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Analog of the Hellmann-Feynman theorem in multichannel quantum-defect theory
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A multichannel quantum-defect theo(iIQDT) is employed to obtain expressions for nonadiabatic cou-
pling matrix elements without recourse to knowledge of the electronic wave functions. Diagonal and nondi-
agonal analogs of the Hellmann-Feynman theorem are derived by a differentiation of the MQDT quantization
equations with respect to internuclear distaRce&€losed relations for both the adiabatic correction terms and
the nonadiabatic matrix elements are given in terms of nuclear derivatives of the reactance matrix. The theory
is tested by calculating the adiabatic correction and nonadiabatic radial and angular coupling matrix elements
for theg,h®3; and 4,4d3 | states, corresponding to the first members 8 and 4 of thes,d®s; Rydberg
complex of the H molecule. The derived estimates agree well with availalblénitio results.
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I. INTRODUCTION lar absorption and autoionization spectra are available in the
literature[10—13, our limited aim is to build a largely ana-
Traditional nonadiabatic coupling theory is based on thdytical bridge between the full MQDT method and more tra-

following familiar Hellmann-Feynman resultgl, 2] ditional approaches to nonadiabatic coupling. It is an exten-
8O 80 I BO sion of a previous single-channel version of the thgd#j,
IE, =(W o |oHE| ¥ 5), (1 in which we showed how the nonadiabatic coupling matrix
elements could be extracted from knowledge of the bond-
Bos= (W50 dW 50 = (W20 aHe| W EO) (ESO-ERO), length dependence of the approximately energy independent

2 guantum-defect functiop(R), which determines an infinite

BO — BO ) ] ) series of Born-Oppenheimer curves converging onto the
whereE_~, ¥~ are eigenvalues and eigenfunctions of thepositive-ion potential EBC

) Tues k «od R) according to the equation
Born-Oppenheimer electronic Schlinger equation and the [8,15]
symbol¢d denotes the first partial derivative with respecRto ’
Difficulties arise however in applying these equations to real
molecular systems because the accuracy of most conven-
tional ab initio methods rapidly decreases as the principal EPO(R)=EEQR) — - 3
guantum number increases. Moreover, the treatment of non- 2[n—u(R)]
Born-Oppenheimer effects for highly excited molecular
stated 3] may involve the tedious calculation of nonadiabatic
coupling matrix element§4] between numerous electronic Thusab initio determination oEZ°(R) for sayn=3 deter-
states. minesx(R) and hence all higher curves.

The purpose of this paper is to develop a Hellmann- The present extension of this approach to multichatorel
Feynman version of multichannel quantum-defect theorymulticonfiguration situations requires knowledge of the
(MQDT) [5] to handle the nonadiabatic coupling problem for scattering reactance matrik (R), the diagonal terms of
molecular Rydberg states without recourse to the nuclear devhich play roughly the same role as the quantum defects,
pendence of electronic wave functions. The idea behind thehile the off-diagonal terms are responsible for configura-
molecular MQDT approach, which combines Seaton’stion interaction effects. Input on the form &(R) now
guantum-defect theory6] with Fano’s frame transformation comes from knowledge of the corresponding BO potentials
method[7], is to treat the interaction between Rydberg elec-plus their derivatives with respect to bond length. As in the
trons and their positive-ion cores as a scattering problensingle-channel case, the aim is to extrapolate information
normally formulated in terms of an energy insensitive butfrom a single low principle quantum number to higher mem-
nuclear coordinate dependent reactance mer(R), in  bers of the series. The method involves differentiation of the
terms of which the main adiabatic corrections and nonadiaelectronic quantization condition, expressed in terms of
batic effects are taken into accountintrinsic form without  K(R), rather than simple differentiation of the function
the evaluation of the corresponding electronic matrix elew(R). The result is arexplicit connectiorbetween the ele-
ments [8]. Determination of the matrixK(R) requires ments of the reactance matrix corresponding to multiconfigu-
knowledge only of theab initio BO potentials of a small ration Rydberg diatomic states and the relevant nonadiabatic
number of low-lying electronic statd9]. While impressive  matrix elements, adiabatic corrections, eRdlerivatives of
applications of the full theory to the interpretation of molecu-the BO potentials.
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Il. THEORY and the corresponding BO eigenfunctions take the forms
A. Multichannel quantum-defect theory representation N
of diatomic Rydberg states wE(r,R)= 21 sza(R)qfi?(r,R) pj!\a( ,,J!\a 15,0
It may be helpful to start by summarizing the main ele- = :
ments of MQDT theory for diatomic molgculgs, for which XY'] +(19,(p)eiAi+‘°, (9)
the electronic wave function®VF’s) ¥, , with givenA at a A-A,
fixed bond lengtlR, is represented outside a core in the form _ LA
[8,10]: [hereafter we use atomic unité € m=e=1)] where Fhe radial WF's;,, of the remote electron may be
approximated af5]
N
BO I AT
\IIA(r,R)=JZl ZJA(R)\I’Ar(r,R)YA_Ar(ﬁ,go)e'AJ ¢ Wor 20/ v,)

