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Inelastic transitions in slow heavy-particle atomic collisions
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It is a generally held belief that inelastic transition probabilities and cross sections in slow, nearly adiabatic
atomic collisions decrease exponentially with the inverse of the collision velocityv @i.e., s}exp(2const/v)#.
This notion is supported by the Landau-Zener approximation and the hidden crossings approximation. We
revisit the adiabatic limit of ion-atom collisions and show that for very slow collisions radial transitions are
dominated by the topology of the branch points of the radial velocity rather than the branch points of the
energy eigensurface. This can lead to a dominant power-law dependence of inelastic cross sections,s}vn. We
illustrate the interplay between different contributions to the transition probabilities in a one-dimensional
collision system for which the exact probabilities can be obtained from a direct numerical solution of the
time-dependent Scho¨dinger equation.
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I. INTRODUCTION

Ionization in slow ion-atom collisions is still a field o
active research, even for systems involving one active e
tron. While molecular coupled-channels calculations ha
succeeded in describing transitions between bound states
description of ionization requires large basis set expans
involving a quasidiscretized continuum. In the adiaba
limit, where ionization probabilities become very small, t
numerical significance of results based on these methods
comes questionable. As an alternative, the hidden cross
~HC! approximation was proposed@1,2# and has been exten
sively used in the last decade@3–11#. A unique feature of the
HC approximation is that it provides a relatively simple d
scription of all inelastic processes~between adiabatic state
of the same symmetry! on the same footing including ioniza
tion for which other theories have difficulties. This
achieved by recognizing the role of various series of tran
tions that promote low-lying states to the continuum.

The HC approximation was derived as an asymptotic li
for slow heavy-particle collisions and is assumed to prov
the exact adiabatic limit for transitions within the states
the same symmetry. This relies on the assumption that al
information on slow collisions is contained in the adiaba
electronic energy surfaces. Assuming a straight line tra
tory for the internuclear motion, the HC approximation pr
dicts an exponential decrease of inelastic probabilities
cross sections with the inverse of the collision velocityv
@i.e., s}exp(2const/v)#. Other models of nonadiabatic cou
pling yield similar predictions, including the celebrate
Landau-Zener~LZ! approximation@12–15#, and there is a
wide-spread ‘‘belief’’ that the exponential behavior shou
be the correct adiabatic limit. However, the validity of th
HC approximation and its variants has never been th
oughly tested for an exactly solvable model.

In this work we revisit the adiabatic limit for inelasti
collisions. The starting point of our analysis is the adiaba
perturbation theory within which we identify the HC ap
1050-2947/2001/63~5!/052702~16!/$20.00 63 0527
c-
e
the
ns
c

e-
gs

-

i-

it
e
f
he

c-
-
d

r-

c

proximation as a limiting case when the integrand in t
transition matrix element possesses only a certain clas
singularities. In the HC approximation, the singularities
the electronic eigenenergy surface in the plane of comp
internuclear separationR are assumed to determine inelas
transitions. This limit is also closely related to the quasicl
sical ~QCL! approximation for strongly forbidden transitio
@14#. However, when the transition matrix element posses
additional singularities, the standard result of the HC as w
as QCL approximation cease to be valid and correction te
arise. In the present case of slow ion-atom collisions, ad
tional singularities come about through zeros in the rad
velocity vR . These turning point~TP! contributions funda-
mentally alter the adiabatic limit. We illustrate and analy
the underlying physics of hidden crossings and the valid
and the breakdown of different approximations with the h
of a model for which exact transition probabilities and cro
sections can be obtained from a direct numerical solution
the time-dependent Schro¨dinger equation. To be specific, w
focus in the following discussion on slow ion-atom col
sions. We emphasize, however, that the main conclusi
the deviations from an exponential behavior of inelastic tr
sition probabilities in near-adiabatic processes due to sin
larities in the adiabatic transition elements have wider imp
cations. Applications may include, for example, the respo
of an atom to the switching on and off of an external dc~or
ac! electromagnetic field.

In Sec. II, we briefly review the adiabatic perturbatio
theory within the framework of molecular coupled chann
approaches to slow ion-atom collisions. Limiting cases,
HC approximation, and the QCL approximation and th
possible breakdown are discussed in Sec. III. An applica
and illustration is presented for an exactly solvable mode
Sec. IV where we also illustrate the underlying physics
‘‘hidden’’ crossings. Concluding remarks will be given i
Sec. V. Atomic units are used throughout unless otherw
stated.
©2001 The American Physical Society02-1
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II. ADIABATIC PERTURBATION THEORY FOR SLOW
ION-ATOM COLLISIONS

A. Molecular-orbital coupled-channel approach

Consider a typical atomic collision system involving
single active electron with coordinaterW in the field of two
potential wells that are separated by an internuclear dista
RW . In a typical scattering experiment, the electron is initia
prepared in a bound state of the two-center quasimolec
field of the potential wells while the internuclear motion h
a well-defined collision velocityv5Pi /m, Pi and m being
the internuclear momentum and the reduced internuc
mass, respectively. In the following, we adopt a tim
dependent approach in which the internuclear motion follo
a single classical trajectory,RW 5RW (t). In particular, we as-
sume that the collision energy is large enough in compari
to the characteristic transition energies, such that we can
ploy a straight-line trajectoryRW 5bW 1vW t, whereb is the im-
pact parameter. This choice is motivated by the fact t
within a time-dependent approach the steps that lead to
HC and QCL approximations as well as to their breakdo
due to turning point effects become transparent. The tim
dependent approach furthermore lends itself to a straigh
ward generalization to other time-dependent problems s
as perturbations by external fields. However, we will pres
in Sec. IV also calculations including the fully quantum d
scription of the nuclear motion that confirms the conclusio
obtained using a classical trajectoryR5R(t) and rules out
the presence of artifacts due to the impact-parameter
proximation.

Within a time-dependent approach, the evolution of
electronic wave functionuC(t)& is governed by the time
dependent Schro¨dinger equation

i
duC~ t !&

dt
5Hel~RW !uC~ t !& ~1!

with the electronic Hamiltonian

Hel@RW ~ t !#52
¹ rW

2

2
1VT@ urW2RW T~ t !u#1VP@ urW2RW P~ t !u#,

~2!

whereVT andVP represent the interaction with the movin
target and projectile potential wells centered atRT and RP

~i.e., RW 5RW P2RW T!, and we use a coordinate system cente
at the center of mass of the collision system. Here we
concerned with slow ion-atom collisions in which the tim
variation of R(t) ~i.e., the radial velocityvR5dR/dt!, is
much smaller than the atomic and molecular time sca
Thus, the time evolution of the state of the electronuC(t)& is
best described in terms of the adiabatic eigenstatesufn(RW )&
of the Hamiltonian,

Hel~RW !ufn~RW !&5En~R!ufn~RW !&, ~3!
05270
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where RW (t) is treated as a an external parameter. We w
frequently interchangeR with t as the control parameter, e.g
En(t)5En@R(t)#.

The time evolution of the collision system can be o
tained using an expansion of the electronic wave functi
uC(t)&, in the adiabatic states

C~rW,t !5(
n

An~ t !xn~rW,t !, ~4!

where

xn~rW,t !5fn@rW,RW ~ t !#expS 2 i E
0

t

dt8 En@R~ t8!# D ~5!

and we have purposely ignored translation factors~for sim-
plicity! since they should become negligible in the adiaba
limit ~a treatment with translation factors can be found el
where@2#!. Inserting Eq.~4! into the time-dependent Schro¨-
dinger equation, one obtains the standard molecular-orb
coupled-channels~MOCC! approach given by the set o
coupled equations@16#

i
dAn

dt
5(

k
Ak~ t !^xn~ t !uHel2 i

d

dt
uxk~ t !&. ~6!

The transition amplitude orSmatrix element for the tran-
sition i→ f is given by

Sf ,i5 lim
T→`

Af~T!. ~7!

where Eq.~6! is solved subject to the initial condition

lim
T→2`

An~y!5dni . ~8!

Numerical MOCC approaches attempt to solve Eq.~6! for
a large but finite number of channelsk. Apart from trunca-
tion errors~finite k! Eq. ~6! is an exact representation of th
original Schro¨dinger equation.

