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Variational density-functional theory for degenerate excited states
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The variational time-independent density-functional theory for an individual excited state introduced re-
cently[M. Levy and A Nagy, Phys. Rev. LetB3, 4361(1999] is extended to degenerate states.

DOI: 10.1103/PhysRevA.63.052502 PACS nuntber31.15.Ew

|. INTRODUCTION g;
1=, 7, (4)
In a recent papefl], one of the authors introduced a r=1
theory for excited states. It is a nonvariational theory that isan d
based on Kato’s theorefi2], and valid for a Coulomb exter-
nal potential. It has the advantage that one can handle an 7 =0. (5)
individual excited state. In a more recent pap8ét, the 7

present authors put forthvariational Kohn-Sham theory for In princip|e, any set of We|ght|ng ‘factor«sly Satisfying con-

an individual excited state. Here this latter theory is enlargegjitions (4) and (5) can be used. The subspace density is
to include degenerate excited states. For ground states, th@fined as

original nondegenerate Hohenberg-Kohn theoret was

extended, through the constrained-search approach, to in- g9 _

clude degeneracies by Ley$], who followed earlier work n=N> ”IVJ |‘If'y|2dsldx2. .. dXp, (6)
by Percus[6]. Recent key developments and formulations r=1

involving degeneracies and symmetries for ground states IN:herex stands for a space-spin coordinate. The superscript

clude those .Of Guing [7] and Nagy{8]. The nonvariational n n; and the subspace density matrix denotes that they are
theory mentioned above was also formulated for degenerate )
; constructed from wave functions that belong to the subspace
excited stategl]. : D
S, . One is free to select the values of the weighting factors

7;‘7: they only need to satisfy conditiond) and (5). If the

Il. VARIATIONAL DENSITY-FUNCTIONAL THEORY weighting factorsniy are all equal, the density has the prop-
FOR DEGENERATE EXCITED STATES erty of transforming according to the totally symmetric irre-
Consider the solutions of the Schiinger equation ducible representatiofv,8]. So, for instance, for atoms the

subspace density will be spherically symmetric. However, it
a o is possible to select other values for the weighting factors
HIW)=E¥]) (y=12,...0), A
This approach has the advantage that with equal weight-
whereg; is the degeneracy. For the sake of simplicity, onlying factors, the subspace density has the symmetry of the
one index is used to denote the symmetry both in spin anéxternal potential. We emphasize that this procedure can be
ordinary space. Thal-electron Hamiltonian has the form done for both ground and excited states.

Define the universal functional
N
H,=T+ Vet r, 2 d .-
v ee kgl v(r @ F[n;,ng]= min 21 AV T+Ved V). 7)
S—n; ¥=

whereT, Vee, andv are the kinetic-energy operator, the ysing the density matrix, this can also be written as
electron-electron repulsion energy operator, and the external

(eIectron—nucleo}wp‘otential, respectively. F[ni,nol=mintr{D(T+Veo}, (8)
Instead of treating one wave function, the subspgce S—n

spanned by a set of wave functioﬂéy, will be considered. _ - _

We can define the density matrix in subsp&eas where n; and nqy are arbitrary densitiesn, is a ground-

subspace density, whilg is a trial excited subspace density
gi we are considering. All the subspaces corresponding to the
Di=> 7 |wiyw!), (3)  firsti—1 states of a HamiltoniaRl, =T+ Vet =R v (1)),
r=1 for which ng is the ground-state subspace density, are sup-
. posed to be orthogonal to the subspace considered. Thus the
where the weighting factora'y satisfy the conditions total energy of theth excited state has the form
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acting excited-state density matrix bF,, whose subspace
density isn;. The minimum principle for noninteracting ki-
netic energy is

