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Series interaction and polarization effects in large-angular-momentum two-electron atoms
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Doubly excited atoms with an outer large-l electron are expected to exhibit moderate series interaction.
However, accidental or systematic degeneracies may lead to strong configuration mixing. To describe such
phenomena, the present formalism uses a partial diagonalization of the dielectronic interaction plus a second-
order correction based on Coulomb Green’s function. It makes it possible to determine the eigenfunction
composition, level positions, and autoionization widths. While series interaction turns out to be weak for
almost degenerate high members of the 4djng series in strontium, a significant configuration mixing is
observed on 6pjnl series of barium. A generally fair agreement is observed with 6pjng experimental data. The
6pjnh levels are accurately predicted, too, and new assignations are reported for some of them; however, the
computed linewidths are about twice as small as the measured ones. The method also applies to helium and
multiply charged ions, where the relevance of collective quantum numbers is analyzed. Some level positions
and widths are detailed.

DOI: 10.1103/PhysRevA.63.052513 PACS number~s!: 31.25.Jf, 32.80.Dz, 31.15.Md
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I. INTRODUCTION

Electronic correlation analyses in doubly excited ato
have given rise to a large amount of literature, both theor
cally owing to the development of multichannel quantu
defect theory~MQDT! andR-matrix theory@1# or to methods
more specifically adapted to helium@2#, and experimentally
since the advent of tunable laser spectroscopy@3#. In parallel,
large-angular-momentum doubly excited states have
tracted noticeable interest in the past few years, becaus
both their stability properties versus autoionization and th
ability to be accurately described byab initio treatment. Fur-
thermore, large-l excited states play a prominent role in se
eral domains of physics, such as collisions involving mu
ply charged ions@4#, or recombination processes in plasm
physics@5#. When the outer large-l electron wave function
hardly overlaps the core-electron wave functions, one m
assume that the core-outer-electron interaction is weak
can be described by the first term of the multipolar exp
sion. Furthermore, the traditional nondegenerate Rayle
Schrödinger perturbation theory should apply. This meth
has been widely used in the past, at first@6–8# and second
@9–11# order. However, even large-l series may strongly in-
teract, as some of their terms come accidentally very clo
an instance of such a situation is provided by the 6p1/29g
and 6p3/26g interaction in barium@12#. Up to now, the con-
nection of such situations to perturbative approaches had
been explored. Therefore, in order to deal properly with s
interactions, we propose here a two-step method. First,
electron interaction is diagonalized in a subspace includ
all the strongly coupled states, i.e., those that are alm
degenerated; the composition of the eigenstates gives
configuration mixing. Second, this wave function is co
rected by the interaction with nonresonant levels using
traditional second-order perturbation theory. Such a com
tation can be performed exactly—at least concerning the
pansion over the outer electron spectrum—using Coulo
Green’s function formalism. We wish to demonstrate h
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that accurate predictions concerning the atomic level mixi
level positions, and autoionization widths may be achiev
when such interactions occur.

The present paper is organized as follows. We develop
basic formalism in Sec. II. Application to the weakly inte
acting series in alkaline earth atoms are given in Sec.
namely, for calcium, where the relevance ofjk coupling is
tested, and for strontium, where we discuss an example
almost perfect zero-order degeneracy. Since a larger am
of data is then available, Sec. IV is devoted to barium, wh
the 6pjnl series interaction is analyzed and compared to
periment. Section V concerns helium or multiply charg
ions for which a series of theoretical approaches exists in
literature. Possible extensions of the method are reviewe
the conclusion.

II. THEORETICAL FRAMEWORK

Let us consider an atom or ion with two active electron
The inner one is referred to as hereafter the valence elec
and letr 2 is its radial coordinate; the outer one is called he
the Rydberg electron with coordinater 1. The other electrons
if any, are called core electrons and are assumed to form
unexcited closed shell. We consider states for which the
dberg electron has a large angular momentuml so thatr 1 is
on average greater thanr 2 and 1/r 12 is at lowest order ap-
proximated by 1/r 1. The basis of the present treatment is t
so-called Heisenberg approximation, where the screened
teraction

V5
1

r 12
2

1

r 1
~2.1!

is considered perturbatively. Such an approach has been
by a series of authors. For example, in barium Gallag
et al. @9# considered the singly excited 6snl states with
4< l<7, while Pruvostet al. @10# analyzed the doubly ex
cited 6djnl states with 6< l<12. However this decomposi
©2001 The American Physical Society13-1
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MICHEL POIRIER PHYSICAL REVIEW A 63 052513
tion, often called ‘‘dipolar expansion’’ because of the lea
ing term in Eq.~2.1!, is not restricted to large-l states since it
has also been applied to a wide variety of correlated state
helium @13#. A second-order expansion, not very differe
from the present formalism, has also been used in molec
physics to obtain the dipole polarizabilities of high-L Ryd-
berg states of H2 and D2 through analysis of microwave dat
@14#. Though this is not explicitly written in Eq.~2.1!, the
interaction of the outer electron with the core electrons a
up to thisV interaction, as discussed previously@8#.

If one subtracts the interaction~2.1! from the total Hamil-
tonian, one gets a zero-order Hamiltonian which separ
into the 1 and 2 coordinates, and the Rydberg electro
simply described by a hydrogenic Hamiltonian with
nuclear ‘‘screened’’ chargez ~the net charge of the core i
z11, i.e., 2 for helium or alkaline-earth atoms, but isoele
tronic ions withz.1 may be considered, too!. Accordingly,
the valence electron behaves as an alkali-atom optical e
tron and we use here a semiempirical method to derive
radial matrix elements@15#. Exchange effects have been an
lyzed previously and shown to be moderate forl larger than
3 @16#. We then expect thejk coupling to be the relevan
one, and this assumption will receive theoretical suppor
the next section. From now on, we only need to assume
the spin-orbit effects on theouter electron is negligible,
while the valence electron spin-orbit effect may compare
the dielectronic interaction.

As an example, the 6p1/29g levels of barium, according to
the Heisenberg decomposition, have a zero-order en
equal to the sum of the 6p1/2 threshold energy and of th
Rydberg-electron energy

E1
(0)5E6p1/2

2R/92560 941.688 cm21, ~2.2!

where R is the barium Rydberg constant and energies
relative to the neutral-species ground state. The quadrup
part of the interactionV couples this level to a series o
levels, among which is the 6p3/26g with zero-order energy

E2
(0)5E6p3/2

2R/62560 939.077 cm21. ~2.3!

It appears that the quadrupolar matrix elements ofV are then
significantly greater than this separation. For instance, ifk is
7/2, one gets

^6p1/29g@k57/2#uVu6p3/26g@k57/2#&526.7 cm21.
~2.4!

The nondiagonalV element~2.4! is greater than the zero
order energy difference~2.2!, ~2.3!, which precludes the us
of ordinary nondegenerate perturbation theory. Theref
one has to perform a diagonalization of the interactionV in
the space spanned by the quasidegenerated states. Zero
states such as 6p3/26g will be called ‘‘configurations’’ in the
following. The matrix elements ofV in the subspace
ni l i j inel e@k# are easily computed in thejk scheme with the
long-range approximation~equivalent to neglecting ex
change! @16#. The diagonalization involves matrices of sma
dimensions for which a standard Jacobi procedure@17#
turned out to be completely satisfactory.
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Once we have obtained the eigenstates and the eigen
ues of the interactionV, we may compute accurate energ
levels correcting these eigenvalues through traditio
second-order perturbation theory. This additional step is
quired because it has been emphasized@11# that second-order
dipole-dipole interaction is of the same order of magnitu
as the quadrupolar interaction dealt with in the diagonali
tion process. The only difference with the previous seco
order formalism is the following: in the infinite sum one h
to omit all the states that span the diagonalization subsp
Namely, ifE is such subspace, the diagonalization proced
results in the determination of the eigenstates

ua&5(
i PE

^ i ua&u i &, ~2.5!

wherei denotes the basis elements of this subspace, or ‘‘c
figurations.’’ The second-order correction to the energy
this eigenstate is then given by

D (2)~a!5 (
i PE, i 8PE

^ i ua&^au i 8&(
j ¹E

^ i 8uVu j &^ j uVu i &
Ea2Ej

.

