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Series interaction and polarization effects in large-angular-momentum two-electron atoms
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Doubly excited atoms with an outer lar§jeslectron are expected to exhibit moderate series interaction.
However, accidental or systematic degeneracies may lead to strong configuration mixing. To describe such
phenomena, the present formalism uses a partial diagonalization of the dielectronic interaction plus a second-
order correction based on Coulomb Green’s function. It makes it possible to determine the eigenfunction
composition, level positions, and autoionization widths. While series interaction turns out to be weak for
almost degenerate high members of thérdy series in strontium, a significant configuration mixing is
observed on f;nl series of barium. A generally fair agreement is observed witm§ experimental data. The
6p;nh levels are accurately predicted, too, and new assignations are reported for some of them; however, the
computed linewidths are about twice as small as the measured ones. The method also applies to helium and
multiply charged ions, where the relevance of collective quantum numbers is analyzed. Some level positions
and widths are detailed.
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I. INTRODUCTION that accurate predictions concerning the atomic level mixing,
level positions, and autoionization widths may be achieved
Electronic correlation analyses in doubly excited atomswhen such interactions occur.

have given rise to a large amount of literature, both theoreti- The present paper is organized as follows. We develop the
cally owing to the development of multichannel quantumbasic formalism in Sec. Il. Application to the weakly inter-
defect theoryMQDT) andR-matrix theory[1] or to methods ~acting series in alkaline earth atoms are given in Sec. I,
more specifically adapted to heliufg], and experimentally namely, for calcium, where the relevance j&f coupling is
since the advent of tunable laser spectrosd@pyin parallel, tested, and for strontium, where we discuss an example of
large-angular-momentum doubly excited states have a®lmost perfect zero-order degeneracy. Since a larger amount
tracted noticeable interest in the past few years, because of data is then available, Sec. IV is devoted to barium, where
both their stability properties versus autoionization and theithe 6p;nl series interaction is analyzed and compared to ex-
ability to be accurately described by initio treatment. Fur-  periment. Section V concerns helium or multiply charged
thermore, largé-excited states play a prominent role in sev-ions for which a series of theoretical approaches exists in the
eral domains of physics, such as collisions involving multi-literature. Possible extensions of the method are reviewed in
ply charged iong4], or recombination processes in plasmathe conclusion.
physics[5]. When the outer large-electron wave function
hardly overlaps the core-electron wave functions, one may Il. THEORETICAL FRAMEWORK
assume that the core-outer-electron interaction is weak and ) _ ) )
can be described by the first term of the multipolar expan- Lgt us cons[der an atom or ion with two active electrons.
sion. Furthermore, the traditional nondegenerate Rayleighlhe inner one is referred to as hereafter the valence electron
Schralinger perturbation theory should apply. This methogand letr, is its radial co_ordlnate;_the outer one is called here
has been widely used in the past, at fi&+8] and second _the Rydberg electron with coordinate. The other electrons,
[9—11] order. However, even largeseries may strongly in- if any, are called core electrons _and are assumeq to form an
teract, as some of their terms come accidentally very closéinexcited closed shell. We consider states for which the Ry-
an instance of such a situation is provided by th®,®g dberg electron has a large angular _momentum thatr is
and 63,69 interaction in bariunf12]. Up to now, the con- On average greater thap and 1f ;; is at lowest order ap-
nection of such situations to perturbative approaches had n@foximated by I7;. The basis of the present treatment is the
been explored. Therefore, in order to deal properly with suct$0-called Heisenberg approximation, where the screened in-
interactions, we propose here a two-step method. First, théraction
electron interaction is diagonalized in a subspace including
all the strongly coupled states, i.e., those that are almost V:i_i 2.1)
degenerated; the composition of the eigenstates gives the rio g '
configuration mixing. Second, this wave function is cor-
rected by the interaction with nonresonant levels using thés considered perturbatively. Such an approach has been used
traditional second-order perturbation theory. Such a compuby a series of authors. For example, in barium Gallagher
tation can be performed exactly—at least concerning the exet al. [9] considered the singly exciteds@l states with
pansion over the outer electron spectrum—using Coulomd=<I=<7, while Pruvostet al. [10] analyzed the doubly ex-
Green’s function formalism. We wish to demonstrate herecited 6d;nl states with 6<1<12. However this decomposi-
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tion, often called “dipolar expansion” because of the lead- Once we have obtained the eigenstates and the eigenval-

ing term in Eq.(2.1), is not restricted to largestates since it ues of the interactio’’, we may compute accurate energy

has also been applied to a wide variety of correlated states levels correcting these eigenvalues through traditional

helium [13]. A second-order expansion, not very different second-order perturbation theory. This additional step is re-

from the present formalism, has also been used in moleculajuired because it has been emphas[4dd that second-order

physics to obtain the dipole polarizabilities of highRyd-  dipole-dipole interaction is of the same order of magnitude

berg states of Hland D, through analysis of microwave data as the quadrupolar interaction dealt with in the diagonaliza-

[14]. Though this is not explicitly written in Eq2.1), the  tion process. The only difference with the previous second-

interaction of the outer electron with the core electrons addsrder formalism is the following: in the infinite sum one has

up to thisV interaction, as discussed previou§8). to omit all the states that span the diagonalization subspace.
If one subtracts the interactiq®.1) from the total Hamil-  Namely, if £ is such subspace, the diagonalization procedure

tonian, one gets a zero-order Hamiltonian which separatesults in the determination of the eigenstates

into the 1 and 2 coordinates, and the Rydberg electron is

simply described by a hydrogenic Hamiltonian with a _ . -

nuclear “screened” chargé (the net charge of the core is |a>_i§£ (ieli), 9

{+1, i.e., 2 for helium or alkaline-earth atoms, but isoelec-

tronic ions with>1 may be considered, thoAccordingly, wherei denotes the basis elements of this subspace, or “con-

the valence electron behaves as an alkali-atom optical elefigurations.” The second-order correction to the energy of

tron and we use here a semiempirical method to derive itéis eigenstate is then given by

radial matrix elementgl5]. Exchange effects have been ana-

lyzed previously and shown to be moderate Iftarger than AD(a)y= > (ilaXali")D M
3 [16]. We then expect th¢k coupling to be the relevant iceilee fee  Eo—Ej
one, and this assumption will receive theoretical support in (2.9

the next section. From now on, we only need to assume that thi tion. th i the d inat .
the spin-orbit effects on theuter electron is negligible, n this equation, o ENErgy In the denominator can sim-

while the valence electron spin-orbit effect may compare t !y he chosen. as thg ﬁero-OTder energy Oﬁ thiate CIOSESt ©
the dielectronic interaction. eigenstatea (i.e., with maximum projectionor as thea

As an example, the[,,9q levels of barium, according to eigenenergy as derived from diagonalization. Since such a

the Heisenberg decomposition, have a zero-order energgfnommator is nonresonant, both values give approximately

equal to the sum of the,, threshold energy and of the € same level shit. While the.pro.jection coefficiehithy) -
Rydberg-electron energy are obtained from the diagonalization procedure, the infinite

sum overj is deduced from a method already sketch&d.
E(lo):EGp —R/9?=60941.688 crl, (2.20  One has to take care thatconfigurations iné are to be
v subtracted from the sum, which thus involves “reduced”

whereR is the barium Rydberg constant and energies aréreen’s functions instead of ordinary ones. _
relative to the neutral-species ground state. The quadrupolar Finally one may notice that if at least one of the states
part of the interactiorV couples this level to a series of involved in the diagonalization may autoionize, the denomi-

levels, among which is thep,,6g with zero-order energy ~ Nator in sum(2.6) may vanish foy states in the continuum;
one then adds a small positive imaginary part to the denomi-

