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Challenge of creating accurate and effective kinetic-energy functionals

Srinivasan S. lyengar, Matthias Ernzerhof, Sergey N. Maximoff, and Gustavo E. Scuseria
Department of Chemistry and Center for Nanoscale Science and Technology, Mail Stop 60, Rice University, Houston, Texas 77005-1892
(Received 3 May 2000; published 16 April 2001

The accuracy and effectiveness of various kinetic-energy functionals in providing total noninteracting ki-
netic energies, atomization kinetic energies, and equilibrium properties is evaluated. Employing converged
Kohn-Sham densities, we assess various kinetic-energy functionals in a non-self-consistent manner. It is found
that the gradient expansion, the Pearson-Gordon local truncation scheme, &atBRadeapproximant of
DePristo and Kress provide reliable estimates for the total noninteracting kinetic energy. The estimates for the
atomization kinetic energy and equilibrium geometries are, however, far from being reliable for chemical

applications
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[. INTRODUCTION In this paper, we evaluate the merits of various kinetic-

energy functionals. Previous tests of kinetic-energy function-
Density-functional theoryDFT) is one of the most pow- als focused primarily on the ability of approximate function-
erful and commonly used tools to calculate equilibrium prop-als to reproduce the total noninteracting kinetic energy of
erties of atoms, molecules, and solifls—4]. The formal atoms[9-15 and extended systenj42,13,16,1T. Excep-
framework of DFT is provided by the Hohenberg-Kohn tions are Ref[18], where the second-order gradient approxi-
theoremd5], that prove the existence of a one-to-one map-mation has been tested for atomization processes, and Ref.
ping between the ground-state electron dens(ty) and ex- [19], where atomization energies have been studied using the
gradient expansion up to fourth order. In this work, we focus
ey the ability of various approximate kinetic-energy func-
tionals to describe chemical transformations such as atomi-

round-state energy in terms of the electron density is ob- .. . . L
?ained. Modern imgI)(/amentations of DFT are, howevet?/, baseaanons and changes in the bond lengths, in addition to evalu-

on the Kohn-Sham methd@]. Here, a major portion of the Zﬁggg;hiz ciﬁgﬂlr:tce)é when the total noninteracting kinetic

kinetic energy(the noninteracting kinetic enerd) [1,2] is In Sec. Il, we intrloduce various functionals proposed in

calculated in terms of the Kohn-Sham orbitals and not as : C . e

functional of the density. It is only the exchange—correIation?u?;gg;itui;e sagg cljllls?rifuglneo?jgltce?un?iEisnthfgtea?fki(r?gtri(;[eesrtlecfl_
energyEXC_, a functional of the _electror_1 _de_nsit_y, that has to ies an,d ator.nizt’;ltion Kinetic ene?gies&T _ Tatoms
be approximated. The constrained minimization of energ S

" Tmolecule ; :
with respect to the Kohn-Sham orbitals yields the ground- T as \_/veII as evalualings as a function of the bond
state energy of the system. length for various molecules belonging to the G2[2&. In

The search for an accurate density-functional approxima—sec' IV, we present our conclusions.

tion to Tg remains an unsolved problem. Such a functional

would fac.ilitate the direct minimization of _the ground-state II. KINETIC-ENERGY FUNCTIONALS

energy with respect to the electron density, and hence the ) o ) .

calculation of Kohn-Sham orbitals would not be required. The Thomas-Fermi approximation to the noninteracting

This would reduce the computational complexity of DFT kinetic energy can be systematically refined by utilizing not

calculations immensely. only the local density but also spatial derivatives of the local
Efforts to obtain a simple and accurate expression for th&lensity. The resulting partially integrated gradient expansion

noninteracting kinetic energy in terms p)ﬁ) may be traced (simplified using Green’s theorem under the assumption that

back to Thomag7] and Fermi[8]. In the Thomas-Fermi p(r)—0 as|r|—c on an appropriate surfagis [1,2]
approximation, the noninteracting kinetic energyg) is

written as R . R
Tdpl= f SN +@O+Pm+---1, @
To=co | &*rp0), &
where
wherecy= (3/10)(37?)?3 (in atomic unit3. Some of the sub- R
sequent improvements of this idea are, for instance, the gra- t(so)(r)ECopsls, €)
dient expansiorf2] and partial resummationg,1] of the
gradient expansion. However, the search for an approximate I
noninteracting kinetic energy functional, which provides re- () — Vol
; S . ) tg’(r)=c, , 4
sults accurate enough for chemical applications, is still on. p
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4 four parametersd,, az, b,, andb;) were determined by
fitting the functional to the total kinetic energies of inert gas
elementg11]. (The fitted parameters obtained in REI1]
area,=14.28111,a3=—19.57962,b,=9.998 02, andb;

