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Optimal encoding and decoding of a spin direction
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For a system ofN spins there are quantum states that can encode a direction in an intrinsic way. Information
on this direction can later be decoded by means of a quantum measurement. We present here the optimal
encoding and decoding procedure using the fidelity as a figure of merit. We compute the maximal fidelity and
prove that it is directly related to the largest zeros of the Legendre and Jacobi polynomials. We show that this
maximal fidelity approaches unity quadratically in 1/N. We also discuss this result in terms of the dimension
of the encoding Hilbert space.
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I. INTRODUCTION

Entanglement and superposition are the most charact
tic features of quantum states. They play a central role in
storage and transmission of information in the quant
world and are responsible for the many remarkable, and
ten intriguing, quantum effects that are constantly being d
covered. These effects, in turn provide new insights in
difficult task of understanding quantum information.

Some time ago Peres and Wootters@1# posed an interest
ing question. Imagine a quantum system composed of
eral subsystems, which are not necessarily entangled.
can we learn more about this system? By performing m
surements on the individual subsystems or on the system
whole? They showed evidence that the latter, the so-ca
collective measurements, are more informative. Obviou
entanglement is the property responsible for this. In this c
however, it is not explicit, since the system can be chose
be in a product state, but hidden in the collective measu
ment.

Later Massar and Popescu@2# addressed a more concre
problem. Imagine Alice has a system ofN parallel spins. She
can use this system to tell Bob the direction along wh
some given unit vectornW is pointing. She just has to rotate
or prepare in some other way, the state of her system so
it becomes an eigenstate ofnW •SW , the projection of the tota
spin in thenW direction. The state is then sent to Bob, who
task is to determine the direction encoded in the state.
will need to perform a collective measurement and from e
one of its outcomes, labeled with an indexr, he will have a
guess for Alice’s direction given by a unit vectornW r . To
quantify the quality of this communication procedure Mas
and Popescu used the average fidelity, which is defined
F5( r*dn(11nW •nW r)/2Pr(nW ), wherenW is assumed to come
from an isotropic source. HerePr(nW ) is the probability of
getting the outcomer if Alice’s direction is nW , anddn is the
rotationally invariant measure on the unit two-sphere. T
authors proved that the maximal average fidelity Bob c
achieve isF5(N11)/(N12), which is readily seen to ap
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proach unity linearly:F;121/N. Explicit realizations of
the optimal measurements with a finite number of outcom
were obtained in@3# for arbitraryN and minimal versions of
these measurements forN up to seven are in@4#.

A surprise was recently presented in@5#. In this paper the
authors considerN52 and show that states with two ant
parallel spinsu↑↓&, u↓↑& provide a better encoding of Alice’s
directions than the two parallel-spin states used in@2–4#. The
average fidelity is now (31))/6 which is larger than 3/4
for two parallel spins, i.e., Bob can have a better determi
tion of Alice’s direction if she uses antiparallel spins. This
a startling result, since classically one would expect tha
direction is encoded equally as well in a state pointing o
way as in one pointing the opposite way. The main rea
why this is not so in the quantum world, as will become cle
from our work, is the different dimensionality of the Hilbe
spaces to which two parallel or two antiparallel spin sta
belong.

At this point, the obvious reaction is to ask ourselves w
are the best states Alice can use to encode directions. S
the very natural state with only parallel spins is not optim
for N52, we expect that neither will it be for arbitraryN.
Hence, one has to search for the optimal encoding s
among all the eigenstates ofnW •SW that Alice can produce.
These eigenstates have the obvious, and very useful, p
erty of pointing along the direction given bynW in an intrinsic
way, namely, independently of any reference frame Al
and Bob may share. In short, they are the quantum analo
the gyroscope. One could use a much more general clas
states to encode the information contained innW ~see@6# and
the last section of the present paper!. However, all other
possible encodings ofnW will necessarily require that Alice
and Bob share a common reference frame. Hence, the w
procedure becomes less interesting, since one can argue
in this situation classical communication is more efficient

In this paper we will present a very general analysis
these ‘‘quantum gyroscopes.’’ We compute the maximal
erage fidelity ~hereafter we will usually drop ‘‘average’
when there is no ambiguity! for arbitraryN and show that it
©2001 The American Physical Society09-1
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approaches unity quadratically in 1/N, as compared to the
linear behavior found in@2# for parallel spins. As a by-
product, we also compute the maximal fidelity for encodi
states of two arbitrary spinss such as two nuclei. A shor
description of the main results of this analysis was presen
in @6#. These results have recently been corroborated by
merical analysis@7#.