EQ)= Eep,,~ R/6°=60939.077 cm’. (2.3 nator and the second-order elemar®) is now complex:

2) _ 2 H
It appears that the quadrupolar matrix element¥ afe then AP=sE@-iT/2, 2.7
significantly greater than this separation. For instanclejsf

(2) pei - i -
712, one gets SE'“’ being, as above, the second-order shift Rnithe auto

ionization width of the eigenstate, computed at first order,

(6p199[k=7/2]|V|6paBa[k=7/2])=26.7 cnr . i:e., th.rough.the Fermi Golden Rule, but accounting for con-

(2.4  figuration mixing.
Computational details are as follows. The matrix elements

The nondiagonaV element(2.4) is greater than the zero- of the V operator are obtained for the valence electron part
order energy differenc&.2), (2.3), which precludes the use using a semiempirical mod¢lL5] where the input data are
of ordinary nondegenerate perturbation theory. Thereforehe parent-ion energy spectrum and the grandpdctosed-
one has to perform a diagonalization of the interac¥obim  shell core polarizabilities and core size. The parent-ion en-
the space spanned by the quasidegenerated states. Zero-orelejies are taken from measurements, while we use the dipo-
states such asp,,6g will be called “configurations” in the lar and quadrupolar polarizabilities available in the literature
following. The matrix elements ofV in the subspace [18]. The Rydberg electron bound-bound matrix elements of
n;ilijinel L k] are easily computed in thé scheme with the V are deduced from recursion relations quite similar to the
long-range approximation(equivalent to neglecting ex- one obtained in the bound-free caskd]; concerning the
change [16]. The diagonalization involves matrices of small “on-shell” elements, i.e.,(nili|r*t*1|nj =njl;), one may
dimensions for which a standard Jacobi procedLt&  even use closed analytical expressions such as those derived
turned out to be completely satisfactory. from group theonyf20].
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TABLE I. Eigenfunction composition of thed35I[ k= 7/2] levels in calcium. The traditional composition
percentages are the square of the tabulated coefficients.

Eigenfunction 85,,5d 3d;,,59 3ds,,5d 3ds,559
a=1 0.9074 —5.0x10°° —0.4202 —-9.4x10°8
a=2 9.7x 1073 0.9927 6.410°° —0.1204
a=3 0.4202 —1.08x10 2 0.9073 —7.4x10°3
a=4 —4.3x10°3 0.1204 1.15% 102 0.9927

The second-order correction involves an infinite sum oved,,nI[k] and 3s,n’l'[k] couplings withn’=n andl,l’
the principal quantum numbers of the inner and outer eleceompatible with the given angular momentum and parity.
trons. As detailed previous[21], on the one hand the inner- For instance, fok=7/2 and parity even, the configurations
electron sum is replaced by a numerical truncated sum; thigvolved in the diagonalization are d3;5d,3ds.549,
approximation relies on the rapid decrease of such elemengds;,5d,3ds,,59. The diagonalization in this 44 subspace
when the principal quantum number of the alkalilike ion in- gives the eigenstates as detailed in Table I. It appears that the
crease$15,22. On the other hand, the outer-electron sum isconfigurations with different outer are almost not mixed.
performed exactly using the Coulomb Green function, forThis is satisfactory for several reasons. First, thingl
which the Sturmian representation often provides an efficienstates are certainly not well described here because the inner
method of computatiof23]. and outer wave functions significantly overlap. But the
As in the nondegenerate cafszl], the core polarization present analysis points out that thel;8g states behave
shifts these energy levels. The effect on the inner electron imostly independently of them and therefore the results for
automatically accounted for because the zero-order energyie g states are certainly reliable. Second, it is an indication
levels are taken from experiment and thus include this polarthat a more complex problem, where the diagonalization
ization. In a previous papgB] we established that the core would involve much more configurations, may reasonably be
polarization bybothactive electrons is implicitly considered split into several parts, the diagonalization within (lexen
provided the inner-electron matrix elements are properlysmalle) subspace with given outébeing almost sufficient.
screened. Finally, the outer-electron contribution to core po- In view of the Table | results, we can assign the relevance
larization is obtained by evaluating the matrix elements of for the jk or Lk coupling scheme. One can check tllat
L a1 -6 coupling holds very well for @85g states in calcium. For
Vo= —zadly —3aql1 - (2.8 example if for eaclk one denotes through; the eigenstate

that is closest to th¢k-coupled|3d k]) one gets
The mean value of this operator for the eigenstais given g pled|3ds5gTk]) g

by (3dg350|@,)=0.9798 if k=5/2, (3.1
1y ; =0.9927 if k=7/2, 3.2

Bpai= 2, (ila)al Dl Vialnil), (29 | 82

jeé =0.9999 if k=9/2, (3.3

where the prime in the sum means that it is restricted to
configuration pairs=1{n,;l,ij,inili}, j=1{n,l,;j,;jn;l;} such
as Ny =nyj, l,i=lyj, Joi=iyj, andli=lj, ie, with all 40 square of these quantities, giving the traditional percent-

uantum numbers identical except possibly the outer- ) . - . :
glectron principal quantum numbersp P y age of configuration &;,5g[k] in the considered eigen-

states, ranges from 94% to almost 100%. This analysis rein-

forces the statement th@k coupling is relevant for series

IIl. SERIES INTERACTION IN CALCIUM AND such asNdjng: for instance, in calcium, ih>5 the elec-
STRONTIUM tronic interaction, i.e., theV matrix element, decreases

_3 . . .
In calcium and strontium, moderate series interactions cafPUghly asn* and therefore thg¢k coupling is even more
be analyzed within the present formalism. A rather |argerelevant higher in the series. Of course this statement does

amount of experimental data is available for comparison. NOt @pply if series interaction is important, as will be illus-
trated in the barium section. Considering the alkali-earth at-

oms heavier than calcium, the inner-electron spin-orbit effect

increases while the electronic interaction remains approxi-
The 3d;ng[k]® states of calcium have been investigatedmately the same; therefore, here aggincoupling is fully

in detail [24-26. We first consider then=5 levels for relevant for states such asighg in strontium and 8;ng in

which the electrostatic coupling is greatest compared to thearium.

3ds,—3ds), fine-structure splittingthe electronic interaction Alternately, the same analysis proves that tlign@i[ k]

is expected to decrease as®). In order to compare the states closely obelyk coupling—in fact,L S would be even

1/r 1, matrix elements with this splitting, we analyze the more relevant for lown values but the outer electron spin is

—0.9737 if k=11/2. (3.4

A. Calcium
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TABLE Il. Eigenstates resulting from the interaction of the evely, £3 and 4ds,15 energy levels in
strontium. The diagonalization is performed for all even-parity levels with<8B& 13/2; results are dis-
played only for dominant configuration with an outgor i electron. The experimental afimatrix results
for k=3/2, 5/2 are from Goutist al. Ref.[30]. Thek=7/2 and 9/2 assignation to experimental d&t4| is
an interpretation according to the present analysis.

