bym/2. Accordingly, the quantum wave func-

The energy levels in Fig. 3 do not exhibit any obvioustion undergoes a rapid morphological chandgég. 4(b)]
avoided crossing. However, the present system is rich in hidwhich, in turn, causes a peak in the matrix element of the
den crossings denoted by vertical lines between adiabatid/dR operator, as can be directly seen in Fig. 5.
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=\ [\ r'////

PN
// scaled Massey parameters; ;=v Im{w} (solid symbol$. The
numbersi-j (i,j=0,1,2,3,...) in the figure denote the energy levels
that become connected by the branch points. Hidden crossings that
connect the same Riemann energy surfaces correspond to different
orders(0,1,2,..) and are connected by lines starting from the zeroth-

order (i.e., the ones with the smallest imaginary parts

AN

W

N

“split” all other wave functions of the same symmetry must
also undergo a change because of the orthogonality con-

FIG. 5. Ground quasimolecular state and its derivative as a funcstraints for all¢,, (m#n) at a fixed value oRc. This can
tion of the electronic coordinateand the internuclear distanée lead to couplings not only between adjacent lewvesndn
+1 but to all other levels as well. In Coulomb systems, this

Figure 4b) can also serve as an illustration for the mecha./S calléd aQ series[2,6-8. Its signature are branch points

nism underlying the presencer absenceof avoided cross- ©CCUMng at the sam&c=Re[Rc} but rapidly increasing
ings. The generic picture of the occurrence of an avoided™Rc} corresponding to weaker couplings to distant levels.
crossing is that of a weak residual interaction between twdh the present case, presumably because of the constancy of

nearly degenerate levels. The near degeneretg=~H.») thg mean spac_ing in oscillator systems, only the nearest
levels can be pictured as the two “split” levels in the right "€ighbor coupling can be observe#fig. 6. A second
and the left wells after they lie below the barrier top in Fig. mechanism for the generation of series is the fact that with

A(b). Accordingly, the residual interactiofie., the diabatic increasingR subsequently higher adiabatic levels cross the

. . . _barrier from the top. This sequence of branch points with
coupling Hy,) represents the tunneling through the bamerVarying Ruc(n) is called the “superseries” in Coulomb sys-

and is thert_afore expongntlally weak which, n wrn, Imme‘j"tem:~:[63—8]. Obviously, it appears in the present case as well
ately explains the relatio63). _In. general, Fig. &) ,VVOUld (Fig. 6). While we have only found branch points connecting
correspond to a cut of a multidimensional potential S“rfaceadjacent energy levels, they appear in different orders
along a “reaction coordinate.” In the present 1D case, hOW'creasing values of IfR} and RéR.), much like for the
ever, parity in thex coordinate is an exact symmetry. There- g5_calledP series[2] which, in the Coulomb case, describe
fore, the (unjgerade linear combinations of the “partial” the nonadiabatic coupling of the Demkov-type between two
wave functions residing in the different wells belong to dif- parallel almost degenerate diabatic levels. Howeve?,s&-
ferent representations of the symmetry group and thereforges in the Coulomb case is located at an almost constant
the couplingH,, vanishes identically. By contrast, hidden value of R¢R_}, which is not the case here. This is, in part, a
crossing refers to coupling between neighboring nondegereonsequence of large energy splitting between the levels. In
erate(as opposed to near degeneydgwels of the same sym- order to visualize the different orders of transitions between
metry where one level has just crossed the barrier and thine same pair of energy levels, we have connected the cor-
wave function is about to split while its nearest neighbor liesresponding branch points for different orders by lines. Inter-
still aboveV,,. This observation results immediately in the estingly, these lines are almost parallel to the{Rgh
relation(62). Figures 4 and 5 also illustrate why HC’s appear =R€e{R;} line that corresponds to an angle in the complex
in series. The origin is twofold: for one, as levg} crosses plane ofd= w/4[i.e.,R=|R|exp(#)]. In addition, the hidden
the barrier from above and causes the wave function terossings of the same order but connecting different pairs of
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states[35] have all similar values of the imaginary part,
Im{R.}. No branch points were found with a phase angle
larger thanm/4. Also plotted in the figure are the values of
the scaled Massey paramet@t;=v Im{w¢}, which is inde-
pendent of velocity. Since the Massey parametdggn[Eq.
(29)] is approximately proportional to KR} and the energy
splitting at R¢R.} are here approximately unity, the values of
6¢; as a function of RER;} lie very close to the branch
points. Since transition probabilities decrease exponentially A4
with & ;, the relative contribution of each order decreases L A B B R
very rapidly with increasing order of the transition. 0.7 7

The important role played by the top of the barrier ex- i 1
plains also the large difference between the Massey param- 0.6 6=23
eters for even and odd adiabatic energy eigenst&igs 6). -
The Massey parameters for odd states are about 1 a.u. larger 0.5 D o g
than the ones for even states. This is due to the fact that the r N / 6=0 1
odd wave functions have a node at the position of the top of 0.4 ~-/
the barrier,x=x,=0. Therefore, the rate of change of the .
wave function withR diminishes as the level falls below the
barrier top.