The key ingredient in Eq.~6! that determines the time
evolution is given by the nonadiabatic coupling between
adiabatic states,̂xn(t)uHel2 id/dtuxk(t)&. In general, the
dynamics of the collision system involves both radial a
rotational couplings. For simplicity, we focus in the follow
ing only on adiabatic radial couplings

U f ,i~R!5^f f~R!u
d

dR
uf i~R!&. ~9!

Extensions of the present analysis to rotational coupling
straightforward. We set

^xn~ t !uHel2 i
d

dt
uxk~ t !&52 i

dR

dt
Un,k~ t !

3expF i E
0

t

dt8DEn,k@R~ t8!#G ,
~10!
2-2
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INELASTIC TRANSITIONS IN SLOW HEAVY-PARTICLE . . . PHYSICAL REVIEW A 63 052702
where, DEn,k@R(t)#5En@R(t)#2Ek@R(t)#. Nonadiabatic
transitions are introduced by allowing the perturbation
rameterR(t) and, hence, the Hamiltonian to become slow
time-dependent. The key parameter that controls the adi
ticity of the process is the speed of the parametric defor
tion, the radial velocityvR5udR(t)/dtu.

B. Perturbation theory

Equation ~6! can be approximately solved within th
framework of adiabatic perturbation theory. The fundamen
assumption is thatvR is ‘‘small,’’ vR!1. Consequently, the
coupling between different molecular orbitals@Eq. ~10!# is
‘‘weak.’’ To leading order, the electronic wave packet c
follow the adiabatic electronic eigenenergy surfaceEi(R)
and is only weakly perturbed whenEi(R) approaches an
other eigenenergy surfaceEf(R) near an avoided crossin
~AC!. As we will discuss below, the concept of avoide
crossings can be generalized to HC. Equation~6! can there-
fore be solved iteratively by settingAi51 on the right-hand
side giving the first-order perturbation theory~up to an over-
all phase! @17–19#

Sf ,i52E
2`

`

dt
vt

A~vt !21b2
U f ,i@R~ t !#

3expF2 i E
D

t

dt8DEf ,i@R~ t8!#G , ~11!

where we have used the explicit time dependenceR(t)
5Av2t21b2 in the radial velocity vR5vt/Ab21(vt)2.
SinceR(t) is not a monotonic function oft, vR(t) reverses
its sign at the TP att50 andR(0). In addition,R(t) is an
even function oft, and Eq.~11! becomes

Sf ,i522i ImH E
2`

`

dt
vt

A~vt !21b2
U f ,i@R~ t !#

3expF2 i E
0

t

dt8DEf ,i@R~ t8!#G J . ~12!

In terms of the parameterR, theS matrix element reads

Sf ,i522i ImH E
R~0!

R~`!

dR Uf ,i~R!

3expF i E
R~0!

R DEf ,i~R8!

uvR8u
dR8G J . ~13!

Contributions toSf ,i come from regions whereU f ,i(R) is
‘‘large’’ or DEf ,i(R) is ‘‘small.’’ In view of the analytic
structure of the electronic eigenenergy surface those
properties are, in fact, intimately connected to each oth
This observation serves as the starting point for the deve
ment of the HC approximation. Generically, perturbati
theory and semiclassical approximations are complemen
to each other. Semiclassical or quasiclassical approximat
require large action,*Ei , f(t)dt/\@1, in natural units. In
05270
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turn, perturbation theory requires, in general, small chan
in the phase of evolution of the wave packet,*Ei , f(t)dt/\
!1. Adiabatic perturbation theory is special in the sense t
it requires weak coupling rather than small actions. The
fore, quasiclassical approximations and perturbation the
may be closely related, in special cases even coincide,
near-adiabatic processes. Equation~12! indicates, further-
more, that in addition to singularities of the energy surfac
also additional singularities in the integrand, specifically
vR , may give additional contributions toSf ,i . This observa-
tion will lead us to the development of corrections to the H
approximation in terms of TP contributions.

For the following discussion it is useful to delimit th
regime of ‘‘slow’’ velocities more precisely: we conside
velocities small compared to the so-called ‘‘Massey ma
mum’’ at which typically inelastic transition probabilitie
peak,

vR&v!vmax'uDEi , f~R→`!ua, ~14!

whereDEf ,i(R→`) is the asymptotic separation of the e
ergy levels andR5a is the ‘‘adiabatic radius’’ where atomic
systems effectively begin to couple (a'1 a.u.). On the other
hand, our adiabatic limitv→0 is understood to exclude th
threshold region for the breakup of the composite molecu
system, i.e.,

v.A2@DEi , f~R→`!#/m, ~15!

where the reduced mass of the quasimolecular systemm
*103.

III. HIDDEN CROSSING AND QUASICLASSICAL
APPROXIMATIONS

In this section we discuss the approximate evaluation
Eqs.~12! and~13! within the framework of the so-called HC
approximation and show its close connection to the Q
approximation. It should be emphasized that both appro
mations go back to the pioneering work of Landau@12# who
realized early on that energy surfaces in the complex par
eter plane@20# determine, to a considerable degree, theS
matrix in the near-adiabatic limit.

A. Hidden crossing approximation

An implicit and, as will be shown, sometimes erroneo
assumption of the HC approximation is that theR region
near the inner turning point,R(0), in Eq.~13! does not yield
a significant contribution to the transition. Specifically, w
assume, for the moment, the coupling does vanish identic
at the turning point,U(R)50 for R<R(0). We then can
extend the integral over the entire realR axis to give

Sf ,i
HC522i ImH E

2`

`

dR Uf ,i~R!expF i E
0

R DEf ,i~R8!dR8

vR8
G J .

~16!

This integral can be evaluated by contour integratio
Within this approximation, the analytic structure of the e
2-3
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ergy surface and of the coupling matrix element in the co
plex R determines theS matrix.

Singularities in the energy surface and in the adiab
coupling-matrix elements are, in fact, intimately connect
We illustrate this connection with the help of a two-sta
model that captures the essence of the pairwise interactio
two adiabatic energy curvesEi(R) andEf(R) undergoing an
avoided crossing with each other. At this point we do n
make a distinction between clearly visible ACs or HCs
they possess similar properties in the complex plane. Ph
cal differences will be discussed later. A critical distance
which the energy separation between the two adiabatic
ergy curves is smallest will be denoted byRAC ~or RHC!. We
introduce the corresponding two diabatic statesuc1& and
uc2& that do not diagonalizeHel but, instead, are define
through a vanishing of the coupling by the operatord/dR.
By construction, diabatic states are smooth~singularity free!
functions ofR nearRAC . Note that such a definition of di
abatic states is only locally meaningful@16,21#.

The adiabatic energies can be obtained by diagonaliza
of the Hamiltonian matrix ~with matrix elementsH jk
5^c j uHeluck&) in the diabatic basis as

Ef ,i~R!5Ē~R!6DEf ,i~R!, ~17!

Ē~R!5
Hii~R!1H ff~R!

2
, ~18!

DEf ,i~R!5 1
2 A@Hii~R!2H ff~R!#214uHif~R!u2. ~19!

For real values ofR, the adiabatic level splittingDEf ,i(R)
has a local minimum~avoided crossing! at RAC or RHC
5Re$Rc% where Hii(R)5H ff(R). The level splitting be-
comes zero for complex valuesR5Rc , Rc* such that
Hii(R)2H ff(R)56 i2Hif(R). Obviously, expansion of the
argument of the square root in Eq.~19! to first order around
R5Rc , Rc* yields

DEf ,i~R'Rc!5CAR2Rc, DEf ,i~R'Rc* !5C*AR2Rc*
~20!

whereC is a constant that depends on the matrix element
Hel and their first derivatives with respect toR. Equation~20!
shows that the adiabatic energiesEi andEf are two Riemann
sheets of the same multivalued eigenenergy surface and
the intersection points of the adiabatic energies have
form of square-root branch points. Thus, for the incom
phase of the collision, starting on the branchEi at Ei(R1
5Re$Rc%1e) ~wheree is a small positive number! and mov-
ing on the complex-R plane such thatRc is encircled, we
would end up onEf at Ef(R25Re$Rc%2e) upon return to the
real axis~Fig. 1!.

