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Radiative-recoil corrections of order a„Za…

5
„mÕM …m to the Lamb shift revisited
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The results and main steps of an analytic calculation of radiative-recoil corrections of order
a(Za)5(m/M )m to the Lamb shift in hydrogen are presented. The calculations are performed in the infrared
safe Yennie gauge. The discrepancy between two previous numerical calculations of these corrections existing
in the literature is resolved. Our result eliminates the largest source of the theoretical uncertainty in the
magnitude of the deuterium-hydrogen isotope shift.
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I. INTRODUCTION

The spectacular experimental progress achieved in re
years in precise measurements of the energy levels in
hydrogenlike atoms was matched by equally impressive
oretical developments~see, e.g., the review in@1#, and refer-
ences therein!. Still, there are a number of unsolved theor
ical problems, not least among them the magnitude
radiative-recoil corrections to the Lamb shift of ord
a(Za)5(m/M )m. To the best of our knowledge this is th
first nontrivial radiative-recoil correction, and it is generat
by the radiative insertions in the exchanged photon lines
in the electron line. The correction generated by the one-l
polarization insertions in the exchanged photon lines w
independently calculated analytically in@2# and@3#, with re-
sults that are in excellent agreement. Radiative-recoil cor
tions generated by radiative insertions in the electron
were obtained numerically in@4–6# and in@3#. The results of
these calculations do not agree. In this paper we presen
analytic calculation of the radiative-recoil corrections of o
der a(Za)5(m/M )m, and resolve the discrepancy betwe
different numerical results.

Calculation of the contributions of ordera(Za)5m to the
Lamb shift is greatly facilitated by the applicability of th
scattering approximation. These corrections are generate
the diagrams with at least two photon exchanges in Fig
Naively, one might expect that diagrams with a larger nu
ber of exchanges are also relevant. However, this is not
case. For high-exchanged momenta expansion inZa is valid,
and addition of any extra exchanged photons always p
duces extra powers ofZa. Hence, in the high-momentum
region only diagrams with two exchanged photons are
evant. Contributions in the low-momentum region are s
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pressed because the infrared behavior of any radiatively
rected Feynman diagram~or more accurately any gauge
invariant sum of Feynman diagrams! is milder than the
behavior of the skeleton diagram. Hence, unlike the lead
contribution to the Lamb shift, diagrams with higher numb
of photon exchanges do not contribute to the corrections
order a(Za)5m, and it is sufficient to calculate only th
contributions of the diagrams in Fig. 1 in the scattering a
proximation~for more detail, see, e.g.,@1#!.

In the scattering approximation the contribution to the e
ergy shift generated by the diagrams in Fig. 1 is given by
integral

DE52
~Za!5

pn3
mr

3E d4k

ip2k4

1

4
Tr@~11g0!Lmn#

1

4

3Tr@~11g0!Hmn#d l0 , ~1!

wherem andmr are the electron and reduced masses,k is the
momentum of the exchanged photon,Lmn and Hmn are the
electron and the proton factors, and the Kronecker sym
d l0 reminds us that the radiative-recoil corrections of ord
a(Za)5(m/M )m are different from zero only for theS
states.

The electron factor is equal to the sum of the self-ener
vertex, and spanning photon insertions in the electron lin

Lmn5Lmn
S 12Lmn

L 1Lmn
J , ~2!

and the heavy line or proton factor is given by the express

Hmn5gm

P̂1 k̂1M

k212Mk01 i0
gn1gn

P̂2 k̂1M

k222Mk01 i0
gm ,

~3!