The paper is organized as follows. In Sec. II we introdu
our notation and conventions and present a detailed calc
tion of the maximal fidelity forN52. We show that the
fidelity obtained by Gisin and Popescu in@5# is optimal ~a
result also obtained in@8# using different methods!. In Sec.
III we analyze the more general case of two states with eq
but arbitrary spins. The analysis for any number of spins
in Sec. IV and our results and discussion are in Sec. V.
conclude with an Appendix containing technical details.

II. TWO SPINS

We start by assuming that Alice has two spins in a gen
eigenstate ofnW •SW . ~We skip the analysis of the simplest sit
ation in which Alice has only one spin. The reader can fin
in @2,6#, and our general formulas of Sec. IV can also
specialized to this case.! We can think of it as a fixed eigen
state ofSz5zW•SW ~zW is the unit vector pointing along thez
direction! that Alice has rotated into the directionnW
5(cosf sinu,sinf sinu,cosu). It is convenient to work in
the irreducible representations of SU~2!. In the present case
1/2^ 1/251% 0, the general form of this fixed eigenstate

uA&5A1u1,1&1A0u1,0&1A2u1,21&1Asu0,0&, ~1!

where, as usual, the normalized states of the basis,u j ,m&, are
labeled by the total spinS and the third componen
Sz : S2u j ,m&5 j ( j 11)u j ,m& and Szu j ,m&5mu j ,m&. In the
following we stick to the general form~1! to treat all the
cases jointly, but one should keep in mind that only com
nations with definiteSz will be relevant for our analysis. The
rotated stateU(nW )uA&, where U(nW ) is the element of the
SU~2! group associated with the rotationzW→nW 5RzW, is pre-
cisely Alice’s general eigenstate ofnW •SW . Obviously,U(nW ) is
reducible since it has the formU(nW )5U (1)(nW ) % U (0)(nW ),
whereU ( j ) denotes the SU~2! irreducible representation o
spin j.

Next, Alice sends the rotated state to Bob, who tries
determinenW from his measurements. The most general o
he can perform is a positive-operator-valued measurem
~POVM!. We specify this POVM by giving a set of positiv
Hermitian operators$Or%, that are a resolution of the identit

I5(
r

Or . ~2!

For each outcomer, Bob makes a guessnW r for the direction.
As we mentioned in the Introduction, the quality of the gue
is quantified in terms of the fidelity, which we can view as
‘‘score.’’ To Bob’s guessnW r , we give the scoref 5(1
1nW •nW r)/2. We see that the fidelityf is unity if Bob’s guess
05230
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coincides with Alice’s direction and it is zero when they a
opposite. Thus, ifnW is isotropically distributed the averag
fidelity can be written as

F5(
r
E dn

11nW •nW r

2
tr@r~nW !Or #, ~3!

wherer(nW )5U(nW )uA&^AuU†(nW ) and dn was defined in the
Introduction. The evaluation ofF can be greatly simplified
by exploiting the rotational invariance of the integral~3!. If
we defineRr through the relation

nW r5RrzW ~4!

and make the change of variables

Rr
21nW→nW , ~5!

we have

F5(
r
E dn

11nW •zW

2
tr@r~nW !V r #, ~6!

where

V r5U†~nW r !OrU~nW r !. ~7!

Notice that in generalS rV rÞI. We can regardV r as
fixed or reference projectors associated with the single di
tion zW. In this sense, they are the counterpart of Alice
fixed state uA&. Inserting four times the closure relatio
(kuk&^ku5I, wherek51,0,2,s, and$uk&% is the basis of the
representations 1% 0,

u6&5u1,61&,

u0&5u1,0&, ~8!

us&5u0,0&,

we obtain

F5(
ki j l

Ai* Alvk jE dn
11cosu

2
Dki* ~nW !Dj l ~nW !. ~9!

Here the indicesk, i, j, and l also run over1,0,2,s;
Dk j(nW )5@D(1)

% D(0)#k j(nW )5^kuU(nW )u j & are the SU~2! rota-
tion matrices in the 1% 0 representations, and

vk j5(
r

^kuV r u j &. ~10!