This two-state analysis can be generalized to many st
with the result that the analytic continuations offn(rW,RW ) and
En(R) onto the complexR plane for states of the same sym
metry are various branches of single, multivalued and mu
ply connected eigenfunctions and eigenenergies. The bra
points are the complex points of transition and are ca
either avoided crossings when the branch point lies clos
05270
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the real axis~i.e., Im$Rc% small! or hidden crossings when th
distance to the real axis is large. This terminology origina
from the fact that in the latter case an avoided crossing
hardly recognizable in the cut through the energy surf
along the real axis. The topology of the adiabatic eigen
ergy surface has immediate implications for the nonadiab
couplings determining electronic transitions@Eqs.~6!–~11!#.
In order to show this consequence, it is convenient to int
duce an unitary transformation between the diaba
$c i(R)%, and adiabatic basis,$f i(R)%, defined as@22#

f i~R!5cosuc i~R!1sinuc f~R!,

f f~R!5cosuc f~R!2sinuc i~R!, ~21!

where

sinu5F1

2 S 12
1

~11h2!1/2D G1/2

cosu5F1

2 S 11
1

~11h2!1/2D G1/2

~22!

and

h5h~R!5
H ff~R!2Hii~R!

2Hif~R!
. ~23!

For definiteness let us assume,H ff(R→`).Hii(R→`),
andHif to be nonzero nearRAC but Hif(R→`)→0, for real
R. The functionh(R) is assumed to be monotonic but ot
erwise arbitrary. Well known, analytically solvable mode
such as the LZ model result from particular choices
h(R).

The radial coupling between the two adiabatic states@Eq.
~19!# takes now the form

U f ,i~R!5
1

4

dh

dR

1

11h2 , ~24!

which possesses simple poles ath56 i . Expandingh to first
order nearR'Rc yields

FIG. 1. Typical evolution path inR(t) domain in the hidden
crossings method, for a two-state collision system.
2-4
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h'C~R2Rc!/2H12~Rc!1 i , ~25!

and inserting this result in Eq.~24!,

U f ,i~R'Rc!'2
i

4

1

R2Rc
, U f ,i~R'Rc* !'

i

4

1

R2Rc*
,

~26!

shows that nonadiabatic matrix elements have poles exa
at the branch points of the eigenenergy surfaces@2#. Along
the realR axis,U f ,i exhibits peaks in the vicinity ofRAC or
RHC5Re$Rc% and determines the region ofR values here
nonadiabatic transitions take place.

These observations deduced from a two-state analysis
be generalized for any electronic HamiltonianHel(R) that is
a memomorphic function of complexR, i.e., possesses onl
isolated branch points in the complex plane@3,6,8–10#. Ac-
cordingly, its eigenfunctionsfn(rW,RW ) and eigenenergie
En(R) have isolated branch points in the complex plane
well, which appear in complex-conjugated pairs, as follo
from the Schwarz’s reflection principle: Iffn(rW,RW ) is real
for real R, thenfn(rW,RW * )5fn* (rW,RW ) andEn(R* )5En* (R).

Both fn(rW,RW ) andEn(R) are analytic continuations of the
respective functions for realR. All adiabatic energy levels
are part of a unique, multivalued adiabatic energy surf
E(R) in the plane of complexR. Different energy levels
correspond to the intersection of different Riemann sheet
this energy surface with the (E,Re$R%) plane@3,6,8–10# that
are connected in the complex-R plane in a pairwise fashion
Hel is complex symmetric if it is symmetric and Hermitia
for real R @23#. The eigenfunctionsfn(rW,RW ) form a bior-
thonormal basis@19,24#, i.e., *d3r f i* (rW,RW * )f j (rW,RW )5d i j .

These functions can be written asfn(rW,RW )
5Cn(R)xn(rW,R), wherexn are biorthogonal but are not no
malized. At the point of intersectionR5Rc of Ei(R) and
Ej (R), iÞ j , the two eigenfunctionsf i(rW,RW c) andf j (rW,RW c)
coincide, and thus*d3r f i* (rW,RW c* )f j (rW,RW c)51. On the other

hand,*d3r x i* (rW,RW c* )x j (rW,RW c)50 for any iÞ j . In order to
satisfy both conditions, the normalization constantCn(R)
has to be algebraically singular atRc @2#. These properties
can be directly verified for the two-state system@Eqs. ~21!
and ~22!#. As a consequence of the singularity inCn(R),
matrix elements of operators that are functions of the diff
ential operator,F(d/dR), *d3r f i* (rW,RW * )Ff j (rW,RW ) are also
singular atR5Rc @2,3#. The most important example is th
radial coupling matrix elementUi , f that possesses poles
Rc @see Eq.~26!#.

With the knowledge of the poles in the coupling matr
elements and the branch points in the energy surface,
~16! can be evaluated by contour integration. Taking in
account only one branch point connecting two Riemann s
faces of the two-state system, we find for the contribut
from Rc ~up to a phase factor!

Sf ,i
HC5~Pf ,i

HC!1/2exp~ i j f ,i !, ~27!

where
05270
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Pf ,i
HC5exp~22uIm$vc%u!, ~28!

vc52E
C
dRE~R!/vR , ~29!

j f ,i5Re$vc%, ~30!

In Eq. ~29! the contour encircles the branch point~Fig. 1!
involving the Riemann sheets ofEi and Ef . Equation~28!
displays the exponential decay of probability predicted
the HC approximation in the adiabatic limit.

B. Quasiclassical approximation

As pointed out by Landau@14#, the adiabatic limit of the
inelastic transition probability can be alternatively deriv
within the framework of a QCL approximation. Semiclass
cal or quasiclassical approximations are valid when the
tential is smooth on a scale of the de Broglie wavelengthL.
Remarkably, this statement remains valid whenL is purely
imaginary, i.e.,uLu is sufficiently small. Dynamical tunneling
processes become quasiclassical when the action along
complex trajectories is large. In the present case this imp

UImS E @E~R!#dR/vRDU@1. ~31!

The remarkable observation connected with Eq.~31! is that
classically strongly forbidden~such as wide-barrier tunnel
ing! processes are accessible to a quasiclassical approx
tion.

The transition between two adiabatic potential curves n
an AC or HC is formally equivalent to the one-dimension
overbarrier reflection problem, transcribed to the time d
main. The transmitted wavecT corresponds to the propaga
tion on the adiabatic potential surfaceEi ,

c i
QCL~ t2!}expS 2 i E

2`

t2
dt8Ei~ t8! D . ~32!

Note that, within the QCL approximation preexponent
factors are assumed to be slowly varying compared to
rapidly varying exponent@Eq. ~31!#. The turning point~or
transition point! for ‘‘overbarrier’’ reflection lies at complex
tC ~or RC!. Analogously, the quasiclassical reflected wave
given by

cR
QCL~ t !}expF2 i S E

2`

t1
dt Ei~ t !1E

t1

tc
Eidt1E

tc

t2
EfdtD G .

~33!

Accordingly, the reflection amplitude is given by the ratio
the reflected to transmitted wave,
2-5
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r QCL5cR
QCL~ t2!/cT

QCL~ t2!

5
exp@2 i *

2`
tc Ei~ t8!dt2* tc

t2Ef~ t8!dt8#

exp@2 i *
2`
t2 dt8Ei~ t8!#

5expF2tE
C
E@R~ t8!#dt8G . ~34!

The contour along which the integral over the multivalu
energy surface is evaluated corresponds to the one show
Fig. 1. The reflection amplitude@Eq. ~34!# is therefore com-
pletely equivalent toSf ,i

HC @Eq. ~27!#. The quasiclassical ap
proximation subject to the condition that preexponential f
tors are set to 1 coincides with the HC approximation.

C. Two-state Landau-Zener approximation

The celebrated LZ approximation@12,13,15# is a special
case of a two-state system with a single avoided crossin
results from the following assumptions for the diabatic m
trix elements@see Eqs.~17!–~19!#:

H22~R!2H11R5G~R2RAC!5const3~R2RAC!,
~35!

vR5const, ~36!