Co, Co, andc, are known constantsee, e.g.f2]). Although =2.960 85) This method, alon_g with the local truncation
the gradient expansion can, in principle, be derived up t¢cheme described above, provides the best refsd]ifsr the
arbitrary high orderg21,29, this does not imply that the noninteracting kinetic energy of atomic systems.

calculated noninteracting kinetic energies can be systematj- Another class of functionals, based on the linear-response
cally improved. In fact, all sixth- and higher-order terms of theory, has been actively studied by many groups
the gradient expansion diverge for atoms and molecules a42,13,16,1T. These functionals depend on averaged values
r— [23,2]. Here,r is the distance from the center of mass of the _den3|ty of the system, which are significant for certain
of the molecule. One way around this divergence problem ofnetallic and extended systems. However, an average density
the gradient expansion, for exponentially decreasing densP@s little physical significancgl2] for molecular systems,

ties, is provided by the local truncation scheme of PearsofU€ to the rapidly varying nature of the electron density in

and Gordor{9], where the kinetic-energy functional is writ- molecules. As a result, this method has found applications in
ten as metallic and extended systerfi7]. In this paper, we study

molecular systems and hence do not discuss the merits of
these functionals.

o) 9¥(%

2+1(ﬁp
p 8 p\p

3\ p

t(r)=c,p™?

Imax—1
T2%0)- | dSr[( > €0 280 @

Ill. RESULTS AND DISCUSSION

S . Im S,
Imax_=lmax(r) Is determined such thag »(r) is the SmaII-_ To study the effectiveness of the functionals discussed in
?St(ln absolute valugterm of the gradient expansion at point o preceding section, we perform Kohn-Sham calculations
r. We have also tried other truncation criteria but found theon a number of small molecules selected from the G2 set
above criterion to be quite effective, as will be shown in the[20], using uncontracted-6311+ G(3df,2p) basis sets. We
Results section. obtain the electron densities and the associated “exact” non-

A conceptually elegant kinetic-energy functional was ob-interacting kinetic energies from the Kohn-Sham orbitals.
tained by Baltin[24]. In this author's work, a partial resum- The self-consistent densities are then used to calculate ap-
mation of the gradient expansion including all the terms in-proximate kinetic energies with the above-described func-
volving powers ofV p leads to an approximation that is exact tionals. In all cases, the Kohn-Sham calculations are per-

if the external potential is a linear function. formed with the Becke 1988 exchanf@0] functional and
Another important kinetic-energy functional, the von the Perdew-Wang 199®PW91) correlation[31] functional.
Weizsaker kinetic-energy functiondR5], Our implementation of the approximate kinetic-energy func-
tionals is based on a development version of ¢h@SsSIAN
W |Vp(r)|? [32] suite of programs.
Ts'= %J d3rW, (7 The functionals depending on the Laplacian of the elec-

tron density sometimes yield slowly decaying and oscillating
is considered exadil,2,26—28 in the limit of rapidly vary- approximations '_to_the noninteracting kinetic-energy d_ensity.
ing electron densities. This functional is simply nine times!n these cases, it is necessary to employ large grids in order
the second-order term in E¢) and gives the exact kinetic [© integrate the kinetic energy density accurately. A 400-
energy for one electron systems. It provides a rigorous lowePO!Nt EuIer—MacIoren quadrature for the radial integration
bound to therue kinetic energy[2]. It may be noted that the [33,34 and 5000-point Gauss-Legendre quadraf@ for
sum of the Thomas-Fermi and the von Wéidzr term pro-  the angular integration were used in our work. This grid
vides a rigorous upper bound to the total kinetic energy of €Sults in integrations precise to within 1 mHartree.
noninteracting particles in one dimensif#].