TN ,no]+f ny(NW ([n; ,nol;r)dr

=min[F[ni,n0]+j ni(r)v(r)dr]. 9 :min{Ts[ni,no]nLJ ni(r)wi([ni,no];r)dr],
nj nj
E; can also be expressed with the density matrix: (17
L L leading to the Euler equation
Ei=mintr{D'H}=min{ min tr{D'H}}. (10
S N S§—n i oTg[Ni,Ng]
wi(lnpnolin+——5"—| =m. (18
For purposes of approximatirig n; ,ng], let us construct n=n
the Hamiltonian .
whereu; is a Lagrange parameter.
N The Kohn-Sham potential has the form
DT | i
Abe=T+ aVeet k§=‘,l vl (ry), (11) i SGLN, .ng]
w(n=v()+—ps— (19
n=n.

wherevia(r;[ni ,Ng]) is defined such that the subspace den- :

Sity n; rerAn_ains independent ef, and that makes the ground \yhere the functionaG[n; ,ny] is defined by the partition
state ofH"* closest ton, in a least squares sense. This

adiabatic connection leads to the noninteracting system, for FLni,no]=Tg[N;,no]+G[n;,Ne]. (20
which a=0. N , N .
The noninteracting Kohn-Sham Hamiltonian is defined ad"Urther, it is convenient to partitioB[n; ,no] into
N G[ni,no]=J[ni]+E,[n;,ng]+Ec[nj,ng], (21

Hiw=ﬂi'“=°=?+;l wi([n; ,nol;r)). (12

whereJ, E,, andE, are the Coulomb, exchange, and corre-
lation components o6. That is,

Both the noninteracting Hamiltoniafl}, and the Kohn-

B H . . = iy

Sham-like potentia'([n; ,no];r) =vg(r) depend orni. That i ]+ E[ni ,no] =D Ved}, (22

is, they are different for different excited states. The Kohn- A .

Sham-like equations have the form Ec[ni no] =t{D'Veef —tr{DVee}- (23
i i - ; Thus the Kohn-Sh ial has the f
H"OIII"Y’O):E"OI\P'Y")) (y=12....g), (13 us the Kohn-Sham potential has the form

W (N =v(r)+v(r)+oir), (24)

where the noninteracting density matrix can be constructed

from the wave functiona?',° as wherev(r), v';, andv!(r) are the external, Coulomb, and
exchange-correlation potentials, respectively.

i
N i i,0
Ds ;1 777|q,70><lp7’ E (14 Ill. KOHN-SHAM EQUATIONS FOR DEGENERATE
EXCITED STATES IN SPHERICALLY SYMMETRIC

while the noninteracting kinetic energy has the form SYSTEMS

The noninteracting wave functions can be constructed as a

Toni,no] =tr{DT}. (19 Jinear combination of Slater determinants. They cannot gen-
_ o erally be given as a single Slater determinant. Now the
Ts can also be given variationally as Kohn-Sham equations can be obtained from a minimaliza-
o . . tion of the noninteracting kinetic energy after expressing it
TJni,no]= min t{D'T}=tr{D[n;,no]T},  (16)  with one-electron orbitals. Because of the fact taf is a

Si—=ni linear combination of several Slater determinants, the form

. . of the Kohn-Sham equations is rather complicated for an
where eaclt5; is orthogonal to all subspaces CorreSpond'ngarbitrarily selected set of weighting factors,, and have to

to the firstm—1 states oH,,, andn; is the subspace density pe derived separately for each desired case. For a spherically
of the mth excited state oH,,. D n;,ny] is that noninter- symmetric case and equal weighting factors, however, the
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Kohn-Sham equations have a very simple form, as shown in , - : o i
Ref. [9]. In this case the noninteracting kinetic energy is Q'(V)ZEk Jdr U (NG, vy (rHug(r’).
given by

(34)
- % )\i_J' pil _ E(P‘-)”+ (1 +1) pildr. (29 The orbital-dependent potentia) , is given by
A i| 2\ 2 j|e
) - . ! i 5Eixc[ui<]
whereP} and)\} are the radial wave functions and the occu- Uxe k(M) = UL5UL* . (35

pation numbers corresponding to the given configuration, re-
spectively. " denotes a second derivative with respeat.to T,

e effective exchange-correlation potentdl. can be de-
The radial subspace density J 3 NGk

termined from the effective potentisf’,

N H . .
1= 2, \|(P))? (26) Vi1 =V—v -0}, (36)
j=1

wherev is the external potential. The classical Coulomb po-
in this particular case is spherically symmetric. The minimi-tentialv'; depends slightly oi, as the density' is somewhat
zation of the noninteracting kinetic energy leads to the radiatlifferent for different excited states.
Kohn-Sham equations Now we turn to the exchange-only case. To obtain the
effective potentia}\/i, the total energ)Ei[uL] as a functional