H12~R!5const. ~37!

For this set of parameters, the two-state MOCC equati
@Eq. ~6!# in its diabatic representation can be solved exac
and analytically. Expressed in terms of either the diabatic
parameters@Eqs. ~35!–~37!# or the parameters of the adia
batic potential surfaces, the probability for a transition can
written as

Pf ,i
LZ5exp~2pmc!

5expS 2
2puH12u2

GvR
D

5expS 2
puDEf ,i~RAC!uIm$Rc%

2vR
D , ~38!

wheremc5uDEf ,i(RAC)uIm(Rc)/(2vR) is the Massey param
eter of the transition that determines the ‘‘strength’’ of
nonadiabatic transition. In Eq.~38! we exploited the corre-
spondence between the parameters in the adiabatic an
abatic representations,G5DEf ,i(RAC)/Im$Rc% and 2H12
5DEf ,i(RAC). The point of intersection of the adiabat
terms in the complex-R plane is given by Rc5RAC
6 i2H12(RAC)/G. The parameterh(R) in Eq. ~23! takes the
form h5(R2RAC)/Im$Rc%, which yields

Ef~R!2Ei~R!5
DEf ,i~Re$Rc%!

Im$Rc%
A~R2Rc!~R2Rc* !,

~39!

U f i
LZ~R!5

1

2

Im$Rc%

~R2Re$Rc%!21~ Im$Rc%!2 . ~40!
05270
in

-

It
-

s
y
Z

e

di-

This Lorentzian shape just follows from the sum of the m
trix elements in Eq.~26!, obtained in the vicinity ofRc and
Rc* .

It should be noted that the assumptions@Eqs. ~35!–~37!#
were previously used as the leading terms of the expans
in R in the immediate vicinity ofRc @Eqs.~21!–~25!#. Within
the LZ model, the validity of Eqs.~35!–~37! is assumed
globally for all R. It is this property that allows for an exac
analytical solution. The global extension to allR should not
obscure the fact that the LZ approximation is still only
locally applicable model since the underlying assumptio
the asymptotic divergence of adjacent energy levels of
same symmetry, i.e.,uH112H22u→` as R→` as well as
H125const are unphysical. The significance of this mode
that the exponentially suppressed transition probability
be determined exactly in complete agreement with Eqs.~28!
and ~34!.

The limitations concerning the vicinity of the turnin
points andRAC are serious. These were first taken into a
count by Bykhovskii, Nikitin, and Ovchinnikova@25#, who
assumed the constant acceleration approximation for the
locity, keeping the linearity of the diabatic terms as well
constant coupling, like in the LZ model. Further improv
ment was obtained by Delos and Thorson@26#, who ac-
counted for some effects of variation ofH12 and curvature of
the diabatic terms, as well as for the nuclear accelera
@27#. The common conclusion was that since the LZ pro
ability increases steeply with velocity, the effect of accele
tion is to increase the transition probability at low velocitie
in the vicinity of the turning point.

One important insight that can be gained from the
model is that of the degree of localization of the nonadiaba
transitions. Transitions effectively occur only in a very na
row region uDRu outside of which no net transfer of prob
ability between terms takes place. The Lorentzian form
U f i

LZ in Eq. ~40! provides an upper bound of the localizatio
range of the transitionsuDRu&Im$Rc%52H12/G. For uR
2RACu.uDRu the adiabatic states become effectively deco
pled. However, this estimate does not take into account
rapidly changing phases involved in the transition probab
ties per unit time in the adiabatic limitv→0. For a two-state
model the relevant phase in the diabatic representatio
given by *dR@H11(R)2H22(R)#/vR . This rapidly oscillat-
ing phase implies that in the limitvR→0 the transition prob-
ability tends to zero. Using Eqs.~35!–~37! the phase be-
comesG(R2RAC)2/(2vR) and the localization length of the
transition can be estimated from the distance fromRAC
where the phase is of the order of unity@19#,

DR;FvR

G G1/2

5F Im$Rc%vR~RAC!

DEf ,i~RAC! G1/2

. ~41!

The same result can be obtained from the exact Land
Zener solution. Equation~41! implies that transitions are
‘‘perfectly’’ localized (DR→0) in the adiabatic limit,vR
→0, provided, however, thatvR remains constant within the
transition region. The assumptionvR5const is also essentia
and can become a serious limitation ifRLZ is close to
2-6
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region of the classical turning point. An analysis of su
limitations can be found in@26,25#.

The strong localization of a transition between pairs
levels is the starting point of the generalization of the H
approximation for multilevel systems.

D. Multilevel hidden crossing approximation

The observation that the pairwise interaction between
els is fairly localized, opens up the possibility to describe
evolution for a multilevel system as a sequence of locali
transitions followed by an unperturbed evolution on a giv
potential curve until the next crossing occurs. For each
calized transition between levelsi and j we can describe the
evolution operatorUC as a direct sum of a unit operator fo
all other levels and a 232 matrix in the subspace~i,j! @7,19#,

UC~RC!51% UC
~ i , j !~RC! ~42!

with

UC
~ i j !5F A12Pi , j

HC APHC exp(i j i , j )

APi j exp(j i , j ) A12Pi , j
HC G . ~43!

In Eq. ~43! we have used the transition amplitude@Eq.
~27!# as off-diagonal element and have unitarized the ma
by correcting the diagonal elements for loss of probabil
Between two sequential hidden crossing regions attk and
tk11 , the adiabatic evolution is given by a diagonal mat
Ud in the adiabatic basis

Ud~ tk11 ,tk!5diagH FexpS 2 i E
tk

tk11
Ej~ t !dtD G

j 51,...
J .

~44!

For convenience we have switched in Eq.~44! from R to the
time t as the parameter for the evolution.

Consequently, for a collisional system involving ma
states, the evolution operator can be written as a produc
localized transition matrices@7,19# in the infinitesimal vicin-
ity of the hidden crossings and diagonal matrices repres
ing the adiabatic evolution of the system between transi
points, i.e.,

U~2`,`!5)
k

UC~ tk!Ud~ tk11 ,tk!. ~45!

If a large number of branch points and adiabatic ene
curves are involved, the direct determination of Eq.~45! in-
volves a comparable level of complexity as the direct n
merical solution of the MOCC equation@Eq. ~6!#. As an
alternative to Eq.~45! a multilevel HC approximation ha
therefore been devised by which the MOCC equations
numerically solved, however, with the exact adiabatic c
pling matrix elementsUi , j (R) replaced by localized Lorent
zian ~or hidden crossing! couplingsUi , j

LZ @Eq. ~40!# resulting
from the poles@Eq. ~26!# valid only in the vicinity of the
hidden or avoided crossing. We refer to this method as
close-coupling hidden crossing~CCHC! method. To a good
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degree of approximation, the CCHC method should
equivalent to Eq.~45!. The couplingsUi , j

LZ tend sufficiently
fast to zero atR→`, and do not depend on the electro
origin ~a common problem in some MOCC calculatio
@28#!. Note that the asymptotic behavior of the coupling f
from RAC , Ui , j

LZ}1/R2, is not necessarily correct. Howeve
as long as the transitions are strongly localized about
hidden crossings, the actual behavior of the exact nona
batic coupling far from the crossing is irrelevant. The CCH
approach should become increasingly inaccurate if the t
sitions are not localized or well separated from each oth
depending on the parameters of the system as well as on
collision velocity.

E. TP effects

We return now to the original expression of the two-sta
transition amplitude within adiabatic theory@Eqs. ~12! and
~13!#. As discussed above, the standard HC approxima
results from Eqs.~12! and ~13! when the singularity atvR
50 in Eq. ~12! or, likewise, the fact that the lower limit o
the integralR(0) gives a significant contribution in Eq.~13!,
is neglected. This is also equivalent to the neglect of
preexponential factor in the quasi-classical approximat
@Eq. ~31!#. However, as already noted by Landau@14#, the
presence of additional singularities in the transition mat
element near the turning point may give rise to correctio
In this section we explicitly determine these contributio
and show that they can alter the adiabatic limit in a profou
way by modifying the exponential decay behavior.