Now, one can easily evaluate the integrals and obtain
fidelity

F5A†WA, ~11!

whereA5(A1 ,A0 ,A2 ,As)
t and A† is its transposed com

plex conjugate. The matrixW is
9-2
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W5S 3v1112v001v22

12
* * *

*
v111v001v22

6
*

v0s

6

* *
v1112v0013v22

12
*

*
vs0

6
*
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2
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where the entries marked with* are not relevant for our
analysis since we consider eigenstates ofSz only for the
fixed statesuA&. These, and the corresponding rotated sta
U(nW )uA&, are the only ones that point along a definite dire
tion in an absolute sense, i.e., even if Alice and Bob do
share a common reference frame. From its definition~10!, it
follows thatv j j are real non-negative numbers butv i j are in
general complex numbers foriÞ j . There are other con
straints onv i j stemming from the condition( rOr5I:

vss51, (
l 51,0,2

v l l 53. ~13!

Because of the Schwarz inequality, we also have

uv0su2<v00vss5v00. ~14!

Let us discuss the implications of these equations for dif
ent values ofm.

The mÄÁ1 case

The fixed stateuA& for m51 is simply uA&5u1,1&, i.e.,
A151 andA05A25As50. In this case the fidelity is given
by the elementW11 of Eq. ~12!,

F5W115
3v1112v001v22

12
5

3

4
2

v0012v22

12
<

3

4
,

~15!

where the second condition in Eq.~13! has been used. Th
maximal value, which we denote byF1 , is then

F15 3
4 . ~16!

This value occurs for

v225v0050⇒v1153. ~17!

The casem521, for which uA&5u1,21&, is completely
analogous with the index substitution1↔2. The maximal
value of the fidelity is alsoF25 3

4 .
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The mÄ0 case

For m50 one hasuA&5A0u1,0&1Asu0,0&, with uA0u2
1uAsu251. The maximal fidelity is the largest eigenvalue
the 232 submatrix of Eq.~12! corresponding to them50
subspace:

F5
31uv0su

6
<

31Av00

6
. ~18!

It reaches its maximal valueF0 for

v0053⇒v115v2250. ~19!

Substituting back into Eq.~18! we obtain@5#

F05
31)

6
. ~20!

The corresponding eigenvector is

uA&5
1

&
u1,0&1

eid

&
u0,0&, ~21!

where the phase is the unconstrained parameterd5argvs0.
Notice that the family of states~21! contains entangled a
well as unentangled states. With the choiceeid561 one
obtains the product statesu↑↓&, u↓↑&; precisely those consid
ered by Gisin and Popescu@5#, which led them to the con-
clusion that antiparallel spins are better than parallel sp
for encoding a direction.

From this analysis one can also obtain important inform
tion about the optimal POVM. Taking into account that o
can always take the projectorsOr to be one dimensional@9#,
we can write Bob’s reference projectorsV r as

V r5cr uC r&^C r u, ~22!

where uC r& are normalized states andcr are positive num-
bers. The values ofv i j @see Eq.~10!# endow the information
about the components ofuC r& in the spherical basis~8!. To
be specific, consider states withm50. The maximal-fidelity
condition ~19! implies that the statesuC r& must also have
m50; hence uC r&5a r u1,0&1b r u0,0&. This result is, to
some extent, what one expects: in order for a POVM to
optimal, the measurement must project on states as simila
possible to the signal state. Further, the Schwarz inequa
9-3
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~14! becomes an equality if and only ifa r /b r5l for all r. If
this is the case, the fidelity can reach the maximal valueF0 .
Then, imposing the POVM conditions~13!, it is straightfor-
ward to verify that alluC r& must coincide with a single state
which we denote byuB&,

uC r&5uB&5
)

2
u1,0&1

eid

2
u0,0&. ~23!

The relative weight of theu1,0& and u0,0& components,):1,
is easily understood as being the square root of the dim
sion of the Hilbert spaces corresponding toj 51 and 0. We
therefore see that optimal POVMs can be obtained by ro
ing the single reference stateuB&. The weightscr are free
parameters except for the constraint

(
r

cr54. ~24!

Because the Hilbert space has dimension 4, a POVM~op-
timal or not! must consist of at least four projectors. Let
show that indeed an optimal POVM with this minimal num
ber of projectors exists. Since the number of projectors in
POVM equals the dimension of the Hilbert space, we
actually dealing with a von Neumann measurement, i.e.,

OrOs5Ord rs . ~25!