whereP5(M ,0) is the momentum of the proton.
The expression for the energy shift in Eq.~1! contains

both recoil and nonrecoil contributions of ordera(Za)5m.
©2001 The American Physical Society09-1
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FIG. 1. Electron-line radiative-
recoil corrections.
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The nonrecoil correction of this order is well known from th
early days of quantum electrodynamics, and in order to s
plify further calculations we would like to obtain an expre
sion for the energy shift free of such contributions. Let
note, to this end, that the characteristic integration mome
in Eq. ~1! are of order of the electron mass, the lower m
menta are suppressed by the radiative insertions in elec
line, and the momenta of order of the heavy mass are s
pressed by the high power of the integration momenta in
denominators. Suppression of the high-integration mome
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means that the radiative-recoil correction of ord
a(Za)5(m/M )m does not contain logarithms of the ma
ratio ln(m/M) that could originate only from the wide
integration region between the electron and proton mas
m!k!M . Then we can remove all nonrecoil contribution
and extract the first order in the mass-ratio contribution s
ply by differentiating the integral in Eq.~1! with respect to
the heavy massM, and letting this mass go to infinity after
wards. The integral in Eq.~1! contains the heavy mass only i
the heavy-particle factor, and to extract the term linear in
mass ratio we make the substitution in the integrand
1

4
Tr@~11g0!Hmn#→2M

]

]M S 1

4
TrH ~11g0!Fgm

P̂2 k̂1M

k222Mk01 i0
gn1gn

P̂1 k̂1M

k212Mk01 i0
gmG J D

→2
1

M
$k2gm0gn02k0~gm0kn1gn0km!1k0

2gmn%
k0

21~k4/4M2!

@k0
22~k4/4M2!#2

. ~4!
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Due to the explicit factor 1/M before the braces, it is suffi
cient to consider the last factor in this expression only
limit k/M→0 ~we note that the characteristic integratio
momenta are much less than the proton massk!M ). Then
the coefficients before the tensor structures in the last lin
Eq. ~4! simplify dramatically.

We will calculate the Feynman integrals in the polar c
ordinates in the four-dimensional euclidean space, where
vector k is parametrized in the formk05k cosu and uku
5k sinu. It is easy to see that the integrals with the coe
cient before the first tensor structure in the braces in Eq.~4!
should be calculated as principal-value integrals over the
lar angle

k2 lim
k/M→0

k0
21~k4/4M2!

@k0
22~k4/4M2!#2

→ lim
«→0

cos2u2«2

~cos2u1«2!2
5PS 1

cos2u
D ,

~5!

where«5k/2M and P is the principal-value symbol.
The second term in the curly brackets in Eq.~4! is odd in

k0, and will give nonzero contribution to the integral overk
only when multiplied by another term from the electron fa
tor odd ink0. But this means that the electron factor wou
effectively supply an extra power ofk0 in the numerator, and
we can safely take the limit«→0 in the coefficient before
the second tensor structure in Eq.~4!. The factor before the
gmn term in Eq.~4! admits a smooth limit for«→0. Then the
heavy particle factor turns into
in

-
he

-

o-

-

1

4
Tr@~11g0!Hmn#→2

1

M H k2gm0gn0 PS 1

k0
2D 2~gm0kn

1gn0km!
1

k0
1gmnJ , ~6!

and the general expression for all radiative-recoil correcti
of ordera(Za)5(m/M )m acquires the form

DE5
~Za!5

pn3

mr
3

M E d4k

ip2k4

1

4
Tr$~11g0!@Lmn

S 12Lmn
L 1Lmn

J #%

H k2gm0gn0 PS 1

k0
2D 2~gm0kn1gn0km!

1

k0
1gmnJ d l0 . ~7!

This expression is much more convenient for calculatio
than Eq. ~1! because it depends on the heavy mass o
through the explicit factormr

