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Variational density-functional theory for degenerate excited states
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The variational time-independent density-functional theory for an individual excited state introduced re-
cently @M. Levy and Á. Nagy, Phys. Rev. Lett.83, 4361~1999!# is extended to degenerate states.
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I. INTRODUCTION

In a recent paper@1#, one of the authors introduced
theory for excited states. It is a nonvariational theory tha
based on Kato’s theorem@2#, and valid for a Coulomb exter
nal potential. It has the advantage that one can handle
individual excited state. In a more recent paper@3#, the
present authors put forth avariational Kohn-Sham theory for
an individual excited state. Here this latter theory is enlarg
to include degenerate excited states. For ground states
original nondegenerate Hohenberg-Kohn theorem@4# was
extended, through the constrained-search approach, to
clude degeneracies by Levy@5#, who followed earlier work
by Percus@6#. Recent key developments and formulatio
involving degeneracies and symmetries for ground states
clude those of Go¨rling @7# and Nagy@8#. The nonvariational
theory mentioned above was also formulated for degene
excited states@1#.

II. VARIATIONAL DENSITY-FUNCTIONAL THEORY
FOR DEGENERATE EXCITED STATES

Consider the solutions of the Schro¨dinger equation

ĤuCg
i &5Ei uCg

i & ~g51,2, . . . ,gi !, ~1!

wheregi is the degeneracy. For the sake of simplicity, on
one index is used to denote the symmetry both in spin
ordinary space. TheN-electron Hamiltonian has the form

Ĥv5T̂1V̂ee1 (
k51

N

v~r k!, ~2!

where T̂, V̂ee, and v are the kinetic-energy operator, th
electron-electron repulsion energy operator, and the exte
~electron-nucleon! potential, respectively.

Instead of treating one wave function, the subspaceSi ,
spanned by a set of wave functionsCg

i , will be considered.
We can define the density matrix in subspaceSi as

D̂ i5 (
g51

gi

hg
i uCg

i &^Cg
i u, ~3!

where the weighting factorshg
i satisfy the conditions
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g51

gi

hg
i ~4!

and

hg
i >0. ~5!

In principle, any set of weighting factorshg
i satisfying con-

ditions ~4! and ~5! can be used. The subspace density
defined as

ni5N(
g51

gi

hg
i E uCg

i u2ds1dx2 . . . dxN, ~6!

wherex stands for a space-spin coordinate. The superscri
in ni and the subspace density matrix denotes that they
constructed from wave functions that belong to the subsp
Si . One is free to select the values of the weighting fact
hg

i : they only need to satisfy conditions~4! and ~5!. If the
weighting factorshg

i are all equal, the density has the pro
erty of transforming according to the totally symmetric irr
ducible representation@7,8#. So, for instance, for atoms th
subspace density will be spherically symmetric. However
is possible to select other values for the weighting fact
hg

i .
This approach has the advantage that with equal wei

ing factors, the subspace density has the symmetry of
external potential. We emphasize that this procedure can
done for both ground and excited states.

Define the universal functional

F@ni ,n0#5 min
S→ni

(
g51

gi

hg^CguT̂1V̂eeuCg&. ~7!

Using the density matrix, this can also be written as

F@ni ,n0#5 min
S→ni

tr$D̂~ T̂1V̂ee!%, ~8!

where ni and n0 are arbitrary densities.n0 is a ground-
subspace density, whileni is a trial excited subspace densi
we are considering. All the subspaces corresponding to
first i 21 states of a HamiltonianĤv5T̂1V̂ee1(k51

N v(r k),
for which n0 is the ground-state subspace density, are s
posed to be orthogonal to the subspace considered. Thu
total energy of thei th excited state has the form
©2001 The American Physical Society02-1
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Ei5min
Si

(
g51

gi

hg^Cg
i uĤvuCg

i &

5min
ni

H min
Si→n

(
g51

gi

hg^Cg
i uĤuCg

i &J
5min

ni

HF@ni ,n0#1E ni~r !v~r !dr J . ~9!

