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Radiative-recoil corrections of order a(Za)>(m/M)m to the Lamb shift revisited
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The results and main steps of an analytic calculation of radiative-recoil corrections of order
a(Za)®(m/M)m to the Lamb shift in hydrogen are presented. The calculations are performed in the infrared
safe Yennie gauge. The discrepancy between two previous numerical calculations of these corrections existing
in the literature is resolved. Our result eliminates the largest source of the theoretical uncertainty in the
magnitude of the deuterium-hydrogen isotope shift.
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I. INTRODUCTION pressed because the infrared behavior of any radiatively cor-
rected Feynman diagrarfor more accurately any gauge-
The spectacular experimental progress achieved in recefitvariant sum of Feynman diagrams milder than the

years in precise measurements of the energy levels in ligiehavior of the skeleton diagram. Hence, unlike the leading
hydrogenlike atoms was matched by equally impressive thecontribution to the Lamb shift, diagrams with higher number
oretical developmentsee, e.g., the review ifi], and refer-  of photon exchanges do not contribute to the corrections of
ences therein Still, there are a number of unsolved theoret-order a(Za)°m, and it is sufficient to calculate only the
ical problems, not least among them the magnitude ofontributions of the diagrams in Fig. 1 in the scattering ap-
radiative-recoil corrections to the Lamb shift of order proximation(for more detail, see, e.d.1]).
a(Za)®(m/M)m. To the best of our knowledge this is the  In the scattering approximation the contribution to the en-
first nontrivial radiative-recoil correction, and it is generatedergy shift generated by the diagrams in Fig. 1 is given by the
by the radiative insertions in the exchanged photon lines anttegral
in the electron line. The correction generated by the one-loop

polarization insertions in the exchanged photon lines was B (Za)® 3 d* 1
independently calculated analytically [i&] and[3], with re- AE=- . mrf i 2K ZTr[(1+ 70)'—,“,]2

sults that are in excellent agreement. Radiative-recoil correc-

tions generated by radiative insertions in the electron line XTr[(1+ yo)H 1010, (h)

were obtained numerically i#—6] and in[3]. The results of

these calculations do not agree. In this paper we present apheremandm, are the electron and reduced maskas the

analytic calculation of the radiative-recoil corrections of or-momentum of the exchanged photdr),, andH,,, are the

der a(Za)%(m/M)m, and resolve the discrepancy betweenelectron and the proton factors, and the Kronecker symbol

different numerical results. d)0 reminds us that the radiative-recoil corrections of order
Calculation of the contributions of order(Za)®m to the ~ a(Za)*(m/M)m are different from zero only for theS

Lamb shift is greatly facilitated by the applicability of the states.

scattering approximation. These corrections are generated by The electron factor is equal to the sum of the self-energy,

the diagrams with at least two photon exchanges in Fig. 1vertex, and spanning photon insertions in the electron line

Naively, one might expect that diagrams with a larger num- s A -

ber of exchanges are also relevant. However, this is not the Ly, =L, +2L,,+L,,, 2

case. For high-exchanged momenta expansiatuitis valid, ) o ]

and addition of any extra exchanged photons always proa”d the heavy line or proton factor is given by the expression

duces extra powers dda. Hence, in the high-momentum A A

region only diagrams with two exchanged photons are rel- _ P+k+M N P—k+M

evant. Contributions in the low-momentum region are sup- wr= Yu k24 2Mko+i0 YT Yy k2—2MKq+i0 Vi

()
*Email address: eides@pa.uky.edu, eides@thd.pnpi.spb.ru whereP=(M,0) is the momentum of the proton.

"Email address: asdean@pop.uky.edu The expression for the energy shift in E@) contains
*Email address: shelyuto@vniim.ru both recoil and nonrecoil contributions of ordetZa)°m.
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I "'PNH diagrams with FIG. 1. Electron-line radiative-
+ 2 S S + s S + crossed exchanged recoil corrections.
photon lines