3/M before the integral.
The expression for the energy shift in Eq.~7! is linearly

infrared divergent like 1/g whereg is an auxiliary infrared
cutoff in integration overk. This linear infrared divergence i
the price we have to pay for the simplicity of the scatteri
approximation. The point is that the expressions for the
ergy shifts in Eq.~1! and Eq.~7! contain not only corrections
of relative order (Za)5 but also the corrections of the prev
ous order inZa. If we would not ignore small virtualities of
the external electron lines and the external wave functi
the naive-infrared divergence would be regularized at
9-2
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characteristic atomic scaleg;mZa. We are not interested
in the contributions of the previous order inZa, and will
simply throw away linearly infrared divergent contribution
in our calculations. The remaining infrared-finite contrib
tion is just the radiative-recoil correction of relative ord
a(Za)5. This strategy works because the radiative-rec
corrections under consideration do not contain logarithms
Za. However, individual diagrams could contain logarithm
of the infrared cutoff that should cancel in the final resu
This cancellation serves as an additional test of the corr
ness of all calculations. In the scattering approximation,
diagrams in Fig. 1 form a complete gauge-invariant set,
we can use an arbitrary gauge for their calculation. In or
to improve the low-momentum behavior of individual di
grams we use the Yennie gauge for the radiative photon
ele

th
te
ke

r-

05250
il
f

.
t-
e
d
r

II. MASS OPERATOR CONTRIBUTION

Let us consider first the contribution to the radiative-rec
correction of ordera(Za)5(m/M )m generated by the dia
grams with the self-energy insertions in the electron line
Fig. 1. The renormalized mass operator in the Yennie ga
has the form~see, e.g.,@7#!

SR~p!5
a

4p
~ p̂2m!2E

0

1

dx
23p̂x

m2x1~m22p2!~12x!
. ~8!

According to Eq.~7! the respective contribution to the Lam
shift may be written as
DES52
3

4

a~Za!5

p2n3

mr
3

M E
0

1

dxE d4k

ip2

x

k4D1

1

4
Tr@~11g0!gm~ p̂2 k̂!gn#H k2gm0gn0 PS 1

k0
2D 2~gm0kn1gn0km!

1

k0
1gmnJ

52
3

4

a~Za!5

p2n3

mr
3

M E
0

1

dxE d4k

ip2

x

k4D1
F24m12k01k2

1

k0
1mk2 PS 1

k0
2D G , ~9!
e-

r-
where

D15m2x12pk~12x!2k2~12x!

[~12x!~2k212mk01a1
2!,

and a1
25m2x/(12x). In the formulas below we will often

use dimensionless momenta measured in terms of the
tron mass k→mk, and a shorthand notationC
5@a(Za)5/(p2n3)#(m/M )(mr /m)3m for the common nor-
malization factor.

As an example of our calculations let us consider
evaluation of the contribution to the energy shift genera
by the last most infrared singular term in the square brac
in Eq. ~9!

DES8 52
3C

4 E
0

1

dxE d4k

ip2

x

k2~2k212k01a1
2!

PS 1

k0
2D

52
3C

4 E
0

1

dxa1
2E

g

`dk2

k2

2

pE0

p

du

3
sin2u~k21a1

2!

~k21a1
2!214k2 cos2u

PS 1

cos2u
D . ~10!

The integration in the last line goes over the fou
dimensional euclidean space, and we have introduced
auxiliary infrared cutoffg. Using the identity
c-

e
d
ts

an

k21a1
2

~k21a1
2!214k2 cos2u

5
1

k21a1
2

2
4k2 cos2u

~k21a1
2!@~k21a1

2!214k2 cos2u#
,

~11!

we represent the integral in Eq.~10! in the form

DES8 52
3C

4 E
0

1

dxa1
2E

g

`dk2

k2

2

p

3E
0

p

du sin2uH 1

k21a1
2

PS 1

cos2u
D

2
4k2

~k21a1
2!@~k21a1

2!214k2 cos2u#
J , ~12!

where the principal-value integral contains only a trivial d
pendence on the angles.

All principal-value integrals we need in this work, in pa
ticular the integrals

2

pE0

p

du sin2uPS 1

cos2u
D 522,

2

pE0

p

du sin4uPS 1

cos2u
D 523,
9-3
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may be obtained from the basic integral

E
0

p

du PS 1

cos2u
D 50, ~13!

with the help of algebraic transformations.
Now we can easily complete calculation of the integral

Eq. ~10!,

DES8 5
3C

4 E
0

1

dxH 2 ln
a1

2

g2
22 ln

11a1
2

a1
2

1
4

a
arctan

1

a1
J

5CF3 ln
1

g
1

3p2

8 G .
Other integrals in Eq.~9! are calculated in the same wa

and we obtain the total self-energy contribution to the ene
shift in the form

dES5
a~Za!5

p2n3

m

M S mr

m D 3

mF9 ln
1

gG . ~14!