The gradient expansion becomes exact in the slowly vary- A. Total noninteracting kinetic energies
ing limit where s is small[s=|V p|/2kgp, ke=(372p)"

and the von Weizaker functional is exaci1,2,26-28 in In Tables | and I, we present results for the total nonin-

teracting kinetic energy. In Table I, we see that while the
Thomas-Fermi functional yields large errors for molecules
and atoms, these results are improved by the inclusion of the
second- and fourth-order gradient corrections. From Table |,
it is also clear that thenth-order local truncation scheme
) interpolates between the gradient expansions ufitteorder.
As a consequence, this functional provides improved results
at the fourth-order level compared T8%2%.
wherex=t@/t®), andt andt?) are defined in Eqs(3) Table Il shows that the von Weizsier functional always
and (4). Of the eight parameters in the Padpproximant yields a lower bound to the total noninteracting kinetic en-
above, four were determined from physical limits. The otherergy, which is consistent with the discussion in Rf].

[11] constructed a smoot/3]-Padeapproximan{29],

1+0.95+ a,x%+ azx>+ 9bgx*
1—0.05¢+ byx?+ byx3

t§"(n) =tQ(r)
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TABLE |. Exact noninteracting kinetic energies and errors in approximate kinetic energies. In all calcu-
lations, converged Kohn-Sham orbitals and densities obtained within the Becke88-PW91 approximation are

employed.
Exact TO" T(SOZ)" TO24f TgGozd TzGozf

H 0.500 —0.044 0.011 0.032 —0.019 0.015
B 24.548 —2.506 —0.058 0.476 —1.287 —0.093
C 37.714 —-3.731 —0.154 0.600 —1.949 —0.064
N 54.428 —4.993 —0.097 0.904 —2.554 0.193
@) 74.867 —6.990 —0.546 0.765 —3.778 —-0.772
F 99.485 —9.093 —0.933 0.659 —5.025 —0.464
H, 1.151 —0.142 —-0.014 0.033 —0.084 —0.006
HF 100.169 —9.016 —0.920 0.639 —4.979 —0.456
H,O 76.171 —7.074 —0.692 0.565 —3.893 —0.317
CH, 40.317 —3.773 —0.140 0.619 —1.967 0.086
NH; 56.326 —5.292 —0.400 0.587 —2.856 —0.106
BF; 323.678 —29.052 —2.641 2.454 —15.869 —1.114
CN 92.573 —8.940 —0.687 0.978 —4.823 —0.181
CO 112.877 —10.694 —-0.911 1.036 —5.813 —0.322
F> 199.023 —18.367 —2.201 0.925 —10.301 —1.259
HCN 92.982 —8.925 —0.658 1.008 —4.802 —0.150
N, 109.013 —10.487 —0.916 0.999 —5.711 —0.333
NO 129.563 —12.342 —1.240 0.962 —6.803 —0.574
O, 149.834 —14.186 —1.527 0.965 —7.870 —0.772
O3 224.697 —21.636 —2.699 1.028 —12.183 —1.500
Ave. Absf 9.364 0.872 0.812 5.128 0.439

&Thomas-Fermi approximation.
bSecond-order gradient approximation.
‘Fourth-order gradient approximation.
dSecond-order locally truncated scheme.
®Fourth-order locally truncated scheme.
fAverage of the absolute errors.

However, a comparison of the results obtained using the vowith a,=1.314 andh, =0.0021[14]. Itis clear from Table I
Weizsaker functional with those obtained using the that while TAV*(NF is reasonably accurate for atoms and
;Lhcim?s_l":et;]m' func{/l\(/)n_a(_!snKTabfle Dt|_ead5|= tothe conclusmtn singly bonded molecules, the errors encountered §oiEF,,
; at w Ite € V'(t)r? ez I?r unc |ct))na IS fmo:e ?ccura;ah and for multiply-bonded systems are, however, very large.
or systems with a smafler numbers ot electrons, the ., 1 0 I, we also present results obtained from the