Ei can also be expressed with the density matrix:

Ei5min
Si

tr$D̂ i Ĥ%5min
ni

$ min
Si→ni

tr$D̂ i Ĥ%%. ~10!

For purposes of approximatingF@ni ,n0#, let us construct
the Hamiltonian

Ĥ i ,a5T̂1aV̂ee1 (
k51

N

va
i ~r k!, ~11!

whereva
i (r ;@ni ,n0#) is defined such that the subspace de

sity ni remains independent ofa, and that makes the groun
state of Ĥ i ,a closest ton0 in a least squares sense. Th
adiabatic connection leads to the noninteracting system
which a50.

The noninteracting Kohn-Sham Hamiltonian is defined

Ĥw
i 5Ĥ i ,a505T̂1(

j 51

N

wi~@ni ,n0#;r j !. ~12!

Both the noninteracting HamiltonianĤw
i and the Kohn-

Sham-like potentialwi(@ni ,n0#;r )5v0
i (r ) depend oni. That

is, they are different for different excited states. The Koh
Sham-like equations have the form

Ĥ i ,0uCg
i ,0&5Ei ,0uCg

i ,0& ~g51,2, . . . ,gi !, ~13!

where the noninteracting density matrix can be construc
from the wave functionsCg

i ,0 as

D̂s
i 5 (

g51

gi

hguCg
i ,0&^Cg

i ,0u, ~14!

while the noninteracting kinetic energy has the form

Ts@ni ,n0#5tr$D̂s
i T̂%. ~15!

Ts can also be given variationally as

Ts@ni ,n0#5 min
Si→ni

tr$D̂ i T̂%5tr$D̂s
i @ni ,n0#T̂%, ~16!

where eachSi is orthogonal to all subspaces correspond
to the firstm21 states ofĤw

i , andni is the subspace densit

of the mth excited state ofĤw
i . D̂s

i @ni ,n0# is that noninter-
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acting excited-state density matrix ofĤw
i , whose subspace

density isni . The minimum principle for noninteracting ki
netic energy is

Ts@ni ,n0#1E ni~r !wi~@ni ,n0#;r !dr

5min
ni

HTs@ni ,n0#1E ni~r !wi~@ni ,n0#;r !dr J ,

~17!

leading to the Euler equation

wi~@ni ,n0#;r !1
dTs@ni ,n0#

dn U
n5ni

5m i , ~18!

wherem i is a Lagrange parameter.
The Kohn-Sham potential has the form

wi~r !5v~r !1
dG@ni ,n0#

dn U
n5ni

, ~19!

where the functionalG@ni ,n0# is defined by the partition

F@ni ,n0#5Ts@ni ,n0#1G@ni ,n0#. ~20!

Further, it is convenient to partitionG@ni ,n0# into

G@ni ,n0#5J@ni #1Ex@ni ,n0#1Ec@ni ,n0#, ~21!

whereJ, Ex , andEc are the Coulomb, exchange, and corr
lation components ofG. That is,

J@ni #1Ex@ni ,n0#5tr$D̂ i V̂ee%, ~22!

Ec@ni ,n0#5tr$D̂ i V̂ee%2tr$D̂s
i V̂ee%. ~23!

Thus the Kohn-Sham potential has the form

wi~r !5v~r !1vJ
i ~r !1vxc

i ~r !, ~24!

wherev(r ), vJ
i , andvxc

i (r ) are the external, Coulomb, an
exchange-correlation potentials, respectively.