Even though hidden crossings are difficult to visually de-
tect as avoided crossings for real valuesRptthey become
evident in the compleR plane where energy levels cross at
the branch points. This is shown in Figaywhere we depict
the real parts of the energies of tNe=0 andN=2 adiabatic
states. The energy levels in this figure are displayed as a
function of RER} along a rayR= R exp(6), whered=23° is
a constant. This particular angle has been chosen such that
the ray passes very close to the zero-order hidden crossing Re{R} (a.u.)

between theN=0 and N=2 levels, which occurs aR. .
—(3.41,1.62) and¥=25°. Obviously, the energy levels ex- G- 7- (@ Re{Eq} and R4E,} as a function of RiR} along a ray
ri]n the complexR plane with an angle o#=23°. (b) and (c) the

hibit an avoided crossing in the neighborhood of the brancd vative ofE. with ttR and th lizati tant of
point. The branch point is responsible for the singular behaytcValve ofto With respec and the normajization constant o
: - . . - the N=0 adiabatic state along two rays in the compieglane are
ior of the adiabatic coupling between tie=0 andN=2 d 0=0° 23°) The branch point b N0 and
tated[i.e., Eq.(40)]. Figures 7b) and 7c) show that other compared ¢=0°,23%). The branch point between t an
S L ’ : o N=2 states lies on the ray of approximatefy=25° at RéR.}
variables of the system such as the derivative of the complex 4, 5,

eigenergydE,/dR, and the norm of the wave functidn|

(see Sec. Il also become singular at the branch point.

/
/
\
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(CCHC) and, the first- and second-ordéZCHC2 hidden
crossings between a same pair of states. Unlike the single-
B. Transition probabilities and cross sections path HC approximation, the presence of different paths

In this subsection we analyze the transition probabilitieswIthln the CCHC allows for interference oscillationthe

and cross sections for the model Hamiltonian in ). We so-called Stokelberg oscillations Furthermore, the CCHC

study the time evolution of this system for the case in whichc.a‘ICUI‘F"tions also predi_c_t a large dg\_/iation from _the exponen-
initially (att— — ) theN=0 state is populated. This limits tial decay of the transition probability as resulting from the

the allowed transitions to excitation of the subset of evenInCIUSIon of TP effects since

adiabatic states. ImR

Figure 8 displays the excitation probabilities to thie U?’?(O)=W°2¢0. (64)
=2 level forb=0.1a.u. as a function of the inverse velocity IRdl
1/v. In this representation an exponential decrease of the
probability, expconstd), reduces to a straight line, as is  This TP effect is here spurious sin(tk'f’fiC(O) obtained
clearly observed for the HC excitation probability, averagedfrom Eq. (40) is not expected to have a correct valueRat
over all phase$HCE). Remarkably, the low-velocity behav- =0. The coupling described by E¢40) is designed to be
ior (large 14) of the TDSE excitation probability is quite accurate in the vicinity of hidden crossings only. As can be
different from an exponential dependence. This is a directeen from the figure, both CCHC1 and CCHC2 give, as ex-
consequence of the TP contribution to the transition probpected, the same result in the “hidden crossings region” i.e.,
ability [Eq. (48)]. Also included are the results of the CCHC in the region where transitions due to the hidden crossings
method involving seven excited states N ( dominate, but very different results for larger values of,1/
=0,2,6,8,10,12,14), taking into account the first-orderwhere the TP effect dominates. This difference emerges from
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b=0.1a.u.
—

Excitation probability

Excitation probability onto N=2

N~ -
-14 \ a
10 \"\‘,\ ]
1V (a.u.) 11 ! R BT N
107 3 5 7 9
FIG. 8. Excitation probability onto theN=2 level for b 1hv (a.u.)

=0.1a.u. as a function of the inverse velocity 1The TDSE re- .
sults are compared with the HCE and HC results and, with C€HC  F|G. 9. Excitation probability onto thal=2, 4, 6 levels forb
calculations involving up ta orders of hidden crossings. =0.1a.u. as a function of the inverse velocity 1/