A A —
| Plalviali 1) AT N+ DT (=)
x| .m0 = 2 KRG ()|, T, (10

i'=1 wherel” andW are gamma and Whittaker functions, respec-
(4)  tively [16], while \; is defined to differ frova-Aa by an
) ] ~__integer, in which casd?’jAa(vjAa,lj ,r) remains finite asr
where most of the symbols have their conventional signifi-_, ..~

cznce. I(S)(_ne unfamiliar aspect n’tlay be that th?t_ Sum is OVer gimpjifications apply in the degenerate case such that the
channelg(i.e., series converging to a given positive-ion core __BO
statg rather than over states. Secontﬁlxv,r) andg|j(v,r) core energiesg, +(R) of all channels are equal. In such

J
are regular and irregular radial coulomb functi¢ where ~Cases diagonalization of the matrix leads to
v depends on the energy according to E8).below. K" is
the real symmetric reactance matrix, which is assumed to
encode all the non-Coulomb Rydberg core interactions; its

elements are sometimes expressed a@ﬁ,:KjA,j 1
=tan7r,uﬁ,, Where,uﬁ,(R) are termed thejuantum defect — —arctai Kh(R)], (11
functions[5]. Finally the mixing coefficientszj‘ represent
configuration interactions between the channels. N

Both f, (»,r) andg, (v.r) typically diverge exponentially YE(r,R) =¥52(r,REN Y ZL (RIPL(VA1;.T)
asr—c, and the mixing coefficientZ;* and BO energies =

BO _ BO _ A —
Ea'A(R)—EAJr(R) W, Va(R) n

EC_BVS\.(R).for a particula_\r Rydberg state are determined by XYR7A+(13,¢), (12
elimination of these divergent terms, a procedure that leads
to a quantization condition of the forp,10] where ) and z2, are, respectively the eigenvalues and

. A . .
[|2+ KA]N{::O, ®) eigenvectors oK", andn is an integer.

Where|£=tan7TVj/; is the diagonal matrix, with energy de- B. Orthogonality conditions and overlap integrals
pendent arguments such that The orthogonality between BO wave functioasand g

requires tha{ w5 | W59 )=6,4, from which it follows

, BA'
0.5
VAER= A [—mo g hat
ES2(R)—E
]

N
Sup= 2, ZuZipSlap i (13
It also proves convenient to express the above column vector j=1
in Eq.(5) asN2=qZ2 , whereq” is a diagonal matrix with N ] o
elementq5]: where  Fj" :<YA_A1+|Y ,_Aj+>: Syar  and g
> =(P%,|P{3) is the radial overlap integral for trjéh channel.
ad=(—1)"i /ﬁﬁCOSﬂ'VJAa_ (7) It is seen that the states corresponding to the different
(V) values always satisfy Eq13). Alternatively, if statesx and

T B have a commor\ value, Eq.(5) requires that
The normalizationz? z2=1 applies, provided thaK” is

independent of energy6]. The Born-Oppenheimer elec- NgT[|£+KA]N£:0' (14)
tronic eigenvaluefCBfA(R) are obtained by adjusting in
; T
Eq. (6) to satisfy NS [15+KAINg=0. (15)
def1)+K"]=0, (8)  subtraction of Eqs(14) and (15) leads to
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T T T
0=Nj [Ia—13INA=Z5 a3 [15—13]a0Zs,  (16)
sincel ,Ié are the diagonal matrices aid* is symmetric.