Position (cm't)

k Leading Other Present Second ExperimentR-matrix
configuration configuration paper order
3/2  4dspl5g (95.7% 4dsp23d (3.7% 6027755 60277.18 60 277.55 60 277.55
5/2  4d;,23g (68.999  4ds,159 (30.9% 60278.78 60279.45 60279.5 60279.8
5/2  4ds,159 (68.9%  4d3,23g (30.9% 60278.01 60277.47 60277.5 60277.5
712 4d3,23g (68.4%  4ds,159 (31.5% 60278.98 60279.78
712 4dg,159 (68.9%  4ds,23g (31.5% 60278.69 60277.89 60277.7
72 4ds,15 (100% 60281.71 60280.71
9/2  4d3,23g (98.9%  4ds,159 (1.1% 60280.07 60280.12
9/2  4ds;,159 (98.9%9  4d3,23g (1.1% 60278.57 60278.45 60278.4
9/2 4d3,23 (67.0% 4dg,15 (33.0% 60280.51 60280.61
9/2 4ds,15 (67.0% 4d3,23 (33.0% 60280.59 60280.49
11/2  4d3,239 (90.3%9  4dspl5g (9.7% 60280.40 60280.42
11/2  4ds159 (90.3%9  4ds239 (9.7% 60279.14 60279.16
11/2  4d5230 (71.2% 4ds,15 (28.8% 60280.51 60280.54
11/2  4dg,150 (71.2% 4d5,,23 (28.8%9 60280.35 60280.32
13/2  4ds;159 (100% 60280.06 60280.05
13/2  4d5;,23i (99.8% 4ds;,15 (0.2% 60280.53 60280.53
13/2  4d5,15 (99.8% 4d3,23i (0.2% 60280.26  60280.26

ignored here. For example K=5/2, the same diagonaliza- patible with k between 3/2 and 13/2 were included in the
tion that gave the above quoted gives, among other eigen- computation, only d;ng and 4d;ni are included in this
vectors, table: the positions fdr=0 or 2 would not be reliable within
the current formalism, while thevalues greater than 7 are
far from experimental investigation and almost behave as
_ ) o pure hydrogenic levels. In this table, the second column is
the subscripf being here merely to convey that this is the {he |apel attributed to the eigenstate according to the present
eigenstate with maximum projection oml3dF[5/2]. diagonalization; the percentage of the leading configuration
is indicated between parentheses. In the third column, we
B. Strontium mention the next important configuration and its percentage.

As our next example, we now consider the even-parity”he fourth column contains the newly derivc_ed position with
4d;nl series in strontium. The data used in our computatiorféspect to the ground state of Sr, while the fifth one refers to
are the ion energy levels from Moof@7] with 7p; levels ~ our second-order computatipP1]. The sixth column is from
amended according to Lange al.[28], while the ionization ~ Ref. [30] for k=3/2,5/2 and from Ref[31] for k=7/2,9/2,
potentials are from Esheri¢R9] for Sr and Langest al.[28]  and the last column contains the theoretical predictions ap-
for Sr. Larget doubly excited levels have been investigatedpearing in Ref[30].
by Goutiset al. [30] in the J=1,2 case and by Jimoyiannis A rapid inspection of Table Il shows that largjestate
et al. [31] in the J=3,4,5 case, the former paper containing mixing is, in some cases, far from negligible. For instance,
an R-matrix-based theoretical analysis too. Special attentionhe eigenstate labeledd4.,23g[k=7/2] contains almost
is paid here to the d3,23 —4ds,, 19" interaction. Indeed, 32% of 4d5,,159[ k= 7/2] character, but this results in<al
using the above-mentioned spectroscopic references, then ! difference in the energy position compared to the “tra-
zero-order energies for these levels are 60280.65'cand  ditional” nondegenerate second-order perturbation in the
60280.71 cm!, which means almost exact degeneracyfifth column[21]. It must be mentioned that this nondegen-
However, it was stated in our previous analyses on positionerate perturbation calculatianustonly include the second-
[21] and widths[32] that usual nondegenerate perturbationorder dipolar correction—such as the interaction between
theory with only dipole interaction included at second order4d;ng and 5;nh; if the quadrupolar contribution to these
was adequate. We can justify this attitude as follows. Ousecond-order positions had been included, one would have
results concerning theyng and 4d;ni are detailed in Table observed an unphysical quasidivergence on the positions,
[I. Though alll outer-electron angular momenta values com-due to the 45,23l —4ds,,15 accidental degeneracy.

(3d5dF[5/2]| ) = 0.9951, (3.5
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TABLE lll. Position and width of the interacting,,9g[ k] and 605,,69[k] levels in barium. In each
pair of data, the first one is the energy with respect to the ground state of neutral barium, and the second is
the autoionization width. All data are in ¢rh. The second and third columns are the second-order compu-
tation ignoring the quadrupolar coupling between bof}) 6eries: only dipolar interaction is included at
second order. The next three columns detail the results from diagonalization plus second-order correction: the
number in parentheses is the percentage of the dominant configuration in the eigenstate. The experimental
data are from Ref12]. The zero-order energies are 60 941.69 ¢rand 60 939.08 cm' for the 6p;,9g and
6p169 levels, respectively. Theps,69[11/2] is weakly mixed with the 6,,,9i[ 11/2], which is included
in the diagonalization but not tabulated here.

State Second order Diagonalization Experiment

6ps60[5/2] 60979.83 2225 (99%) 60978.68 2547 60979:23.6  23.76-7.13
6p.,90[7/2]  60939.37 8.43 (70%) 6095352 155

6ps60[7/2] 60904.37  16.85 (70%) 60889.37 11.88 6088942.1  14.03-4.21
6p.1,90[9/2] 60939.79  10.37 (90%) 6094570 13.15 6094341.1  14.42-2.16
6p3,60[9/2] 60878.31  15.86 (90%) 60872.48 13.16 60868:51.0  13.47-2.02
6ps-B60[11/2] 60954.84 2372 (96%) 60956.56 22.65 60942:91.8  23.32-3.50

Amazingly enough, the second-order results of column 5with n from 11 to 15 and from 5 ton—1, but they all lie
seem to be even more accurate than the present data derivadove the @, threshold and therefore do not interact
from diagonalization; a possible though not definite explanastrongly with discrete members of th@f,nl series.
tion might lie in some inaccuracy of thedglevels in Sr, a
fraction of cm ! being significant here. Our main conclusion
from this analysis will be that this degeneracy hardly mani-
fests itself in significant levels shifdelow the cm* hera, The data from Jaffeet al. [12] are a useful test of the
though state mixing is indeed important. Such a behavioPresent diagonalization procedure. Moreover, since our pre-
originates in the fact that we are dealing here with highvious works[11,21,33 concerned the position and width of
members of Rydberg series with rather differenvalues, the lower Edjnl series, some new theoretical values USing

A. 6pjng states

thus the nondiagonal couplings remain moderate. plain second-order theory will equally be given here on
6p;ng states outside the strong interaction regions.
IV. SERIES INTERACTION IN BARIUM Our results about interacting members of thpgrég series

are detailed in Tables Ill and IV. The second-order compu-
A situation rather different from thedjnl series interac- tation in second and third columns is performed according to
tion in strontium will be provided by the barium case whereour previously detailed formalisrf21,32. For the sake of
the 6py,,91 and G361 states—and, to a lesser extent, theconsistency, at first perturbation order the interactibis
6p,,14 and the 3,71 states—interact much more signifi- expanded up to the quadrupolar contribution, while at second
cantly. A series of experimental data is available fp;g  order it is expanded up to the dipolar term only; these trun-
stated 12] and for 6o;nf,nh stateg33]. Jones and Gallagher cations arise from consideration that the dominant contribu-
[7] performed an investigation of tHedependence of quan- tion to third order, neglected here, should scale as the octo-
tum defects and autoionization widths for thp,6nl series  polar contribution at first order or as the dipole-quadrupole
with n from 11 to 13 and from 4 or 5ton—2 orn—1, but  contribution at second ord¢see, e.g., Ref11] for a simple
we do not expect strong series interaction in thisange. argument One should mention that in tHe=5/2 and 7/2
Accordingly, Pruvostet al. [10] studied the §3.nl levels  results displayed in the present tables, tlieng[ k] contri-

TABLE IV. Position and width of the interactingm»14g[ k] and 5,,79[ k] levels in barium. See Table
Il for details. The zero-order level positions are 61 736.58 and 61 747.80 ¢on 6p,,,14g and 64,79,
respectively. In addition to the 61 714.8 thlevel that was labeled [&,,7g[ 7/2]J=3 in Ref.[12], we
propose here to label their unassigned 61 716.6'clavel as G4,79[7/2]J=4.

