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Analog of the Hellmann-Feynman theorem in multichannel quantum-defect theory
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A multichannel quantum-defect theory~MQDT! is employed to obtain expressions for nonadiabatic cou-
pling matrix elements without recourse to knowledge of the electronic wave functions. Diagonal and nondi-
agonal analogs of the Hellmann-Feynman theorem are derived by a differentiation of the MQDT quantization
equations with respect to internuclear distanceR. Closed relations for both the adiabatic correction terms and
the nonadiabatic matrix elements are given in terms of nuclear derivatives of the reactance matrix. The theory
is tested by calculating the adiabatic correction and nonadiabatic radial and angular coupling matrix elements
for theg,h3Sg

1 and 4s,4d3Sg
1 states, corresponding to the first members (n53 and 4! of thes,d3Sg

1 Rydberg
complex of the H2 molecule. The derived estimates agree well with availableab initio results.
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I. INTRODUCTION

Traditional nonadiabatic coupling theory is based on
following familiar Hellmann-Feynman results:@1,2#

]Ea
BO5^Ca

BOu]HeluCa
BO&, ~1!

Bab5^Ca
BOu]Cb

BO&5^Ca
BOu]HeluCb

BO&/~Ea
BO2Eb

BO!,
~2!

whereEa
BO,Ca

BO are eigenvalues and eigenfunctions of t
Born-Oppenheimer electronic Schro¨dinger equation and the
symbol] denotes the first partial derivative with respect toR.
Difficulties arise however in applying these equations to r
molecular systems because the accuracy of most con
tional ab initio methods rapidly decreases as the princi
quantum number increases. Moreover, the treatment of n
Born-Oppenheimer effects for highly excited molecu
states@3# may involve the tedious calculation of nonadiaba
coupling matrix elements@4# between numerous electron
states.

The purpose of this paper is to develop a Hellman
Feynman version of multichannel quantum-defect the
~MQDT! @5# to handle the nonadiabatic coupling problem f
molecular Rydberg states without recourse to the nuclear
pendence of electronic wave functions. The idea behind
molecular MQDT approach, which combines Seato
quantum-defect theory@6# with Fano’s frame transformation
method@7#, is to treat the interaction between Rydberg ele
trons and their positive-ion cores as a scattering probl
normally formulated in terms of an energy insensitive b
nuclear coordinate dependent reactance matrixK (R), in
terms of which the main adiabatic corrections and nona
batic effects are taken into accountin intrinsic form, without
the evaluation of the corresponding electronic matrix e
ments @8#. Determination of the matrixK (R) requires
knowledge only of theab initio BO potentials of a smal
number of low-lying electronic states@9#. While impressive
applications of the full theory to the interpretation of molec
1050-2947/2001/63~5!/052510~8!/$20.00 63 0525
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lar absorption and autoionization spectra are available in
literature@10–13#, our limited aim is to build a largely ana
lytical bridge between the full MQDT method and more tr
ditional approaches to nonadiabatic coupling. It is an ext
sion of a previous single-channel version of the theory@14#,
in which we showed how the nonadiabatic coupling mat
elements could be extracted from knowledge of the bo
length dependence of the approximately energy indepen
quantum-defect functionm(R), which determines an infinite
series of Born-Oppenheimer curves converging onto
positive-ion potentialEcore

BO (R) according to the equation
@8,15#

En
BO~R!5Ecore

BO ~R!2
1

2@n2m~R!#2 . ~3!

Thusab initio determination ofEn
BO(R) for sayn53 deter-

minesm(R) and hence all higher curves.
The present extension of this approach to multichannel~or

multiconfiguration! situations requires knowledge of th
scattering reactance matrixK (R), the diagonal terms o
which play roughly the same role as the quantum defe
while the off-diagonal terms are responsible for configu
tion interaction effects. Input on the form ofK (R) now
comes from knowledge of the corresponding BO potent
plus their derivatives with respect to bond length. As in t
single-channel case, the aim is to extrapolate informat
from a single low principle quantum number to higher me
bers of the series. The method involves differentiation of
electronic quantization condition, expressed in terms
K (R), rather than simple differentiation of the functio
m(R). The result is anexplicit connectionbetween the ele-
ments of the reactance matrix corresponding to multiconfi
ration Rydberg diatomic states and the relevant nonadiab
matrix elements, adiabatic corrections, andR derivatives of
the BO potentials.
©2001 The American Physical Society10-1
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II. THEORY