Substitution of relation§7) and(6) on the right-hand side of

Eq. (16) therefore yields

E EN: A 70 sinr( VJAa— VJAB)
jabip K _A\32

wisy 1R (VjaVJ'B)SIZ

0=

N
_ BO _ BO A >A oA
=2(EE9 EB,A);1 VAR ARSI (17)

where

; A_ A
st 2Slnﬂ(vja—Vjﬁ)\/VJ:-;aV]:-;ﬁ

jaf ™ A A A A
lap W(Vja_VjB)(Vja'f' VJ-B)

(18)

sinceESQ # E5% . Equation(18) demonstrates that tH,
values rapidly decrease as the difference v, — vy, of the

effective quantum numbers increases. It follows that the
overlap integral§ﬁ<aﬁ between radial WF’s corresponding

i
to the different nondegenerate core states with the shine

values (A=A, ; Ei?#E/B\?) should be very small for
j k
high Rydberg states, because- (v vk)3’2(Ei?—Ei?)>1.
j k

It is interesting to note that Eq18) is very close to its
one-channel counterpat4] S35=sinm(v,—vg)lm(v,—vp),

because &, + vg)/2=\v,vg, although the latter is normally
regarded as a semiclassical, rather than a MQDT result.

C. Multichannel quantum-defect theory analog
of the Hellmann-Feynman theorem

The quantization equatiof®) is the MQDT analog of the
conventional electronic Schidinger equation, which means
that differentiation with respect tR can yield counterparts
of the Hellmann-Feynman theorem; thus

[912+ 0KAINA= —[12+KATONA . (19
Multiplication of Eq. (19) from the left byNﬁT yields
NATAIANA = — NAToKANA, (20)

while multiplication of Eq.(19) from left by NQT leads to

N3 To1 2+ aKAINA = — NATTIA + KA ToND

.
=Njg [15— 121Ny, (22)

e A A
after exploiting Eq.(5) and the symmetry of,, ,1; and the

matrix K*. K" is assumed to be independent of energy. Th

counterpart of Eq(21) for the B state is
NAToIS+aK A INA=NATTIA—1410NS . (22

The summation and subtraction of E¢21) and (22) lead,
respectively, to the relations
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AT o A AnA AT S AnA
N, [ala+aIB]NB+2Na dK NB

=NATIA1ATONS— NS TIA1410NS, (23

NATLo1 — a1 SINA -+ NATIA —1510NS+ NATTIA —15]0N2

=JINATTIA-14INST=0. (24)
Equation(24) may be viewed as a corollary of the orthogo-
nality condition(16).

Further substitution of Eqg7) and (6) in Egs.(20) and
(23) leads, after tedious but straightforward algebraic ma-
nipulations, to the following explicit forms:

N
1
JEEN= 121 (ZjAa)zﬁEi? —EZQTQQTaKAGQZQ,
(25
N
A A A AN QA
le (0Z;Z10™ 0ZaZig)Sjap
T T N
7V g oK A gz
a Ha BB A 5A
= +2> 7ZM7!
BO _=BO @
Ea,A_EE,A =1 BT
A A
% §SA 0"1//{3_ &V/{'Q)
b ol —A-
47 g Vi
((9VJAa+ o'?VJAB)COi ( VJAa— v]-AB)] \/v};ayi-iﬁ
+ A A A LA ,
(Via™ Vi) (Viat vip)
(26)

which are the MQDT analogs of the diagor&l and nondi-
agonal(2) Hellmann-Feynman theorems, respectively. Rela-
tion (26) will be applied to estimate the radial coupling ma-
trix elements in Sec. Il D.

D. Nonadiabatic coupling matrix elements

First, nonadiabatic matrix eIemenV:,“l‘ﬁ(R) between the
interacting BO diatomic states and 8 corresponding to the
sameA value may be expressed gy

Vis=2B)sd+ DA+ Ghy—Las/R?, 27

in which Bas(R)=(aldp) andDgﬁ(R)=<a|§2/a> are radial
coupling termgd? denotes the second partial derivative with
respect toR]; second,GﬁB(R)=<a|P2|ﬂ>/4 is an electronic
coupling term dependent on the total electron momenum