The starting point is the observation that near the turn
point, the adiabatic coupling matrix elementU f ,i@R(0)#, in
general, does not vanish. For any finite value of the coup
at the TP,U f ,i@R(0)#Þ0, closing the contour of integration
is more involved than implied by a single branch point~Fig.
1!. The analysis of the integration path can be perform
either in the complext or complex R domains. Here we
adopt the former~see@29# for the latter!. Figure 2 illustrates
a proper closing of the integration contour. The integrand
Eq. ~11! has branch points and single poles atvtc5

6ARc
22b2, 6A(Rc* )22b2 originating from the adiabatic

energy surface and nonadiabatic couplingU f ,i . In addition,
the radial velocity in the integrand has branch points at

vtv56 ib, ~46!

FIG. 2. Contour of integration in the complex time domain
evaluate theS matrix.
2-7
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whereb is the impact parameter. As long asU f i@R(0)#Þ0,
there is an additional contribution to the transition defined
the integral over a loop encircling the branch point that d
not originate in the adiabatic energy surface, but in the no
diabatic matrix element that contains the radial velocity.
possible effect of the branch points of the radial velocity w
recognized recently by Ostrovsky@30#. However, only the
correction to the dynamical phase of the hidden crossi
transition forb50 was considered, missing the TP effect w
described here.

The contour in Fig. 2 has been chosen to avoid the bra
cuts of bothvR and Ei , f , thus keeping integration on
single-valued Riemann sheet. Using Cauchy’s theorem,
integral over the whole contour is zero~i.e., no pole is en-
closed!. Therefore, assuming that the integral over the up
half plane is zero, theS-matrix element for the two-stat
system, which is equal to the integral over the real a
becomes

Sf ,i5Sf ,i
HC1Sf ,i

TP, ~47!

whereSi , f
HC arises from the loops avoiding the branch cuts

Ui , f . In addition to the HC contribution, theS matrix con-
tains a TP correction term,Si , f

TP, given by the integral over
the loop avoiding the branch cut ofvR . Sincet in this loop is
purely imaginary, we can define a real variabley5vt/ i such
that the correction term to theS matrix becomes

Sf ,i
TP522i ReH E

b

`

dy
y

Ay22b2
U f ,i~ iAy22b2!

3expF2
1

v
E

0

y

dy8DEf ,i~ iy8!G J . ~48!

This integral is difficult to evaluate analytically, even if
Lorentzian coupling@Eq. ~40!# is assumed. Moreover, th
Lorentzian is not an accurate description of the nonadiab
matrix element far fromRC. Therefore the actual value o
U f ,i needs to be used in the evaluation of the integral in
~48!. We have evaluated this integral by the following e
pansion that provides a very accurate approximation to
exact result. Since the integrand in Eq.~48! has an integrable
singularity aty5b and decreases exponentially with increa
ing b, the largest contributions toSTP must arise fromy.b
.0. Thus, assuming thatDEf ,i(R'0).DE(0)5D is con-
stant and making a change of variables coshz5y/b,

Sf ,i
TP.22ib ReH E

0

`

dzcoshzUf ,i~ ib sinhz!

3exp~2l coshz!J , ~49!

wherel5bD/v. ExpandingU f ,i in powers ofb,
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U f ,i~ ib sinhz!.U f ,i~0!1 ib sinhz
dUf ,i

dR U
0

1
~ ib sinhz!2

2

d2U f ,i

dR2 U
0

1¯ , ~50!

one finds@31#

Sf ,i
TP522ibFK1~l!U f ,i~0!1 (

n51

`

~21!nbnS v
D D n

3
~2n21!!!

~2n!!
Kn11~l!

d2n

dR2n U f ,i uR52G , ~51!

whereKi are modified Bessel functions of the second kin
Equation~51! provides not only an expansion inb but also
an expansion inv/D. ForU f ,i(0)Þ0 one obtains as the lead
ing term in the adiabatic limit

Sf ,i
TPuv→0→22ibU f ,i~0!K1S Db

v D . ~52!

Transitions near the turning point take place effectively o
inside the adiabatic cutoff radiusb defined by

l5
Db

v
&1, ~53!

i.e., when the characteristic frequencyv'v/b of the pertur-
bation is at least of the order of the energy gapD between the
energy levels near the turning point. This adiabatic cut
radius for TP contributions is to be distinguished from t
adiabatic radiusa. For small impact parametersl!1, the TP
transition amplitude exhibits an effective power-law depe
dence on the velocity. In particular,Sf ,i

TPub→0→
22iU f ,i(0)v/D and, thus, the transition probability is pro
portional to v2 in that limit. Interestingly, Born and Fock
@17# predicted that the transition probability in the adiaba
limit between two adiabatic states with noncrossing ene
levels cannot be larger than of order ofv2. The exactly solv-
able one-dimensional~1D! model of two collidingd-function
potentials moving with constant speed (x5vt) yields transi-
tion probability proportional tov2 @32#. These predictions
are consistent with our findings. In turn, for large impa
parameters~i.e., l@1!, the TP transition amplitude de
creases exponentially as exp(2l)5exp(2bD/v).

Clearly, the TP amplitude provides the dominant con
bution to theSmatrix for small impact parameters and sm
collision velocities. However, whenv/D!b!2uRcu the HC
contribution can dominate since it is independent ofb while
the TP contribution decreases exponentially withb.

The total cross section due to the TP contribution~in the
region where the HC contribution is negligible because of
exponential decrease! follows from Eq.~51! as @31#
2-8



rth
a-
a
tic

e
. I
ys
n
ac

-

os
o

th
fo
nc
xi-
he
dt

ne

n
to
C

io
re
rix
-
T
th
lik
lic

a-
e

e
-
TP

ce
g
-

r-
cal

in

nu-
its
ns.
ric
re-

on
. In
e

en

is
by

INELASTIC TRANSITIONS IN SLOW HEAVY-PARTICLE . . . PHYSICAL REVIEW A 63 052702
s f ,i
TP526pS v2/2

D D 2FU f ,i
2 ~0!

3D2 1 (
n,n851

`

~21!n1n822~n1n8!

3
~n11!! ~n811!! ~2n21!!! ~2n821!!!

~n1n813!~2n!! ~2n8!! S v2/2

D D n1n8

3
~d2n/dR2nU f ,i !uR50~d2n8/dR2n8U f ,i !uR50

D21n1n8 G , ~54!

which reduces in the adiabatic limit, whenU f ,i(0)Þ0, to

s f ,i
TP52pE

0

`

db buSf ,i
TP~b!u2'

64

3
pU U f ,i~0!

DEf ,i~0!
U2S 1

2 v2

DEf ,i~0!
D 2

.

~55!

Remarkably, this contribution increases with the fou
power of v, or equivalently, with the square of the equiv
lent kinetic energy of the electron in units of the energy g
at R50. Its size is controlled by the ratio of the nonadiaba
coupling to the energy splitting atR50. As v→0, this term,
unlike the exponentially suppressed HC contribution, giv
the dominant adiabatic limit for the inelastic cross section
U f ,i50, as is the case for symmetric ion-atom collision s
tems~e.g.,H11H!, the TP contribution to the cross sectio
is given by the higher orders in the expansion in the imp
parameter and the cross section is proportional tov8 and to
the square ofd2U f ,i(0)/dR2u0 . Explicitly,

s f ,i
TP'

9

5
3210pUd2U f ,i~R!/dR2

@DEf ,i~R!#2 U
R50

2 S 1
2 v2

DEf ,i~0!
D 4

. ~56!

Note that Eqs.~51!–~56! are valid irrespective of the particu
lar form of the adiabatic coupling matrix elementU f ,i(R) or
the shape of the potential curvesEf ,i(R). Furthermore, the
expressions for the TP transition probability and the cr
section are independent of the existence of a branch p
between the adiabatic energies. Therefore,STP not only pro-
vides a correction to the adiabatic behavior predicted by
HC theory but also yields nonzero transition probabilities
pairs of adiabatic levels that are not connected by bra
points and, therefore, vanish within the LZ or HC appro
mations. In principle, the TP and HC contributions to t
transition amplitude could overlap. However, since the wi
DR of HC and LZ transitions become very small asv→0
@see Eq.~41!#, the overlap can be, in most cases, safely
glected.