A. Multichannel quantum-defect theory representation
of diatomic Rydberg states

It may be helpful to start by summarizing the main e
ments of MQDT theory for diatomic molecules, for whic
the electronic wave functions~WF’s! CL , with givenL at a
fixed bond lengthR, is represented outside a core in the fo
@8,10#: @hereafter we use atomic units (\5m5e51)#

CL~r ,R!5(
j 51

N

Zj
L~R!CL

j
1

BO
~r ,R!Y

L2L
j
1

l j ~q,w!eiL j
1w

3F f l j
~n,r !2 (

j 851

N

K j j 8
L

~R!gl j 8
~n,r !G , r .r c ,

~4!

where most of the symbols have their conventional sign
cance. One unfamiliar aspect may be that the sum is o
channels~i.e., series converging to a given positive-ion co
state! rather than over states. Secondlyf l j

(n,r ) andgl j
(n,r )

are regular and irregular radial coulomb functions@5#, where
v depends on the energy according to Eq.~6! below. KL is
the real symmetric reactance matrix, which is assumed
encode all the non-Coulomb Rydberg core interactions;
elements are sometimes expressed asK j j 8

L
5K j 8 j

L

5tanpmj j8
L , wherem j j 8

L (R) are termed thequantum defect
functions @5#. Finally the mixing coefficientsZj

L represent
configuration interactions between the channels.

Both f l j
(n,r ) andgl j

(n,r ) typically diverge exponentially

as r→`, and the mixing coefficientsZj
L and BO energies

Ea,L
BO (R) for a particular Rydberg statea are determined by

elimination of these divergent terms, a procedure that le
to a quantization condition of the form@8,10#

@ I a
L1KL#Na

L50, ~5!

where I a
L5tanpnja

L is the diagonal matrix, with energy de
pendent arguments such that

n j a
L ~E,R!5A 0.5

E
L

j
1

BO
~R!2E

. ~6!

It also proves convenient to express the above column ve
in Eq. ~5! asNa

L5qa
LZa

L , whereqa
L is a diagonal matrix with

elements@5#:

qa
L5~21! l jA 2

p~n j a
L !3 cospn j a

L . ~7!

The normalizationZa
LT

Za
L51 applies, provided thatKL is

independent of energy@6#. The Born-Oppenheimer elec
tronic eigenvaluesEa,L

BO (R) are obtained by adjustingE in
Eq. ~6! to satisfy

det@ I a
L1KL#50, ~8!
05251
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and the corresponding BO eigenfunctions take the forms

Ca,L
BO ~r ,R!5(

j 51

N

Zj a
L ~R!CL

j
1

BO
~r ,R!Pj a

L ~n j a
L ,l j ,r !

3Y
L2L

j
1

l j ~q,w!eiL j
1w, ~9!

where the radial WF’sPj a
L of the remote electron may b

approximated as@5#

Pj a
L ~n j a

L ,l j ,r !5
Wn

j a
L ,l j 11/2~2r /n j a

L !

n j a
L AG~n j a

L 1l j11!G~n j a
L 2l j !

,

~10!

whereG andW are gamma and Whittaker functions, respe
tively @16#, while l j is defined to differ fromn j a

L by an
integer, in which casePj a

L (n j a
L ,l j ,r ) remains finite asr

→`.
Simplifications apply in the degenerate case such that

core energies,E
L

j
1

BO
(R) of all channels are equal. In suc

cases diagonalization of theK matrix leads to

Ea,L
BO ~R!5EL1

BO
~R!2

1

2~na
L~R!!2 , na

L~R!5n

2
1

p
arctan@ka

L~R!#, ~11!

Ca,L
BO ~r ,R!5CL1

BO
~r ,R!eiL1w(

j 51

N

Zj a
L ~R!Pj a

L ~na
L ,l j ,r !

3Y
L2L1

l j ~q,w!, ~12!

where ka
L and Za

L , are, respectively the eigenvalues a
eigenvectors ofKL, andn is an integer.