=3M .V, (V; refers to differentiation with respect to the

é:oordinates of thath electron,M is the total number of

electrons in the moleculg finally L} 4(R)=(a|L"L"|B)
represents angular coupling, where the ladder electronic an-
gular momentum operators * = Ly=iL, refer to the
molecule-fixed frame. ThDﬁB matrix elements can be ex-
pressed through the correspondB@ values by the relation
[3]: Dip=[37",.BuiBis]+ 9BLp.
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The first derivative of the BO WF with respect Bfor  lap integralesfaj p for k| are expected to be very small for
the given statgs is readily obtained by direct differentiation high Rydberg stateésee Sec. Il B The dominant contribu-
of Eq. (9): tions to the matrix element&9), (32), and (33) therefore
N reduce to

| L+
axpg%:jzl Y/i—AfelAj ‘ 1
: G£ﬁ=_2 Zj/\ﬁzj/\a[<P]Aa|Al|PJAﬁ>+Gj:JSjAaB]v (34)
AABOBA | A BO oA BO . A 4=
x[aZiB\IfAr Pist Zjﬁ(a\PAj*PjB—'_q,Aj*aPiﬁ)]'
(28 LA= S Z870S) (54 1)~ (A—A)ZHLS],
Multiplication of Eq. (28) from the left by the BO WF of =

. . . 35
statea approximated by Eq9) followed by integration over 39
electronic coordinates yields 1 N
A A 5A A 2A A A ZA
N Baﬁ—igfl [(9ZjpZj0= IZjaZ;p)Sjapt ZjpZja
BA = [az)z)hs) +ZN70 (P |aPA)+21BZ
afT & iBSiaSjap ™ SipTja\Tjal O B aP £p
s X (P 9Pjig) = (Pjsl P )] (36)
(29)

WhereSjAaB is the overlap integral given by E¢18), BS is after use of the identit,, ;= — B, . Finally, substitution of

the antisymmetric matrix with the nonvanishing nondiagonaIEq' (26) in Eq. (36) yields

elements ﬁam:(\lfiiiwllfi?)sf}am, where Sy,
=(P} | PJ-AB) is the overlap integral between radial WF’s cor- Bap=
responding to the differefjtandk channels.

One-electron operators of the momentirand angular N
momentum L can be transformed to the sui +V; + 2, 278,
+V.1, where theV,.,V; operate only on the core and the 1=1
Rydberg WF's, respectively, whereas the multielectron op-
eratorV, ; represents mutual electron-core interactions:

z)'q) oK qpzp
2(Eqx—EgQ)

<P]Aa|‘9PJAB> _<PJA,B|(9P]AQ>
2

A A A A A A
N (Ivj,+ &Vji)COE{Aw(Vj:— ij)]\/vjavjﬁ
(Vo= vjp) (Vja T Vjp)

M-1 M-1
A
PP= 2 A+A1+22 ViV, (30 L3 (s v, -
i=1 i#1 4 i a _A _A .
Vig Via
Ll =L L +171 (LI +Lc15). (31

The matrix elements(P/,|dP;,),(P\|A1|Ps) between
The tacit assumption of the conventional MQDT appmxima_generally nonorthogonal radial WF’'s can either be estimated
tion is that matrix elements of the multielectron operators arélumerically using the analytical representatidi®) or re-
negligible [11]. Remote electron and core contributions toduced to analytical sums over their orthogonal counterparts,
the relevant matrix elements can therefore be treated add@s recently derivegil4] in the closed form

tively; - A
A . A A oA <P1Aa|‘9PiAﬁ>:2‘?Vf\B > jaﬁ’%’ (39)
Gup= 3, [ZZ){PlIAIPI1+ 2162y, (32 vigFrg T Mgt yp)
N ” 2RIV
L2ﬁ=j§1 (Z0Z0Sh AL+ D) = (A= A2+ ZILZ, <P1A“|A1|PjAﬁ>:wEBr Sl (vfﬁvfﬁffm
33 vig+ i)
where G° and L® are symmetric core matrices with - ZV,-A;;VjBr Im ) | 39

BO|xM-1 BO\ cA
elements Gﬁjﬁa=(\PA:|Ei:1 Ai|\FAj+>SkjaB and Lgg,

=W L L W) Sap

It is clear that the nondiagonal matrix elements of Bie
G°, andL® matrices remain finite only when"=A," and
l;=1y. Hence, they vanish either when all core states have
different electronic symmetries or when all channels belong
to the same core. Moreover, even strictly nonzero off- The adiabatic correctioAﬂ,}(R) for a given BO electronic
diagonal can often be neglected in practice because the ovestatea is [4]

Herex= \/1—(Ij +O.5)2/(vjAvi\ﬁ,), while Sj{\aﬁ, is the over-
lap integral given by Eq(18), m= VJA'B,—V]Aﬁ is an integer
andJ,,(mx) is a Bessel function of orden.