1 piyr (1 +1) Pl wipi—olpl ) of the orbitalsu, is needed. In the ground-state theory for
_E( i) +T jTWP=¢;Py. (27) nondegenerate states, the exchange-only total energy is given
by the well-known Hartree-Fock energy expression with
Kohn-Sham orbitals. However, in a degenerate case, this will
IV. OPTIMIZED POTENTIAL METHOD not be appropriate, as we cannot approximate the wave func-
FOR DEGENERATE EXCITED STATES tion as a single Slater determinant. In this situation, one can

The optimized potential methdd 0] can be applied when proceed as follows: In case of a given electron configuration,
the total energyE, is given as a functional of the one- there'exist'several SIaFer Qeterminam$:. Constructing ap-
electron orbitalal, . The one-electron orbitals, are eigen- propriate linear combination of these Slater determinants,

functions of a local effective potentiaf, one can obtain the wave functiofis, :
hiu,=(—3V2+V)u,=e,uy, (28 (I‘,Iy:; Ciy,j(D} (y=12,...0). (37)
with V' determined by requiring thd; is minimized for all ‘
U, obtained from Eq(28). This results in The way to calculate the coefﬁcier{t‘;‘,’j is not detailed here
as several method®.g., step-up and step-down operators,

SE, SE suX(r’) and projections are available and discussed in textbooks
— = f o : dr'+c.c=0. (29 (see, e.g., Refl1]).
ovi i dug (r') 8Vi(r) In the nondegenerate exchange-only case, the energy is

taken as the average of the total Hamiltonkamwith a single
Slater determinanfwith Kohn-Sham orbitals, of courke
Generalizing this idea, the following energy expression is
now proposed for the degenerate state:

The functional derivative of the one-electron orbitajswith
respect to the local effective potentidl can be calculated
with the help of the Green’s functions

5ui*(r/) . ) oS

— = —Gl(r,nui(n), (30) E'=(PLIR1YS). (38)

oV'(r) .

As is well known from group theong' is independent ofy.

(F‘i_gik)GL(rr,r): 5(r—r’)—uL(r)uL*(r’). (31) Uising Eq.(37), E' is a functional of the one-electron orbitals
ui:
j
Using Egs.(28)—(31), integral equations for the effective

i iy
exchange-correlation potentisl, . follow: E'=Eluj]. (39

For the special case of atomic multiplets, it is a functional of

f HI(r,r )V (r)dr' =Qi(r), (32 the radial wave function®; :
E'=E'[P]]. (40)
H i , 1y — i% Gi , ’ i ' , 33
(r.r) EK U (NGr.ruidr?) 33 It can also be written as
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) S _ _ dB!
Eleau+% ciB, (42) =3 ¢ 1 dB, 52

m_._.
m P} dP}

whereE,, is the average energy of the different multiplets js responsible for the separation between the different mul-
corresponding to a given configuration. The second term ifiplets. The difference between the optimized potential
the right-hand side of Eq41) is responsible for the multiplet method for degenerate excited states and the conventional
separation. The explicit form of E¢41) has to be given for  opw s in the different form of the exchange energy. In the
the multiplet considered before by performing an optimized.gnventional OPM the exchange energy is the well-known
potential mgthodOPM) calculation. Exprgssions for Several_Hartree-Fock exchange energy expression, with Kohn-Sham
atomic multiplets have already been derived. For example, igypitals. In the optimized potential method for degenerate
the caseismp’, the energies of the multiplets have the forms excited states presented here, the exchange energy is given