B. Orthogonality conditions and overlap integrals

The orthogonality between BO wave functionsa and b
requires that^Ca,L

BO uCb,L8
BO &5dab , from which it follows

that

dab5(
j 51

N

Zj a
L Zj b

L8Sj ab
L,L8F j

L,L8 , ~13!

where F j
L,L85^Y

L2L
j
1

l j uY
L82L

j
1

l j &5dL,L8 and Sj ab
L,L8

5^Pj a
L uPj b

L8& is the radial overlap integral for thej th channel.
It is seen that the states corresponding to the differenL
values always satisfy Eq.~13!. Alternatively, if statesa and
b have a commonL value, Eq.~5! requires that

Nb
LT

@ I a
L1KL#Na

L50, ~14!

Na
LT

@ I b
L1KL#Nb

L50. ~15!

Subtraction of Eqs.~14! and ~15! leads to
0-2
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05Nb
LT

@ I a
L2I b

L#Na
L5Zb

LT
qb

LT
@ I a

L2I b
L#qa

LZa
L , ~16!

sinceI a
L ,I b

L are the diagonal matrices andKL is symmetric.
Substitution of relations~7! and~6! on the right-hand side o
Eq. ~16! therefore yields

05
2

p (
j 51

N

Zj a
L Zj b

L
sinp~n j a

L 2n j b
L !

~n j a
L n j b

L !3/2

52~Ea,L
BO 2Eb,L

BO !(
j 51

N

Zj a
L Zj b

L Sj ab
L , ~17!

where

Sj ab
L 52

sinp~n j a
L 2n j b

L !An j a
L n j b

L

p~n j a
L 2n j b

L !~n j a
L 1n j b

L !
~18!

sinceEa,L
BO ÞEb,L

BO . Equation~18! demonstrates that theSab

values rapidly decrease as the differenceD5n j a
L 2nkb

L of the
effective quantum numbers increases. It follows that
overlap integralsSjkab

L between radial WF’s correspondin
to the different nondegenerate core states with the sameL1

values (L j
15Lk

1 ; E
L

j
1

BO
ÞE

L
k
1

BO
) should be very small for

high Rydberg states, becauseD;(n jnk)
3/2(E

L
j
1

BO
2E

L
k
1

BO
)@1.

It is interesting to note that Eq.~18! is very close to its
one-channel counterpart@14# Sab

ac 5sinp(na2nb)/p(na2nb),
because (na1nb)/2.Ananb, although the latter is normally
regarded as a semiclassical, rather than a MQDT result.

C. Multichannel quantum-defect theory analog
of the Hellmann-Feynman theorem

The quantization equation~5! is the MQDT analog of the
conventional electronic Schro¨dinger equation, which mean
that differentiation with respect toR can yield counterparts
of the Hellmann-Feynman theorem; thus

@]I a
L1]KL#Na

L52@ I a
L1KL#]Na

L . ~19!

Multiplication of Eq. ~19! from the left byNa
LT

yields

Na
LT

]I a
LNa

L52Na
LT

]KLNa
L , ~20!

while multiplication of Eq.~19! from left by Nb
LT

leads to

Nb
LT

@]I a
L1]KL#Na

L52Nb
LT

@ I a
L1KL#]Na

L

5Nb
LT

@ I b
L2I a

L#]Na
L , ~21!

after exploiting Eq.~5! and the symmetry ofI a
L ,I b

L and the
matrix KL. KL is assumed to be independent of energy. T
counterpart of Eq.~21! for the b state is

Na
LT

@]I b
L1]KL#Nb

L5Na
LT

@ I a
L2I b

L#]Nb
L . ~22!

The summation and subtraction of Eqs.~21! and ~22! lead,
respectively, to the relations
05251
e

e

Na
LT

@]I a
L1]I b

L#Nb
L12Na

LT
]KLNb

L

5Na
LT

@ I a
L2I b

L#]Nb
L2Nb

LT
@ I a

L2I b
L#]Na

L , ~23!

Na
LT

@]I a
L2]I b

L#Nb
L1Na

LT
@ I a

L2I b
L#]Nb

L1Nb
LT

@ I a
L2I b

L#]Na
L

5]@Na
LT

@ I a
L2I b

L#Nb
L#50. ~24!