E. Adiabatic correction
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-0-45 + molecular hydrogen, which correspond to the first members
(n=3 for the g, h and n=4 for the 4s,4d state$ of the
triplet s,d °% Rydberg serie¢see Fig. 1 These electronic
states are chosen for the following reasons.

(1) The BO states of the 33,d *%; complex were found
to be represented, at small and intermediate inter-
nuclear distances, by the pair of tHemixing diabatic
s and d series converging to the ground state of
Hy 'si(log)nsoy;d:(1log)ndogy [11]. Since the present Ry-
dberg states have the same core, the relevant matrix elements
are simplified significantlysee the Appendjx

(2) Strong nonadiabatic interactions between the states of
the complex are expected to occur near the equilibrium dis-
tances of their potential curvésee Fig. 1, and the relevant
ab initio estimates of nonadiabatic radial and angular cou-
pling matrix elements are known for thgh 32g states
[17,18.

(3) Highly accurateab initio BO potential curves and
their derivatives with respect tR, together with adiabatic
corrections have been recently calculated g 33 & [19]
R{a.u) and 4,4d °3; [20] states, by use of explicitly correlated
wave functions in elliptic coordinates.

-0.50

-0.55

Energy (a.u.)

-0.60 -

-0.65

-
N
W
o~
o -

FIG. 1. The ab initio Born-Oppenheimer potentials for the
ground state of a Hion [22] along with theg, h 32; [19] and 4s,

4d 33§ [20] states of a Hmolecule. o .
A. Determination of the reactance matrix

Elements of reactance matrix were derived by nonlinear
least-squares fitting to theeb initio BO curvesESS, for the
lowest members of the,d Rydberg series. Since bottE2°
wherem is the reduced molecular mass. The elem@fs  and B..s functions are proportional teK [compare relations
can be estimated from E¢37) by use of the identityD),,  (25) and (37)], the highly accurate derivatives ab initio
=-37,.(B%)? while G}, and L2, are readily obtained BO potentialsdE®2, calculated by the hypervirial theorem

Al = [DA +GA — (L2 —A?)IR?], (40)

o

from Egs.(34) and(35), respectively, in Refs.[19], [20] were simultaneously optimized along with
LN the corresponding BO potentials in the fitting procedure for
_ZZ 2[<P |A1|P >+G (41) the functlons,uij(R):
N min 2 E [(Eu ab™ (I\DAQDT)2+(E| ab™ aEBMQDT) 1
:;l (Z))AL(+ D) —(A=AD)2+LE]. (42 (44)
Hence, the total adiabatic correctim‘j for a given Rydberg
statea is reduced to The diagonaluss and pyq functions were approximated by
appropriate polynomial functions & while a more flexible
A 2R(9v G,—Cj pointwise representation combined with spline interpolation
Aa_ﬁ i;a (Bg) 2+ E (Z 4( ja)3 T4 was used for the nondiagonal 4 values. The MQDT energy

and its derivative were calculated by the analytical relations

(A1) and(A2) given in the Appendix. The numbéf of the
' (43 mesh pointfk, was chosen to be larger than a number of the

adjustable fitting parameters. A minimum function(@dH)
where hypervirial theorem was applied to estimate the diagwas sought by the modified Levenberg—Marquardt algorithm
onal matrix eIementP |Al|p combined with a finite-difference approximation to the cor-
responding Jacobian matrix. The requiged,, wqq, andugg
functions were obtained from the separate fits of the
g,h 335 and 4,4d 3% pair states to clarify their depen-

The validity of the above approximations are tested belowdence on principal quantum number. The resulting

by calculations of the nonadiabatic matrix elements and adiaguantum-defect matrices shown in Fig. 2 reproduceahe
batic corrections for the,h ®% " and 4s,4d °3 states of initio BO curves for theg,h 33, and 4,4d %3 states

—A2+|j(|j+1)—(A—A;)2>
R2

lll. APPLICATION TO st,de'E;' COMPLEX
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e 7 ® g-h abinitio
",A ' O g-h abinitio
= & : i g-h MQDT
8 r'e o f 4d-4s MQDT
2 oot
g dd 4
B 24 3
2 % AAA‘ CAh
q'g A-"‘AAA 8 % 4
3 0-0‘éﬁé':“EUDmuEBBiHiE;E‘.‘EiHiE'D s
= Be £
a Be =
3 u “Beg, g
C 0.1 sd 8.8.8 8 3
I N I N I M 1 M 1 g-
0 1 2 3 4 8 5.
R(a.u.) ol
o
©
o