The nonrecoil correction of this order is well known from the means that the radiative-recoil correction ~of ~order
: a(Za)>(m/M)m does not contain logarithms of the mass

early days of quantum electrodynamics, and ‘F‘ order 10 SiMgyi In(m/M) that could originate only from the wide-
plify further calculations we would like to obtain an expres- integration region between the electron and proton masses
sion for the energy shift free of such contributions. Let USyn<k<M. Then we can remove all nonrecoil contributions
note, to this end, that the characteristic integration momentgng extract the first order in the mass-ratio contribution sim-
in Eq. (1) are of order of the electron mass, the lower mo-p|y py differentiating the integral in Eq(1) with respect to
menta are suppressed by the radiative insertions in electrgpe heavy masM, and letting this mass go to infinity after-
line, and the momenta of order of the heavy mass are sugvards. The integral in E¢L) contains the heavy mass only in
pressed by the high power of the integration momenta in théhe heavy-particle factor, and to extract the term linear in the
denominators. Suppression of the high-integration momentenass ratio we make the substitution in the integrand

|

P—k+M . P+k+M
y“kz—szOJrioy” yvk2+2Mko+i0y“

1 J 1
ZTr[(l+ ’yO)H#V]—>— M m ZTr{ (1+ ’)/0)

1, , . KE+(kYam?)
- M{k g,uogvo_kO(gMOkv+gV0kM)+kog}LV}[ (4)

k23— (k*4aM?)1?

Due to the explicit factor M before the braces, it is suffi- 1
cient to consider the last factor in this expression only in  —Tr[(1+ yo)H,,]—— M
limit kKM—0 (we note that the characteristic integration
momenta are much less than the proton mas$1). Then
the coefficients before the tensor structures in the last line in +9.k i+ 6
. . . 9.0 ,u) g,uv ' ( )

Eqg. (4) simplify dramatically. Ko

We will calculate the Feynman integrals in the polar co-
ordinates in the four-dimensional euclidean space, where thand the general expression for all radiative-recoil corrections
vector k is parametrized in the fornko=k cosé and |k|  of order a(Za)%(m/M)m acquires the form
=ksind. It is easy to see that the integrals with the coeffi-

k?g,00 Pi —(g,0K
©n0Yv0 kg gMO v

cient before the first tensor structure in the braces in(&xg. Za)®md [ d*k 1 B
r st | (Za)® m; s oa s
should be calculated as principal-value integrals over the poAE= s v | T2 ZTr{(1+ yolL,,+2L,,+L5,1}
lar angle m® MJin%k
k? ! k k ! 8. (7
2 i k&+ (k*/4M?) i cogf—e? _ ( 1 ) 9409,0 P! K2 (90K, t 9,0 M)k—o+gw 10- (7)
wm—o[K3—(k*/4M?)12 . _o(cof6+e2)? | cog)’

(5)  This expression is much more convenient for calculations
than Eq.(1) because it depends on the heavy mass only
through the explicit factomf‘/ M before the integral.

wheree=k/2M and P is the principal-value symbol. The expression for the energy shift in Eq) is linearly
The second term in the curly brackets in E4).is odd in infrared divergent like Iy wherey is an auxiliary infrared
ko, and will give nonzero contribution to the integral over cutoff in integration ovek. This linear infrared divergence is
only when multiplied by another term from the electron fac-the price we have to pay for the simplicity of the scattering
tor odd inky. But this means that the electron factor would approximation. The point is that the expressions for the en-
effectively supply an extra power &f, in the numerator, and ergy shifts in Eq(1) and Eq.(7) contain not only corrections
we can safely take the limi¢—0 in the coefficient before of relative order Za)® but also the corrections of the previ-
the second tensor structure in B¢). The factor before the ous order inZa. If we would not ignore small virtualities of
9., term in Eq.(4) admits a smooth limit foe —0. Thenthe the external electron lines and the external wave functions
heavy particle factor turns into the naive-infrared divergence would be regularized at the
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characteristic atomic scalg~mZa. We are not interested Il. MASS OPERATOR CONTRIBUTION
in the contributions of the previous order #x, and will
simply throw away linearly infrared divergent contributions
in our calculations. The remaining infrared-finite contribu-
tion is just the radiative-recoil correction of relative order
a(Za)®. This strategy works because the radiative-recoil
corrections under consideration do not contain logarithms o
Za. However, individual diagrams could contain logarithms
of the infrared cutoff that should cancel in the final result. -
This cancellation serves as an additional test of the correct- Riny— > (56— ZJl — 3pX