Equation~24! may be viewed as a corollary of the orthog
nality condition~16!.

Further substitution of Eqs.~7! and ~6! in Eqs. ~20! and
~23! leads, after tedious but straightforward algebraic m
nipulations, to the following explicit forms:

]Ea,L
BO 5F (

j 51

N

~Zj a
L !2]E

L
j
1

BO G2
1

2
Za

LT
qa

LT
]KLqa

LZa
L ,

~25!

(
j 51

N

~]Zj b
L Zj a

L 2]Zj a
L Zj b

L !Sj ab
L

5
Za

LT
qa

LT
]KLqb

LZb
L

Ea,L
BO 2Eb,L

BO 12(
j 51

N

Zj b
L Zj a

L

3F3

4
Sj ab

L S ]n j b
L

n j b
L 2

]n j a
L

n j a
L D

1
~]n j a

L 1]n j b
L !cos@p~n j a

L 2n j b
L !#An j a

L n j b
L

~n j a
L 2n j b

L !~n j a
L 1n j b

L !
G ,

~26!

which are the MQDT analogs of the diagonal~1! and nondi-
agonal~2! Hellmann-Feynman theorems, respectively. Re
tion ~26! will be applied to estimate the radial coupling m
trix elements in Sec. II D.

D. Nonadiabatic coupling matrix elements

First, nonadiabatic matrix elementsVab
L (R) between the

interacting BO diatomic statesa andb corresponding to the
sameL value may be expressed as@4#

Vab
L 52Bab

L ]1Dab
L 1Gab

L 2Lab
L /R2, ~27!

in which Bab
L (R)5^au]b& andDab

L (R)5^au]2b& are radial
coupling terms@]2 denotes the second partial derivative wi
respect toR#; second,Gab

L (R)5^auP2ub&/4 is an electronic
coupling term dependent on the total electron momentumP
5S i 51

M
“ i (“ i refers to differentiation with respect to ther

coordinates of thei th electron,M is the total number of
electrons in the molecule!; finally Lab

L (R)5^auL1L2ub&
represents angular coupling, where the ladder electronic
gular momentum operatorsL65Lx6 iL y refer to the
molecule-fixed frame. TheDab

L matrix elements can be ex
pressed through the correspondingBi j

L values by the relation
@3#: Dab

L 5@S iÞa,b
` Ba i

L Bib
L #1]Bab

L .
0-3
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The first derivative of the BO WF with respect toR for
the given stateb is readily obtained by direct differentiatio
of Eq. ~9!:

]Cb,L
BO 5(

j 51

N

Y
L2L

j
1

l j eiL j
1w

3@]Zj b
L C

L
j
1

BO
Pj b

L 1Zj b
L ~]C

L
j
1

BO
Pj b

L 1C
L

j
1

BO
]Pj b

L !#.

~28!

Multiplication of Eq. ~28! from the left by the BO WF of
statea approximated by Eq.~9! followed by integration over
electronic coordinates yields

Bab
L 5(

j 51

N

@]Zj b
L Zj a

L Sj ab
L 1Zj b

L Zj a
L ^Pj a

L u]Pj b
L &#1Za

TBcZb ,

~29!

whereSj ab
L is the overlap integral given by Eq.~18!, Bc is

the antisymmetric matrix with the nonvanishing nondiago
elements Bka j b

c 5^CL
k
1

BO u]C
L

j
1

BO
&Ska j b

L , where Ska j b
L

5^Pka
L uPj b

L & is the overlap integral between radial WF’s co
responding to the differentj andk channels.

One-electron operators of the momentumP and angular
momentum L can be transformed to the sumVc1V1
1Vc,1 , where theVc ,V1 operate only on the core and th
Rydberg WF’s, respectively, whereas the multielectron
eratorVc,1 represents mutual electron-core interactions:

P25 (
i 51

M21

D i1D112 (
iÞ1

M21

“ i“1 , ~30!

L1L25Lc
1Lc

21 l 1
1l 1

21~Lc
1l 1

21Lc
2l 1

1!. ~31!