~2.6!

In this equation, theEa energy in the denominator can sim
ply be chosen as the zero-order energy of thei state closest to
eigenstatea ~i.e., with maximum projection! or as thea
eigenenergy as derived from diagonalization. Since suc
denominator is nonresonant, both values give approxima
the same level shift. While the projection coefficients^ i ua&
are obtained from the diagonalization procedure, the infin
sum overj is deduced from a method already sketched@11#.
One has to take care thatj configurations inE are to be
subtracted from the sum, which thus involves ‘‘reduce
Green’s functions instead of ordinary ones.

Finally one may notice that if at least one of the statei
involved in the diagonalization may autoionize, the denom
nator in sum~2.6! may vanish forj states in the continuum
one then adds a small positive imaginary part to the deno
nator and the second-order elementD (2) is now complex:

D (2)5dE(2)2 iG/2, ~2.7!

dE(2) being, as above, the second-order shift andG the auto-
ionization width of the eigenstate, computed at first ord
i.e., through the Fermi Golden Rule, but accounting for co
figuration mixing.

Computational details are as follows. The matrix eleme
of the V operator are obtained for the valence electron p
using a semiempirical model@15# where the input data are
the parent-ion energy spectrum and the grandparent~closed-
shell core! polarizabilities and core size. The parent-ion e
ergies are taken from measurements, while we use the d
lar and quadrupolar polarizabilities available in the literatu
@18#. The Rydberg electron bound-bound matrix elements
V are deduced from recursion relations quite similar to
one obtained in the bound-free case@19#; concerning the
‘‘on-shell’’ elements, i.e.,^ni l i ur 2t21unj5ni l j&, one may
even use closed analytical expressions such as those de
from group theory@20#.
3-2
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TABLE I. Eigenfunction composition of the 3dj5l @k57/2# levels in calcium. The traditional compositio
percentages are the square of the tabulated coefficients.

Eigenfunction 3d3/25d 3d3/25g 3d5/25d 3d5/25g

a51 0.9074 25.031023 20.4202 29.431023

a52 9.731023 0.9927 6.431023 20.1204
a53 0.4202 21.0831022 0.9073 27.431023

a54 24.331023 0.1204 1.1531022 0.9927
ve
le
-
th
en
n-
i

fo
ie

n
er
la
e
d
rl
po
f

t

te

ca
g
.

ed

th

e

ity.
s

t the

nner
he

for
ion
ion
be

ce

nt-
-
ein-

s

oes
s-
at-
ect
xi-

is
The second-order correction involves an infinite sum o
the principal quantum numbers of the inner and outer e
trons. As detailed previously@21#, on the one hand the inner
electron sum is replaced by a numerical truncated sum;
approximation relies on the rapid decrease of such elem
when the principal quantum number of the alkalilike ion i
creases@15,22#. On the other hand, the outer-electron sum
performed exactly using the Coulomb Green function,
which the Sturmian representation often provides an effic
method of computation@23#.

As in the nondegenerate case@21#, the core polarization
shifts these energy levels. The effect on the inner electro
automatically accounted for because the zero-order en
levels are taken from experiment and thus include this po
ization. In a previous paper@8# we established that the cor
polarization byboth active electrons is implicitly considere
provided the inner-electron matrix elements are prope
screened. Finally, the outer-electron contribution to core
larization is obtained by evaluating the matrix elements o

Vpol52 1
2 adr 1

242 1
2 aqr 1

26 . ~2.8!

The mean value of this operator for the eigenstatea is given
by

Dpol5(
i PE
j PE

8^ i ua&^au j &^nj l i uVpoluni l i&, ~2.9!

where the prime in the sum means that it is restricted
configuration pairsi 5$nv i l v i j v ini l i%, j 5$nv j l v j j v jnj l j% such
as nv i5nv j , l v i5 l v j , j v i5 j v j , and l i5 l j , i.e., with all
quantum numbers identical except possibly the ou
electron principal quantum numbers.

III. SERIES INTERACTION IN CALCIUM AND
STRONTIUM

In calcium and strontium, moderate series interactions
be analyzed within the present formalism. A rather lar
amount of experimental data is available for comparison

A. Calcium

The 3djng@k#e states of calcium have been investigat
in detail @24–26#. We first consider then55 levels for
which the electrostatic coupling is greatest compared to
3d3/2– 3d5/2 fine-structure splitting~the electronic interaction
is expected to decrease asn23). In order to compare the
1/r 12 matrix elements with this splitting, we analyze th
05251
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3d3/2nl@k# and 3d5/2n8l 8@k# couplings withn85n and l ,l 8
compatible with the given angular momentum and par
For instance, fork57/2 and parity even, the configuration
involved in the diagonalization are 3d3/25d,3d3/25g,
3d5/25d,3d5/25g. The diagonalization in this 434 subspace
gives the eigenstates as detailed in Table I. It appears tha
configurations with different outerl are almost not mixed.
This is satisfactory for several reasons. First, the 3djnd
states are certainly not well described here because the i
and outer wave functions significantly overlap. But t
present analysis points out that the 3djng states behave
mostly independently of them and therefore the results
the g states are certainly reliable. Second, it is an indicat
that a more complex problem, where the diagonalizat
would involve much more configurations, may reasonably
split into several parts, the diagonalization within the~even
smaller! subspace with given outerl being almost sufficient.

In view of the Table I results, we can assign the relevan
for the jk or Lk coupling scheme. One can check thatjk
coupling holds very well for 3d5g states in calcium. For
example if for eachk one denotes througha1 the eigenstate
that is closest to thejk-coupledu3d3/25g@k#& one gets

^3d3/25gua1&50.9798 if k55/2, ~3.1!

50.9927 if k57/2, ~3.2!

50.9999 if k59/2, ~3.3!

50.9737 if k511/2. ~3.4!

The square of these quantities, giving the traditional perce
age of configuration 3d3/25g@k# in the considered eigen
states, ranges from 94% to almost 100%. This analysis r
forces the statement thatjk coupling is relevant for series
such asNdjng: for instance, in calcium, ifn.5 the elec-
tronic interaction, i.e., theV matrix element, decrease
roughly asn23 and therefore thejk coupling is even more
relevant higher in the series. Of course this statement d
not apply if series interaction is important, as will be illu
trated in the barium section. Considering the alkali-earth
oms heavier than calcium, the inner-electron spin-orbit eff
increases while the electronic interaction remains appro
mately the same; therefore, here againjk coupling is fully
relevant for states such as 4djng in strontium and 5djng in
barium.

Alternately, the same analysis proves that the 3djnd@k#
states closely obeyLk coupling—in fact,LS would be even
more relevant for lown values but the outer electron spin
3-3
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TABLE II. Eigenstates resulting from the interaction of the even 4d3/223l and 4d5/215l energy levels in
strontium. The diagonalization is performed for all even-parity levels with 3/2<k<13/2; results are dis-
played only for dominant configuration with an outerg or i electron. The experimental andR-matrix results
for k53/2, 5/2 are from Goutiset al. Ref. @30#. Thek57/2 and 9/2 assignation to experimental data@31# is
an interpretation according to the present analysis.