III. KOHN-SHAM EQUATIONS FOR DEGENERATE
EXCITED STATES IN SPHERICALLY SYMMETRIC

SYSTEMS

The noninteracting wave functions can be constructed
linear combination of Slater determinants. They cannot g
erally be given as a single Slater determinant. Now
Kohn-Sham equations can be obtained from a minimali
tion of the noninteracting kinetic energy after expressing
with one-electron orbitals. Because of the fact thatCg

i ,0 is a
linear combination of several Slater determinants, the fo
of the Kohn-Sham equations is rather complicated for
arbitrarily selected set of weighting factorshg , and have to
be derived separately for each desired case. For a spheri
symmetric case and equal weighting factors, however,
2-2
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Kohn-Sham equations have a very simple form, as show
Ref. @9#. In this case the noninteracting kinetic energy
given by

Ts5(
j 51

N

l j
i E Pj

i F2
1

2
~Pj

i !91
l j
i ~ l j

i 11!

2r 2
Pj

i Gdr, ~25!

wherePj
i andl j

i are the radial wave functions and the occ
pation numbers corresponding to the given configuration,
spectively. ’’ denotes a second derivative with respect tor.
The radial subspace density

% i5(
j 51

N

l j
i ~Pj

i !2 ~26!

in this particular case is spherically symmetric. The minim
zation of the noninteracting kinetic energy leads to the ra
Kohn-Sham equations

2
1

2
~Pj

i !91
l j~ l j11!

2r 2
Pj

i 1wi Pj
i 5« j

i Pj
i . ~27!

IV. OPTIMIZED POTENTIAL METHOD
FOR DEGENERATE EXCITED STATES

The optimized potential method@10# can be applied when
the total energyEi is given as a functional of the one
electron orbitalsuk

i . The one-electron orbitalsuk
i are eigen-

functions of a local effective potentialVi ,

ĥiuk
i 5~2 1

2 ¹21Vi !uk
i 5«k

i uk
i , ~28!

with Vi determined by requiring thatEi is minimized for all
uk

i obtained from Eq.~28!. This results in

dEi

dVi
5(

i
E dEi

duk
i* ~r 8!

duk
i* ~r 8!

dVi~r !
dr 81c.c.50. ~29!

The functional derivative of the one-electron orbitalsuk
i with

respect to the local effective potentialVi can be calculated
with the help of the Green’s functions

duk
i* ~r 8!

dVi~r !
52Gk

i ~r 8,r !uk
i ~r !, ~30!

~ ĥi2«k
i !Gk

i ~r 8,r !5d~r2r 8!2uk
i ~r !uk

i* ~r 8!. ~31!

Using Eqs.~28!–~31!, integral equations for the effectiv
exchange-correlation potentialVxc

i follow:

E Hi~r ,r 8!Vxc
i ~r 8!dr 85Qi~r !, ~32!

H~ ir ,r 8!5(
k

uk
i* ~r !Gk

i ~r ,r 8!uk
i ~r 8!, ~33!
05250
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Qi~r !5(
k
E dr 8uk

i* ~r !Gk
i ~r ,r 8!vxc,k

i ~r 8!uk
i ~r 8!.

~34!

The orbital-dependent potentialvxc,k
i is given by

vxc,k
i ~r !5

dExc
i @uk

i #

uk
i duk

i*
. ~35!

The effective exchange-correlation potentialVxc
i can be de-

termined from the effective potentialVi ,

Vxc
i ~r !5Vi2v2vJ

i , ~36!

wherev is the external potential. The classical Coulomb p
tentialvJ

i depends slightly oni, as the densityni is somewhat
different for different excited states.

Now we turn to the exchange-only case. To obtain
effective potentialVi , the total energyEi@uk

i # as a functional
of the orbitalsuk

i is needed. In the ground-state theory f
nondegenerate states, the exchange-only total energy is g
by the well-known Hartree-Fock energy expression w
Kohn-Sham orbitals. However, in a degenerate case, this
not be appropriate, as we cannot approximate the wave fu
tion as a single Slater determinant. In this situation, one
proceed as follows: In case of a given electron configurati
there exist several Slater determinants:Fk

i . Constructing ap-
propriate linear combination of these Slater determina
one can obtain the wave functionsC̃g

i :

C̃g
i 5(

j
cg, j

i F j
i ~g51,2, . . . ,gi !. ~37!