The tacit assumption of the conventional MQDT approxim
tion is that matrix elements of the multielectron operators
negligible @11#. Remote electron and core contributions
the relevant matrix elements can therefore be treated a
tively;

Gab
L 5(

j 51

N

@Zj b
L Zj a

L ^Pj a
L uD1uPj b

L &#1Za
TGcZb , ~32!

Lab
L 5(

j 51

N

$Zj b
L Zj a

L Sj ab
L @ l j~ l j11!2~L2L j

1!2#%1Za
TL cZb ,

~33!

where Gc and L c are symmetric core matrices wit
elements Gk jba

c 5^CL
k
1

BO uS i 51
M21D i uCL

j
1

BO
&Sk jab

L and Lk jba
c

5^CL
k
1

BO uLc
1Lc

2uC
L

j
1

BO
&Sk jab

L .

It is clear that the nondiagonal matrix elements of theBc,
Gc, andL c matrices remain finite only whenL j

15Lk
1 and

l j5 l k . Hence, they vanish either when all core states h
different electronic symmetries or when all channels belo
to the same core. Moreover, even strictly nonzero o
diagonal can often be neglected in practice because the o
05251
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lap integralsSka j b
L for kÞ j are expected to be very small fo

high Rydberg states~see Sec. II B!. The dominant contribu-
tions to the matrix elements~29!, ~32!, and ~33! therefore
reduce to

Gab
L 5

1

4 (
j 51

N

Zj b
L Zj a

L @^Pj a
L uD1uPj b

L &1Gj j
c Sj ab

L #, ~34!

Lab
L 5(

j 51

N

Zj b
L Zj a

L Sj ab
L @ l j~ l j11!2~L2L j

1!21L j j
c #,

~35!

Bab
L 5

1

2 (
j 51

N

@~]Zj b
L Zj a

L 2]Zj a
L Zj b

L !Sj ab
L 1Zj b

L Zj a
L

3~^Pj a
L u]Pj b

L &2^Pj b
L u]Pj a

L &!# ~36!

after use of the identityBab
L 52Bba

L . Finally, substitution of
Eq. ~26! in Eq. ~36! yields

Bab
L 5

Za
LT

qa
LT

]KLqb
LZb

L

2~Ea,L
BO 2Eb,L

BO !

1(
j 51

N

Zj b
L Zj a

L F ^Pj a
L u]Pj b

L &2^Pj b
L u]Pj a

L &
2

1
~]n j a

L 1]n j b
L !cos@p~n j a

L 2n j b
L !#An j a

L n j b
L

~n j a
L 2n j b

L !~n j a
L 1n j b

L !

1
3

4
Sj ab

L S ]n j b
L

n j b
L 2

]n j a
L

n j a
L D G . ~37!

The matrix elements^Pj a
L u]Pj b

L &,^Pj a
L uD1uPj b

L & between
generally nonorthogonal radial WF’s can either be estima
numerically using the analytical representation~10! or re-
duced to analytical sums over their orthogonal counterpa
as recently derived@14# in the closed form

^Pj a
L u]Pj b

L &52]n j b
L (

n j b8Þn j b

`

Sj ab8
L

An j b
L n j b8

L

m~n j b8
L

1n j b
L !

, ~38!

^Pj a
L uD1uPj b

L &5(
n j b8

`

Sj ab8
L F 2R]n j b

L

~n j b
L n j b8

L
!3/2

2S n j b8
L

1n j b
L

2n j b
L n j b8

L D 2

Jm~mx!G . ~39!

Herex5A12( l j10.5)2/(n j b
L n j b8

L ), while Sj ab8
L is the over-

lap integral given by Eq.~18!, m5n j b8
L

2n j b
L is an integer

andJm(mx) is a Bessel function of orderm.

E. Adiabatic correction

The adiabatic correctionAa
L(R) for a given BO electronic

statea is @4#
0-4
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Aa
L52

1

2m
@Daa

L 1Gaa
L 2~Laa

L 2L2!/R2#, ~40!

wherem is the reduced molecular mass. The elementsDaa
L

can be estimated from Eq.~37! by use of the identity:Daa
L

52( iÞa
` (Ba i

L )2, while Gaa
L and Laa

L are readily obtained
from Eqs.~34! and ~35!, respectively,

Gaa
L 5

1

4 (
j 51

N

~Zj a
L !2@^Pj a

L uD1uPj a
L &1Gj j

c #, ~41!