State Second order Diagonalization Experiment

6ps,79[5/2] 6177232 16.80 (100% 6177224  16.86 6177125  16.56-4.97
6p.,149[7/2] 61735.84 551 (55%) 61742.61 876 61742806  4.03-1.21
6pap70[7/2] 6172515 1272 (55% 61718.19  6.76 61714816  10.96-3.29

61716.6-0.68  9.09-1.36
6p.,149[9/2] 6173595  3.13 (88%)61738.23 542 61736530.29  3.83-0.57
6ps,7g[9/2]  61708.72 12.07 (88%) 61706.49  9.82 6170340.77 10.2%1.56
6ps,7g[11/2]  61756.81  18.27 (99%) 61756.99  18.15  61747#01.34  17.832.67
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bution to the second-order shift has been subtracted. These ' ' ' ' '
perturbing series both foj=3/2 and 5/2 give rise to an 0.04 -
unphysical quasiresonance because thg,6g has a zero-
order energyE(6ps),) —R/6% almost equal tdE(6d;) — R/22
but the &;2p falls completely outside the present formal-
ism; largel techniques obviously do not apply peelectrons,
and in barium 9 is a filled orbital that cannot be handled
like vacant orbitals.

Examination of Table Ill shows that the current diagonal- L N BN R
ization plus second-order formalism provides positions and
widths in fair agreement with the experimental data, espe-
cially for the lowestk states. For instance, in tlke=7/2 case -0.04
where the §,,,99—6p3,,6g mixing is significant(the eigen- ;
state on the third row has 70%p§.6g character and 30% I
6p1,99 character, the diagonalization improves signifi- _0.08 } i
cantly the agreement with the experimental positign; experi- T
m.ental data.about thepg,,99g[ 7/2] would be useful since thg 5 10 15 20 5
widths predicted from second-order theory and diagonaliza- n
tion differ by almost a factor of 2. The only indication in

Ref. [12] is that, except fom=14, the 6,,ngJ=3 (i.e., FIG. 1. Quantum defects and scaled autoionization linewidths of

[k=7/2]) feature observed in linear polarization lies € BPandlk=5/2] states of barium. The scaled linewictfI" is

-3 _ _ . in atomic units. The filled circles are experimental data from Ref.
0'0.021. . above_ th_e[k—9/2]J—5 fe_ature and is broader, 12]. The solid and broken lines are the present second-order com-
which is in qualitative agreement with the present paper. A

. ) L utations, with quadrupoles included at second order for the broken
a rule, all the widths computed through diagonalization fa”line. The solid line for the width may be accurately fitted to

inside the experimental error bars; these bars are rather largg o3gs- 0.603h2 below the &y, threshold 6=8) and to 0.0381

however, the $,,,99[9/2] is correctly described using di- _( 54342 above. Fon=6 and 7, the open triangles are the partial
agonalization and not through plain second-perturbation orgiagonalization results as displayed in Tables IIl and IV.

der. Finally, one must state that the largkestalues are sys-
tematically predicted above the experimental data, as much To analyze the quantum defects and scaled linewidths
as 14 cm! if n equals 6; though the definite explanation for across the whole series, we have plotted in Figs. 1-4 these
that remains unclear, it might originate in the lack of high-quantities for the 63,ng[k] states withk from 5/2 to 11/2.
lying perturbers included at second order, which could berhe theoretical predictions from second-order perturbation
more sensitive here than for lolwbecause angular factors including or not including the quadrupolar interaction at sec-
differ; another possible reason might lie in the quadrupoland order(i.e., terms such a&pz.ng|r2/r2|6p.,rg) Z/A,
interaction @3,69[11/2]-6p,,vi[11/2] with v=9; a whereA is an energy denominatoare compared to avail-
simple second-order computation ignoring degeneracy showsble experimental data.
that such a quadrupolar interaction shifts th®;,669[ 11/2] In Fig. 1 fork=>5/2, it appears that, omitting the=6 and
by —16.5 cm!, but a diagonalization involving, e.g., 7 cases previously analyzed, the agreement between second-
6pyvi with 7<v=<10 would be useful. The analysis of order perturbation theory ignoring the quadrupolar terms and
6psng[k=11/2] quantum defects detailed below corrobo- experiment is fine. The inclusion of quadrupoles at second
rates this assumption. Finally, one must note that here widthsrder changes significantly the quantum defegetsd to a
are predicted more accurately than positions; this stems froriesser extent, the scaled linewidthsith usually degraded
the fact that first-order computation of widths, which is suf-agreement with experimental data; it involves the interaction
ficient here, only involves a finite sum on “perturber” lev- of the 6ps,ng[5/2] states with the B,,rd[5/2] states,
els, i.e., the various ionization thresholds; conversely, thavhich are certainly poorly described within the present large-
computation of shifts must always be performed up to thd formalism. Besides, one can see that the strong variation of
second order at the minimum, and this involves an infinitethe experimental quantum defect for- 15, without simulta-
sum over the two-electron atomic spectrum, in which trun-neous variation of the scaled linewidth, does not relate to the
cation is not avoidable. presence of any perturber in this region, as far as we know.
The inspection of Table IV concerning the This probably indicates an underestimate of certain error
6p1/,149—-6p3,7Q interaction leads to similar conclusions. bars. Though it would be more apparent on a scaled-width-
The diagonalization procedure significantly improves theversus-energy plot, the linewidth computed at second order
agreement with experiment except for the highlestalue.  including dipoles(solid line in the top half of Fig. JLaccu-
The present analysis allows us to assign the unidentifiegately follows a two-term law with a discontinuity when
61716.6 cm* level of Ref.[12] as 63,7g[k=7/2] J=4;  crossing the threshold. Conversely, the corresponding quan-
we may attibute the 1.8 cnt departure from thék=7/2] tum defectqsolid line in the bottom half of Fig.)lare rea-
J=3 position partly to experimental uncertainty and partlysonably fitted with three terms, namely, hefe- —0.032
to pair splitting, i.e., weak exchange effects. —0.38h%+2.69h* whatever the value af.
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FIG. 2. Quantum defects and scaled autoionization linewidths of FIG. 4. Quantum defects and scaled autoionization linewidths of
the 6pspng[ k=7/2] states of barium. See Fig. 1 for details. The the 6p;,ng[ k=11/2] states of barium. The solid line for the width
second-order results including quadrupoles would be “divergent’may be fitted to 0.04360.706h? below the &, threshold and to
for n=6 because of the interaction wittp§,99[7/2], and do not  0.0434-0.688h? above. See Fig. 1 for details.
appear on the graph. For instance, one would get here a quantum . . . . .
defect of 0.28 and a scaled linewidth of 0.85. Then the diagonalizaPy & factor of 2 concerning the linewidths in the same region;
tion proceduretriangle is the only reliable one. The solid line for ©Ne Might conclude that the fine-structure autoionization pro-

the width may be fitted to 0.02920.456h7 below the @, , thresh-  C€SS @3Ng—6py ¢l responsible for the jump in the theo-
old and to 0.0478 0.508h2 above. retical width whenn changes from 8 to 9 is simply absent
from experiment! The fine agreement between both theoret-