Position (cm21)

k Leading Other Present Second ExperimentR-matrix
configuration configuration paper order

3/2 4d5/215g ~95.7%! 4d3/223d ~3.7%! 60 277.55 60 277.18 60 277.55 60 277.5
5/2 4d3/223g ~68.9%! 4d5/215g ~30.9%! 60 278.78 60 279.45 60 279.5 60 279.8
5/2 4d5/215g ~68.9%! 4d3/223g ~30.9%! 60 278.01 60 277.47 60 277.5 60 277.5
7/2 4d3/223g ~68.4%! 4d5/215g ~31.5%! 60 278.98 60 279.78
7/2 4d5/215g ~68.9%! 4d3/223g ~31.5%! 60 278.69 60 277.89 60 277.7
7/2 4d5/215i ~100%! 60 281.71 60 280.71
9/2 4d3/223g ~98.9%! 4d5/215g ~1.1%! 60 280.07 60 280.12
9/2 4d5/215g ~98.9%! 4d3/223g ~1.1%! 60 278.57 60 278.45 60 278.4
9/2 4d3/223i ~67.0%! 4d5/215i ~33.0%! 60 280.51 60 280.61
9/2 4d5/215i ~67.0%! 4d3/223i ~33.0%! 60 280.59 60 280.49
11/2 4d3/223g ~90.3%! 4d5/215g ~9.7%! 60 280.40 60 280.42
11/2 4d5/215g ~90.3%! 4d3/223g ~9.7%! 60 279.14 60 279.16
11/2 4d3/223i ~71.2%! 4d5/215i ~28.8%! 60 280.51 60 280.54
11/2 4d5/215i ~71.2%! 4d3/223i ~28.8%! 60 280.35 60 280.32
13/2 4d5/215g ~100%! 60 280.06 60 280.05
13/2 4d3/223i ~99.8%! 4d5/215i ~0.2%! 60 280.53 60 280.53
13/2 4d5/215i ~99.8%! 4d3/223i ~0.2%! 60 280.26 60 280.26
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ignored here. For example ifk55/2, the same diagonaliza
tion that gave the above quoteda1 gives, among other eigen
vectors,

^3d5dF@5/2#uaF&50.9951, ~3.5!

the subscriptF being here merely to convey that this is th
eigenstate with maximum projection on 3d5dF@5/2#.

B. Strontium

As our next example, we now consider the even-pa
4djnl series in strontium. The data used in our computat
are the ion energy levels from Moore@27# with 7pj levels
amended according to Langeet al. @28#, while the ionization
potentials are from Esherick@29# for Sr and Langeet al. @28#
for Sr1. Large-l doubly excited levels have been investigat
by Goutiset al. @30# in the J51,2 case and by Jimoyianni
et al. @31# in the J53,4,5 case, the former paper containi
an R-matrix-based theoretical analysis too. Special atten
is paid here to the 4d3/223l – 4d5/215l 8 interaction. Indeed,
using the above-mentioned spectroscopic references,
zero-order energies for these levels are 60 280.65 cm21 and
60 280.71 cm21, which means almost exact degenera
However, it was stated in our previous analyses on positi
@21# and widths@32# that usual nondegenerate perturbati
theory with only dipole interaction included at second ord
was adequate. We can justify this attitude as follows. O
results concerning the 4djng and 4djni are detailed in Table
II. Though all l outer-electron angular momenta values co
05251
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patible with k between 3/2 and 13/2 were included in th
computation, only 4djng and 4djni are included in this
table: the positions forl 50 or 2 would not be reliable within
the current formalism, while thel values greater than 7 ar
far from experimental investigation and almost behave
pure hydrogenic levels. In this table, the second column
the label attributed to the eigenstate according to the pre
diagonalization; the percentage of the leading configura
is indicated between parentheses. In the third column,
mention the next important configuration and its percenta
The fourth column contains the newly derived position w
respect to the ground state of Sr, while the fifth one refers
our second-order computation@21#. The sixth column is from
Ref. @30# for k53/2,5/2 and from Ref.@31# for k57/2,9/2,
and the last column contains the theoretical predictions
pearing in Ref.@30#.

A rapid inspection of Table II shows that large-l state
mixing is, in some cases, far from negligible. For instan
the eigenstate labeled 4d3/223g@k57/2# contains almost
32% of 4d5/215g@k57/2# character, but this results in a,1
cm21 difference in the energy position compared to the ‘‘tr
ditional’’ nondegenerate second-order perturbation in
fifth column @21#. It must be mentioned that this nondege
erate perturbation calculationmustonly include the second
order dipolar correction—such as the interaction betwe
4djng and 5pjnh; if the quadrupolar contribution to thes
second-order positions had been included, one would h
observed an unphysical quasidivergence on the positi
due to the 4d3/223l – 4d5/215l accidental degeneracy.
3-4
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TABLE III. Position and width of the interacting 6p1/29g@k# and 6p3/26g@k# levels in barium. In each
pair of data, the first one is the energy with respect to the ground state of neutral barium, and the se
the autoionization width. All data are in cm21. The second and third columns are the second-order com
tation ignoring the quadrupolar coupling between both 6pj series: only dipolar interaction is included a
second order. The next three columns detail the results from diagonalization plus second-order correc
number in parentheses is the percentage of the dominant configuration in the eigenstate. The expe
data are from Ref.@12#. The zero-order energies are 60 941.69 cm21 and 60 939.08 cm21 for the 6p1/29g and
6p3/26g levels, respectively. The 6p3/26g@11/2# is weakly mixed with the 6p1/29i @11/2#, which is included
in the diagonalization but not tabulated here.

State Second order Diagonalization Experiment

6p3/26g@5/2# 60 979.83 22.25 ~99%! 60 978.68 25.47 60 979.263.6 23.7667.13
6p1/29g@7/2# 60 939.37 8.43 ~70%! 60 953.52 15.5
6p3/26g@7/2# 60 904.37 16.85 ~70%! 60 889.37 11.88 60 889.162.1 14.0364.21
6p1/29g@9/2# 60 939.79 10.37 ~90%! 60 945.70 13.15 60 943.161.1 14.4262.16
6p3/26g@9/2# 60 878.31 15.86 ~90%! 60 872.48 13.16 60 868.561.0 13.4762.02
6p3/26g@11/2# 60 954.84 23.72 ~96%! 60 956.56 22.65 60 942.961.8 23.3263.50
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Amazingly enough, the second-order results of colum
seem to be even more accurate than the present data de
from diagonalization; a possible though not definite expla
tion might lie in some inaccuracy of the 4dj levels in Sr, a
fraction of cm21 being significant here. Our main conclusio
from this analysis will be that this degeneracy hardly ma
fests itself in significant levels shifts~below the cm21 here!,
though state mixing is indeed important. Such a behav
originates in the fact that we are dealing here with h
members of Rydberg series with rather differentn values,
thus the nondiagonal couplings remain moderate.

IV. SERIES INTERACTION IN BARIUM

A situation rather different from the 4djnl series interac-
tion in strontium will be provided by the barium case whe
the 6p1/29l and 6p3/26l states—and, to a lesser extent, t
6p1/214l and the 6p3/27l states—interact much more signifi
cantly. A series of experimental data is available for 6pjng
states@12# and for 6pjn f ,nh states@33#. Jones and Gallaghe
@7# performed an investigation of thel dependence of quan
tum defects and autoionization widths for the 6p1/2nl series
with n from 11 to 13 andl from 4 or 5 ton22 or n21, but
we do not expect strong series interaction in thisn range.
Accordingly, Pruvostet al. @10# studied the 6p3/2nl levels
05251
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with n from 11 to 15 andl from 5 to n21, but they all lie
above the 6p1/2 threshold and therefore do not intera
strongly with discrete members of the 6p1/2nl series.