III. VERTEX CONTRIBUTION

We calculate the contribution to the Lamb shift genera
by the vertex insertion in the electron line in Fig. 1 with th
help of the compact expression for the electron-photon v
tex in the Yennie gauge used in our earlier work on
radiative corrections of ordera2(Za)5m @8#,

Lm~p,p2k!5
a

4p (
n51

2 Fm
(n)

Dn
, ~15!

where

Fm
(1)53gm@k222pk1~22x!D#

2x@3ga~ p̂1m!gm~ p̂2 k̂1m!ga26~p2k!Qgm

1gaQ̂gm~ p̂2 k̂1m!ga1ga~ p̂1m!gmQ̂ga

12gm~ p̂2 k̂1m!Q̂12Q̂~ p̂1m!gm#

1x2~2Q̂gmQ̂1Q2gm!, ~16!

Fm
(2)52x~12x!gm~ p̂2 k̂1m!@Q̂p̂Q̂2 p̂Q2#, ~17!

D5m2x12pk~12x!z2k2z~12xz!

[z~12xz!~2k212bk01a2!, ~18!

andQ52p1kz, p25m2.
According to Eq.~7! the radiative-recoil contribution o

ordera(Za)5(m/M )m generated by the vertex insertion h
the form~we use dimensionless integration momenta belo!
05250
y

d

r-
e

DEL52
a~Za!5

p2n3

m

M S mr

m D 3

mE
0

1

dxE
0

1

dzE d4k

ip2

1

k4

1

k222k0

3 (
n51

2
1

Dn FV0
(n)1V1

(n) 1

k0
1V2

(n)PS 1

k0
2D G , ~19!

where

V0
(n)[

1

4
Tr@~11g0!Fm

(n)~ p̂2 k̂11!gn#gmn ,

V1
(n)[

1

4
Tr@~11g0!Fm

(n)~ p̂2 k̂11!gn#~2gm0kn2gn0km!,

V2
(n)[

1

4
Tr@~11g0!Fm

(n)~ p̂2 k̂11!gn#k2gm0gn0 .

Calculating traces and contracting the Lorentz indices
obtain the numerator factors in the square brackets in
~19!,

V0
(1)1V1

(1) 1

k0
1V2

(1)PS 1

k0
2D

54x~12x!k2F11
1

k0
G

12x~529z16z214xz24xz2!k2Fk01
2

k0
G1~k2

22k0!H @26~122z!12x~21210z12x12xz!#

1@6~122z!12x~11z16z212xz24xz2!#k2 PS 1

k0
2D

~20!

1@6~122z!12x~25110z24xz!#k0

1@3~122z!1x~z16z224xz2!#
k2

k0
%,

V0
(2)1V1

(2) 1

k0
1V2

(2)PS 1

k0
2D

524x~12x!zk2H 4~12z!F11k2 PS 1

k0
2D G12~12z!

3~2k0
22k2!

1

k0
1~k222k0!F22z12~122z!

1

k0

1zk2 PS 1

k0
2D G J . ~21!
9-4
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As a simple example let us consider calculation of the c
tribution to the energy shift generated by the terms in the
line in Eq. ~20!,

DEL8 52CE
0

1

dxE
0

1

dzE d4k

ip2

1

k4D

3H @6~122z!12x~25110z24xz!#k0

1@3~122z!1x~z16z224xz2!#
k2

k0
J

52CE
0

1

dxE
0

1

dz
b

z~12xz!
E

0

`

dk2
2

p

3E
0

p

du
sin2u

~k21a2!214b2k2 cos2u

$@6~122z!12x~25110z24xz!#cos2u1@3~122z!1x~z

16z224xz2!#%. ~22!