[11] by the second term in E@41). The procedure is exactly the
5 o 2 L same in both cases.
E(CS)=Eas —2F(Pp)—3G7(sp), (42)
V. GENERALIZED KLI METHOD FOR A DEGENERATE
E(®D)=Ea,—3G'(sp). (44) It is very difficult to calculate the effective potentis!
because of the vast numerical problems. Krieger, Li, and
E(*D)=E,,+3G(sp). (45) lafrate (KLI) [12] proposed an accurate approximate ap-
proach to the OPM for the ground state. Recently one of the
ECP)=E,,+ %F%(pp)— :Gl(sp), (46)  authors[13] proposed an alternative derivation of the KLI
’ approximation. Using this method, a generalization of the
E(!P)=E. — SF2 +1GY(sp), 4 KLI approach for excited states can also be obtained.
(P)=Bay=2sF (PRI +2G(sP) “n The total radial electron subspace densifycan be ex-
whereF2(pp) andG*(sp) are the Slater integrals: pressed with the radial wave functioRs:
: Q'(N =21 Nj(P)?. (53

r<
Fz(pp)=f f RS(rl)RS(rz)Edrldrz (48)

The functionsK} are introduced with the following defini-

and tion:
r_ Pi=(0'\))VK;. (54)
Gl(sp)=j j Ro(r1)Rp(r2)Ry(r 1)Rs(r2)—-drydry, _
r= The functionsK'j are not all independent:
(49)
whereR; andR,, are the radial wave functions of times and 1= 2 (K)2. (55)

mp electrons, respectively_ meansr if it is smaller than
r,, andr, if it is smaller thanr,. Now, in the knowledge of

total-energy expression, the OPM calculations can be pers'umming for all orbitals, and using the derivative of Egp),

formed solving Eqs(32)—(35). ; ;
One can also obtain Hartree-Fock-like equations by takyv e arrive at the equation

Substituting Eq.(54) into Eq. (50), multiplying it by K!,

ing the functional derivative of Eq(41). For spherically i\ 2 PN . i\2
symmetric systems, we obtain the radial equations _% &) %QJFE w
QI | J r
_1 @ LD i vg | Piaip 1 . o S
2 dr2 2 ITU T | Fj=EiF, +§2 ((K}),)2+U+UIJ+U|S+; K}(v;’j+q})K}
(50)
whereP=rR; 22 &j(K))?, (56)
o (1 _9Ea Pl 51 where v} ; is a Hartree-Fock-like exchange potentjalg.
*J p} 5p}* (36)], andvyg is the Slater potential:

is the Hartree-Fock exchange potential corresponding to the vis(r)=; K}vix,jK} (57)

average of energies; and
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The Kohn-Sham equations VI. KOOPMANS’' THEOREM FOR THE EXCITED STATE
1 d2 YCFE 2 N P From previous studies, we know that the asymptotic de-
T r—2+vI<S Pi=€P; (58)  cay ofn*=n; is governed byE"“— EON 1|, whereE"“ is

the ith excited-state energy dfl'*“. EON 1 on the other
can be rewritten in a similar way. The Kohn-Sham potentialhand, is the “ground-state” energy bf'.“ with one electron
has the form removed. Asn; is independent ofy, |E"“—Egy_,| is also
independent ofr. Consequently,

vi<s=v+vi3+vix+qi, (59
where uiX is the exchange potential amgl is a potential —|EI - EON 1la=0=0. (66)
which is responsible for the multiplet separation. Introducing
functionsk; , with the definition It is supposed that we have a single excitation, and an elec-
— O i tron from the highest occupied level is excited.
I i\1/2),i
Pi=(e'/\)™;, (€0 From Eqgs.(11) and (66), we obtain
with k; satisfying an equation similar to E(5), substituting o v . A
Eq. (60) into Eq.(58), multiplying Eq.(60) by kj, and sum- tr{D'sVee}+f drniﬁ—:‘ =tr{DLN"V
ming for all orbitals, the Kohn-Sham equatiofi8) take the a=0
form
i i i + [ drng =
1/ (0"’ 2 1 (o))" IJ(|]+1)(k;)2 J 0 o o
8 ) ta o T by 2
e e I r (67)