the difference betweeb{'7*(0) andU{{(0)+U{'F%0) in  tive transitions is much smaller than the direct-@ transi-
the CCHC1l and CCHC2 calculations. Incidentally, tion.
UFF0)+U{'T%(0) between the levelsl=0 and 2 has al- The dependence of the transition probabilities on the im-
most the same value as the exact coupling(0), thus lead-  pact parameter, for a fixed velocity of=0.2, is shown in
ing to very good agreement of the CCHC2 and TDSE result$ig. 10. The TDSE result for excitation to bod=2 and
even at the lowesb. Subtracting these spurious contribu- N=4 is again well reproduced by the HOP calculations.
tions according to Eq57) yields (referred to in the follow-  For comparison, also the HC calculation, that is, the CCHC
ing as HQ, as expected, an exponentially decaying excitasolution with the spurious TP contribution subtracted, is
tion probability superimposed on well-known ‘Skelberg  shown. Obviously, at large impact parameters outside the
oscillations(HC1 and HC2 in Fig. 8 If we now add to these adiabatic cutoff for turning-point contribution€q. (53)],
HC amplitudes the correct TP contribution according to Eqthe HC approximation works well. Figure 11, which displays
(58) we refer to these calculations as HCTP. the excitation probability as a functionvlfor a “large”
Figure 9 displays the excitation probabilities to thNe impact parameteb=1 a.u., shows that this conclusion is
=2, 4, and 6 levels fob=0.1a.u. as a function of the in- valid at all collision velocities. By contrast, inside the adia-
verse velocity /. Remarkably, the HE TP calculations are batic radius the TP contributions dominate and the HC ap-
found to be in very good agreement with the TDSE resultgproximation breaks dowfsee Figs. 9 and 10For excitation
for all N, as well as with the CCHC2 calculations for exci- to N=4 the TDSE results are also well reproduced by the
tation toN=2. It is noteworthy that the TP contribution for TP+HC calculations since the TP contribution from the di-
excitation ontoN=4 andN=6 states involves the direct rect coupling between tHé=0 andN=4 levels is included.
couplings from theN=0 level, U, «(0) andUg «(0). These The relative importance of different excitation processes
direct couplings are not contained in the standard HC apaveraged over impact parameters as a function of collision
proximation because thd=0 level is not connected to the velocity can be extracted from the excitation cross sections
N=4 and 6 levels by branch points. The CCHC2 calculation(Fig. 12. The total cross sections for excitationNe=2 and
also yields excitation ttN=4 and 6. This is due to the se- 4 calculated with the HETP approach is seen to agree ex-
guential HC couplings and, due to spurious-@ and 2 tremely well with the results of the TDSE calculations. The
—4 TP contributions for larger &/in the CCHC calcula- crucial point to be noted is that the standard HC approxima-
tions, which are here not eliminated by the subtraction protion predicts cross sections at largéhough limited from
cedure[Eq. (57)]. Note, however, that this is a second orderabove byv<1) velocities accurately but leads to large dis-
process and, therefore, the excitation probability by consecwerepancies for small due to its exponential decay withul/
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Excitation probability
Cross section ( 107 cm? )

b (a.u.) 1v (a.u.)
FIG. 10. Excitation probability onto th&l=2, 4 levels forv FIG. 12. The cross sections for excitation frd=0 ontoN
=0.2a.u. as a function of the impact parameter. =2 andN=4 as a function of the inverse velocity.
while the correct adiabatic limit features a power law [N order to ascertain the significance of TP effects, we

(~v%) arising from the TP contribution. The transition re- have performed two additional checks: one test concerns the
gion in which the TP contribution starts to dominate thePreakdown of the classical-trajectory approximation underly-

cross section is located at larger velocities for excitation td"9 Our analysis. Since turning-point effects could potentially
N=4 (v~0.24) than for excitation tdl=2 (v~0.16). The be co_ntqmlnated by_the breakdown of the classical trajectory
Stickelberg oscillations observed in the previous figures fodescription underlying the impact-parameter method, we

a fixed velocity or a fixed impact parameter are averaged OLHave also embeddgd the 1[.) model Hamlltor.nan'(BQ) mtol
in the cross section. a 3D model, in which the internuclear motion is described

quantum mechanically by solving for each angular momen-
tum, 7, the radial Schrdinger equatiori36,37

1 & J(/+1)
—ﬂﬁﬂL TﬂLHeKR.X) ¥, (x,R)

=E;V ,(X,R), (65)

where . is the reduced internuclear mads; is the total
energy, andV .(x,R) is the total wave function for a given
angular momentur” of nuclear motion. This quantum cou-
pling (QC) problem can be solved exactly as well. Artifacts
due to the classical description of the trajectory near the turn-
ing point are therefore ruled out. We use a typical value of
pu=1amu, seven adiabatic states to expand the electronic
wave function, and, in order to simplify the calculations, we
solve Eq.(65) using the approximate HC coupling matrix
elementgEqg. (40)] and a log-derivative algorithii87]. Such
QCHC calculationgreferred to as QCHC2 in Fig. 12agree
extremely well with the classical trajectory cross sections
1 (a.u.) (TDSE and HG-TP) for excitation toN=2, while strongly
deviate from the TDSE result for excitation kb=4. This is
FIG. 11. Excitation probability onto th&i=2 level for b  for the reasons discussed below E&f), since QCHC2 does
=1 a.u. as a function of the inverse velocity 1/ not have the correct coupling at the Tlke in Figs. 8 and