The last integral, as all other integrals in this paper, may
written as a linear combination of integrals of the form

E
0

`

dk2
2

pE0

p

du
sin2u cos2lu~k2!m~k21a2!n

@~k21a2!214b2k2 cos2u#p
, ~23!

where l ,m,n521,0,1 andp51,2,3. For l 521 the inte-
grals with cos2u in the denominator should be interpreted
principal-value integrals. All these integrals may be calc
lated in terms of four standard functions of the parame
a,b,

L05 ln
a21b2

a2
, L1512

a2

b2
L0 ,

~24!

L2512
2a2

b2
L1 ,

b

a
arctan

b

a
.

The result of integration for our example in Eq.~22! is

DEL8 52CE
0

1

dxE
0

1

dz
1

z~12x! H @6~122z!

12x~25110z24xz!#S 1

2
L02

1

2
L1D

1@3~122z!1x~z16z224xz2!#

3S 2L01
2b

a
arctan

b

aD J
52CF2

11

2
z~3!17p2 ln22

53p2

12
17G . ~25!

In the contribution to the energy shift in Eq.~22! the electron
denominator canceled with a similar term in the numera
05250
-
st

e

-
rs

r,

and as a result all denominators were combined with the h
of only two Feynman parametersx,z. Let us turn now to a
simple example where such a cancellation does not t
place, and we need to introduce a third Feynman paramet.
The contribution generated by the first term in Eq.~20! may
be written in the form

dEL9 58CE
0

1

dxE
0

1

dzE d4k

ip2

1

k2~k222k0!

x~12x!

D

528CE
0

1

dxE
0

1

dz~12x!a2E
0

1

dt
]

]at
2E0

`

dk2
2

pE0

p

du

3sin2u
k21at

2

~k21at
2!214bt

2k2 cos2u
, ~26!

whereat
25a2t andbt512z(12z)a2t.

The integral over angles and momenta in Eq.~26! is just
of the standard form Eq.~23!, and may easily be calculated
Integration overt is facilitated by the simple observation th
the t integral may be written as an integral overat

2 with the
upper limit a2. After this transformation, all dependence
the new integral onx is hidden in this upper integration limit
and we can get rid of the third Feynman parameter integ
ing by parts overx ~for more details see@7#!,

DEL9 58CE
0

1

dxE
0

1

dz~12x!a2E
0

1dt

bt
2

L0t

58CE
0

1

dxE
0

1

dz~12x!E
0

a2dat
2

bt
2

L0t

54CE
0

1

dxE
0

1dz

z
L052CFp2

2
22G . ~27!

Contributions of the other terms in Eq.~20! are calculated in
the same fashion, and the total contribution of all terms w
n51 in Eq. ~19! is equal to

DEL
(1)52

a~Za!5

p2n3

m

M S mr

m D 3

mF29 ln
1

g
1

3

8
z~3!1

9p2

4

3 ln 22
3p2

4
14G . ~28!

For the total contribution of all terms withn52 in Eq. ~19!
we obtain

DEL
(2)52

a~Za!5

p2n3

m

M S mr

m D 3

mF21

8
z~3!2

13p2

4
ln 2

1
9p2

8
2

35

4 G . ~29!

The total vertex-insertion contribution to the radiative-rec
correction of ordera(Za)5(m/M )m is given by the sum of
the contributions in Eq.~28! and Eq.~29!,
9-5
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DEL5
a~Za!5

p2n3

m

M S mr

m D 3

mF218 ln
1

g
16z~3!22p2 ln 2

1
3p2

4
2

19

2 G . ~30!

IV. SPANNING PHOTON CONTRIBUTION

The contribution to the Lamb shift generated by the sp
ning photon insertion in the electron line in Fig. 1 is calc
lated with the help of an explicit expression for the jellyfis
shaped diagram. The smallk behavior of the jellyfish
diagram is one of our primary concerns in further calcu
tions, since the contribution of the previous order is co
nected just with this infrared region. The jellyfish diagram
finite at smallk in the Yennie gauge, and this is one of th
reasons why we are working in this gauge. We need a
resentation for the jellyfish diagrams where not only the d
gram as a whole, but all entries are finite atk50. The com-
pact expression for the jellyfish diagram with such proper
was used in our earlier work on the radiative corrections
ordera2(Za)5m @8#,