A. 6pjng states

The data from Jaffeet al. @12# are a useful test of the
present diagonalization procedure. Moreover, since our
vious works@11,21,32# concerned the position and width o
the lower 5djnl series, some new theoretical values usi
plain second-order theory will equally be given here
6pjng states outside the strong interaction regions.

Our results about interacting members of the 6pjng series
are detailed in Tables III and IV. The second-order comp
tation in second and third columns is performed according
our previously detailed formalism@21,32#. For the sake of
consistency, at first perturbation order the interactionV is
expanded up to the quadrupolar contribution, while at sec
order it is expanded up to the dipolar term only; these tr
cations arise from consideration that the dominant contri
tion to third order, neglected here, should scale as the o
polar contribution at first order or as the dipole-quadrup
contribution at second order~see, e.g., Ref.@11# for a simple
argument!. One should mention that in thek55/2 and 7/2
results displayed in the present tables, the 6djnp@k# contri-
TABLE IV. Position and width of the interacting 6p1/214g@k# and 6p3/27g@k# levels in barium. See Table
III for details. The zero-order level positions are 61 736.58 and 61 747.80 cm21 for 6p1/214g and 6p3/27g,
respectively. In addition to the 61 714.8 cm21 level that was labeled 6p3/27g@7/2#J53 in Ref. @12#, we
propose here to label their unassigned 61 716.6 cm21 level as 6p3/27g@7/2#J54.

State Second order Diagonalization Experiment

6p3/27g@5/2# 61 772.32 16.80 ~100%! 61 772.24 16.86 61 771.162.5 16.5664.97
6p1/214g@7/2# 61 735.84 5.51 ~55%! 61 742.61 8.76 61 742.860.6 4.0361.21
6p3/27g@7/2# 61 725.15 12.72 ~55%! 61 718.19 6.76 61 714.861.6 10.9663.29

61 716.660.68 9.0961.36
6p1/214g@9/2# 61 735.95 3.13 ~88%! 61 738.23 5.42 61 736.360.29 3.8360.57
6p3/27g@9/2# 61 708.72 12.07 ~88%! 61 706.49 9.82 61 703.460.77 10.2961.56
6p3/27g@11/2# 61 756.81 18.27 ~99%! 61 756.99 18.15 61 747.061.34 17.8362.67
3-5
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MICHEL POIRIER PHYSICAL REVIEW A 63 052513
bution to the second-order shift has been subtracted. T
perturbing series both forj 53/2 and 5/2 give rise to an
unphysical quasiresonance because the 6p3/26g has a zero-
order energyE(6p3/2)2R/62 almost equal toE(6dj )2R/22

but the 6dj2p falls completely outside the present forma
ism; large-l techniques obviously do not apply top electrons,
and in barium 2p is a filled orbital that cannot be handle
like vacant orbitals.

Examination of Table III shows that the current diagon
ization plus second-order formalism provides positions a
widths in fair agreement with the experimental data, es
cially for the lowestk states. For instance, in thek57/2 case
where the 6p1/29g– 6p3/26g mixing is significant~the eigen-
state on the third row has 70% 6p3/26g character and 30%
6p1/29g character!, the diagonalization improves signifi
cantly the agreement with the experimental position; exp
mental data about the 6p1/29g@7/2# would be useful since the
widths predicted from second-order theory and diagonal
tion differ by almost a factor of 2. The only indication i
Ref. @12# is that, except forn514, the 6p1/2ngJ53 ~i.e.,
@k57/2#) feature observed in linear polarization lie
0.002n23 above the@k59/2#J55 feature and is broader
which is in qualitative agreement with the present paper.
a rule, all the widths computed through diagonalization f
inside the experimental error bars; these bars are rather la
however, the 6p1/29g@9/2# is correctly described using di
agonalization and not through plain second-perturbation
der. Finally, one must state that the largestk values are sys-
tematically predicted above the experimental data, as m
as 14 cm21 if n equals 6; though the definite explanation f
that remains unclear, it might originate in the lack of hig
lying perturbers included at second order, which could
more sensitive here than for lowk because angular factor
differ; another possible reason might lie in the quadrupo
interaction 6p3/26g@11/2# – 6p1/2n i @11/2# with n.9; a
simple second-order computation ignoring degeneracy sh
that such a quadrupolar interaction shifts the 6p3/26g@11/2#
by 216.5 cm21, but a diagonalization involving, e.g
6p1/2n i with 7<n<10 would be useful. The analysis o
6p3/2ng@k511/2# quantum defects detailed below corrob
rates this assumption. Finally, one must note that here wi
are predicted more accurately than positions; this stems f
the fact that first-order computation of widths, which is su
ficient here, only involves a finite sum on ‘‘perturber’’ lev
els, i.e., the various ionization thresholds; conversely,
computation of shifts must always be performed up to
second order at the minimum, and this involves an infin
sum over the two-electron atomic spectrum, in which tru
cation is not avoidable.

The inspection of Table IV concerning th
6p1/214g– 6p3/27g interaction leads to similar conclusion
The diagonalization procedure significantly improves
agreement with experiment except for the highestk value.
The present analysis allows us to assign the unidenti
61 716.6 cm21 level of Ref. @12# as 6p3/27g@k57/2# J54;
we may attibute the 1.8 cm21 departure from the@k57/2#
J53 position partly to experimental uncertainty and par
to pair splitting, i.e., weak exchange effects.
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To analyze the quantum defects and scaled linewid
across the whole series, we have plotted in Figs. 1–4 th
quantities for the 6p3/2ng@k# states withk from 5/2 to 11/2.
The theoretical predictions from second-order perturbat
including or not including the quadrupolar interaction at se
ond order~i.e., terms such aŝ6p3/2ngur ,

2 /r .
3 u6p1/2ng& 2/D,

whereD is an energy denominator! are compared to avail
able experimental data.

In Fig. 1 fork55/2, it appears that, omitting then56 and
7 cases previously analyzed, the agreement between sec
order perturbation theory ignoring the quadrupolar terms
experiment is fine. The inclusion of quadrupoles at seco
order changes significantly the quantum defects~and to a
lesser extent, the scaled linewidths! with usually degraded
agreement with experimental data; it involves the interact
of the 6p3/2ng@5/2# states with the 6p1/2nd@5/2# states,
which are certainly poorly described within the present lar
l formalism. Besides, one can see that the strong variatio
the experimental quantum defect forn.15, without simulta-
neous variation of the scaled linewidth, does not relate to
presence of any perturber in this region, as far as we kn
This probably indicates an underestimate of certain e
bars. Though it would be more apparent on a scaled-wid
versus-energy plot, the linewidth computed at second or
including dipoles~solid line in the top half of Fig. 1! accu-
rately follows a two-term law with a discontinuity whe
crossing the threshold. Conversely, the corresponding qu
tum defects~solid line in the bottom half of Fig. 1! are rea-
sonably fitted with three terms, namely, hered520.032
20.38/n212.69/n4 whatever the value ofn.

FIG. 1. Quantum defects and scaled autoionization linewidth
the 6p3/2ng@k55/2# states of barium. The scaled linewidthn3G is
in atomic units. The filled circles are experimental data from R
@12#. The solid and broken lines are the present second-order c
putations, with quadrupoles included at second order for the bro
line. The solid line for the width may be accurately fitted
0.038520.603/n2 below the 6p1/2 threshold (n<8) and to 0.0381
20.543/n2 above. Forn56 and 7, the open triangles are the part
diagonalization results as displayed in Tables III and IV.
3-6
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SERIES INTERACTION AND POLARIZATION EFFECTS . . . PHYSICAL REVIEW A 63 052513
As seen in Fig. 2, the data concerning 6p3/2ng@k57/2#
are less abundant. Forn greater than 8, the present quantu
defects agree fairly well with experiment, and inclusion
quadrupoles at second order has almost no effect eithe
positions or on widths. Rather intriguing is the disagreem

FIG. 2. Quantum defects and scaled autoionization linewidth
the 6p3/2ng@k57/2# states of barium. See Fig. 1 for details. Th
second-order results including quadrupoles would be ‘‘diverge
for n56 because of the interaction with 6p1/29g@7/2#, and do not
appear on the graph. For instance, one would get here a qua
defect of 0.28 and a scaled linewidth of 0.85. Then the diagona
tion procedure~triangle! is the only reliable one. The solid line fo
the width may be fitted to 0.029220.456/n2 below the 6p1/2 thresh-
old and to 0.047820.508/n2 above.