As seen in Fig. 2, the data concerninggng[k=7/2] ical predictions for n=9 means that second-order
are less abundant. Fargreater than 8, the present quantum (@uadrupole-dipole corrections to the width such as
defects agree fairly well with experiment, and inclusion of 6P32Ng—6p1/,vg—5dgz€h weakly contribute to the total
quadrupoles at second order has almost no effect either giMidth. Besides, a detailed examination of the partial widths

positions or on widths. Rather intriguing is the disagreemengemonstrates that the fine-structure autoionization process is
well described by the first-order quadrupolar amplitude, the

second-order dipole-dipole amplitude providing here a posi-
] tive correction of only about 4%. This differs strongly from
{ ! the &d;ng states of bariuni11,34 where the second-order

ts. correction was large and with a negative sign. Brief mention
] should be made of the®,8g state, lying just below the
J.J_ ] 6p1» threshold; it is close to the,,68g state but then

L- ] difference is so large that such coupling is likely to be small.
4 However, the second-order computation including quadru-
] poles gives a “divergent” quantum defect of 0.074, far from
the prediction without quadrupol€8.036; the coupling be-
tween 3,89 and &,,,vg is here responsible for &16.3
cm~ ! shift. A more realistic treatment would involve a di-
agonalization including all the ,vg states lying within
the 6p3,8¢g linewidth. This procedure is probably unneces-
sary, since the simple second-order computation without

I T quadrupoles is almost in agreement with experinénice
0.00 i ] the error bar.
Lo oo bowww be o w te o 1 Thek=9/2 case displayed in Fig. 3 leads to rather similar
5 10 15 20 25 conclusions. The agreement in scaled linewidths is satisfac-
n tory if we ignore then=8 case for the reason mentioned just

FIG. 3. Quantum defects and scaled autoionization linewidths oftbove. The rather large error bar for 24 allows an accept-
the 6p,,ng[ k=9/2] states of barium. The solid line for the width able agreement between our prediction and experiment; the
may be fitted to 0.02790.446h? below the ,,, threshold and to  disagreement by a factor of 0.68 had been incorrectly attrib-
0.0378- 0.465h? above. See Fig. 1 for details. uted to the absence of second-order autoionization ampli-
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FIG. 5. Quantum defects and scaled autoionization linewidths of  F|G, 6. Quantum defects and scaled autoionization linewidths of
the 6pynglk=7/2] states of bgrlum. The solid line for the width the gp,,ng[k=9/2] states of barium. The solid line for the width
may be fitted to 0.03390.502n°. See Fig. 1 for details. may be fitted to 0.04260.671h% See Fig. 1 for details.

tudes in our previous treatmefitl]. In fact, one can check 6psrg at second order improves the theory-experiment
autoionization width affect only this partial probability by yariation of the experimental quantum defects in the
about 10% and the total autoionization width by 3%, since_ 1g_23 region, where no perturber is expected, emphasizes
the fine-structure transition contributes here for only 30%, aSgain the need for more accurate measurements.
a rule, of the total width ifn is larger than 8. Finally, one
notices again several unexplained oscillations in the quantum
defects, for instance ifi=17, 20, or 24. This emphasizes the
need for more accurate measurements in this largegion. The even-parity §;nh[J=4,5,6] states of barium have
The 6p3nglk=11/2] quantum defects and widths ap- been analyzed in some detail by Bente and Hogery8&t
pear in Fig. 4. The scaled linewidths are again well repro-As mentioned in the beginning of this section, the data from
duced, except for fluctuations aroumd=11 or 17, which  Jones and Gallagh€r] and from Pruvoset al.[10] concern
seem to be experiment artifacts. Here the fine-structure trarenergy regions where series interactions are expected to be
sitions contribute, ih>8, to the linewidth for less than 2%. weak and where usual second-order perturbation theory
As mentioned above concerning thp£69[ 11/2] level, the  should apply; here we will not discuss them any further.
computed quantum defects lie systematically below the mea- The comparison between our predictions and Bente and
sured ones by roughly 0.01 units, i.e., several times the errdidogervorst's measuremenf83] is presented in Tables V
bars. Interestingly, one will notice that, accounting for theand VI for the domains of B;,9h—6ps6h and
guadrupolar interaction &,ng—6p,vi at second order, 6pq,14h—6p5,7h interaction, respectively. Here we have
the disagreement is reduced by a factor of 2. Therefore, ttried to amend or clarify the assignation of the experimental
improve the computation one might include quadrupoles alevels. For instance, four of thep§,,9h or 6p;.6h levels of
second order, but consistency would require consideringable V appear in their Table 6 with the only labed6,9h.
equally dipole-dipole-quadrupole terms at third order, as The situation here differs somewhat from thg;6g case
well as fourth-order contributions containing the product ofpreviously analyzed. One the one hand, the present level po-
four dipoles. Such computation is lengthy though tractable sitions agree with experiment. For instance, klke9/2 com-
priori, and has not been attempted here. puted levels in Table V fall inside the experimental error bars
Finally, we will briefly discuss the B,,,ng case illus- using the diagonalization procedure, while plain second-
trated by Figs. 5 and 6. We did not try to compare our result®rder theory ignoring second-order quadrupolar interaction
to those of Jones and GallagH&f because this work does between the B;nh configurations would be less satisfactory.
not specify thek value. In thek=7/2 case, no experimental Ourk=11/2 predictions are only 2 cntabove the measure-
data are available other than those discussed in Tables Ill andlents, this discrepancy coming probably from the insuffi-
IV. Setting aside the above discussed9 and 14 states, the cient number of “polarizing” levels as stated above in the
k=9/2 computed linewidths agree with measurements, eveBp,,ng[11/2] case. On the other hand, the experimental
without quadrupoles at second order. Conversely, one nawidths are systematically greater than the present ones, often
tices that inclusion of the quadrupolar interactiop, fng— by a factor of 2. We are unable to find a reasonable expla-

B. 6p;nh states

052513-8
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TABLE V. Position and width of the interactingpg,.9h[ k], 6p3,6h[K] levels in barium. See Table IlI
for details. The experimental data are from Bente and Hogervorst[B&f. The zero-order energies are
60941.69 cm® and 60 939.08 cm' for the 6p,,,9h and &5,6h levels, respectively. The,,6h[13/2] is
significantly mixed with the 6,,,9k[ 13/2], which is included in the diagonalization but not tabulated here.