Thomas-Fermi functional is more accurate for atomic sys-_ . . . . )
tems with larger numbers of electrons. This is consist)énpalt'n functional[24]. This functional has been the object of

with the discussion in Ref:37] where it is shown that the 9réat interesf10,12,13; however, to the best of our knowl-
Thomas-Fermi functional is exact for atoms in the limit of €dge, this is the first paper in which the Baltin functional has
large atomic numbers. Furthermore, for all the cases studie@een applied to molecules. For all the cases studied, the Bal-
here, the sum of Thomas-Fermi and von Weikea func-  tin functional has always overshot the exdg (see Table
tionals, i.e.,TZ " in Table Il, yields an upper bound to the II).
noninteracting kinetic energy. While it is rigorously shown  The[4/3]-Padeapproximant, which interpolates between
[2] that this is true in one dimension, our results seem tahe second-order gradient expansion and the von \Wekesa
indicate that it may be true for Coulomb systems in threefunctional, yields noninteracting kinetic energies with an ac-
dimensions as well. Furthermore, the functio.mé\fvm(N)TF curacy similar to that of the second-order gradient expansion
[2,14,13 interpolates between the von Weigkar func-  (Table Il). Hence, it may be concluded that most of the
tional and theT{™ functional. The interpolation is done values sampled during a total noninteracting kinetic energy
using a particle-number-dependent functi@(N) which is  calculation for atoms and molecules are not, in fact, within
obtained[2,14] by modifying the derivation of the Thomas- the larges region where the von Weizsker functional is
Fermi functional to account for a finite number of particles. considered accurate.
This yields[14] It is interesting to discuss the differences between the
[4/3]-Padeapproximant and the Baltin functional. Both func-
(9) tionals have the correct behavior for large and for zero
[11,24. However, Table Il indicates that the Paapproxi-

a a
+—
Nl/3 N2/3

(s3]
CN)=|1- |1
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TABLE II. Exact noninteracting kinetic energies and errors in approximate kinetic energies. In all cal-
culations, converged Kohn-Sham orbitals and densities obtained within the Becke88-PW91 approximation
are employed.

Exact T\éWa T;FWD T C(N)TF® T8 d L4 e
H 0.500 —0.000 0.456 0.142 0.527 0.012
B 24.548 —2.521 19.521 0.551 22.487 —0.361
C 37.714 —5.517 28.465 0.770 32536 —0.483
N 54.428 —10.364 39.070 0.711 44,181 —0.399
O 74.867 —16.872 51.005 0.617 57.332 —0.717
F 99.485 —26.043 64.349 —0.116 71.673 —0.843
H, 1.151 —0.000 1.009 0.000 1.182 -0.017
HF 100.169 —27.301 63.852 1.179 70.906 —0.733
H,O 76.171 —18.731 50.367 2.858 56.394 —0.707
CH, 40.317 —7.615 28.929 3.803 32.847 —0.345
NH; 56.326 —12.302 38.731 3.643 43.688 —0.548
BF; 323.678 —85.981 208.645 75.968 232.094 —2.280
CN 92.573 —18.298 65.335 12.949 74104 —1.100
CoO 112.877 —24.825 77.358 15.041 87.205 —1.201
F, 199.023 —53.527 127.129 26.591 141.419 -1.907
HCN 92.982 —18.583 65.474 14.211 74.223 —1.047
N, 109.013 —22.879 75.647 15.560 85.583 —1.282
NO 129.563 —29.646 87.574 17.852 98.577 —1.484
O, 149.834 —35.906 99.741 20.932 111.915 -1.697
O; 224.697 —54.268 148.794 47.125 167.004 —2.884
Ave. Abs! 23.559 67.073 13.031 75.294 1.002

don Weizsaker.

®Thomas-Fermi plus von Weizsker.

‘von Weizsaker plus particle-number-dependent parameter times Thomas-Fermi. See text for details.
dBaltin’s functional.