Up to this point we have only considered TP contributio
to the S matrix for a two-level system. It may be useful
extend the description of the TP transitions to multilevel H
approximations. The underlying idea is that the TP transit
is approximately localized near the turning point. Therefo
one can simply add one more local time-evolution mat
aroundt50 @see Eq.~45!#. The additional local time evolu
tion can be constructed by adding all the two-state
S-matrix elements among all states coupled. Within
CCHC method described in the previous section, the TP-
contribution, even though not necessarily correct, is imp
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itly included in the numerical evaluation of the MOCC equ
tions @Eq. ~6!# since for Lorentzian coupling elements w
have in generalU f ,i

LZ@R(0)#Þ0. SinceU f ,i
LZ@R(0)# will differ

from the exactU f ,i@R(0)#, TP corrections must be explicitly
built into the CCHC calculation. If we want to recover th
pure Sf ,i

HC matrix excluding TP contributions from the nu
merical CCHC scheme, we have to subtract the incorrect
contribution

Sf ,i
HC.Sf ,i

CCHC12ibU f ,i
HC~0!K1S DEf ,i~0!

v
bD . ~57!

The error of the CHCC method is given by the differen
between the trueU f ,i near the turning point and the couplin
matrix elementU f ,i

HC extrapolated to the turning point. Con
sequently, the approximateS matrix corrected for turning
point effects is therefore given by

Sf ,i
HC1TP.Sf ,i

CCHC12ib@U f ,i
HC~0!2U f ,i~0!#K1S DEf ,i~0!

v
bD .

~58!

Alternatively, one can improve the CCHC method by co
recting the coupling matrix element used in the numeri
integration of Eq.~6! as

U f ,i
HC1TP~R!.U f ,i

HC~R,Rc!1@U f ,i~0!2U f ,i
HC~0!#

3expS 2
DEf ,i~0!

v
RD . ~59!

This approximate form incorporates this correction with
the ‘‘radius of nonadiabaticity’’ of the TP.

IV. NUMERICAL TESTS FOR AN EXACTLY
SOLVABLE MODEL

In this section we present results of the first detailed
merical test for the validity of the HC approximations and
variants as well as for the significance of TP contributio
We perform this test for a simple 1D model of a symmet
collision in which the target and the projectile are rep
sented by harmonic wells,

Hel~R!5
p2

2
1

1

2 S uxu2
R

2 D 2

, ~60!

wherex andp are the position and momentum of the electr
with respect to the center of mass of the collision system
order to mimic the radial velocity in a 3D collision, we us
the parametric dependenceR5Av2t21b2, which corre-
sponds to a 3D straight-line internuclear motion for a giv
impact parameterb.

The advantage of studying this simple collision system
that exact transition probabilities can be easily obtained
numerically solving the time-dependent Schro¨dinger equa-
tion ~TDSE!

i
]

]t
Cv,b~x,t !5HelCv,b~x,t !, ~61!
2-9
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whereCv,b is the electronic wavefunction for a given impa
parameter and a given collision velocity. Moreover, this s
tem can serve as a model system to illustrate the significa
and the physical origin of hidden crossings since this sys
features only HCs of theQ-type @3# while narrow avoided
crossings are absent. The obvious drawback of this mod
that no conclusions as to the quantitative significance of
scattering amplitudes and, specifically, of turning point
fects can be drawn. As this model strongly differs from t
atomic Coulomb systems, the importance of a particular p
cess at a given velocity cannot be determined. This shoul
kept in mind as we present numerical results in atomic un

A. Hidden crossings in the adiabatic eigenenergy curves

The ‘‘molecular’’ adiabatic eigenstates,ufN(R)& and
eigenenergies,EN(R) of Hel(R) @Eq. ~60!# are well known
and can be found in quantum mechanics text books~see, e.g.,
@33#!. The presence of hidden crossings in the system
pears to have been overlooked. These energy levels are
picted in Fig. 3. In the limitR→0, the system becomes
single harmonic oscillator withEN→(N10.5). In turn, for
R→` the system develops into two well-separated harmo
wells with EN→(@N/2#10.5), where@ # denotes the intege
part. The only exact symmetry for the adiabatic wave fu
tions is the reflection symmetry with respect to the origin
coordinates (x50). This yields two sets of mutually nonin
teracting adiabatic molecular states defined with even
odd integersN, for the symmetric and antisymmetric wav
functions, respectively.

The energy levels in Fig. 3 do not exhibit any obvio
avoided crossing. However, the present system is rich in
den crossings denoted by vertical lines between adiab

FIG. 3. Adiabatic energy terms for the double harmonic os
lator ~solid lines!. The energies are shifted down in 0.5 a.u. so t
the termsEN tend toN for R→0. The top of the potential barrier
Vs(R) ~dashed line! is compared with the positions of the hidde
crossings connecting adjacent energy terms~solid circles connected
with vertical lines!.
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curves connected by branch points. On the real axis, hid
crossings can be characterized by the fact that for the m
mal distance between energy curves at the hidden cross
DE(RHC), is of the same order as the average energy le
spacingDE of nearest neighbors,

DE~RHC!&DE. ~62!

This is to be contrasted with narrow avoided crossings wh

DE~RAC!!DE. ~63!

The physical origin of hidden crossings is obvious
closely connected to the existence of a barrier separating
two wells, as indicated by the close correlation between
R-dependence of the barrier top,Vb5R2/8 and the position
of the series of HC’s~Fig. 3!. Unlike Coulomb systems@34#,
the barrier top in the present case does not form a saddle
a cusp~Fig. 4!. The existence of HC in the present ca
illustrates that the detailed analytic form of the barrier,
particular the presence of saddles, is irrelevant for the form
tion of HC’s. The hidden crossings emerge when the top
the moving barrier crosses the quasimolecular term. For
ample, at the beginning of the receding phase of a collis
@Fig. 4~a!# the target and the projectile are close and an e
tron wave function is shared between the two centers, be
molecular in character. A single classically allowed regi
for the electronic motion extends over both wells. While t
centers are receding, the rising potential barrier crosses
molecular energy level and splits the classically allowed
gion into two separate domains@Fig. 4~b!#. Semiclassically,
the addition of two turning points leads to a jump of th
Maslov index byp/2. Accordingly, the quantum wave func
tion undergoes a rapid morphological change@Fig. 4~b!#
which, in turn, causes a peak in the matrix element of
d/dR operator, as can be directly seen in Fig. 5.

-
t

FIG. 4. Schematic diagram of the total electronic potential~solid
line!, and the ground-state energyE0 ~horizontal solid lines!, and
wave functionf0 ~dashed line! for two internuclear distances. Th
top of the potential barrier,Vb , is also depicted.
2-10
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Figure 4~b! can also serve as an illustration for the mech
nism underlying the presence~or absence! of avoided cross-
ings. The generic picture of the occurrence of an avoid
crossing is that of a weak residual interaction between
nearly degenerate levels. The near degenerate (H11.H22)
levels can be pictured as the two ‘‘split’’ levels in the rig
and the left wells after they lie below the barrier top in F
4~b!. Accordingly, the residual interaction~i.e., the diabatic
coupling H12! represents the tunneling through the barr
and is therefore exponentially weak which, in turn, imme
ately explains the relation~63!. In general, Fig. 4~b! would
correspond to a cut of a multidimensional potential surfa
along a ‘‘reaction coordinate.’’ In the present 1D case, ho
ever, parity in thex coordinate is an exact symmetry. Ther
fore, the ~un!gerade linear combinations of the ‘‘partial
wave functions residing in the different wells belong to d
ferent representations of the symmetry group and there
the couplingH12 vanishes identically. By contrast, hidde
crossing refers to coupling between neighboring nondeg
erate~as opposed to near degenerate! levels of the same sym
metry where one level has just crossed the barrier and
wave function is about to split while its nearest neighbor l
still aboveVb . This observation results immediately in th
relation~62!. Figures 4 and 5 also illustrate why HC’s appe
in series. The origin is twofold: for one, as levelEn crosses
the barrier from above and causes the wave function