+§ 2]: ((k})’)2+v+v'3+v'x+q':§j: 6}(k})2_ Using Eq.(ll),

DA} — DN IAN-1

(61 N
Now, comparing the Hartree-FockEq. (56)] and Kohn- =tr[ DY T+ v(ry ]
Sham-typd Eq. (61)] equations in the case when both equa- k=1
tions provide the same density, we obtain N-1
o o o . tr[D'N 1('1”\“14—2 v(rk)”
vi=vst 2 (e ()72 ej((K)* - (K)?) =
+1) f drny~ 1— f drn,a— ,
——2 [IVKj[>= [VKj[?1+ 2 S (k)2 a=0
(68)
i\2
(K (62) wheren) "', AN~ andTN~* are the ground-state subspace
and density, the total Hamiltonian, and the kinetic-energy opera-
wi:2 Kiqi-Ki . (63) TABLE I. lonization energy(in Ry) obtained from the orbital
= ! energies.
By supposing that the Hartree-Fock -like wave functimjs Atom Configuration Generalized KLI ~ HF  Expt.
are very cl_ose to the orbitalq , satisfying the Kohn-Sham |, 1s2p 3P 0.270 0.263 0.266
type equations, we obtain 1s2p 1P 0.255 0.245 0.248
Be [He]2s2p P 0.550 0.483 0.485
v‘x=vis+2 (5}_8})|k}|2 (64) [He]2s2p P 0.287 0.235 0.297
i Ne [He]2p®3s 3P 0.357 0.350 0.361
[He]2p®3s 1P 0.346 0.337 0.349
and Mg [Ne|3s3p 3P 0.405 0.359 0.363
1 dg [Ne]3s3p P 0.235 0.199 0.243
q'=2 (k)2aj=2 (K 22 cl __m. 65 N [He]2s%2p?3s *P 0.393 0.310
] ] j dP [He]2s?2p?3s 2P 0.347 0.284
0 [He]2s%2p®3s °S 0.605 0.329
Expressiong64) and (65) provide accurate approximations [He]2s22p33s 3S 0.515 0.301

for the exact OPM potential in the exchange-only case.
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tor with one electron removed, respectively. Note that, in EqNevertheless, it would be worthwhile, in the future, to gen-

(69), v is the external potential. This is an exact relation thateralize the KLI for degenerate excited states, so that the ef-
is analogous to the ground-state exchange-only Koopmangéctive potential satisfies Koopmans' theorem, as derived

relation. _
Now, following Galing and Levy[14] and Nagy[1], v,

can be expanded as

04 ([No,M1;N) =vo— a(u([Ng,nlin) +oy([ng, M)+ -+,

(69

here.

Table | contains the calculated and the experimental val-
ues[15]. In those cases, where the Hartree-Fodk) one-
electron energies of the excited state are known, Hartree-
Fock results are also presented. The one-electron Hartree-
Fock orbital energies were calculated by Tatewakial.

[16]. These numerical Hartree-Fock calculations were per-

whereu andvix are the Coulomb and exchange potentials,formed withMCHF72[17]. Koopmans’ theorem is valid in the

respectively. From Eq€$68) and(69), it follows that

tr{ DA} —tr{DLNTTAN =, (70)

single-determinant Hartree-Fock theory. When we have sev-
eral determinants, there is no Koopmans’ theorem. Observe
that in certain cases there is a good agreement between the
calculated and experimental results, suggesting that the last

Thus we have obtained a “Koopmans’ theorem” for excitedthree terms in Eq(71) are small. Also note that correlation is

states.

not included in the present calculations, so the good results

We mention that Koopmans’ theorem is valid for an av-might come from a cancellation of errors.

erage of the multiplets corresponding to a given configura-

In closing, we note the recent comprehensive review of

tion. Contrary to the nondegenerate case, in the degenerag¥cited-state theory by Singh and Dét8]. Contained
generalized KLI as formulated here, “Koopmans’ theorem” Within is a discussion of the use of the work-function poten-

is not quite valid. Using Eqgs(41), (500—(52), we instead

obtain:

AE=sN—fqi(P‘N>2+ f e'a'- f On-10N-1
(7

tial [19] as a time-independent method for an individual ex-
cited statd 20].
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