Laa
L 5(

j 51

N

~Zj a
L !2@ l j~ l j11!2~L2L j

1!21L j j
c #. ~42!

Hence, the total adiabatic correctionAa
L for a given Rydberg

statea is reduced to

Aa
L5

1

2m F (
iÞa

`

~Ba i
L !21(

j 51

N

~Zj a
L !2S n j a

L 22R]n j a
L

4~n j a
L !3 2

Gj j
c

4

1
L j j

c 2L21 l j~ l j11!2~L2L j
1!2

R2 D G , ~43!

where hypervirial theorem was applied to estimate the d
onal matrix element̂Pj a

L uD1uPj a
L &.

III. APPLICATION TO H 2s,d3Sg
¿ COMPLEX

The validity of the above approximations are tested be
by calculations of the nonadiabatic matrix elements and a
batic corrections for theg,h 3Sg

1 and 4s,4d 3Sg
1 states of

FIG. 1. The ab initio Born-Oppenheimer potentials for th
ground state of a H2

1 ion @22# along with theg, h 3Sg
1 @19# and 4s,

4d 3Sg
1 @20# states of a H2 molecule.
05251
-

a-

molecular hydrogen, which correspond to the first memb
(n53 for the g, h and n54 for the 4s,4d states! of the
triplet s,d 3Sg

1 Rydberg series~see Fig. 1!. These electronic
states are chosen for the following reasons.

~1! The BO states of the H2s,d 3Sg
1 complex were found

to be represented, at small and intermediate in
nuclear distances, by the pair of thel-mixing diabatic
s and d series converging to the ground state
H2

1 :s:(1sg)nssg ;d:(1sg)ndsg @11#. Since the present Ry
dberg states have the same core, the relevant matrix elem
are simplified significantly~see the Appendix!.

~2! Strong nonadiabatic interactions between the state
the complex are expected to occur near the equilibrium
tances of their potential curves~see Fig. 1!, and the relevant
ab initio estimates of nonadiabatic radial and angular c
pling matrix elements are known for theg,h 3Sg

1 states
@17,18#.

~3! Highly accurateab initio BO potential curves and
their derivatives with respect toR, together with adiabatic
corrections have been recently calculated forg,h 3Sg

1 @19#
and 4s,4d 3Sg

1 @20# states, by use of explicitly correlate
wave functions in elliptic coordinates.

A. Determination of the reactance matrix

Elements of reactance matrix were derived by nonlin
least-squares fitting to theab initio BO curvesEa,ab

BO for the
lowest members of thes,dRydberg series. Since both]Ea

BO

andBab functions are proportional to]K @compare relations
~25! and ~37!#, the highly accurate derivatives ofab initio
BO potentials]Ea,ab

BO calculated by the hypervirial theorem
in Refs.@19#, @20# were simultaneously optimized along wit
the corresponding BO potentials in the fitting procedure
the functionsm i j (R):

min (
i 5s,d

(
Rx

M

@~Ei ,ab
BO 2Ei ,MQDT

BO !21~Ei ,ab
BO 2]Ei ,MQDT

BO !2#.

~44!

The diagonalmss and mdd functions were approximated b
appropriate polynomial functions ofR while a more flexible
pointwise representation combined with spline interpolat
was used for the nondiagonalmsd values. The MQDT energy
and its derivative were calculated by the analytical relatio
~A1! and~A2! given in the Appendix. The numberM of the
mesh pointsRx was chosen to be larger than a number of
adjustable fitting parameters. A minimum functional~44!
was sought by the modified Levenberg–Marquardt algorit
combined with a finite-difference approximation to the co
responding Jacobian matrix. The requiredmss, mdd , andmsd
functions were obtained from the separate fits of
g,h 3Sg

1 and 4s,4d 3Sg
1 pair states to clarify their depen

dence on principal quantum numbern. The resulting
quantum-defect matrices shown in Fig. 2 reproduce theab
initio BO curves for theg,h 3Sg

1 and 4s,4d 3Sg
1 states
0-5
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along with their firstR derivatives to better than 1025 a.u. in
the regionR51 – 4 a.u. It must be stressed that use ofR
derivatives of the potentials in the fitting greatly improv
the accuracy of the extracted reactance matrix. As expec
the n dependence of the quantum-defect functions is v
small but not quite negligible. The observed small differen
of the reactance matrices corresponding ton53 andn54
may arise either from a true weak energy dependence
from a small convergence error in theab initio calculations
@19,20#.