Hence,^C r uC r&51⇒cr51 for the four values ofr, which
is, of course, consistent with Eq.~24!. Inverting Eq.~7! and
taking into account Eq.~22!, we see that the four unit vector
nW r have to be chosen so that

(
r 51

4

Or5(
r 51

4

U~nW r !uB&^BuU†~nW r !5I. ~26!

By symmetry, they should correspond to the vertic
of a tetrahedron inscribed in a unit sphere, i.e.,nW r
5(cosfr•sinur ,sinfr sinur ,cosur) with

cosu151, f150,
~27!

cosu r52 1
3 , f r5~r 22!

2p

3
, r 52,3,4.

It is easy to verify that with this choice condition~26! is
fulfilled and the maximal fidelity~20! is attained. One can
check that the four projectors~26! are equal to those alread
considered by Gisin and Popescu in@5#. Our aim here was
just to explain their choice of POVM. Finite optimal POVM
for N.2 are less straightforward to obtain. However, t
results of@3,4#, which enable us to construct finite POVM

for code states with maximalm, uN/2,N/2&5u↑↑¯
N

↑&, can
also be used here for other values ofm. We will comment on
this issue in our last section.

After dwelling on minimal POVMs, it is convenient to
consider also the other end of the spectrum: POVMs w
infinitely many outcomes or continuous POVMs@10#. They
05230
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will be used in the general analysis in the sections belo
where they will prove very efficient. Recall that for any fini
measurement on isotropic distributions it is always poss
to find a continuous POVM that gives the same fidelity@3#.
Therefore, restricting ourselves to this type of measurem
does not imply any loss of generality. We illustrate this po
for N52 and m50 to introduce the notation that will be
used in the following sections.

We have seen that the matrix elementsv i j contain all the
information required for computing the fidelity, indepe
dently of any particular choice of POVM. Any measureme
for which v i j satisfy the condition~17! for m51 or ~19! for
m50 is surely optimal. A continuous POVM is just a pa
ticularly simple and useful realization. It amounts to taki
the indexr to be continuous, i.e.,

(
r

→E dnB , ~28!

where the subindexB in the invariant measure refers to Bo
~measuring device!. Substituting Eq.~22! into Eq. ~10! one
obtains in the continuous version

vk j5E dnBc~nW B!^kuB&^Bu j &, ~29!

where uB& is the normalized state~23! and c(nW B) is a con-
tinuous positive weight, which plays the role ofcr and ac-
cording to Eq.~24! must satisfy

E dnBc~nW B!54. ~30!

We now show that in factc(nW B) is a constant and, hence
equal to 4. Condition~26! reads

E dnBc~nW B!U~nW B!uB&^BuU†~nW B!5I, ~31!

which is equivalent to

2 j 11

4 E dnBc~nW B!Dm0
~ j ! ~nW B!Dm80

~ j 8!* ~nW B!5d j j 8dmm8 ,

j , j 850,1. ~32!

Using the well-known orthogonality relation of the matr
representations of SU~2! @11#,

E dnDm1m2

~ j ! ~nW !Dm
18m2

~ j 8!* ~nW !5
1

2 j 11
d j j 8dm1m

18
, ~33!

one obtains

c~nW B![c54, ~34!

which is just the total dimension (311) of the Hilbert space
to which the state~23! belongs. Therefore, the projecto
O(nW B)5cU(nW B)uB&^BuU†(nW B) in Eq. ~31! describe an opti-
mal continuous POVM. They are obtained from the fix
state~23! in a manner analogous to the construction of t
9-4
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minimal POVM in Eqs.~26! and~27!, excepting the constan
factor c required by the normalization of the matrix repr
sentations of SU~2!.

To complete the analysis ofN52, we calculate the maxi
mal fidelity for a given~nonoptimal! fixed stateuA& with m
50. Without any loss of generality it can be written as

uA&5uA0uu1,0&1uAsueidu0,0&, uA0u21uAsu251, ~35!

where we have used the same phase convention as in
~21!. From Eq.~12!, and the constraints~13! and ~14!, it is
straightforward to see that the maximal value of the fide
is

FA5
1

2
1

uA0uuAsu

)
. ~36!