The way to calculate the coefficientscg, j
i is not detailed here

as several methods~e.g., step-up and step-down operato
and projections! are available and discussed in textboo
~see, e.g., Ref.@11#!.

In the nondegenerate exchange-only case, the energ
taken as the average of the total HamiltonianĤ with a single
Slater determinant~with Kohn-Sham orbitals, of course!.
Generalizing this idea, the following energy expression
now proposed for the degenerate state:

Ei5^C̃g
i uĤuC̃g

i &. ~38!

As is well known from group theory,Ei is independent ofg.
Using Eq.~37!, Ei is a functional of the one-electron orbita
uj

i :

Ei5Ei@uj
i #. ~39!

For the special case of atomic multiplets, it is a functional
the radial wave functionsPj

i :

Ei5Ei@Pj
i #. ~40!

It can also be written as
2-3
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Ei5Eav1(
m

Cm
i Bm

i , ~41!

whereEav is the average energy of the different multiple
corresponding to a given configuration. The second term
the right-hand side of Eq.~41! is responsible for the multiple
separation. The explicit form of Eq.~41! has to be given for
the multiplet considered before by performing an optimiz
potential method~OPM! calculation. Expressions for sever
atomic multiplets have already been derived. For example
the casensmp3, the energies of the multiplets have the form
@11#

E~5S!5Eav2 9
25 F2~pp!2 1

2 G1~sp!, ~42!

E~3S!5Eav2 9
25 F2~pp!1 5

6 G1~sp!, ~43!

E~3D !5Eav2 1
6 G1~sp!. ~44!

E~1D !5Eav1 1
2 G1~sp!. ~45!

E~3P!5Eav1 9
25 F2~pp!2 1

6 G1~sp!, ~46!

E~1P!5Eav2 6
25 F2~pp!1 1

2 G1~sp!, ~47!

whereF2(pp) andG1(sp) are the Slater integrals:

F2~pp!5E E Rp
2~r 1!Rp

2~r 2!
r ,

2

r .
3

dr1dr2 ~48!

and

G1~sp!5E E Rs~r 1!Rp~r 2!Rp~r 1!Rs~r 2!
r ,

r .
2

dr1dr2 ,

~49!

whereRs andRp are the radial wave functions of thens and
mp electrons, respectively.r , meansr 1 if it is smaller than
r 2, andr 2 if it is smaller thanr 1. Now, in the knowledge of
total-energy expression, the OPM calculations can be
formed solving Eqs.~32!–~35!.

One can also obtain Hartree-Fock-like equations by t
ing the functional derivative of Eq.~41!. For spherically
symmetric systems, we obtain the radial equations

S 2
1

2

d2

dr2
1

l j~ l j11!

r 2
1v1vJ

i 1vx, j
i 1qj

i D Pj
i 5« j

i Pj
i ,

~50!

whereP5rR;

vx, j
i ~r !5

dEav,x
i @Pj

i #

Pj
i dPj

i*
~51!

is the Hartree-Fock exchange potential corresponding to
average of energies; and
05250
in
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qj
i 5(

m
Cm

i 1

Pj
i

dBm
i

dPj
i

~52!

is responsible for the separation between the different m
tiplets. The difference between the optimized poten
method for degenerate excited states and the conventi
OPM is in the different form of the exchange energy. In t
conventional OPM the exchange energy is the well-kno
Hartree-Fock exchange energy expression, with Kohn-Sh
orbitals. In the optimized potential method for degener
excited states presented here, the exchange energy is g
by the second term in Eq.~41!. The procedure is exactly th
same in both cases.

V. GENERALIZED KLI METHOD FOR A DEGENERATE
EXCITED STATE

It is very difficult to calculate the effective potentialVi

because of the vast numerical problems. Krieger, Li, a
Iafrate ~KLI ! @12# proposed an accurate approximate a
proach to the OPM for the ground state. Recently one of
authors@13# proposed an alternative derivation of the KL
approximation. Using this method, a generalization of
KLI approach for excited states can also be obtained.