B. Comparison betweenab initio and multichannel quantum-
defect theory nonadiabatic coupling elements

The derived quantum-defect functions together with tw
channel simplifications of the foregoing analytical formul
~A3! and ~A4!, given in the Appendix, were numericall
tested by calculation of nonadiabatic radial and angular c
pling matrix elements for theg,h 3Sg

1 states. The results
shown in Figs. 3 and 4 demonstrate that the present MQ
estimates agree well withab initio results obtained by the
conventional full-configuration-interaction method with tw
different Gaussian type orbital~GTO! basis sets@17,18#. It
should be noted that theab initio data@17# seem to be more
reliable than the comparable data from Ref.@18# because the
former are based on more extensive GTO basis set calc
tions. The results presented in Figs. 3 and 5 show that
radial coupling matrix elements between the states co
sponding to the same principal quantum numbers are la
than those corresponding to differentn values.

The reliability of the derived quantum-defect functio
and the power of the present MQDT approach are the m
clearly seen in Fig. 6 where the MQDT adiabatic correctio
calculated by the Eq.~A5! for the g,h 3Sg

1 and 4s,4d 3Sg
1

states of the H2 molecule are compared with the highly a
curateab initio counterparts given in Refs.@19#, @20#. The
excellent agreement between the MQDT andab initio adia-
batic corrections for all states treated confirms the high
curacy of the derived radial matrix elements, since the p

FIG. 2. The quantum-defect functions of the reactance ma
for the g, h 3Sg

1 @19# ~solid symbols! and 4s, 4d 3Sg
1 @20# ~open

symbols! states of H2.
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tion and height of the sharp maximum of theAs(R) and
Ad(R) functions are mainly determined by a sum of squa
of the correspondingBab

L values@see Eq.~A5!#.

IV. CONCLUSIONS

Analytical approximations for adiabatic correction an
nonadiabatic matrix elements were derived and tested for
g,h 3Sg

1 and 4s,4d 3Sg
1 states of molecular hydrogen. Th

ix

FIG. 3. The radial coupling matrix elements for theg2h and
4s24d pairs of the interacted states of H2. Ab initio data evaluated
by the finite-difference technique were borrowed from Ref.@17#
~solid circles! and Ref.@18# ~open circles!, respectively.

FIG. 4. The diagonal and nondiagonal matrix elements of
angular coupling for theg, h states of H2. Ab initio data were taken
from Ref. @17# ~solid circles! and Ref.@18# ~open circles!.
0-6
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ANALOG OF THE HELLMANN-FEYNMAN THEOREM IN . . . PHYSICAL REVIEW A 63 052510
MQDT analogs of the diagonal~25! and nondiagonal~37!
forms of Hellmann-Feynman theorem allow one to rel
both the first derivative of the Born-Oppenheimer energy a
the nonadiabatic radial coupling matrix elements for mu
configuration Rydberg diatomic states to the first derivati
of the relevant reactance matrix in explicit forms, of whi
simplified two-channel versions are given in the append
Overall good agreement between the present MQDT e
mates of the radial and angular coupling matrix elements
the g,h 3Sg

1 states and theirab initio counterparts is ob-
served. This excellent agreement of the MQDT andab initio
adiabatic corrections for all states studied has been achi
by simultaneous fitting of the reactance matrix to the hig

FIG. 5. The MQDT matrix elements of the radial coupling f
the h24s, g24d, h24d, and 4s2g pairs of H2.

FIG. 6. A comparison of the MQDT adiabatic correction fun
tions for theh, g, 4s, and 4d states of H2 with their high-accurate
ab initio counterparts@19,20#.
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accurateab initio BO potentials and their derivatives wit
respect toR.