FIG. 5. Ground quasimolecular state and its derivative as a fu
tion of the electronic coordinatex and the internuclear distanceR.
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‘‘split’’ all other wave functions of the same symmetry mu
also undergo a change because of the orthogonality c
straints for allfm (mÞn) at a fixed value ofRHC. This can
lead to couplings not only between adjacent levelsn and n
11 but to all other levels as well. In Coulomb systems, t
is called aQ series@2,6–8#. Its signature are branch point
occurring at the sameRHC5Re$RC% but rapidly increasing
Im$RC% corresponding to weaker couplings to distant leve
In the present case, presumably because of the constan
the mean spacing in oscillator systems, only the nea
neighbor coupling can be observed~Fig. 6!. A second
mechanism for the generation of series is the fact that w
increasingR subsequently higher adiabatic levels cross
barrier from the top. This sequence of branch points w
varyingRHC(n) is called the ‘‘superseries’’ in Coulomb sys
tems@6–8#. Obviously, it appears in the present case as w
~Fig. 6!. While we have only found branch points connecti
adjacent energy levels, they appear in different orders~in-
creasing values of Im$Rc% and Re$Rc%!, much like for the
so-calledP series@2# which, in the Coulomb case, describ
the nonadiabatic coupling of the Demkov-type between t
parallel almost degenerate diabatic levels. However, aP se-
ries in the Coulomb case is located at an almost cons
value of Re$Rc%, which is not the case here. This is, in part
consequence of large energy splitting between the levels
order to visualize the different orders of transitions betwe
the same pair of energy levels, we have connected the
responding branch points for different orders by lines. Int
estingly, these lines are almost parallel to the Im$Rc%
5Re$Rc% line that corresponds to an angle in the comp
plane ofu5p/4 @i.e.,R5uRuexp(iu)#. In addition, the hidden
crossings of the same order but connecting different pair

c-

FIG. 6. The positions of branch points in the plane of comp
internuclear distanceR ~hollow symbols! and their corresponding
scaled Massey parameters,d f ,i5v Im$vc% ~solid symbols!. The
numbersi-j ( i , j 50,1,2,3,...) in the figure denote the energy leve
that become connected by the branch points. Hidden crossings
connect the same Riemann energy surfaces correspond to diff
orders~0,1,2,...! and are connected by lines starting from the zero
order ~i.e., the ones with the smallest imaginary parts!.
2-11
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states@35# have all similar values of the imaginary par
Im$Rc%. No branch points were found with a phase an
larger thanp/4. Also plotted in the figure are the values
the scaled Massey parameterd f ,i5v Im$vc%, which is inde-
pendent of velocity. Since the Massey parameter Im$vc% @Eq.
~29!# is approximately proportional to Im$Rc% and the energy
splitting at Re$Rc% are here approximately unity, the values
d f ,i as a function of Re$Rc% lie very close to the branch
points. Since transition probabilities decrease exponenti
with d f ,i , the relative contribution of each order decreas
very rapidly with increasing order of the transition.

The important role played by the top of the barrier e
plains also the large difference between the Massey par
eters for even and odd adiabatic energy eigenstates~Fig. 6!.
The Massey parameters for odd states are about 1 a.u. l
than the ones for even states. This is due to the fact tha
odd wave functions have a node at the position of the top
the barrier,x5xb50. Therefore, the rate of change of th
wave function withR diminishes as the level falls below th
barrier top.

Even though hidden crossings are difficult to visually d
tect as avoided crossings for real values ofR, they become
evident in the complexR plane where energy levels cross
the branch points. This is shown in Fig. 7~a! where we depict
the real parts of the energies of theN50 andN52 adiabatic
states. The energy levels in this figure are displayed a
function of Re$R% along a rayR5R exp(iu), whereu523° is
a constant. This particular angle has been chosen such
the ray passes very close to the zero-order hidden cros
between theN50 and N52 levels, which occurs atRc
5(3.41,1.62) andu.25°. Obviously, the energy levels ex
hibit an avoided crossing in the neighborhood of the bra
point. The branch point is responsible for the singular beh
ior of the adiabatic coupling between theN50 and N52
states@i.e., Eq.~40!#. Figures 7~b! and 7~c! show that other
variables of the system such as the derivative of the com
eigenergy,dE0 /dR, and the norm of the wave functionuc0u
~see Sec. III! also become singular at the branch point.

B. Transition probabilities and cross sections

In this subsection we analyze the transition probabilit
and cross sections for the model Hamiltonian in Eq.~60!. We
study the time evolution of this system for the case in wh
initially ~at t→2`! the N50 state is populated. This limit
the allowed transitions to excitation of the subset of ev
adiabatic states.

Figure 8 displays the excitation probabilities to theN
52 level forb50.1 a.u. as a function of the inverse veloci
1/v. In this representation an exponential decrease of
probability, exp(2const/v), reduces to a straight line, as
clearly observed for the HC excitation probability, averag
over all phases~HCE!. Remarkably, the low-velocity behav
ior ~large 1/v! of the TDSE excitation probability is quite
different from an exponential dependence. This is a dir
consequence of the TP contribution to the transition pr
ability @Eq. ~48!#. Also included are the results of the CCH
method involving seven excited states (N
50,2,6,8,10,12,14), taking into account the first-ord
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~CCHC1! and, the first- and second-order~CCHC2! hidden
crossings between a same pair of states. Unlike the sin
path HC approximation, the presence of different pa
within the CCHC allows for interference oscillations~the
so-called Stu¨ckelberg oscillations!. Furthermore, the CCHC
calculations also predict a large deviation from the expon
tial decay of the transition probability as resulting from t
inclusion of TP effects since

U f ,i
HC~0!5

Im Rc

2uRcu2
Þ0. ~64!

This TP effect is here spurious sinceU f ,i
HC(0) obtained

from Eq. ~40! is not expected to have a correct value atR
50. The coupling described by Eq.~40! is designed to be
accurate in the vicinity of hidden crossings only. As can
seen from the figure, both CCHC1 and CCHC2 give, as
pected, the same result in the ‘‘hidden crossings region’’ i
in the region where transitions due to the hidden crossi
dominate, but very different results for larger values of 1v,
where the TP effect dominates. This difference emerges f

FIG. 7. ~a! Re$E0% and Re$E2% as a function of Re$R% along a ray
in the complexR plane with an angle ofu523°. ~b! and ~c! the
derivative ofE0 with respect toR and the normalization constant o
theN50 adiabatic state along two rays in the complexR plane are
compared (u50°,23°). The branch point between theN50 and
N52 states lies on the ray of approximatelyu525° at Re$Rc%
53.41 a.u.
2-12
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the difference betweenU f ,i
HC1(0) andU f ,i

HC1(0)1U f ,i
HC2(0) in

the CCHC1 and CCHC2 calculations. Incidental
U f ,i

HC1(0)1U f ,i
HC2(0) between the levelsN50 and 2 has al-

most the same value as the exact couplingU f ,i(0), thus lead-
ing to very good agreement of the CCHC2 and TDSE res
even at the lowestv. Subtracting these spurious contrib
tions according to Eq.~57! yields ~referred to in the follow-
ing as HC!, as expected, an exponentially decaying exc
tion probability superimposed on well-known Stu¨ckelberg
oscillations~HC1 and HC2 in Fig. 8!. If we now add to these
HC amplitudes the correct TP contribution according to E
~58! we refer to these calculations as HC1TP.

Figure 9 displays the excitation probabilities to theN
52, 4, and 6 levels forb50.1 a.u. as a function of the in
verse velocity 1/v. Remarkably, the HC1TP calculations are
found to be in very good agreement with the TDSE resu
for all N, as well as with the CCHC2 calculations for exc
tation toN52. It is noteworthy that the TP contribution fo
excitation ontoN54 and N56 states involves the direc
couplings from theN50 level, U4,0(0) andU6,0(0). These
direct couplings are not contained in the standard HC
proximation because theN50 level is not connected to th
N54 and 6 levels by branch points. The CCHC2 calculat
also yields excitation toN54 and 6. This is due to the se
quential HC couplings and, due to spurious 0→2 and 2
→4 TP contributions for larger 1/v in the CCHC calcula-
tions, which are here not eliminated by the subtraction p
cedure@Eq. ~57!#. Note, however, that this is a second ord
process and, therefore, the excitation probability by conse

FIG. 8. Excitation probability onto theN52 level for b
50.1 a.u. as a function of the inverse velocity 1/v. The TDSE re-
sults are compared with the HCE and HC results and, with CCHn
calculations involving up ton orders of hidden crossings.
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tive transitions is much smaller than the direct 0→4 transi-
tion.