Lmn
J 5

a

4pE0

1

dxE
0

1

dzx~12z! (
n51

3 Mmn
(n)

Dn
, ~31!

where

Mmn
(1)522Nmn

(a) , ~32!

Mmn
(2)5Nmn

(b)12~12x!Nmn
(c)13Nmn

(sing) ,

Mmn
(3)522~12x!Nmn

(d) ,

Nmn
(a)5gm~5p̂23k̂!gn14mgmn

1x@Q̂gngm1gngmQ̂14gmQ̂gn#,

Nmn
(b)52m@Q̂gm~ p̂1xQ̂2 k̂1m!gn

1gm~ p̂1xQ̂2 k̂1m!gnQ̂# ~33!

212~122x!m2gmQ̂gn22xQ̂gn

3~ p̂1xQ̂2 k̂!gmQ̂14xmQ2gmn

1@2xQ218~pQ!#gm~ p̂1xQ̂2 k̂

1m!gn ,

Nmn
(c)54~pQ!gmp̂gn12m2gmQ̂gn ,

Nmn
(d)58@~pQ!22m2Q2#gm~ p̂1xQ̂2 k̂1m!gn ,

Nmn
(sing)54m2gm~ p̂2 k̂1m!gn ,

anda2, b, andQ were defined in Eq.~18!. It should be noted
that all Mmn

( i ) are infrared finite even atk50.
05250
-
-

-
-

p-
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s
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The general expression for the energy shift induced by
spanning photon insertion has the form@see Eq.~7!#

DEJ5
a~Za!5

p2n3

m

M S mr

m D 3

mE
0

1

dxE
0

1

dzx~12z!E d4k

ip2

1

k4

(
n51

3
1

Dn FT0
(n)1T1

(n) 1

k0
1T2

(n)PS 1

k0
2D G , ~34!

where

T0
(n)[

1

4
Tr@~11g0!Mmn

(n)#gmn ,

T1
(n)[

1

4
Tr@~11g0!Mmn

(n)#~2gm0kn2gn0km!,

T2
(n)[

1

4
Tr@~11g0!Mmn

(n)#k2gm0gn0 . ~35!

Calculating traces and contracting the Lorentz indices
obtain the numerator factors in the square brackets in
~34!,

T0
(1)1T1

(1) 1

k0
1T2

(1)PS 1

k0
2D

524~12x!14~2312xz!k012~2312xz!
k2

k0

16~2312x!k2 PS 1

k0
2D , ~36!

T0
(2)1T1

(2) 1

k0
1T2

(2)PS 1

k0
2D

512x28z~12x!~42x!k018z~22x2xz!k0
214z

3~41x24xz12x2z!k218z~12x!~42x!
k2

k0

16xk2 PS 1

k0
2D 12z~212x13xz24x2z!k4

3PS 1

k0
2D , ~37!
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T0
(3)1T1

(3) 1

k0
1T2

(3)PS 1

k0
2D

5216~12x!z2k2F2~2112x!12~12xz!k0

1~12xz!
k2

k0
1~22x!k2 PS 1

k0
2D G . ~38!