The main advantage of the present approach in a comp
son with the conventional MQDT method@11# is that it pro-
vides anexplicit form for the adiabatic and nonadiabat
electronic matrix elements for all members of a given Ry
berg series. It allows one to do the following:

~1! test directly the validity of MQDT approximation for a
particular Rydberg electronic state at any internuclear d
tance by their comparison with availableab initio data;

~2! apply accurateab initio data on derivatives of BO
potentials, radial coupling matrix elements, and adiaba
corrections, which are usually known for low-lying ele
tronic states, to refine matrix elements of the reactance
trix;

~3! incorporate the formula applications to higher me
bers of the Rydberg series and more accurateab initio data
for low-lying valence electronic states on a common chan
coupling, variation, or perturbation theory calculations.
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APPENDIX: TWO-CHANNEL APPROXIMATION:
DEGENERATE CASE

Since both members of the H2s,d 3Sg
1 complex have the

same core, the BO energy and WF’s of the correspond
states can be approximated by using of relations~11! and
~12! in the form

Es/d
BO5EL1

BO
2

1

2ns/d
2 , ns/d5n2m̄s/d ,

2 tanpm̄s/d5~Rss1Rdd!6A~Rss2Rdd!
214Rsd

2 ,
~A1!

Cs
BO5CL1

BO
@Fs cosu2Fd sinu#,

Cd
BO5CL1

BO
@Fs sinu1Fd cosu#, tan 2u5

2Rsd

Rss2Rdd
,

where Rss5tanpmss, Rdd5tanpmdd, and Rsd5Rds
5tanpmsd, the quantitiesmss, mdd , andmsd being, respec-
tively, the quantum-defect functions fors,dchannels plus the
interaction between them.EL1

BO andCL1
BO are BO energy and

WF of the ground state of hydrogen ion, andFs , Fd are
wave functions of the remote electron ins,d channels, re-
spectively. Use of the trigonometric functions inu for the
0-7
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mixing coefficientsZ allows one to assume thatu is inde-
pendent of the principal quantum numbersn if K is assumed
to be independent of energy.

The general formulas derived in Sec. II are found to
duce to closed forms in this two state, common core mo
For example, Eq.~25! shows that

]Es
BO5]EL1

BO
1

cos2 pns

ns
3

3@Ksscos2 u1Kdd sin2 u2Ksd sin 2u#,
~A2!

]Ed
BO5]EL1

BO
1

cos2 pnd

nd
3

3@Ksssin2 u1Kdd cos2 u1Ksd sin 2u#

where

Kss5
]mss

cos2 pmss
, Kdd5

]mdd

cos2 pmdd
, Ksd5

]msd

cos2 pmsd
.

The radial coupling matrix elements betweens andd states
follow directly from Eq.~37!:

Bsd5
Ansnd

nd
22ns

2 cospns cospnd@~Kss2Kdd!sin 2u

12Ksd cos 2u#,
-

05251
-
l.

Bss85]ns

2Ansns8

ns8
2

2ns
2 , Bsd85]nd

2Andnd8

nd8
2

2nd
2 . ~A3!

In addition the matrix elements between different memb
of the same diabatic Rydberg seriesBss8 and Bdd8 are
equivalent to their one-channel counterparts@14#. The angu-
lar coupling matrix elements betweens andd states are de-
rived from Eq.~35!:

Lsd526
sin@p~ns2nd!#Ansnd

p~ns
22nd

2!
sin 2u,

Lss856 sin2 u, Ldd856 cos2 u, ~A4!

since l s50 andl d52. The adiabatic correction comes fro
the relation~43!:

As5FAion1(
iÞs

`

Bsi
2 1

ns22R]ns

4ns
3 1

6 sin2 u

R2 G /2mH2
,

~A5!

Ad5FAion1(
iÞd

`

Bdi
2 1

nd22R]nd

4nd
3 1

6 cos2 u

R2 G /2mH2
,

wheremH2
is the reduced mass of hydrogen molecular a

Aion5L ion /R22Gion/4. Gion and L ion are the known elec-
tronic and angular adiabatic matrix elements for the grou
state of hydrogen ion, respectively@21,22#.
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