Excitation probability into N=2
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- N+ T T - T T V. CONCLUSIONS
NE \\
go 10'r i We have analyzed the physical contents and the limits of
'g sl i validity of the hidden crossings and quassiclassical approxi-
1 mations in near-adiabatic inelastic collisions. We have
N 103F i shown that the HC approximation follows from the adiabatic
% perturbation theory as a special case when only singularities
‘g’ 10%F 4 associated with branch points of the adiabatic energy sur-
c faces are taken into account. Since the transition matrix ele-
-.g 108F - ment in adiabatic perturbation theory contains, in general,
o attractive other singularities, specifically those connected to turning
@ 108F . s points, corrections arise that are neglected in the HC ap-
g s}ir:;ght proximation. We have shown that TP corrections can funda-
S 107 mentally alter the adiabatic limit giving rise to a power law
'-E repulsive dependence" rather than an exponential dependence as a
S 1081 \\ 7 function of the inverse velocity 1. This result holds irre-
(i \ spective of the detailed properties of the systems under con-
10°1 \ HCE ] sideration or of the details of description of internuclear mo-
10 I ! ! I \I I tion.
10 2 4 6 8 10 12 14 For an accurate description of the TP effect only two pa-
1 (a.u.) rameters are needed: the energy splitting and the radial cou-

FIG. 13. The cross sections for excitation frdi=0 onto N pling of the adiabatic states near the united atom limit. The

=2 as a function of the inverse velocity. The HC result is compareodommance of the TP efiect rqul'res:li’j(O);tO and
with QC calculations involving different internuclear interactions: AE”—(Q)#O. WhenAEi_,i(o)_o' Fransmons for smalR C_an
attractive  V,,(R)=—exp(2R)/R,  repulsive V,,(R)=exp esult in nonexponential behaviors of the cross section but
(—2R)/R, and no interactioristraight line. for different reasons. A prominent example of this kind is the
transition between the rotationally coupled states, which is
9). The velocity region where the TP effect starts to domi-beyond the Scope of this baper. . . :
nate the cross section is near0.2. which would corre- We have illustrated properties of hidden-crossing approxi-
- mations and turning-point contributions with the help of a

spond. to a collision energy of 1 kev/amu. _Clearly, Fh|s ?n'simple, exactly solvable model. It should be noted, however,
ergy is high enough to apply the classical straight-line

trajectory approximation for the internuclear motion. Thethat the results can serve only as qualitative illustration of the

HC theory is applicable above this energy upte 1, which “.”d?f'y'”g effects anc_j not as evidence for their quanntatlve
L significance for atomic collision systems at a given set of
corresponds to a collision energy of 25 keV/amu.

; . - arameterge.g., velocity since the present system is ver
A second test considers trajectory effects. Transitions neag. ge.g y P Y y
; T S . ; ifferent. Nevertheless, the results of the present work have
the TP in realistic collisions can be influenced by the inter-,

action potential between the heavy nuclei. Therefore, Wlmpllcauons for the .appl_|cat|on of h|ddeq crossings or
: . . : . andau-Zener approximations to atomic collisions and other
have investigated the effect of the internuclear interaction or

- oy time-dependent problems. “Turning-point effects” are, in
the transition probabilities within the QCHC approach byfact gerr:eric. Ex:fmples include thegr:fmping up and down of

incorporating a potential,,,{ R) = = exp(~2R)/R, where the ' _ o

sign of the potential deté?(mines whether the interaction i€ external flelgl fronF(—oc).—O to FmaX_F.(O) and back to
attractive or repulsive. Figure 13 compares the results o () =0 featuring an effect|_ve tur_nlng point EI(O.)’ where
such calculations with the one obtained for a “straight-linetN€ SlopedF/dt changes sign, since levels mixed by the
trajectory” [i.e., V,,{ R) = 0]. For “high” velocities, the in-  f1€ld, in general, are not decoupled B¢0), i.e., U; (0)
ternuclear interaction does not affect the value of the cros& 0- Likewise, photodissociation, starting at an equilibrium
sections. However, cross sections become quite sensitive fistance of the molecular constituents and approaching infin-
the particular form of this interaction in the limit of low ity, may feature TP corrections due to the vanishing radial
velocities. As is intuitively expected, an attractivepulsive ~ velocity (vg=0) at the initial condition for dissociation.
potential increase&lecreaseshe value of the cross section.

The increasddecreasgecan be ascribed to the different to-

pologies of the radial velocity in these cases and the fact that ACKNOWLEDGMENTS

at the TP of the trajectory for an attractiyespulsive inter-
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