. ; e 25(p)=g=(p—m)*| dx . (8
ness of all calculations. In the scattering approximation, the w mx+(m?—p?)(1—x)
diagrams in Fig. 1 form a complete gauge-invariant set, and
we can use an arbitrary gauge for their calculation. In order
to improve the low-momentum behavior of individual dia- According to Eq«(7) the respective contribution to the Lamb
grams we use the Yennie gauge for the radiative photons. shift may be written as

Let us consider first the contribution to the radiative-recoll
correction of ordera(Za)>(m/M)m generated by the dia-
grams with the self-energy insertions in the electron line in
Fig. 1. The renormalized mass operator in the Yennie gauge
pas the form(see, e.g.[7])

3 a(Za)5 d*k x 1 . ) 1
AEE: J J’ _Tr[(1+70)7M(p_k)7V] k g,u,OgVOP k (g,u,Ok +g Ok ) +g/.w
0

4 772n im2 KA,
3a(Za)5 f fd4k X | _am+2k +k21+ 2P ! 9
= m —+m —11,
4 a3 i KA, ®" " ko K2
|
where k2+a§
(k?*+a3)?+4k?cog
A;=m?x+2pk(1—x)—k?*(1—X)
1 4k? cog o

=(1—x)(—k?+2mky+a?),

CK2+ad (K2+ad)[(K2+a2)2+4k? cogh]’

and aizmzx/(l—x). In the formulas below we will often 1D
use dimensionless momenta measured in terms of the eleg- : : ;
ron mass komk and a shorthand notationC e represent the integral in EQLO) in the form
=[a(Za)% (7*n3)](m/M)(m, /m)3m for the common nor- dk2
malization factor. AE{=— —f xalf

As an example of our calculations let us consider the
evaluation of the contribution to the energy shift generated

by the last most infrared singular term in the square brackets « deasinze 1 p 1
in Eq. (9) k?+a37 \coge
3C d*k [1 4k (12)
AE{=— f f Pl = (k?+a?)[(k?+a?)%+4k?cosd] |
i 2 K2(— k2+2k0+a1) | K2
5 where the principal-value integral contains only a trivial de-
f a f”dk pendence on the angles.
1 All principal-value integrals we need in this work, in par-
ticular the integrals
sir?0(k?+a?) ( 1 ) 10
X . w
(k?+a3)%+4k%cog6 | cogo Ef dgsin29p( 1 ):_2,
mJo cosd

The integration in the last line goes over the four- 2 (n 1
dimensional euclidean space, and we have introduced an _f dgsirﬁgp( ):_3,
auxiliary infrared cutoffy. Using the identity ™ cos 6
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may be obtained from the basic integral

AE,=

w 1
fo daP( 00520):0’ 13

with the help of algebraic transformations.

Now we can easily complete calculation of the integral inyyhere

PHYSICAL REVIEW A63 052509

a(Za)5 mr dk 1 1
2 3 jdXJ’ j 4 2
im2 k* k?—
2
X v(”>+v(”> +V(”)P 19
n; X K 2 (19

Eq. (10),
1 A a
3C 1 2 ‘@ 4 1 Ve =7 Tl (1+ 70 F P (p—k+1)7,19,...
AEy=—-| dx| 2In— -2 In——+ —arctan—
4 Jo y aj a a;
1 ~ A
et 3 V=2 T (L+ yo)F P (P—k+1)7,](—= 9,0k, — 90Ky,

Other integrals in Eq(9) are calculated in the same way,
and we obtain the total self-energy contribution to the energy
shift in the form

1 A
VE=2 T (L+ 70 FP(P—k+1),1K°000,0.

Calculating traces and contracting the Lorentz indices we

obtain the numerator factors in the square brackets in Eq.

a(Za)® m ( m,)3 [ 1} (19
SEs=———— —| —]| M 9In—|. (14 '
> m?n® Mim Y
1 1
v+ v = v =
I1l. VERTEX CONTRIBUTION Ko I(0
We calculate the contribution to the Lamb shift generated —ax(1— )k 14+ — 1
by the vertex insertion in the electron line in Fig. 1 with the Ko
help of the compact expression for the electron-photon ver- 5
tex in the Yennie gauge used in our earlier work on the 2 2
L ) + +62°+ +—
radiative corrections of order?(Z«)°m [8], 2x(5- 92+ 62" +4xz—4xZ)k’ ko Ko +(k