4/3]-Padeapproximant.

fAverage of the absolute errors.

mant provides significantly better results. This would indi- However, it does not yield the correct Thomas-Fermi limit
cate that the Padepproximant, for most systems consideredfor smalls. The Padeapproximant remains close to the gra-
here, models the intermediagéehavior better than the Bal- dient expansion for a larger range ®¥alues compared to
tin functional. A plausible explanation for this may be found the other functionals in the figure, and this is the reason for
in Fig. 1, where we study the enhancement fa&s(r)) of  the greater accuracy of the Paafgproximant. Although, it is
various functionals as a function ef F(s(r)) is defined by ~ not obvious from the figure, tHel/3]-Padeapproximant does
the relation approach the von Weizesker results ass—o. This, of
course, is not the case for timh-order gradient expansion.
- - To summarize, the best results for the total noninteracting
TMpl= J d3rt&(r)FEPRS(r)). (10 inetic energy are obtained from the locally truncated fourth-
order gradient approximation, the second-order and the
In this equation, T2 stands for the particular functional of fourth-order gradient expansions, and [H£8]-Padeapprox-
interest. Note that in general the enhancement factor may beant. Note that a finite-order gradient expansion has the
a function of other variables, such as the reduced Laplaciaimcorrect asymptotic behavior for large since it does not
of the density, in addition to being a function®fThe Baltin  approach the von Weizsker functional in this limit. The
enhancement factor is oscillatory for small values ©of success of the gradient expansion, however, indicates that
(<0.25), but ass increases, it very quickly approaches thethe larges behavior may have little or no consequence in the
enhancement factor of the von Weigkar functional. The calculation of total noninteracting kinetic energies. The
enhancement factor of the Padpproximant, on the other [4/3]-Pade approximant also provides results that are of
hand, remains close to the enhancement factor of the seconsimilar accuracy as those obtained from the gradient expan-
order gradient expansion and in fact shows a dip in thesions and the local truncation scheme. Another interesting
physically important range ofs [36]. The functional fact to be noted from Tables | and Il is that the particle-
TYWHCMNTE (plotted setting the number of electrons Mt number-dependent functional”’ ™ “™TF provides better re-
=15) approaches the von Weizkar functional for larges.  sults for total noninteracting kinetic energies than the corre-
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FIG. 1. Enhancement factors for various
kinetic-energy functionals.
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s.pondir}%vgunctionals that are independent of particle numbefietic energiels and theT& " functional does not provide an
(Le., Ts™). The particle-number-dependent functionals,ypper bound. Further, thgV* ©MNTF functional does not

however, often have the big disadvantage of being size in TTFW
: ; VW+C(N)TFy ; S
consistentas is the case fofg ), i.e., the noninter-
acting kinetic energy of two isolated subsystefsand B
depends on whether one calculation is performedAferB

interpolate between the von Weizkar and results
and provides results that are worse than those obtained from
T or from. TE™W An explanation for this might be that the

; ; +

or two calculations are performed férand B separately. pa_rtllcle-numt_)er-dependen.t fact@(N) in T¢" C(N)TF’ was

It is important to note that the above results are obtaine@'19inally derived for atomic systenjd4]. The Baltin func-
when accurate, converged densities are inserted into tHiPnal provides results that were cgmvparable to those pro-
functionals. This does not imply that the functionals them-vided by the von Weizsker andTg™ functionals. The
selves vyield satisfactory results when used in a selff4/3]-Pade approximant yields results comparable to the
consistent manner. Thomas-Fermi and local truncation schemes. As in the case
of the noninteracting kinetic energy, our calculations indicate
that the values of sampled during the atomization energy
calculation are outside the region where the von Weisa

In applications, the calculation of energy changes upoiynctional is considered accurate.
chemical transformations is of great importance. Therefore, T4 summarize. the results. shown in Table Ill. are not as

we use approximate and exact noninteracting kinetic eneréncouraging as those for the total noninteracting kinetic en-

gltifnitgaztctjnd)énneorgg[seracung kinetic-energy contributions tOergies in Tables | and Il. None of the methods tested is
o : N . . accurate enough for chemical applications. The best results
Unlike in the case of total kinetic energies, the addition of | .~ /.. Vi the Thomas-Fermi functional, {dé3]-

gradient corrections to the Thomas-Fermi ansatz did not im: adeaoproximant. and the locallv truncated second-order
prove the results for atomization energies. In fact, in mos{D PP . X Y
pansion. For “noncongested40] molecules such as HF,

cases inclusion of even the second-order gradient correctio !
g 1,0, and CH, the Thomas-Fermi or the locally truncated

worsens the results compared to the Thomas-Fermi fun ! . . i
tional (Table IIl). The second-order local truncation scheme gradient expansions proylded encouraging results. In these
'systems the orbital nodality proble@0], which causes den-

though, improves on the full second-ordee., T9?) result. > . . ) .
o : : - sity functionals to fail badly, is less severe compared to typi-
Similarly, inclusion of the fourth-order terms with local trun- .
cal multiply bonded systems.