State Second order Diagonalization Experiment

6p36h[7/2] 60962.29 147 (100% 60962.25 1.63
6p1/,9h[9/2] 60941.29 1.20 (82%) 60945.56 1.41 60 945:50.3 2.8:0.6
6p3,6h[9/2] 60921.08 1.09 (82%) 60916.82 0.90 6091630.3 1.6£0.4
6p19h[11/2] 60941.41 127  (94%) 60943.24 1.37 6094140.3 3.1+0.6
6p36h[11/2] 60909.48 0.96  (94% 60907.66 0.86 60 905:70.3 1.1x0.4
6p3,6h[13/2] 60 950.76 1.27  (76%) 60957.62 0.97

nation for that; however, we have no reason to cast seriougl the overall agreement on positions is acceptable, while
doubt on the present computation. The simple second-ordehe factor of 2 on linewidths is again observed, mainly on the
computation as displayed in Table V does not significantly6p,,7h states. This discussion stresses the need for more

differ from the diagonalization result and, as stated aboveaccurate measurements on such doubly excited states.
the computation of widths involves here a finite sum over

only three ionization thresholds, all of them reachable V. DOUBLY EXCITED STATES IN HELIUM AND
through dipolar transition. In support of our computation, we MULTIPLY CHARGED IONS
notice that in the same Table 6 of R¢83] the 6p;,13h
width is 2.4 cm 1, while Jones and Gallaghgf] measured Because of the Coulomb degeneracy in the hydrogenic
0.51+0.03 cm %, and in the second-order framework we getion spectrum, the above described diagonalization procedure
0.52 and 0.56 cm' for k=9/2 and 11/2, respectively. must always be applied when studying doubly excited levels
The situation is more confusing concerning theof true two-electron systems such dsi in helium or C.
6p1,214h—6ps7h interaction as shown in Table VI. Tables Furthermore, while of course a large amount of theoretical
6 and 7 of Bente and Hogervorst report not less than 9 disdata is available for this isoelectronic sequerisee, e.g.,
tinct states with) between 4 and 6, while only 6 are expected Ref.[35]), it mainly concerns rather low values; data with
if jk coupling holds. The 61725.7 cm line reported as L larger than 3 are scarce and sometimes unreliable, since
6p37h could not be assigned here. Comparing to our posifarged orbitals are not systematically included in the compu-
tion predicted at 61 731.6 cm, we assume that the 61 733.5 tations. Nevertheless, one must mention a recent work on the
and 61734.2 cm! lines labeled as 6,,14h are both positronium negative iofi36] using the complex-coordinate
6p1214h[9/2]; the uncertainty on the positions being 0.3 rotation method.
cm 1, this splitting may be an artifact, it may also corre- A now traditional description that emphasizes the corre-
spond to thel=4-5 pair separation. Accordingly, we esti- lated character of the wave function is provided by the dou-
mate that the 61736.3 and the 61737.5¢nlines both  bly excited symmetry basi®©ESB) introduced by Wulfman,
correspond to our [6;,,14h[11/2] state at 61738.0 cnt.  Herrick, and Sinandg [37]: the DESB states are labeled
The other 4,7h[k] states are assigned according to theirn(K,T)ﬁL”, whereN (respectivelyn) is the inner(respec-
relative positions; the level at 61 741.0 chin Ref.[33]is tively outep principal quantum number. Th&(T) numbers
assigned ak=9/2 instead of 13/2 and we attribuke=13/2  describe angular correlations, and later [88] introduced
instead of 7/2 to the level at 61 756.4 ¢t As seen in Table the A number that refers to radial correlations. For all the

TABLE VI. Position and width of the interactingpg»14h[k], 6ps,7h[k] levels in barium. The zero-
order level positions are 61 736.58 and 61 747.80 tfor 6p,,14h and &,,7h, respectively. Experimental
data are from Bente and Hogervorst R&3]. Some assignations are new and others amended, as described
in the text.

State Second order Diagonalization Experiment

6pa,7h[7/2] 6176236 1.70 (100% 6176235 1.70 61765404  3.70.7
6p.,14n[9/2]  61736.47 043 (64% 6173162 057 61733503  0.7-0.4
61734.2:0.3  0.7-0.4

6pa,7h[9/2] 61736.34  1.26 (64% 6174118  1.12 617419003  2.5-05
6p.,14n[11/2] 6173651 046 (77% 6173801  0.76 61736303  1.5-0.4
61737.5:0.3  0.7-0.4

6psp7h[11/2]  61729.04 111 (77% 6172755  0.82 61730403 1.7:0.4
6psp7h[13/2] 6175515 151  (98% 61755.73 147  61756#40.3 1.5:0.4
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TABLE VII. Composition of the 35'G helium eigenstates in
terms of DESB K,T) quantum numbers. The figures are the (n(K,T)3L”|‘I’k>=Z cik5|i|_5)\i}\_(n(K,T)3L’T|3Ijn)\j>
squared projections of the present eigenstates over,({KeT)3 g : :
EI;S?helements, in percept. A sum has.been performgd fon 3. ><<(Z=2)n)\j|(§=1)5>\i>. (5.2)
<9. The eigenstate label is given according to the leading configu-
ration, the percentage of which is given in parentheses. FoGthe

§ymmetry, the correlated b_asis _contains si>_< elementsc,) since it alsen the right-hand side of Eq5.2), the second and third
involves the pnh and 3ni series. Accordingly, thés® DESB 50165 account for the orthogonality of the inner- and outer-
includes three elements, since it involves tiina series. electron angular parts, the fourth factor is proportional to the
well known 9j coefficient[37] involving (K, T), and the last

one is an overlap integral of hydrogenic functions of the
samel but differentZ. These integrals have been simply
3s5gG® (35.8%) 7.3 404 08 214 296 0.6 computed using the analytical expressions of the wave func-
3p5fGe (62.8%) 657 7.1 0.0 179 0.8 8.6 tions. The main DESB values that have a significant pro-
3d5dGe (97.4%) 23.7 139 0.1 453 3.7 13.3 Jection on the present eigenstates range from 5 to 7. Exami-
3d59G® (59.7%) 1.0 17.0 0.1 91 16 712 hation of Table VIl reveals that some of the presently
3p5gG° (79.0%) 707 217 7.6 computed eigenstates are reasonably characterized by the
3d5fG° (79.0%) 272 06 632 DESB numbers, such as the second eigenstate labeled as *“
3p5fGE,” for which the squared projection on theK(T)
=(2,0) levels is about 66%. Conversely, it appears that, for

largeL states considered here, thevalue is zero as there is Many of them, theK,T) description is a rough approxima-

no significant overlap between the wave function of bOthtion; for énstance, the first eigenstate in this table, labeled
e " 0

electrons. Since we only consider here light elements, th g;ngG_’l ?earr;s only 40% of (2,0) character and almost
spin-orbit effect is ignored for both electrons, and becaus€””’ of (-1,1) c aracte/r. . . .
exchange is expected to be very small for largetates, we Neverth_ele'_ss, thel31" states in helium do not pr(_)wde a
also drop the total spiBwhen labeling them. However, even fully quantitative test for th? present fgrmallsm, since the
at this early stage we must mention the probable inadequa erlap of both electron orbngls IS S|gn|f|_cant except for the
of DESB quantum numbers for such largestates. First, in . rgestL_vaIues(S or § for Wh.'Ch comparison data is lack-
the DESB elements both electrons have definite principa'lng' for instance, the B classical orbital extends up 10 8.5

quantum numbersl andn, and experience the same nucleus®-Y- frpm the nucleu;_, while thef&classical inqer turning
charge, e.g.Z=2 for helium. A more appropriate choice point is at 7 B.ohr radii. Therefore, we present. |n'Tai.JIe \(III
would be to attribute a screened nucleus chatgel to the th.e newly de”)’ed quantum defgcts a_m_d autoionization line-
outer electron and to allow a superpositiomofalues; how- vv@ths for 371°L=5. Conflgurat|on mixing is still very sig-
ever, Lin and Macek39] have checked that usually such a nificant for H states: for instance, the state labelesl/I3