We will use the integral

DEJ8 516CE
0

1

dxE
0

1

dzz~12z!E d4k

ip2

k2

k2

22xz

D3
PS 1

k0
2D ,

~39!

describing one of the contributions withn53 in order to
illustrate one more subtlety encountered in our calculatio
This infrared-divergent integral contains in the integrand
term x/D3. At small k→0 the denominatorD→x, and inte-
gration overx becomes too singular. The singular fact
P(1/k0

2) in the integrand makes things even worse, and
risk ending up with a divergent integral over the Feynm
parameterx instead of an infrared-divergent integral over t
momentum. While linearly infrared divergent integrals ov
k have a transparent physical interpretation as contribut
of the previous order inZa, divergent integrals overx could
lead to uncontrollable contributions. We separate
infrared-divergent part of the momentum integral with t
help of the identity

22zE
0

1

dx
x

D3

5
1

k222k0

1
2z

12k2z~12z!
1

z2~12z!k2

@12k2z~12z!#2

~40!

2z~12Q2!E
0

1

dxS 1

D2
1

2x

D3D .

Then the singular integration over momentum decoup
and we easily obtain

DEJ8 516CF 4

3g
2

3

4G . ~41!

After tedious calculations we obtain

DEJ
(1)5

a~Za!5

p2n3

m

M S mr

m D 3

mF9 ln
1

g
2

123

4
z~3!

1
3p2

2
ln 22

15p2

16
1

159

4 G , ~42!
05250
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e
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e

s,

DEJ
(2)5

a~Za!5

p2n3

m

M S mr

m D 3

mF12z~3!1
3p2

8
216G ,

~43!

DEJ
(3)5

a~Za!5

p2n3

m

M S mr

m D 3

mF75

4
z~3!2

3p2

2

3 ln 21
9p2

16
2

113

4 G , ~44!

for the contributions withn51,2,3 in Eq.~34!, respectively.
Let us emphasize once again that we have thrown away
linearly infrared divergent term 1/g in DEJ

(3) , which corre-
sponds to the contribution of the previous order, but we h
preserved all logarithmically divergent terms that shou
cancel automatically in the final result for the energy shif

The total contribution to the energy shift generated by
spanning photon insertion in Fig. 1 is equal to

dEJ5
a~Za!5

p2n3

m

M S mr

m D 3

mF9 ln
1

g
2

9

2G . ~45!

V. SUMMARY

Collecting all contributions to the energy shift in Eq
~14!, ~30!, and ~45! we see that all logarithmically infrared
divergent contributions cancel in the sum, and obtain
total radiative-recoil correction of ordera(Za)5(m/M )m,

DE5S 6z~3!22p2 ln 21
3p2

4
214Da~Za!5

p2n3

m

M S mr

m D 3

m

~46!

'213.067 632 2 . . .
a~Za!5

p2n3

m

M S mr

m D 3

m.

This result is in excellent agreement with the numerical
sult in @3#, and this resolves the long-standing discrepancy
the magnitude of the radiative-recoil corrections of ord
a(Za)5(m/M )m to the Lamb shift. When this paper was
preparation we learned that the same result was just obta
in the framework of nonrelativistic quantum dynamics@9#.

Numerically, the correction in Eq.~46! contributes

DE~1S!5213.43 kHz ~47!

to the 1S Lamb shift in the ground state of hydrogen. Th
discrepancy between the theoretical predictions for theS
Lamb shift calculated according to@4–6# and @3# is about 6
kHz. This discrepancy is not too important for the 1S Lamb
shift measurements, since the error bars of even the
current experimental results are still a few times larger~see,
e.g., review in@1#!. What is much more important from th
phenomenological point of view, is that the radiative-rec
correction is linear in the electron-nucleus mass ratio, an
directly contributes to the hydrogen-deuterium isotope sh
The discrepancy between the theoretical values of the
9-7
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tope shift calculated according to@4–6# and @3# is about 18
times larger than the experimental uncertainty 0.15 kHz
the isotope shift@10#. Thus the analytic result in Eq.~46!
eliminates the largest source of the theoretical uncertaint
the magnitude of the deuterium-hydrogen isotope shift. O
can use this radiative-recoil correction, and the latest exp
mental data in order to obtain a value for the difference
charge radii squared of the deuteron and proton, but we
not enter in the detailed discussion of the phenomenolog
05250
f

in
e
ri-
f
ill
al

implications here, since they were exhaustively discusse
our recent review@1#.
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