2 =GO

Adpp—0=5- 3 5 (15

where

—2k0)| [—6(1—22)+2x(—1—10z+2x+2x2)]

1
+[6(1—22z)+2x(1+z+ 67%+ 2xz— 4x2) |K? P( F)
0

F(D=3y,[k?®—2pk+(2-x)A] (20)
—X[37,(p+m)y,(p—k+m)y*—6(p—K)Qy, +[6(1—22) + 2%(— 5+ 102— 4x2) |ko
+7.Qy,(p—k+m)y*+ v (p+m)y,Qy* k2

7eQu(P VY Y PEM Y, QY +[3(1—22)+x(z+622—4x22)]k—},
+2y,(p—k+m)Q+2Q(p+m)y,] °
2/ ~ 2
+x%(2Q7,Q+Q%y,), 19 e, o kl v L )
I(O
F®=2x(1-x)y,(p—k+m[QpQ-pQ?], (17 .
—4X(1-x)Zk?*| 4(1-2)| 1+K*P| — | | +2(1~2)
A=m?x+2pk(1—x)z—k?z(1—x2) kg
=2(1-x2)(—k2+ 2bky+a?), (18 1
X (2k3— k2) +(k2 2ko)| —2z+2(1-22) -
andQ=—p+kz, p?=m? 0
According to Eq.(7) the radiative-recoil contribution of 1
ordera(Za)®(m/M)m generated by the vertex insertion has +zk? P( —2> ] . (21
the form(we use dimensionless integration momenta bglow ko
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As a simple example let us consider calculation of the conand as a result all denominators were combined with the help
tribution to the energy shift generated by the terms in the lasbf only two Feynman parametexrsz. Let us turn now to a

line in Eq. (20), simple example where such a cancellation does not take
place, and we need to introduce a third Feynman pararheter
d“k 1 The contribution generated by the first term in E20) may
AE =2C dX dz N be written in the form
i 72 k*A
y - 8CJld fld Jd“k 1 X(1—X)
X —22)+2x(—5+10z— = X zZ| —
[6(1—22)+2x(—5+10z—4x2) kg A o o im2 k2(k2—2ky) A
k2
+[3(1—22)+X(Z+622—4X22)]k—0] :—scf dxj dz(1-x)a? dtﬁ— de—J do
ch
1 1 b o 2
:2Cf dxf dz—J dk?— k?+ a2
o Jo z1-x2)Jo X sirf @ 5 5 , (26)
(k*+af)2+4bfk? cog o
XJ’Wd" sirfe . ,
o U(k2+a2)2+4b2k2 020 wherea;=a“t andb,=1—2z(1-2z)a“t.

The integral over angles and momenta in E2f) is just

_ _ _ _ of the standard form Ed23), and may easily be calculated.
{[6(1—22)+2x(~5+10z—4x2) ]Jcos 0+ [3(1-22) +x(z Integration ovet is facilitated by the simple observation that
+622—4x2%)]}. (220 thetintegral may be written as an integral o with the

upper limita®. After this transformation, all dependence of

The last integral, as all other integrals in this paper, may bene new integral ox is hidden in this upper integration limit,
written as a linear combination of Integrals of the form and we can get rid of the third Feynman parameter |ntegrat-
ing by parts ovewx (for more details sef7]),

| 2\mgy,2 2\n
f kz—f S|n20cos2 0(k?)™(k?+a?) 23

2 2\2 2,2 p’ 1 1 1dt
[(K2+a2)%+ 4b%K2 co2 6] AExzscf dxf dz(l—x)azf e
. 0 0 0 b;
wherel,m,n=-1,0,1 andp=1,2,3. Forl=—1 the inte-