FIG. 3. Quantum defects and scaled autoionization linewidth
the 6p3/2ng@k59/2# states of barium. The solid line for the widt
may be fitted to 0.027920.446/n2 below the 6p1/2 threshold and to
0.037820.465/n2 above. See Fig. 1 for details.
05251
f
on
t

by a factor of 2 concerning the linewidths in the same regi
one might conclude that the fine-structure autoionization p
cess 6p3/2ng→6p1/2e l responsible for the jump in the theo
retical width whenn changes from 8 to 9 is simply abse
from experiment! The fine agreement between both theo
ical predictions for n>9 means that second-orde
~quadrupole-dipole! corrections to the width such a
6p3/2ng– 6p1/2ng– 5d3/2eh weakly contribute to the tota
width. Besides, a detailed examination of the partial wid
demonstrates that the fine-structure autoionization proce
well described by the first-order quadrupolar amplitude,
second-order dipole-dipole amplitude providing here a po
tive correction of only about 4%. This differs strongly from
the 5djng states of barium@11,34# where the second-orde
correction was large and with a negative sign. Brief ment
should be made of the 6p3/28g state, lying just below the
6p1/2 threshold; it is close to the 6p1/268g state but then
difference is so large that such coupling is likely to be sm
However, the second-order computation including quad
poles gives a ‘‘divergent’’ quantum defect of 0.074, far fro
the prediction without quadrupoles~0.036!; the coupling be-
tween 6p3/28g and 6p1/2ng is here responsible for a216.3
cm21 shift. A more realistic treatment would involve a d
agonalization including all the 6p1/2ng states lying within
the 6p3/28g linewidth. This procedure is probably unnece
sary, since the simple second-order computation with
quadrupoles is almost in agreement with experiment~twice
the error bar!.

Thek59/2 case displayed in Fig. 3 leads to rather simi
conclusions. The agreement in scaled linewidths is satis
tory if we ignore then58 case for the reason mentioned ju
above. The rather large error bar forn524 allows an accept-
able agreement between our prediction and experiment;
disagreement by a factor of 0.68 had been incorrectly att
uted to the absence of second-order autoionization am

f

’’

um
a-

f

FIG. 4. Quantum defects and scaled autoionization linewidth
the 6p3/2ng@k511/2# states of barium. The solid line for the widt
may be fitted to 0.043020.706/n2 below the 6p1/2 threshold and to
0.043420.688/n2 above. See Fig. 1 for details.
3-7
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MICHEL POIRIER PHYSICAL REVIEW A 63 052513
tudes in our previous treatment@11#. In fact, one can check
here that second-order contributions to the fine-struc
autoionization width affect only this partial probability b
about 10% and the total autoionization width by 3%, sin
the fine-structure transition contributes here for only 30%
a rule, of the total width ifn is larger than 8. Finally, one
notices again several unexplained oscillations in the quan
defects, for instance ifn517, 20, or 24. This emphasizes th
need for more accurate measurements in this large-n region.

The 6p3/2ng@k511/2# quantum defects and widths ap
pear in Fig. 4. The scaled linewidths are again well rep
duced, except for fluctuations aroundn511 or 17, which
seem to be experiment artifacts. Here the fine-structure t
sitions contribute, ifn.8, to the linewidth for less than 2%
As mentioned above concerning the 6p3/26g@11/2# level, the
computed quantum defects lie systematically below the m
sured ones by roughly 0.01 units, i.e., several times the e
bars. Interestingly, one will notice that, accounting for t
quadrupolar interaction 6p3/2ng– 6p1/2n i at second order
the disagreement is reduced by a factor of 2. Therefore
improve the computation one might include quadrupoles
second order, but consistency would require conside
equally dipole-dipole-quadrupole terms at third order,
well as fourth-order contributions containing the product
four dipoles. Such computation is lengthy though tractabla
priori , and has not been attempted here.

Finally, we will briefly discuss the 6p1/2ng case illus-
trated by Figs. 5 and 6. We did not try to compare our res
to those of Jones and Gallagher@7# because this work doe
not specify thek value. In thek57/2 case, no experimenta
data are available other than those discussed in Tables III
IV. Setting aside the above discussedn59 and 14 states, the
k59/2 computed linewidths agree with measurements, e
without quadrupoles at second order. Conversely, one
tices that inclusion of the quadrupolar interaction 6p1/2ng–

FIG. 5. Quantum defects and scaled autoionization linewidth
the 6p1/2ng@k57/2# states of barium. The solid line for the widt
may be fitted to 0.033920.502/n2. See Fig. 1 for details.
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6p3/2ng at second order improves the theory-experim
computed agreement on quantum defects. Lastly, the r
variation of the experimental quantum defects in then
516– 23 region, where no perturber is expected, emphas
again the need for more accurate measurements.

B. 6pjnh states

The even-parity 6pjnh@J54,5,6# states of barium have
been analyzed in some detail by Bente and Hogervorst@33#.
As mentioned in the beginning of this section, the data fr
Jones and Gallagher@7# and from Pruvostet al. @10# concern
energy regions where series interactions are expected t
weak and where usual second-order perturbation the
should apply; here we will not discuss them any further.

The comparison between our predictions and Bente
Hogervorst’s measurements@33# is presented in Tables V
and VI for the domains of 6p1/29h– 6p3/26h and
6p1/214h– 6p3/27h interaction, respectively. Here we hav
tried to amend or clarify the assignation of the experimen
levels. For instance, four of the 6p1/29h or 6p3/26h levels of
Table V appear in their Table 6 with the only label 6p1/29h.

The situation here differs somewhat from the 6pjng case
previously analyzed. One the one hand, the present leve
sitions agree with experiment. For instance, thek59/2 com-
puted levels in Table V fall inside the experimental error b
using the diagonalization procedure, while plain seco
order theory ignoring second-order quadrupolar interact
between the 6pjnh configurations would be less satisfactor
Our k511/2 predictions are only 2 cm21above the measure
ments, this discrepancy coming probably from the insu
cient number of ‘‘polarizing’’ levels as stated above in th
6p3/2ng@11/2# case. On the other hand, the experimen
widths are systematically greater than the present ones, o
by a factor of 2. We are unable to find a reasonable exp

f FIG. 6. Quantum defects and scaled autoionization linewidth
the 6p1/2ng@k59/2# states of barium. The solid line for the widt
may be fitted to 0.042620.671/n2. See Fig. 1 for details.
3-8
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TABLE V. Position and width of the interacting 6p1/29h@k#, 6p3/26h@k# levels in barium. See Table III
for details. The experimental data are from Bente and Hogervorst Ref.@33#. The zero-order energies ar
60 941.69 cm21 and 60 939.08 cm21 for the 6p1/29h and 6p3/26h levels, respectively. The 6p3/26h@13/2# is
significantly mixed with the 6p1/29k@13/2#, which is included in the diagonalization but not tabulated he