The total radial electron subspace density% i can be ex-
pressed with the radial wave functionsPj

i :

% i~r !5(
j

l j
i ~Pj

i !2. ~53!

The functionsK j
i are introduced with the following defini

tion:

Pj
i 5~% i /l j

i !1/2K j
i . ~54!

The functionsK j
i are not all independent:

15(
j

~K j
i !2. ~55!

Substituting Eq.~54! into Eq. ~50!, multiplying it by K j
i ,

summing for all orbitals, and using the derivative of Eq.~55!,
we arrive at the equation

2
1

8 S ~% i !8

% i D 2

1
1

4

~% i !9

% i
1(

j

l j~ l j11!~K j
i !2

r 2

1
1

2 (
j

„~K j
i !8…21v1vJ

i 1vS
i 1(

j
K j

i ~vx, j
i 1qj

i !K j
i

5(
j

« j
i ~K j

i !2, ~56!

where vx, j
i is a Hartree-Fock-like exchange potential@Eq.

~36!#, andvS
i is the Slater potential:

vS
i ~r !5(

j
K j

i vx, j
i K j

i . ~57!
2-4
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The Kohn-Sham equations

S 2
1

2

d2

dr2
1

l j~ l j11!

r 2
1vKS

i D P̄j
i 5e j

i P̄ j
i ~58!

can be rewritten in a similar way. The Kohn-Sham poten
has the form

vKS
i 5v1vJ

i 1vx
i 1qi , ~59!

where vx
i is the exchange potential andqi is a potential

which is responsible for the multiplet separation. Introduc
functionskj

i , with the definition

P̄j
i 5~% i /l j

i !1/2kj
i , ~60!

with ki satisfying an equation similar to Eq.~55!, substituting
Eq. ~60! into Eq. ~58!, multiplying Eq.~60! by kj

i , and sum-
ming for all orbitals, the Kohn-Sham equations~58! take the
form

2
1

8 S ~% i !8

% i D 2

1
1

4

~% i !9

% i
1(

j

l j~ l j11!~kj
i !2

r 2

1
1

2 (
j

„~kj
i !8…21v1vJ

i 1vx
i 1qi5(

j
e j

i ~kj
i !2.

~61!

Now, comparing the Hartree-Fock-@Eq. ~56!# and Kohn-
Sham-type@Eq. ~61!# equations in the case when both equ
tions provide the same density, we obtain

vx
i 5vS

i 1(
j

~e j
i 2« j

i !~kj
i !22(

j
« j

i
„~K j

i !22~kj
i !2

…

2
1

2 (
j

@ u¹kj
i u22u¹K j

i u2#1(
j

l j~ l j11!

r 2
„~kj

i !2

2~K j
i !2

… ~62!

and

wi5(
j

Ki
iqj

i K j
i . ~63!

By supposing that the Hartree-Fock -like wave functionsK j
i

are very close to the orbitalskj
i , satisfying the Kohn-Sham

type equations, we obtain

vx
i 5vS

i 1(
j

~e j
i 2« j

i !ukj
i u2 ~64!

and

qi5(
j

~kj
i !2qj

i 5(
j

~kj
i !2(

m
Cm

i 1

Pj
i

dBm
i

dPj
i

. ~65!

Expressions~64! and ~65! provide accurate approximation
for the exact OPM potential in the exchange-only case.
05250
l
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VI. KOOPMANS’ THEOREM FOR THE EXCITED STATE

From previous studies, we know that the asymptotic
cay of ni

a5ni is governed byuEi ,a2E0,N21
i ,a u, whereEi ,a is

the i th excited-state energy ofĤ i ,a. E0,N21
i ,a on the other

hand, is the ‘‘ground-state’’ energy ofĤ i ,a with one electron
removed. Asni is independent ofa, uEi ,a2E0,N21

i ,a u is also
independent ofa. Consequently,

]

]a
uEi ,a2E0,N21

i ,a ua5050. ~66!

It is supposed that we have a single excitation, and an e
tron from the highest occupied level is excited.