FIG. 2. The quantum-defect functions of the reactance matrix
for the g, h 3% [19] (solid symbol$ and 4, 4d 3% [20] (open i
symbolg states of H.

along with their firstR derivatives to better than 16 a.u. in 7 — e ——
the regionR=1-4 a.u. It must be stressed that useRof 1.0 15 2.0 25 3.0
derivatives of the potentials in the fitting greatly improved R{a.u.)

the accuracy of the extracted reactance matrix. As expected,

the n dependence of the quantum-defect functions is very F!C- 3. The radial coupling matrix elements for the-h and

; P : 4s—4d pairs of the interacted states of.HA\b initio data evaluated
small but not quite negligible. The observed small dn‘ferenceby the 1Ei)nite-dif'ference technique Wefe borrowed from Haf]

of the reactance matrices correspondinghte3 andn=4 S . .
may arise either from a true weak energy dependence é?olld circles and Ref[18] (open circle} respectively.

from a small convergence error in tlad initio calculations
[19,20. g tion and height of the sharp maximum of tiAg(R) and

A4(R) functions are mainly determined by a sum of squares

s A
B. Comparison betweenab initio and multichannel quantum- of the correspondln@aﬁ values[see Eq(AS)].

defect theory nonadiabatic coupling elements
. . . IV. CONCLUSIONS
The derived quantum-defect functions together with two-

channel simplifications of the foregoing analytical formulas Analytical approximations for adiabatic correction and
(A3) and (A4), given in the Appendix, were numerically nonadiabatic matrix elements were derived and tested for the
tested by calculation of nonadiabatic radial and angular coug,h 3Eg and 4s,4d 3Eg states of molecular hydrogen. The
pling matrix elements for thg,h °3 states. The results

shown in Figs. 3 and 4 demonstrate that the present MQDT 84 L

estimates agree well withb initio results obtained by the = @ . o I o
conventional full-configuration-interaction method with two & ¢ i OO ——

different Gaussian type orbitaGTO) basis set$17,18. It TN N .
should be noted that theb initio data[17] seem to be more 2 ol o

reliable than the comparable data from HaB] because the S ('} 22 ng

former are based on more extensive GTO basis set calculex
tions. The results presented in Figs. 3 and 5 show that theg 2
radial coupling matrix elements between the states corre-g J N o
sponding to the same principal quantum numbers are large£ o- 800
than those corresponding to differemvalues. 2
The reliability of the derived quantum-defect functions 2
and the power of the present MQDT approach are the moss
clearly seen in Fig. 6 where the MQDT adiabatic corrections g
calculated by the EqA5) for theg,h 3 and 4,4d 33§
states of the Himolecule are compared with the highly ac-
curateab initio counterparts given in Ref$19], [20]. The
excellent agreement between the MQDT aiinitio adia- FIG. 4. The diagonal and nondiagonal matrix elements of the
batic corrections for all states treated confirms the high acangular coupling for theg, hstates of H. Ab initio data were taken
curacy of the derived radial matrix elements, since the posifrom Ref.[17] (solid circles and Ref.[18] (open circles

up

a
]
1

'
A

1.0 15 2.0 2.5 3.0 35 4.0
R(a.u.)
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"—aag, accurateab initio BO potentials and their derivatives with
~ onl -.._'III cos respect toR.
;;' 90054, o The main advantage of the present approach in a compari-
2 P oo Cog son with the conventional MQDT methdd1] is that it pro-
2 ._,...-—" e vides anexplicit form for the adiabatic and nonadiabatic
5 00- > soo088888800000 lectronic matrix elements for all members of a given Ryd-
> 9=0000, J% 000000000 electronic matrix elements for all members of a given Ry
E THfoogg ﬁ & berg series. It allows one to do the following:
g ° - (1) test directly the validity of MQDT approximation for a
2 -0.1 4 "-1_ particular Rydberg electronic state at any internuclear dis-
s —=—h-4s LN tance by their comparison with availakdé initio data;
3 —o—g-4d " (2) apply accurateab initio data on derivatives of BO
g 02 —e—h-4d e potentials, radial coupling matrix elements, and adiabatic
g —Oo—4sg "-\_ corrections, which are usually known for low-lying elec-
— ™ — tronic states, to refine matrix elements of the reactance ma-
1.0 1.5 2.0 25 3.0 35 4.0 trix;
R(a.u.) (3) incorporate the formula applications to higher mem-

bers of the Rydberg series and more accuatenitio data
for low-lying valence electronic states on a common channel
coupling, variation, or perturbation theory calculations.