grals with coé6 in the denominator should be interpreted as 1 1 2da2
principal-value integrals. All these integrals may be calcu- =8cf dxf dz(1—x)f — Lot
lated in terms of four standard functions of the parameters 0 0 0 by
a,b, 1 1dz w2
2,4 2 ) =4Cf dx ?Lozzc 7—2 . (27)
a a 0 0
L0=|n—2, L1:1__2L0,
a b Contributions of the other terms in E0) are calculated in
0o . ] (24 the same fashion, and the total contribution of all terms with
a =1 i
L=1— FLl’ aarctana. n=1 in Eq.(19) is equal to
AEW— a(Za)®> m{m\3 9| 1+3 )+ 972
The result of integration for our example in EQ2) is ANTE o Mim) ™ " gs(3)+—
3
AE\= ZCJ dxf dz )([6(1 27) x|n2—T+4. (28
+2x(—5+ 102—4xz)]<%L0— %Ll) For trtw)(ta Fotal contribution of all terms with=2 in Eq.(19)
we obtain
_ 2_fy2
+[3(1—22)+X(z+62°—4xZ%) ] a(Za)> m(m\3 [21 1372
AEP=2 —|—=| m|—¢(3)-
—-L +éarctan9 m?n® Mim 8
°" a a )
97w 35
11 ,. . 53 - "7l (29
=2C —?§(3)+7w In2— +7].

R (25

The total vertex-insertion contribution to the radiative-recoil
In the contribution to the energy shift in E@2) the electron  correction of order(Z«)>(m/M)m is given by the sum of
denominator canceled with a similar term in the numeratorthe contributions in Eq(28) and Eq.(29),
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a(Za)® m(m\3 1 The general expression for the energy shift induced by the
AEy=—F— —(—r) m[—lSIn—Jr 6£(3)—27%In2 spanning photon insertion has the fofsee Eq.(7)]
m?n® Mim Y
37% 19 5 4
- = Za m d*k 1
4 2} CURN - L) ( r) f dxf dzx1-2)
w°n3 2 k4

IV. SPANNING PHOTON CONTRIBUTION

The contribution to the Lamb shift generated by the span- 23:
ning photon insertion in the electron line in Fig. 1 is calcu- =
lated with the help of an explicit expression for the jellyfish-

shaped diagram. The smak behavior of the jellyfish

diagram is one of our primary concerns in further calcula-where

tions, since the contribution of the previous order is con-

nected just with this infrared region. The jellyfish diagram is

finite at smallk in the Yennie gauge, and this is one of the

reasons why we are working in this gauge. We need a rep-

resentation for the jellyfish diagrams where not only the dia-

gram as a whole, but all entries are finitekat0. The com-

pact expression for the jellyfish diagram with such properties (") 1 ")

was used in our earlier work on the radiative corrections of T =7 T (1+ 70)M51(— 8,0k, — Guok,),
order a?(Za)°m [8],

1
T+ 1 Kt T™P

i) 34)
k3) |’ (

1
1 A"

1
T=2T(L+ vM{1g,., .

3 (n)
=] M 1
L= dx @Y TO=2 T (1+ 7MY 1Kg,08,0- (35
where
(1) @ Calculating traces and contracting the Lorentz indices we
Myo=—2N,5, (32)  obtain the numerator factors in the square brackets in Eq.
_ (34),
(2) — N () _ () (sing)
ML =N +2(1=x)N}7 + 3N,
B)— _ _ (d)
M,LLV 2(1 X)N,LLV! T(l)+T(l)|j- +T(1)P %)
N()=7,(5p—3Kk)y,+4mg,, °
+X[va7p+7V7MQ+47p©7V]i k2

=24(1—x)+4(—3+2xz)k0+2(—3+2xz)k—
oA A A -
NP =2m[Qy,(p+xQ—k+m)y, 0

Al a s A 1
+7u(PFXQ=k+m)y,Q] (33 +6(—3+2x)k*P P) (36)
0
—121-20)m?y,Qy,~2xQy,
X (p+xQ-k)7,Q+4xmQy,, ro 1t rpe L )
+[2XQ%+ 8(pQ) ]y, (p+xQ—k o kg
+m)y,, =12x—8z(1—x)(4—x)kg+82(2— x—x2)k3+ 4z
~ ~ k2
N =4(pQ)y.py,+2m*y,Qy,, X (44X 4xz+2x*2)K?+82(1-X)(4=X) 1 -
0
N(D=8[(pQ)2~m?Q?]y,(p+XxQ—k+m)y,, 1
+6xk?P 2 +22(2+ 2x+ 3xz— 4x°z)k*
ing) _ N e 0
NS;“Q)—4m2yM(p—k+ my,,
1
anda?, b, andQ were defined in Eq(18). It should be noted X P( —2) , (37)
that all MEB, are infrared finite even &=0. ko
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1 1 a(Za)® m{m\3 372
@) 4T~ L TGP = @ e T °To
TR+ 71§ k0+T2 P kg) AEE 3 M(m) m| 12{(3)+ —5— 16|,
(43
=—16(1-x)2%k?| 2(—1+2x) +2(1—x2)k «(Za)s m{m\® [75 372
AES=—" —| | m—¢(3)- —
= 208 Mlm 4 2
k? 1
+(1—xz)k—+(2—x)k2P<—2>- (38) 97® 113
0 kg X|n2+E_T' (44)