procedure hardly improves the wave function quality. EVencontains only 42% of this character and a strong admixture

more, these authors, considering ti(e- 1,0)3 1po states in c_)f 3d7h and r7g. Among the displayed eigenstatgs in the
helium, labeled Pnd:P® in the independent-particle picture, list, only the 317fH° is probably not very accurate, since the

demonstrated that such=0 states are poorly described 3d classical outer turning point is 7.10 while thd whner

within the DESB framework. The present paper addressetgrr]'rlgjt pt0|r_1t 'S|6'42; b?s".‘f?s' tthe s?qgntc_i-or?er srt'gct 2: this
the question oA=0 states with highet. values. eigenstate involves a significant contribution from tHes

series, for which the nonoverlap hypothesis clearly breaks
down. However, the mixing of this eigenstate with the four
other H® states is very weak2%), so we believe the four
As a typical result of the present diagonalization methodpther eigenstates to be correctly predicted; and while its
we give in Table VII for each of thel3I’' G® eigenstates, the quantum defect0.459 is probably inaccuraté¢subtracting
squared projections over thgK,T); DESB states witn  the 4fvd contribution, it changes to 0.2h9ts linewidth is
summed from 3 to 9. It was checked that higmevalues certainly reasonable because it mostly involves the transition
contribute for less than 10 to the eigenstate normalization. to the 2peg continuum, well described in the long-range
As mentioned above, in our formalism, the zero-orderframework—this behavior is also corroborated by thE C
Hamiltonian assumes full screening, i.e., in a “configura-analysis below. Though other theoretical data are missing,
tion” like 3d5g the 3d orbital corresponds to a Coulomb one may notice that a lardestate such asdhK® may have
chargeZ =2, while the 5 orbital corresponds to a screened a non-negligible quantum defe(.134 which we believe to
charge/=Z—1. Thus, in evaluating the projection of thkth ~ be accurately predicted here, since second-order perturbation
eigenstate of total angular orbital momenturand parityr, mainly involves perturbation by thepdi series, well de-
scribed within the present long-range formalism. Comparing

(K,T) characten%)
Label (2,0 (0,0 (-20) (1,) (-1,1) (0,2

A. NInl’ series of helium

_ 7 S _ the data in Table VIII to typical f;nl data in barium, it
|q’k>_2 Cik|(Z=2)31i({=1)5\3), (5. appears that while for a givdrthe quantum defects have the
same order of magnitude, the linewidths are much less in
over the ,(K,T); state, we must evaluate the sum helium, usually well below 1 cmt. This arises from the fact
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TABLE VIIl. Doubly excited 371" states in helium fot. =5. Autoionization widths are in atomic units.
The notationa(—b) stands forax 10™°. Only configurations contributing for at least 10% are mentioned.

Label Leading Other Quantum Width
configuration configurations defect

H° 3s7h (42%) 3Ad7h (29%), 3p7g (27%) —0.026 70 6.05¢7)

3p7g (70%) 3B7h (19%) 0.049 54 1.00¢6)

3p7i (99%) —0.095 375 2.93¢ 10)

3d7f (98%) 0.459 01 3.69(—5)

3d7h (61%) 3s7h (38%) 0.090 08 3.03t9)

He 3p7h (68%) 379 (32%) 0.116 24 2.89(=7)

3d7g (68%) 3p7h (32%) 0.130 76 6.06(—7)

3d7i (100%) —0.076 76 4.49¢12)

€ 3s7i (52%) 3Ad7i (33%), 3p7h (14%) —0.03161 9.85(-9)

3p7h (84%) 337 (10%) 0.041 33 3.95( 8)

3d7g (99%) 0.211 6% 2.21(-6)

3d7i (62%) 371 (38%) 0.053 39 3.0/ 11)

1° 3p7i (95%) 0.053 63 1.32¢9)

3d7h (95%) 0.089 74 2.59¢8)

K° 3p7i (100%) 0.038 78 5.74( 10)

3d7h (100%) 0.134 47 6.49(8)

K® 3d7i (100%) 0.061 40 3.20{ 10)

L® 3d7i (100%) 0.096 08 7.45( 10)

80.2585 if the 4 vd contribution is removed.
P0.1091 if the 4 vf contribution is removed.
€0.1159 if the 4 vf contribution is removed.
d0.1695 if the £vf contribution is removed.

that in helium, the autoionization occurs toward theat 2| work the interaction matrix at first order turns out to
threshold with a large electron energy, which disfavors suclbe purely diagonal; due to the long-range approximation
a process. leading to susbtitute, e.g.(2s|r|2p)(5f|r 2|5g) to
(2s5f|r _/r-. 2|2p5g), the outer-electron contribution is can-
celed because of the Pasternack-Sternheimer idejrtit}
The situation is different for thelSl’ states in which, for
Bachauet al.[35] have published a large amount of datainstance, the(3s|r?|3d)(5g|r %|5g) nondiagonal element
about the 8nl’ states withn<5 in helium and multiply does not vanish. Another peculiarity of thén2’ states is
charged states witE<10. In order to interpret charge ex- that some of them are metastable versus autoionization. For
change experiment, van der Hart and Har[gk)} have care- instance the @5fF cannot decay towards asdl state be-
fully analyzed the singlet statedrd’ in doubly excited he- cause of angular momentum conservation. Besides, a state
liumlike carbon withn<7 and 3nl’ with n<5. As detailed like 2s5gG, which in our theoretical framework does not
in Sec. Il, the present formalism requires that the inner- andhteract with 205f, will also be stable versus autoionization;
outer-electron wave functions not overlap; while thél2 or ~ however, going beyond the long-range approximation where
states withl’>2 fulfills this requirement, it is hardly the the Pasternack-Sternheimer identity cancels the matrix ele-
case for most of the B!’ states considered below: for in- ment, the(2s5g|r _/r2|2p5f) differs from 0 and this small
stance, the inner electron has a classical outer turning configuration mixing gives a nonzero autoionization prob-
point atr=3 Bohr radii while an outer b electron has a ability to this eigenstate; nevertheless looking at van der Hart
classical inner turning point at=1.39. However, in order to and Hansen'’s data in Table IX one realizes that this results in
assess the validity of our lardereatment, some data will be very small autoionization probabilities. Considering the set
given for a totalL increasing from 4 to 6. of quantum defects and the linewidths reported in this table,
In Table IX we compare ourl@l results withn=5 and 7 one notices a fair agreement between both computations.
andL>2 with the B-spline predictions of van der Hart and Amazingly enough, the @5dF and 27dF linewidths are
Hansen. At second order tidl |’ perturbing series wittN  accurately predicted within the present formalism, though
up to 10 and up to 3 have been included, which correspondthe larget hypothesis does not apply. Conversely, their
to 34 valence states and therefore several tens of perturbirguantum defects are not accurately obtained within the
series. Though our computations were made using the prevpresent formalism, because second-order correction involves
ously described diagonalization procedure with second-ordenteraction with theNdvp series (\ values from 3 to 10 are
correction, one must mention that in the present frameincluded herg By simply ignoring these interactions, one

B. NInl’ series in C'*
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TABLE IX. Quantum defects and autoionization widths dh? states in ¢". Widths are in atomic
units. TheB-spline computation by van der Hart and Hansen R&J] concerns singlet states. The notation
a(—b) stands forax 107°.