cation criterion is found to improve on the full fourth-order
expansion(i.e., T9??). The local truncation scheme interpo-
lates between the Thomas-Fermi and corresponding
nth-order gradient expansiof@s in the case of total ener-
gies. The gradient expansion itself yields progressively To illustrate the behavior of the various kinetic-energy
poorer results. These findings are to be contrasted with cafunctionals upon changes in bond length, we calculated ap-
culations performed for slowly varying systeni88,39  proximate and exact kinetic energies using the converged
where gradient expansions of increasing order systematicall¢ohn-Sham densities at various bond lengths. In Fig. 2, we
improve the results. present results for N (A similar behavior was found for
The von Weizseker functional does not yield a lower other multiply bonded molecules, such as NO, hence only N
bound to the change in the noninteracting kinetic energys presented.Note that all the curves are shifted such that
upon atomizationas it did for the total noninteracting ki- they have the same kinetic energy at the equilibrium bond

B. Atomization energies

C. Equilibrium properties and behavior with change
in bond length
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TABLE Ill. Exact atomization kinetic energies and errors in approximate atomization kinetic energies.
All calculations use converged Kohn-Sham orbitals and densities within the Becke88-PW91 approximation.
Abbreviations as in Tables | and II.

Exact T T TP To T2
H, -0.150 0.053 0.036 0.031 0.046 0.036
HF -0.183  —0.121  —0.002 0.052 —0.065 0.011
H,O -0.304  —0.004 0.168 0.264 0.077 0.183
CH, -0.602  —0.136 0.031 0.109 -0.058 0.043
NH; -0.397 0.166 0.337 0.413 0.245 0.350
BF; -0.674 —0.733  -0.216 —0.001 -0.493  -0.171
CN -0.431 0.216 0.436 0.526 0.320 0.447
co -0.297  —0.027 0.211 0.468 0.086 0.227
F, -0.053 0.181 0.336 0.393 0.251 0.340
HCN -0.340 0.156 0.419 0.528 0.280 0.433
N, -0.157 0.501 0.723 0.809 0.604 0.731
NO -0.268 0.360 0.598 0.707 0.472 0.608
0, -0.100 0.206 0.436 0.565 0.314 0.444
0, -0.097 0.667 1.062 1.267 0.850 1.076
Ave. Abs. 0.252 0.358 0.442 0.297 0.364
Exact Tgw TgFW T‘§W+ C(N)TF Tg T[S4/3]
H, -0.150 0.000 —0.097 0.284 -0.128 0.041
HF -0.183 1.258 0.953 —-1.153 1.294 —0.098
H,O -0.304 1.859 1.551 —-1.957 1.991 0.015
CH, -0.602 2.098 1.360 —2.464 1.796 —0.089
NH; —-0.397 1.938 1.707 —2.504 2.073 0.185
BF, —~0.674 5.330 3.923 —75.766 5.412 —0.610
CN —-0.431 2.416 2.201 —11.468 2.613 0.217
co -0.297 2.436 2.112 —13.655 2.663 0.001
F, -0.053 1.440 1.568 —26.824 1.927 0.222
HCN —0.340 2.701 2.518 —12.588 3.021 0.177
N, -0.157 2.150 2.493 -14.138 2.778 0.483
NO -0.268 2.410 2.502 -16.524 2.935 0.368
0, -0.100 2.163 2.269 —19.698 2.749 0.263
0, -0.097 3.653 4.222 —45.276 4.991 0.733
Ave. Abs. 2.275 2.105 17.449 2.597 0.250

length (which is the point where all the curves in the figure atomization-energy results in Table Ill. We conclude that
intersect. The gradient approximation@cluding the local equilibrium propertiegsuch as force constantsbtained us-
truncation schemgsappear to reproduce the general behav-ng approximate functionals may be inaccurate.
ior of the exact curve to a reasonable degree. The slopes of
these approximate curves at equilibrium, are, however, off IV. CONCLUSIONS
by at least 25%.