We will use the integral for the contributions witm=1,2,3 in Eq.(34), respectively.

. . 4 K2 Let us emphasize once again that we hg;/e thrown away the
AE’:=16CJ dXJ dzz(l—z)J d’kk® —2xz [ 1 linearly infrared divergent term %/in AEE”, which corre-
= 0 0 im2 k2 A8 k3 ' sponds to the contribution of the previous order, but we have
(39 preserved all logarithmically divergent terms that should
cancel automatically in the final result for the energy shift.
describing one of the contributions with=3 in order to The total contribution to the energy shift generated by the
illustrate one more subtlety encountered in our calculationsSPanning photon insertion in Fig. 1 is equal to
This infrared-divergent integral contains in the integrand the 5 5
termx/A3. At smallk—0 the denominatoA —Xx, and inte- SE _a(Za)®m ﬂ)
gration overx becomes too singular. The singular factor Ch m) ™
P(l,kg) in the integrand makes things even worse, and we
risk ending up with a divergent integral over the Feynman
parametex instead of an infrared-divergent integral over the
momentum. While linearly infrared divergent integrals over  Collecting all contributions to the energy shift in Egs.
k have a transparent physical interpretation as contributiongl4), (30), and (45) we see that all logarithmically infrared
of the previous order iZ«, divergent integrals ovexrcould  divergent contributions cancel in the sum, and obtain the
lead to uncontrollable contributions. We separate theotal radiative-recoil correction of order(Za)>(m/M)m,
infrared-divergent part of the momentum integral with the

help of the identity ae—ls 2, 32 a(Za)® m(m\3
=|64(3)-27%In2+ -~ 14 —) m

oI 9} (45)
n__ —|.
72n® M y

2

V. SUMMARY

772n3 M\ m
—szldxi (46)
0o A3
, ) a(Za)® m(m,)s
_ 1 N 27 N Z (l_z)k ~—13.0676322 . .- 772”3 M\ m
k?—2k, 1-k?z(1—-2) [1-k%z(1-2)]?
(40) This result is in excellent agreement with the numerical re-

sult in[3], and this resolves the long-standing discrepancy on
the magnitude of the radiative-recoil corrections of order
1 2x a(Za)®(m/M)m to the Lamb shift. When this paper was in
p * E ' preparation we learned that the same result was just obtained
in the framework of nonrelativistic quantum dynamjé&s.
Numerically, the correction in Eq46) contributes

-2(1-Q?% foldx(

Then the singular integration over momentum decouples,

and we easily obtain AE(1S)=—13.43 kHz 47)
AEL— 160 4 3 1) to the 1S Lamb shift in the ground state of hydrogen. The
B 3y 4] discrepancy between the theoretical predictions for tBe 1

Lamb shift calculated according {d—6] and[3] is about 6
After tedious calculations we obtain kHz. This discrepancy is not too important for th& Lamb
shift measurements, since the error bars of even the best
current experimental results are still a few times largee,
9 Inl— £3§(3) e.g., review in[1]). What is much more important from the
y 4 phenomenological point of view, is that the radiative-recoil
correction is linear in the electron-nucleus mass ratio, and it
(42) directly contributes to the hydrogen-deuterium isotope shift.
The discrepancy between the theoretical values of the iso-

AE

e

) a(Za)® m(m )3
= m

.
772n3 M\ m

3772| ) 1572 159
e s t )
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tope shift calculated according {d—6] and[3] is about 18 implications here, since they were exhaustively discussed in
times larger than the experimental uncertainty 0.15 kHz obur recent review1].

the isotope shiff10]. Thus the analytic result in Eq46)

eliminates the largest source of the theoretical uncertainty in ACKNOWLEDGMENTS
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