) Quantum defect Autoionization width
L™ Leading
label configuration B-spline This paper B-spline This paper
F° 2s5f 0.002 29 0.002 66 9.16(7) a
2p5g —0.01369 —0.01365 1.74¢6) 1.09(-9)
2p5d —0.02069 —-0.2925% 6.47(=5) 6.85(—5)
2s7f 0.00243 0.003 05 3.34(7) a
2p7g —-0.01382 —-0.01355 4.96¢7) 1.01(-9)
2p7d —-0.01752 —-0.079 64 2.48(-5) 2.69(-5)
F€ 2p5f 0.022 98 0.022 84 a
2p7f 0.02300 0.02361 a
G® 2p5f 0.004 56 0.006 75 2.92(6) 3.36(—6)
2s5g 0.00074 0.000 63 1.83(7) a
2p7f 0.005 43 0.007 7% 1.37(-6) 1.65(—6)
2s7g 0.000 76 0.00074 1.43(7) a
2p7h —0.008 37 —0.008 40 6.5¢ 11) 9.27(12)
G° 2p5g 0.01011 0.010 05 a
2p7g 0.01018 0.01019 a
He 2p5g 0.002 54 0.002 81 5.24(8) 5.66(—8)
2p7g 0.002 33 0.00305 4.52(8) 5.10(-8)
2s7h —0.00108 0.000 25 1.6(9) a
2p7i —0.00559 —0.005 28 3.8¢12) 3.65(14)
He 2p7h 0.005 38 a
|€ 2s7i 0.000 10 a
2p7h 0.00199 7.70¢10)
1° 2p7i 0.00318 a
K° 2p7i 0.00151 4.53¢12)

a\Vletastable(see the texjt

bIf the interaction withN dvp is removed,6=0.00112.
°If the interaction withNdvp is removed,5=0.001 10.
dincludesNdvd contribution; 5=0.002 02 if removed.

would get quantum defects positive and close t0°10n  turbers considered at second order are almost degenerate
better agreement with the data from Ref0]. One may no-  with the states considered here; however, clearly this degen-
tice in this table the regular decrease of the quantum defeceracy is an artifact since perturbers such d8d! or 4f3p

and linewidths withL; some predictions are made for higher cannot be described using the present nonoverlap hypothesis.
| for which data are missing in the literature. As in helium, To circumvent this difficulty, we present in Table X both the
such large angular momentum data are very scarce. plain second-order quantum defe¢sixth column, value?)

As a last example, we give in Table X the quantum de-and the value obtained after subtracting the contribution of
fects and widths for thel3l’ doubly excited levels of €.  the 4vl’ series(seventh column, valuB). One must note
Within the present formalism, the long-range coupling be-that autoionization processes leave the ion in khel or
tween the 851" does not vanish as it did in thdr®’ case N=2 energy level, so this quasiresonance does not affect the
and the present results do include significant configurationvidths as they are computed here. In Table X, we compare
mixing at first order. However, the figures in this table mustour model with theB-spline method of van der Hart and
be used with care for two reasons. First, the nonoverlap hyHansen[40] and the Feshbach formalism of Bachatual.
pothesis central to the present model is harder to fulfill here[35]. The latter work details the singlet and triplet case,
for instance, the B classical outer turning point is 2.82 a.u. which allows to check the importance of exchange effects;
while the 5 classical inner turning point is 1.39 a.u. and they turn out to be moderate for some of Restates but not
even the g orbital has its inner turning point at 2.76 a.u.. all of them. The procedure, consisting of subtracting the spu-
Therefore, higher values for the principal quantum numberious 4l vl’ as described above, brings our results in signifi-
of the outer electron as well as higher valued afould be  cantly better agreement with the other theoretical determina-
desirable, unfortunately no reference values are then avaitions. The breakdown of nonoverlap hypothesis reasonably
able. Second, using the zero-order screened energyexplains the residual differences. One also notices that the
—{(ZIN)?>+[(Z—1)/n]?}/2 as we do here, theld\ per-  agreement with other determinations improves itas ex-
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TABLE X. Quantum defects and autoionization widths B states in ¢*. Widths are in atomic units. Eigenstates are labeled using
L™ and the dominant configuration. The computation by van der Hart and Hansepd@®efoncerns singlet states, while that by Bachau
et al. Ref.[35] are given for both singlet and triplet states. Two values are given for the quantum defects within the present framework: the
first one(A) is the plain result including all perturbing seril$»l’ with N<10, I<3 at second order, while the second d@Bg excludes
some series as detailed in the text and in notes.

Quantum defect Autoionization width
Label Ref.[40] Ref.[35] This paper Ref[40] Ref. [35] This paper
S=0 S=1 (A) (B) S=0 S=1

G*€ 3d5d 0.12874 0.125 0.171 —0.8655 —0.0744 4.044(-3) 4.4(-3) 6.2(—6) 4.62(-3)
3d5g 0.062 79 0.064 0.059 0.0033 0.0677 2.256(—-4) 3.1(—4) 1.03(-4) 5.73(-6)
3p5f —-0.02936 —0.030 0.092 -0.6292 —0.0128 6.41(-4) 5.9(-4) 2.0(-4) 3.64(- 4)
3s5g —-0.05333 —0.055 —0.030 —0.2607 —0.0413 887(-4) 1.25-3) 1.87(-5) 2.29(-4)

G° 3d5f 0.12886 0.130 0.035 1.3432 0.1P51 1.09(-4)  8.8(-5) 2.2(-4) 3.76(- 4)
3p5g 0.05952 0.059 0.064 —0.4568 0.0605 2.99(-5) 2.4(-5)  3.2(-6) 6.59(- 5)

HO 3p5g 0.001 70 —0.0397 0.0010  7.50(-5) 6.44(- 5)
3d5f —0.04530 —2.0584 0.0043  1.56(—3) 1.14(-3)

He 3d5g 0.0479 4.27¢5)
1® 3d5g 0.0186 1.06¢4)

#fvp,4dvd contributions removed.
b4fvd contribution removed.

pected. We derive here new values fdf and I€ levels.  mixing is important, the collective quantum numbels, T)
Finally, let us mention that the present formalism is fully are only partially relevant. When the overlap between both
adapted to determine positions and widths of states witlelectron wave functions is weak, the present formalism fairly
more dissymetric excitation and largér such as, e.g., well agrees with more complex ones suchBsplines or
3110'H. Feshbach theory. Finally, let us mention that autoionization
probability has been considered here only through the first-
VI. CONCLUSION order Fermi Golden Rule. When one has to consider inter-
) _ ) ~acting series such asdg,ng and Xg;ng in barium, the
~ Using a new theoretical framework based on diagonalizagomputation of autoionization linewidths including the po-
tion of the long-range form of the electronic interaction plus|arization effect by, e.g., Bsnf,h series must involve the

second-order correction, we have been able to make accuradgcond-order Fermi Golden Rule. The present formalism is
predictions about the position and width of a series ofyyite suitable for dealing with such effects.

strongly interacting levels in large-alkaline-earth atoms.
Some new or amended assignations have been made for pre-
viously reported levels. In barium, thepfhg experimental
level positions and widths have been accurately reproduced.
More significant discrepancy remains on thp;h levels The author wishes to express his gratitude to Professor E.
for which additional experimental data would be of greatde Pruneldor helpul advice and to Dr. J. Pascale for a care-
value. In helium, one has checked that though configuratioful reading of the manuscript.
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