FIG. 5. The MQDT matrix elements of the radial coupling for
theh—4s, g—4d, h—4d, and 4—g pairs of H.

MQDT analogs of the diagondR5) and nondiagonal37)
forms of Hellmann-Feynman theorem allow one to relate ACKNOWLEDGMENTS
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adiabatic corrections for all states studied has been achieved

by simultaneous fitting of the reactance matrix to the highly
APPENDIX: TWO-CHANNEL APPROXIMATION:

DEGENERATE CASE

Since both members of the,b{d 32;; complex have the
same core, the BO energy and WF's of the corresponding
states can be approximated by using of relatighy and
(12) in the form

4000 -

3000 -~ 1
‘ ®  h abinitio BO_ ~BO B _
h MQDT Esa=Exi— 52 2 Vea=NT R
o g ab initio s
———-g MQDT B —
2000 - 3 ® 4s ab initio 2 tanm pgyg= (Rsst+ Rya) = V(Rgs— Raq) >+ 4R,

--------- 4s MQDT (A1)
o 4d ab initio \psBozqfie[Fscose—FdSinﬁ],

4d MQDT

Adiabatic correction (cm™)

1000 | 2Rgq

WEO=wPO[F sing+Fqcosf], tan2=———r—,
Rss_ Rdd

where Rssztanrmss, Rdd:tan’ﬂ,udd, and de: Rds
=tanmuey, the quantitiesuss, pqq, andugq being, respec-
tively, the quantum-defect functions feydchannels plus the
interaction between therEi? and\Ifi? are BO energy and
FIG. 6. A comparison of the MQDT adiabatic correction func- WF of the ground state of hydrogen ion, akd, F are
tions for theh, g, 4s, and 4l states of H with their high-accurate wave functions of the remote electron $nd channels, re-
ab initio counterpart$19,2Q. spectively. Use of the trigonometric functions éhfor the
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mixing coefficientsZ allows one to assume thdtis inde- 2 v 2y

S i ' dVd’
pendent of the principal quantum numbarg K is assumed BSS,:(?VSTSSZ, Bso=dvg—2——>- (A3)
to be independent of energy. Ver ™ Vs Vo™ Vd

The general formul'as d.erlved in Sec. Il are found to 1 addition the matrix elements between different members
duce to closed forms in this two state, common core model,

of the same diabatic Rydberg seri®&gy and Byy are
For example, Eq(25) shows that equivalent to their one-channel counterp4lit4]. The angu-

co€ 7 lar coupling matrix elements betwesrandd states are de-
JEEO=9E" + —— rived from Eq.(35):
S
X [KssCOS 6+ K gqSin? 6—Kggsin 26], Log=—6 sinL mr( s Vd); PSP in 20,
(A2) m(vs—vg)
50 B0 . COS myg
IEGO=9E 7+ 3 Leg=6sir 0, Lggy=6cog0, (A4)
X[ Ko Sin? 0+ K gq o2 6+ K gsin 2] sincels=0 andly=2. The adiabatic correction comes from
ss S the relation(43):
where "
, Vs—2Rdvg 6sirf o
Iiss dhgd Jgqg As=| Aiont ;S Bsit 4° + RZ 2my,,
:—! :—l :—' s
ST coS T 497 coS g S0 o Tugq ) (A5)
The radial coupling matrix elements betwesandd states Ag=| Agnt+ >, B+ Vd_zzavd + 6 c02§ 4 2my.,
follow directly from Eq.(37): i#d 4vg R

WheremH2 is the reduced mass of hydrogen molecular and

VsVq .
Bsd:?__vfcosm’s cosmyg[ (Kss—Kgq)sin 26 Aion=Lion/R?*—Gjo//4. G, and Lo, are the known elec-
d s tronic and angular adiabatic matrix elements for the ground
+ 2K 4c0s 26], state of hydrogen ion, respectivdl®1,27.
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