State Second order Diagonalization Experiment

6p3/26h@7/2# 60 962.29 1.47 ~100%! 60 962.25 1.63
6p1/29h@9/2# 60 941.29 1.20 ~82%! 60 945.56 1.41 60 945.560.3 2.860.6
6p3/26h@9/2# 60 921.08 1.09 ~82%! 60 916.82 0.90 60 916.360.3 1.660.4
6p1/29h@11/2# 60 941.41 1.27 ~94%! 60 943.24 1.37 60 941.160.3 3.160.6
6p3/26h@11/2# 60 909.48 0.96 ~94%! 60 907.66 0.86 60 905.760.3 1.160.4
6p3/26h@13/2# 60 950.76 1.27 ~76%! 60 957.62 0.97
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nation for that; however, we have no reason to cast ser
doubt on the present computation. The simple second-o
computation as displayed in Table V does not significan
differ from the diagonalization result and, as stated abo
the computation of widths involves here a finite sum ov
only three ionization thresholds, all of them reacha
through dipolar transition. In support of our computation,
notice that in the same Table 6 of Ref.@33# the 6p1/213h
width is 2.4 cm21, while Jones and Gallagher@7# measured
0.5160.03 cm21, and in the second-order framework we g
0.52 and 0.56 cm21 for k59/2 and 11/2, respectively.

The situation is more confusing concerning t
6p1/214h– 6p3/27h interaction as shown in Table VI. Table
6 and 7 of Bente and Hogervorst report not less than 9
tinct states withJ between 4 and 6, while only 6 are expect
if jk coupling holds. The 61 725.7 cm21 line reported as
6p3/27h could not be assigned here. Comparing to our po
tion predicted at 61 731.6 cm21, we assume that the 61 733
and 61 734.2 cm21 lines labeled as 6p1/214h are both
6p1/214h@9/2#; the uncertainty on the positions being 0
cm21, this splitting may be an artifact, it may also corr
spond to theJ54 – 5 pair separation. Accordingly, we es
mate that the 61 736.3 and the 61 737.5 cm21 lines both
correspond to our 6p1/214h@11/2# state at 61 738.0 cm21.
The other 6p3/27h@k# states are assigned according to th
relative positions; the level at 61 741.0 cm21 in Ref. @33# is
assigned ask59/2 instead of 13/2 and we attributek513/2
instead of 7/2 to the level at 61 756.4 cm21. As seen in Table
05251
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VI the overall agreement on positions is acceptable, wh
the factor of 2 on linewidths is again observed, mainly on
6p3/27h states. This discussion stresses the need for m
accurate measurements on such doubly excited states.

V. DOUBLY EXCITED STATES IN HELIUM AND
MULTIPLY CHARGED IONS

Because of the Coulomb degeneracy in the hydroge
ion spectrum, the above described diagonalization proced
must always be applied when studying doubly excited lev
of true two-electron systems such as 2lnl 8 in helium or C41.
Furthermore, while of course a large amount of theoreti
data is available for this isoelectronic sequence~see, e.g.,
Ref. @35#!, it mainly concerns rather lowL values; data with
L larger than 3 are scarce and sometimes unreliable, s
large-l orbitals are not systematically included in the comp
tations. Nevertheless, one must mention a recent work on
positronium negative ion@36# using the complex-coordinat
rotation method.

A now traditional description that emphasizes the cor
lated character of the wave function is provided by the d
bly excited symmetry basis~DESB! introduced by Wulfman,
Herrick, and Sinanogˇlu @37#: the DESB states are labele

n(K,T)N
ALp, whereN ~respectively,n) is the inner~respec-

tively outer! principal quantum number. The (K,T) numbers
describe angular correlations, and later Lin@38# introduced
the A number that refers to radial correlations. For all t
l
ribed
TABLE VI. Position and width of the interacting 6p1/214h@k#, 6p3/27h@k# levels in barium. The zero-
order level positions are 61 736.58 and 61 747.80 cm21 for 6p1/214h and 6p3/27h, respectively. Experimenta
data are from Bente and Hogervorst Ref.@33#. Some assignations are new and others amended, as desc
in the text.

State Second order Diagonalization Experiment

6p3/27h@7/2# 61 762.36 1.70 ~100%! 61 762.35 1.70 61 765.460.4 3.760.7
6p1/214h@9/2# 61 736.47 0.43 ~64%! 61 731.62 0.57 61 733.560.3 0.760.4

61 734.260.3 0.760.4
6p3/27h@9/2# 61 736.34 1.26 ~64%! 61 741.18 1.12 61 741.060.3 2.560.5

6p1/214h@11/2# 61 736.51 0.46 ~77%! 61 738.01 0.76 61 736.360.3 1.560.4
61 737.560.3 0.760.4

6p3/27h@11/2# 61 729.04 1.11 ~77%! 61 727.55 0.82 61 730.160.3 1.760.4
6p3/27h@13/2# 61 755.15 1.51 ~98%! 61 755.73 1.47 61 756.460.3 1.560.4
3-9
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MICHEL POIRIER PHYSICAL REVIEW A 63 052513
large-L states considered here, theA value is zero as there i
no significant overlap between the wave function of bo
electrons. Since we only consider here light elements,
spin-orbit effect is ignored for both electrons, and beca
exchange is expected to be very small for large-l states, we
also drop the total spinSwhen labeling them. However, eve
at this early stage we must mention the probable inadequ
of DESB quantum numbers for such large-L states. First, in
the DESB elements both electrons have definite princ
quantum numbersN andn, and experience the same nucle
charge, e.g.,Z52 for helium. A more appropriate choic
would be to attribute a screened nucleus chargeZ21 to the
outer electron and to allow a superposition ofn values; how-
ever, Lin and Macek@39# have checked that usually such
procedure hardly improves the wave function quality. Ev
more, these authors, considering then(21,0)2

0 1Po states in
helium, labeled 2pnd1Po in the independent-particle picture
demonstrated that suchA50 states are poorly describe
within the DESB framework. The present paper addres
the question ofA50 states with higherL values.

A. Nlnl 8 series of helium

As a typical result of the present diagonalization meth
we give in Table VII for each of the 3l5l 8Ge eigenstates, the
squared projections over then(K,T)3 DESB states withn
summed from 3 to 9. It was checked that highern values
contribute for less than 1024 to the eigenstate normalization
As mentioned above, in our formalism, the zero-ord
Hamiltonian assumes full screening, i.e., in a ‘‘configu
tion’’ like 3 d5g the 3d orbital corresponds to a Coulom
chargeZ52, while the 5g orbital corresponds to a screene
chargez5Z21. Thus, in evaluating the projection of thekth
eigenstate of total angular orbital momentumL and parityp,

uCk&5(
i

ciku~Z52!3l i~z51!5l i&, ~5.1!

over the n(K,T)3 state, we must evaluate the sum

TABLE VII. Composition of the 3l5l 8G helium eigenstates in
terms of DESB (K,T) quantum numbers. The figures are t
squared projections of the present eigenstates over then(K,T)3

DESB elements, in percent. A sum has been performed for 3<n
<9. The eigenstate label is given according to the leading confi
ration, the percentage of which is given in parentheses. For theGe

symmetry, the correlated basis contains six elements, since it
involves the 3pnh and 3dni series. Accordingly, theGo DESB
includes three elements, since it involves the 3dnh series.

(K,T) character~%!

Label ~2,0! ~0,0! (22,0) ~1,1! (21,1) ~0,2!

3s5gGe (35.8%) 7.3 40.4 0.8 21.4 29.6 0.6
3p5 f Ge (62.8%) 65.7 7.1 0.0 17.9 0.8 8.6
3d5dGe (97.4%) 23.7 13.9 0.1 45.3 3.7 13.3
3d5gGe (59.7%) 1.0 17.0 0.1 9.1 1.6 71.2
3p5gGo (79.0%) 70.7 21.7 7.6
3d5 f Go (79.0%) 27.2 9.6 63.2
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^n~K,T!3LpuCk&5(
i j

cikd l i l j
dl il j

^n~K,T!3Lpu3l jnl j&

3^~Z52!nl j u~z51!5l i&. ~5.2!