The dependence of the transition probabilities on the
pact parameter, for a fixed velocity ofv50.2, is shown in
Fig. 10. The TDSE result for excitation to bothN52 and
N54 is again well reproduced by the HC1TP calculations.
For comparison, also the HC calculation, that is, the CC
solution with the spurious TP contribution subtracted,
shown. Obviously, at large impact parameters outside
adiabatic cutoff for turning-point contributions@Eq. ~53!#,
the HC approximation works well. Figure 11, which displa
the excitation probability as a function 1/v for a ‘‘large’’
impact parameterb51 a.u., shows that this conclusion
valid at all collision velocities. By contrast, inside the adi
batic radius the TP contributions dominate and the HC
proximation breaks down~see Figs. 9 and 10!. For excitation
to N54 the TDSE results are also well reproduced by
TP1HC calculations since the TP contribution from the d
rect coupling between theN50 andN54 levels is included.

The relative importance of different excitation process
averaged over impact parameters as a function of collis
velocity can be extracted from the excitation cross secti
~Fig. 12!. The total cross sections for excitation toN52 and
4 calculated with the HC1TP approach is seen to agree e
tremely well with the results of the TDSE calculations. T
crucial point to be noted is that the standard HC approxim
tion predicts cross sections at larger~though limited from
above byv&1! velocities accurately but leads to large di
crepancies for smallv due to its exponential decay with 1/v

FIG. 9. Excitation probability onto theN52, 4, 6 levels forb
50.1 a.u. as a function of the inverse velocity 1/v.
2-13
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while the correct adiabatic limit features a power law
('v4) arising from the TP contribution. The transition r
gion in which the TP contribution starts to dominate t
cross section is located at larger velocities for excitation
N54 (v'0.24) than for excitation toN52 (v'0.16). The
Stückelberg oscillations observed in the previous figures
a fixed velocity or a fixed impact parameter are averaged
in the cross section.

FIG. 10. Excitation probability onto theN52, 4 levels forv
50.2 a.u. as a function of the impact parameter.

FIG. 11. Excitation probability onto theN52 level for b
51 a.u. as a function of the inverse velocity 1/v.
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In order to ascertain the significance of TP effects,
have performed two additional checks: one test concerns
breakdown of the classical-trajectory approximation unde
ing our analysis. Since turning-point effects could potentia
be contaminated by the breakdown of the classical trajec
description underlying the impact-parameter method,
have also embedded the 1D model Hamiltonian Eq.~60! into
a 3D model, in which the internuclear motion is describ
quantum mechanically by solving for each angular mom
tum, l , the radial Schro¨dinger equation@36,37#

S 2
1

2m

]2

]R2 1
l ~ l 11!

2R2 1Hel~R,x! DC l ~x,R!

5ETC l ~x,R!, ~65!

where m is the reduced internuclear mass,ET is the total
energy, andC l (x,R) is the total wave function for a given
angular momentuml of nuclear motion. This quantum cou
pling ~QC! problem can be solved exactly as well. Artifac
due to the classical description of the trajectory near the tu
ing point are therefore ruled out. We use a typical value
m51 amu, seven adiabatic states to expand the electr
wave function, and, in order to simplify the calculations, w
solve Eq.~65! using the approximate HC coupling matr
elements@Eq. ~40!# and a log-derivative algorithm@37#. Such
QCHC calculations~referred to as QCHC2 in Fig. 12! agree
extremely well with the classical trajectory cross sectio
~TDSE and HC1TP! for excitation toN52, while strongly
deviate from the TDSE result for excitation toN54. This is
for the reasons discussed below Eq.~64!, since QCHC2 does
not have the correct coupling at the TP~like in Figs. 8 and

FIG. 12. The cross sections for excitation fromN50 onto N
52 andN54 as a function of the inverse velocity.
2-14
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9!. The velocity region where the TP effect starts to dom
nate the cross section is nearv;0.2, which would corre-
spond to a collision energy of 1 keV/amu. Clearly, this e
ergy is high enough to apply the classical straight-l
trajectory approximation for the internuclear motion. T
HC theory is applicable above this energy up tov.1, which
corresponds to a collision energy of 25 keV/amu.

A second test considers trajectory effects. Transitions n
the TP in realistic collisions can be influenced by the int
action potential between the heavy nuclei. Therefore,
have investigated the effect of the internuclear interaction
the transition probabilities within the QCHC approach
incorporating a potentialVnuc(R)56exp(22R)/R, where the
sign of the potential determines whether the interaction
attractive or repulsive. Figure 13 compares the results
such calculations with the one obtained for a ‘‘straight-li
trajectory’’ @i.e., Vnuc(R)50#. For ‘‘high’’ velocities, the in-
ternuclear interaction does not affect the value of the cr
sections. However, cross sections become quite sensitiv
the particular form of this interaction in the limit of low
velocities. As is intuitively expected, an attractive~repulsive!
potential increases~decreases! the value of the cross section
The increase~decrease! can be ascribed to the different to
pologies of the radial velocity in these cases and the fact
at the TP of the trajectory for an attractive~repulsive! inter-
action the nuclei get closer~farther! to each other. The poin
to be noted, however, is that both calculations for an attr
tive or a repulsive potential differ from the HC prediction
and the differences are, once again, due to the TP contr
tion.

FIG. 13. The cross sections for excitation fromN50 onto N
52 as a function of the inverse velocity. The HC result is compa
with QC calculations involving different internuclear interaction
attractive Vnuc(R)52exp(22R)/R, repulsive Vnuc(R)5exp
(22R)/R, and no interaction~straight line!.
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V. CONCLUSIONS

We have analyzed the physical contents and the limits
validity of the hidden crossings and quassiclassical appr
mations in near-adiabatic inelastic collisions. We ha
shown that the HC approximation follows from the adiaba
perturbation theory as a special case when only singular
associated with branch points of the adiabatic energy
faces are taken into account. Since the transition matrix
ment in adiabatic perturbation theory contains, in gene
other singularities, specifically those connected to turn
points, corrections arise that are neglected in the HC
proximation. We have shown that TP corrections can fun
mentally alter the adiabatic limit giving rise to a power la
dependencevn rather than an exponential dependence a
function of the inverse velocityv21. This result holds irre-
spective of the detailed properties of the systems under c
sideration or of the details of description of internuclear m
tion.

For an accurate description of the TP effect only two p
rameters are needed: the energy splitting and the radial
pling of the adiabatic states near the united atom limit. T
dominance of the TP effect requires:Ui , j (0)Þ0 and
DEi , j (0)Þ0. WhenDEi , j (0)50, transitions for smallR can
result in nonexponential behaviors of the cross section
for different reasons. A prominent example of this kind is t
transition between the rotationally coupled states, which
beyond the scope of this paper.

We have illustrated properties of hidden-crossing appro
mations and turning-point contributions with the help of
simple, exactly solvable model. It should be noted, howev
that the results can serve only as qualitative illustration of
underlying effects and not as evidence for their quantitat
significance for atomic collision systems at a given set
parameters~e.g., velocity! since the present system is ve
different. Nevertheless, the results of the present work h
implications for the application of hidden crossings
Landau-Zener approximations to atomic collisions and ot
time-dependent problems. ‘‘Turning-point effects’’ are,
fact, generic. Examples include the ramping up and down
an external field fromF(2`)50 to Fmax5F(0) and back to
F(`)50 featuring an effective turning point atF(0), where
the slopedF/dt changes sign, since levels mixed by th
field, in general, are not decoupled atF(0), i.e., Ui , f(0)
Þ0. Likewise, photodissociation, starting at an equilibriu
distance of the molecular constituents and approaching in
ity, may feature TP corrections due to the vanishing rad
velocity (vR50) at the initial condition for dissociation.
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