We then use the approximate kinetic energies calculate
above to get the approximate total energies at the respecti
geometries. This is done by replacing the exact noninteracﬁ

ing kinetic energies with approximate kinetic energies in thg, . yncation scheme, the von Weigkar functional, the
expression for the Kohn-Sham ground-state energy.

¢ It igaltin partial resummation of the gradient expansion, and the
found that the total energy calculated using the Thomasf4/3]-Padeapproximation of Ref[11].

Fermi kinetic-energy functional always decreases with in- \ye found that while the total noninteracting kinetic en-
creasing internuclear distances. This is consistent with thgrgy of atoms and molecules may be estimated with reason-
nonbinding theorem41,42,1. Furthermore, none of the aple accuracy, the differential kinetic energy of processes
functionals has a local minimum at or close to the equilib-such as atomization is not well approximated by current
rium geometry. The asymptotic behavior for large internu-functionals for Tg. Equilibrium properties, such as force
clear distances is also found to be not in agreement with theonstants and equilibrium geometries are far from being con-
exact results, which further substantiates the unsatisfactorgidered chemically relevant.

In this paper, we examined the potential of various
inetic-energy functionals for providing chemically relevant
sults for molecular systems. Among other functionals, we
nave considered the gradient expansion, the Pearson-Gordon
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For the case of the total noninteracting kinetic energy, the Recently[43], a method has been developed, in which a
best results were obtained with the locally truncated fourthlinear combination of a variety of functionals is considered
order gradient expansion, the second- and fourth-order grand the coefficients of this linear combination are optimized
dient expansion, and tHd/3]-Padeapproximants. These re- to fit a data set containing exact kinetic-energy values. This
sults indicate that the asymptotic behavior of a functional formethod is interesting since a family of functionals may now
large s is not very significant in calculating the noninteract- be developed in the form
ing kinetic energy because on average shalues of atoms - - -
and molecules are not very large. Hence, to further improve Ts[P]Zf dr{O(s—sotsa(r)+O(s5—9)tso(r)], (11
the performanpg of these functiondla the calculation _of where® (s—s,) is a smooth approximation to the step func-
total energiek it is necessary to understand the behavior of . -
the noninteracting kinetic energy for intermediate values ofon- {.ts-i(r)} may be_ch(_)sen such they; mast accurately
s. A good starting point for this might be thigh/3]-Pade describes the behavior in the relevant ranges.dfFor the

approximant or the local truncation scheme in which theexpression in Eq(11), the functionalts , may be considered

intermediates behavior is determined empirically. accurate in the regios<[05,], while the functionalt;,

The best results for atomization energies were obtained'®Y be_accurate_ iBe [So,).] This form may, O.f course,_b_e
from the Thomas-Fermi functional, tfé/3]-Padeapproxi- generalized to include more than two functionals. Fitting

mant. and the second-order local truncation scheme Agairﬁunctionals in this fashion may lead to further insight into the

the similarity of the results obtained from the Thomas-Ferm{cOreCt behavior off{ p] for intermediates.
The accuracy of the Thomas-Fermi functional and the

functional and thé4/3]-Padeapproximant indicate that, as in _ i

the case of the total noninteracting kinetic energy, the largeS€¢0nd-order gradient expansion in the near-homogeneous
s limit (where the von Weizsker functional is considered Mit. may allow their use in methods involving “partitioning
[26,2,27,28,]1 exac} is not significant. Hence, further im- schemes” for complex §ysterﬁ§4,4ﬂ. Investlgat!ng the use
provement in the atomization results may be expected from 8f the[4/3]-PadeappTOX|mants in such partitioning methods
better understanding of the behavior of the noninteractingfnay also lead to fruitful results.

kinetic energy for intermediate values £fOur calculations
have been carried out in a non-self-consistent manner. Self-
consistent calculations would suffer from the severe defi- This work was supported by grants from the National Sci-
ciency of missing shell structurf] and are thus likely to ence FoundatiofCHE-998215%and the Air Force Office of
produce even worse results than those reported here. Scientific ResearchGrant No. F49620-98-1-280
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