On the right-hand side of Eq.~5.2!, the second and third
factors account for the orthogonality of the inner- and out
electron angular parts, the fourth factor is proportional to
well known 9j coefficient@37# involving (K,T), and the last
one is an overlap integral of hydrogenic functions of t
same l but different Z. These integrals have been simp
computed using the analytical expressions of the wave fu
tions. The main DESBn values that have a significant pro
jection on the present eigenstates range from 5 to 7. Exa
nation of Table VII reveals that some of the presen
computed eigenstates are reasonably characterized by
DESB numbers, such as the second eigenstate labeled
3p5 f Ge,’’ for which the squared projection on the (K,T)
5(2,0) levels is about 66%. Conversely, it appears that,
many of them, the (K,T) description is a rough approxima
tion; for instance, the first eigenstate in this table, labe
‘‘3 s5gGe, ’ ’ bears only 40% of (2,0) character and almo
30% of (21,1) character.

Nevertheless, the 3l5l 8 states in helium do not provide
fully quantitative test for the present formalism, since t
overlap of both electron orbitals is significant except for t
largestL values~5 or 6! for which comparison data is lack
ing; for instance, the 3p classical orbital extends up to 8.
a.u. from the nucleus, while the 5f classical inner turning
point is at 7 Bohr radii. Therefore, we present in Table V
the newly derived quantum defects and autoionization li
widths for 3l7l 8L>5. Configuration mixing is still very sig-
nificant for H states: for instance, the state labeled 3s7h
contains only 42% of this character and a strong admixt
of 3d7h and 3p7g. Among the displayed eigenstates in th
list, only the 3d7 f Ho is probably not very accurate, since th
3d classical outer turning point is 7.10 while the 7f inner
turning point is 6.42; besides, the second-order shift of t
eigenstate involves a significant contribution from the 4f nd
series, for which the nonoverlap hypothesis clearly bre
down. However, the mixing of this eigenstate with the fo
other Ho states is very weak~2%!, so we believe the four
other eigenstates to be correctly predicted; and while
quantum defect~0.459! is probably inaccurate~subtracting
the 4f nd contribution, it changes to 0.259!, its linewidth is
certainly reasonable because it mostly involves the transi
to the 2peg continuum, well described in the long-rang
framework—this behavior is also corroborated by the C41

analysis below. Though other theoretical data are miss
one may notice that a large-l state such as 3d7hKo may have
a non-negligible quantum defect~0.134! which we believe to
be accurately predicted here, since second-order perturba
mainly involves perturbation by the 3pn i series, well de-
scribed within the present long-range formalism. Compar
the data in Table VIII to typical 6pjnl data in barium, it
appears that while for a givenl the quantum defects have th
same order of magnitude, the linewidths are much less
helium, usually well below 1 cm21. This arises from the fac

u-

lso
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TABLE VIII. Doubly excited 3l7l 8 states in helium forL>5. Autoionization widths are in atomic units
The notationa(2b) stands fora3102b. Only configurations contributing for at least 10% are mentione

Label Leading Other Quantum Width
configuration configurations defect

Ho 3s7h (42%) 3d7h (29%), 3p7g (27%) 20.026 70 6.05(27)
3p7g (70%) 3s7h (19%) 0.049 54 1.00(26)
3p7i (99%) 20.095 375 2.93(210)
3d7 f (98%) 0.459 01a 3.69(25)
3d7h (61%) 3s7h (38%) 0.090 08 3.03(29)

He 3p7h (68%) 3d7g (32%) 0.116 21b 2.89(27)
3d7g (68%) 3p7h (32%) 0.130 76c 6.06(27)
3d7i (100%) 20.076 76 4.49(212)

I e 3s7i (52%) 3d7i (33%), 3p7h (14%) 20.031 61 9.85(29)
3p7h (84%) 3s7i (10%) 0.041 33 3.95(28)
3d7g (99%) 0.211 67d 2.21(26)
3d7i (62%) 3s7i (38%) 0.053 39 3.07(211)

I o 3p7i (95%) 0.053 63 1.32(29)
3d7h (95%) 0.089 74 2.59(28)

Ko 3p7i (100%) 0.038 78 5.74(210)
3d7h (100%) 0.134 47 6.49(28)

Ke 3d7i (100%) 0.061 40 3.20(210)
Le 3d7i (100%) 0.096 08 7.45(210)

a0.2585 if the 4f nd contribution is removed.
b0.1091 if the 4f n f contribution is removed.
c0.1159 if the 4f n f contribution is removed.
d0.1695 if the 4f n f contribution is removed.
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that in helium, the autoionization occurs toward the 1s or 2l
threshold with a large electron energy, which disfavors s
a process.

B. Nlnl 8 series in C4¿

Bachauet al. @35# have published a large amount of da
about the 3lnl 8 states withn<5 in helium and multiply
charged states withZ<10. In order to interpret charge ex
change experiment, van der Hart and Hansen@40# have care-
fully analyzed the singlet states 2lnl 8 in doubly excited he-
liumlike carbon withn<7 and 3lnl 8 with n<5. As detailed
in Sec. II, the present formalism requires that the inner-
outer-electron wave functions not overlap; while the 2l5l 8 or
states withl 8.2 fulfills this requirement, it is hardly the
case for most of the 3l5l 8 states considered below: for in
stance, the inner 3s electron has a classical outer turnin
point at r 53 Bohr radii while an outer 5f electron has a
classical inner turning point atr 51.39. However, in order to
assess the validity of our large-l treatment, some data will b
given for a totalL increasing from 4 to 6.

In Table IX we compare our 2lnl results withn55 and 7
andL.2 with theB-spline predictions of van der Hart an
Hansen. At second order theNln l 8 perturbing series withN
up to 10 andl up to 3 have been included, which correspo
to 34 valence states and therefore several tens of pertur
series. Though our computations were made using the pr
ously described diagonalization procedure with second-o
correction, one must mention that in the present fram
05251
h

d

ing
vi-
er
-

work the interaction matrix at first order turns out
be purely diagonal; due to the long-range approximat
leading to susbtitute, e.g.,̂ 2sur u2p&^5 f ur 22u5g& to
^2s5 f ur ,/r .

2u2p5g&, the outer-electron contribution is can
celed because of the Pasternack-Sternheimer identity@41#.
The situation is different for the 3l5l 8 states in which, for
instance, thê 3sur 2u3d&^5gur 23u5g& nondiagonal elemen
does not vanish. Another peculiarity of the 2lnl 8 states is
that some of them are metastable versus autoionization.
instance the 2p5 f F cannot decay towards a 1se l state be-
cause of angular momentum conservation. Besides, a
like 2s5gG, which in our theoretical framework does no
interact with 2p5 f , will also be stable versus autoionizatio
however, going beyond the long-range approximation wh
the Pasternack-Sternheimer identity cancels the matrix
ment, thê 2s5gur ,/r .

2 u2p5 f & differs from 0 and this small
configuration mixing gives a nonzero autoionization pro
ability to this eigenstate; nevertheless looking at van der H
and Hansen’s data in Table IX one realizes that this result
very small autoionization probabilities. Considering the
of quantum defects and the linewidths reported in this tab
one notices a fair agreement between both computati
Amazingly enough, the 2p5dF and 2p7dF linewidths are
accurately predicted within the present formalism, thou
the large-l hypothesis does not apply. Conversely, th
quantum defects are not accurately obtained within
present formalism, because second-order correction invo
interaction with theNdnp series (N values from 3 to 10 are
included here!. By simply ignoring these interactions, on
3-11
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TABLE IX. Quantum defects and autoionization widths of 2lnl 8 states in C41. Widths are in atomic
units. TheB-spline computation by van der Hart and Hansen Ref.@40# concerns singlet states. The notatio
a(2b) stands fora3102b.