From Eqs.~11! and ~66!, we obtain

tr$D̂s
i V̂ee%1E drni

]va
i

]a
U

a50

5tr$D̂s
i ,N21V̂ee%

1E drn0
N21

]va
i

]a
U

a50

.

~67!

Using Eq.~11!,

tr$D̂s
i Ĥ%2tr$D̂s

i ,N21ĤN21%

5trH D̂s
i S T̂1 (

k51

N

v~r k!D J
2trH D̂s

i ,N21S T̂N211 (
k51

N21

v~r k!D J
1E drn0

N21
]va

i

]a
U

a50

2E drni

]va
i

]a
U

a50

,

~68!

wheren0
N21 , ĤN21, andT̂N21 are the ground-state subspa

density, the total Hamiltonian, and the kinetic-energy ope

TABLE I. Ionization energy~in Ry! obtained from the orbital
energies.

Atom Configuration Generalized KLI HF Expt.

He 1s2p 3P 0.270 0.263 0.266
1s2p 1P 0.255 0.245 0.248

Be @He#2s2p 3P 0.550 0.483 0.485
@He#2s2p 1P 0.287 0.235 0.297

Ne @He#2p53s 3P 0.357 0.350 0.361
@He#2p53s 1P 0.346 0.337 0.349

Mg @Ne#3s3p 3P 0.405 0.359 0.363
@Ne#3s3p 1P 0.235 0.199 0.243

N @He#2s22p23s 4P 0.393 0.310
@He#2s22p23s 2P 0.347 0.284

O @He#2s22p33s 5S 0.605 0.329
@He#2s22p33s 3S 0.515 0.301
2-5
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tor with one electron removed, respectively. Note that, in
~68!, v is the external potential. This is an exact relation th
is analogous to the ground-state exchange-only Koopm
relation.

Now, following Görling and Levy@14# and Nagy@1#, va
i

can be expanded as

va
i ~@n0 ,ni #;r !5v0

i 2a„u~@n0 ,ni #;r !1vx
i ~@n0 ,ni #;r !…1•••,

~69!

whereu and vx
i are the Coulomb and exchange potentia

respectively. From Eqs.~68! and ~69!, it follows that

tr$D̂s
i Ĥ%2tr$D̂s

i ,N21ĤN21%5« i . ~70!

Thus we have obtained a ‘‘Koopmans’ theorem’’ for excit
states.

We mention that Koopmans’ theorem is valid for an a
erage of the multiplets corresponding to a given configu
tion. Contrary to the nondegenerate case, in the degen
generalized KLI as formulated here, ‘‘Koopmans’ theorem
is not quite valid. Using Eqs.~41!, ~50!–~52!, we instead
obtain:

DE5«N2E qi~PN
i !21 1

2E % iqi2 1
2E %N21

i qN21
i

~71!

for the total energy difference. The last three terms in
~71! give a small correction to the highest orbital energy«N .
05250
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Nevertheless, it would be worthwhile, in the future, to ge
eralize the KLI for degenerate excited states, so that the
fective potential satisfies Koopmans’ theorem, as deriv
here.

Table I contains the calculated and the experimental v
ues@15#. In those cases, where the Hartree-Fock~HF! one-
electron energies of the excited state are known, Hart
Fock results are also presented. The one-electron Har
Fock orbital energies were calculated by Tatewakiet al.
@16#. These numerical Hartree-Fock calculations were p
formed withMCHF72 @17#. Koopmans’ theorem is valid in the
single-determinant Hartree-Fock theory. When we have s
eral determinants, there is no Koopmans’ theorem. Obse
that in certain cases there is a good agreement between
calculated and experimental results, suggesting that the
three terms in Eq.~71! are small. Also note that correlation i
not included in the present calculations, so the good res
might come from a cancellation of errors.

In closing, we note the recent comprehensive review
excited-state theory by Singh and Deb@18#. Contained
within is a discussion of the use of the work-function pote
tial @19# as a time-independent method for an individual e
cited state@20#.
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