Lp

label
Leading

configuration

Quantum defect Autoionization width

B-spline This paper B-spline This paper

Fo 2s5 f 0.002 29 0.002 66 9.16(27) a
2p5g 20.013 69 20.013 65 1.74(26) 1.09(29)
2p5d 20.020 69 20.292 52b 6.47(25) 6.85(25)
2s7 f 0.002 43 0.003 05 3.34(27) a
2p7g 20.013 82 20.013 55 4.96(27) 1.01(29)
2p7d 20.017 52 20.079 64c 2.48(25) 2.69(25)

Fe 2p5 f 0.022 98 0.022 84 a
2p7 f 0.023 00 0.023 61 a

Ge 2p5 f 0.004 56 0.006 75 2.92(26) 3.36(26)
2s5g 0.000 74 0.000 63 1.83(27) a
2p7 f 0.005 43 0.007 75d 1.37(26) 1.65(26)
2s7g 0.000 76 0.000 74 1.43(27) a
2p7h 20.008 37 20.008 40 6.5(211) 9.27(212)

Go 2p5g 0.010 11 0.010 05 a
2p7g 0.010 18 0.010 19 a

Ho 2p5g 0.002 54 0.002 81 5.24(28) 5.66(28)
2p7g 0.002 33 0.003 05 4.52(28) 5.10(28)
2s7h 20.001 08 0.000 25 1.0(29) a
2p7i 20.005 59 20.005 28 3.8(212) 3.65(214)

He 2p7h 0.005 38 a
I e 2s7i 0.000 10 a

2p7h 0.001 99 7.70(210)
I o 2p7i 0.003 18 a
Ko 2p7i 0.001 51 4.53(212)

aMetastable~see the text!.
bIf the interaction withNdnp is removed,d50.001 12.
cIf the interaction withNdnp is removed,d50.001 10.
dIncludesNdnd contribution;d50.002 02 if removed.
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would get quantum defects positive and close to 1023, in
better agreement with the data from Ref.@40#. One may no-
tice in this table the regular decrease of the quantum def
and linewidths withL; some predictions are made for high
l for which data are missing in the literature. As in heliu
such large angular momentum data are very scarce.

As a last example, we give in Table X the quantum d
fects and widths for the 3l5l 8 doubly excited levels of C41.
Within the present formalism, the long-range coupling b
tween the 3l5l 8 does not vanish as it did in the 2lnl8 case
and the present results do include significant configura
mixing at first order. However, the figures in this table mu
be used with care for two reasons. First, the nonoverlap
pothesis central to the present model is harder to fulfill he
for instance, the 3p classical outer turning point is 2.82 a.
while the 5f classical inner turning point is 1.39 a.u. an
even the 5g orbital has its inner turning point at 2.76 a.u
Therefore, higher values for the principal quantum num
of the outer electron as well as higher values ofL would be
desirable, unfortunately no reference values are then a
able. Second, using the zero-order screened ener
2$(Z/N)21@(Z21)/n#2%/2 as we do here, the 4l3l per-
05251
ts

,
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il-

turbers considered at second order are almost degen
with the states considered here; however, clearly this deg
eracy is an artifact since perturbers such as 4d3d or 4f 3p
cannot be described using the present nonoverlap hypoth
To circumvent this difficulty, we present in Table X both th
plain second-order quantum defects~sixth column, valueA)
and the value obtained after subtracting the contribution
the 4ln l 8 series~seventh column, valueB). One must note
that autoionization processes leave the ion in theN51 or
N52 energy level, so this quasiresonance does not affec
widths as they are computed here. In Table X, we comp
our model with theB-spline method of van der Hart an
Hansen@40# and the Feshbach formalism of Bachauet al.
@35#. The latter work details the singlet and triplet cas
which allows to check the importance of exchange effec
they turn out to be moderate for some of theG states but not
all of them. The procedure, consisting of subtracting the s
rious 4ln l 8 as described above, brings our results in sign
cantly better agreement with the other theoretical determ
tions. The breakdown of nonoverlap hypothesis reasona
explains the residual differences. One also notices that
agreement with other determinations improves withL as ex-
3-12
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TABLE X. Quantum defects and autoionization widths of 3lnl 8 states in C41. Widths are in atomic units. Eigenstates are labeled us
Lp and the dominant configuration. The computation by van der Hart and Hansen Ref.@40# concerns singlet states, while that by Bach
et al. Ref. @35# are given for both singlet and triplet states. Two values are given for the quantum defects within the present framew
first one~A! is the plain result including all perturbing seriesNln l 8 with N<10, l<3 at second order, while the second one~B! excludes
some series as detailed in the text and in notes.

Quantum defect Autoionization width

Label Ref.@40# Ref. @35# This paper Ref.@40# Ref. @35# This paper
S50 S51 (A) (B) S50 S51

Ge 3d5d 0.128 74 0.125 0.171 20.8655 20.0744a 4.044(23) 4.4(23) 6.2(26) 4.62(23)
3d5g 0.062 79 0.064 0.059 0.0033 0.0677a 2.256(24) 3.1(24) 1.03(24) 5.73(26)
3p5 f 20.029 36 20.030 0.092 20.6292 20.0128a 6.41(24) 5.9(24) 2.0(24) 3.64(24)
3s5g 20.053 33 20.055 20.030 20.2607 20.0413a 8.87(24) 1.25(23) 1.87(25) 2.29(24)

Go 3d5 f 0.128 86 0.130 0.035 1.3432 0.1151b 1.09(24) 8.8(25) 2.2(24) 3.76(24)
3p5g 0.059 52 0.059 0.064 20.4568 0.0605b 2.99(25) 2.4(25) 3.2(26) 6.59(25)

Ho 3p5g 0.001 70 20.0397 0.0010b 7.50(25) 6.44(25)
3d5 f 20.045 30 22.0584 0.0043b 1.56(23) 1.14(23)

He 3d5g 0.0479 4.27(25)
I e 3d5g 0.0186 1.06(24)

a4 f np,4dnd contributions removed.
b4 f nd contribution removed.
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pected. We derive here new values forHe and I e levels.
Finally, let us mention that the present formalism is fu
adapted to determine positions and widths of states w
more dissymetric excitation and largerL such as, e.g.
3l10l 8H.

VI. CONCLUSION

Using a new theoretical framework based on diagonal
tion of the long-range form of the electronic interaction pl
second-order correction, we have been able to make acc
predictions about the position and width of a series
strongly interacting levels in large-l alkaline-earth atoms
Some new or amended assignations have been made fo
viously reported levels. In barium, the 6pjng experimental
level positions and widths have been accurately reprodu
More significant discrepancy remains on the 6pjnh levels
for which additional experimental data would be of gre
value. In helium, one has checked that though configura
ys

v.

.
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mixing is important, the collective quantum numbers (K,T)
are only partially relevant. When the overlap between b
electron wave functions is weak, the present formalism fa
well agrees with more complex ones such asB splines or
Feshbach theory. Finally, let us mention that autoionizat
probability has been considered here only through the fi
order Fermi Golden Rule. When one has to consider in
acting series such as 5d3/2ng and 5d5/2ng in barium, the
computation of autoionization linewidths including the p
larization effect by, e.g., 6p3/2n f ,h series must involve the
second-order Fermi Golden Rule. The present formalism
quite suitable for dealing with such effects.
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