To attain this value, Bob must perform an optimal POV
characterized by Eq.~23!. He may use, for instance, th
minimal one@Eqs.~26!–~27!#, or the continuous oneO(nW B).
From Eq.~36! it follows that for any fixed state~35! with
1
2 ,uA0u,)/2 the fidelity is higher than that of the parall
case~i.e., m561! for which F5F65 3

4 .

III. TWO ARBITRARY SPINS

Imagine now that Alice can use two equal but arbitra
spinss15s25s to encode the directions. This can be seen
a generalization of the simple case studied in the prece
section. However, the most important feature of this analy
as will be shown in Sec. IV, is that it provides the solution
our original problem, namely, that of obtaining the maxim
fidelity when Alice hasN spins at her disposal.

According to the Clebsch-Gordan decomposition, a n
malized eigenvector of the total spin in thez direction with
eigenvaluemA can be written as

uA&5 (
j 5mA

J

Aj u j ,mA&, (
j 5mA

J

uAj u251, ~37!

where J52s. The stateuA& and its componentsAj should
carry the labelmA to denote the different eigenvalues ofSz ;
however, we will drop it to simplify the notation. A gener
eigenstate ofnW •SW has the formU(nW )uA&, whereU(nW ) is now

U~nW !5 %
j 5mA

J

U ~ j !~nW !. ~38!

The POVM projectors can be constructed from a fixed s
uB& of the form

uB&5 (
j 5mB

J

Bj u j ,mB&, ~39!

namely,O(nW B)5cU(nW B)uB&^BuU†(nW B). Note thatuB& is an
eigenvector ofSz with eigenvaluemB , although we also
drop the labelmB here. The absolute value of the coefficien
05230
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Bj and the positive weightc are determined by the complete
ness relation*dnB O(nW B)5I, which using Eq.~33! leads to
the normalization condition

uBj u5A~2 j 11!/c, ~40!

and a value forc given by

c5~J11!22mB
2. ~41!

Notice that the factor 2j 11 in Eq.~40! is just the dimension
of the Hilbert space of the irreducible representationj of
SU~2!, and c is the dimension of the total Hilbert spac
Thus, Eq.~39! is the straight generalization of the states~23!.
The fidelity can be written as

F5c (
j , j 85m

J

AjAj 8
* Bj* Bj 8E dn

11cosu

2
DmBmA

~ j ! ~nW !

3DmBmA

~ j 8!* ~nW !, ~42!

where

m5max~mA ,mB!. ~43!

The integral in Eq.~42! can be easily computed by noticin
that cosu5D00

(1)(nW ). Using again the orthogonality relation
~33! we have

E dn cosu Dm1m2

~ j ! ~nW !Dm
18m2

~ j 8!* ~nW !

5
1

2 j 811
^10;jm1u j 8m18&^10;jm2u j 8m2&, ~44!

where ^ j 1m1 ; j 2m2u j 3m3& are the Clebsch-Gordan coeffi
cients of j 1^ j 2→ j 3 . The fidelity can be recast as

F5
1

2
1

1

2 (
j 5m

J

m j uAj u21
1

2 (
j 5m11

J

~Aj 21* Ajn j* 1Aj 21Aj* n j !

2
1

2 (
j 5mA

m21

uAj u2, ~45!

where the last term is zero formA,mB and the coefficients
m j andn j are

m j5
mAmB

j ~ j 11!
, ~46!

n j5
eid j

j S ~ j 22mA
2 !~ j 22mB

2 !

4 j 221 D 1/2

. ~47!

The phasesd j in Eq. ~47! are arbitrary. Th ey are just th
generalization of the single free phase of Eq.~23!. Here we
haved j5arg(Bj*Bj21). The maximal fidelity is achieved by
choosingd j equal to the phases of the signal stateuA&:

d j5arg~Bj* Bj 21!5arg~Aj* Aj 21!. ~48!
9-5
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We see now that all terms in Eq.~45! are explicitly positive
with the exception of the last one, which necessarily v
ishes for optimal statesuA&, i.e., Aj50 for j ,m. Gathering
all these results, we obtain for the fidelity

F5 1
2 1 1

2 AtMA. ~49!

HereAt5(uAJu,uAJ21u,uAJ22u,...) is thetranspose ofA, and
M is a real matrix of tridiagonal form,

M5S dl cl 21

cl 21 � � 0I

� d3 c2

0I c2 d2 c1

c1 d1

D , ~50!

with

l 5J112m, ~51!

and

dk5mk1m21 ,
~52!

ck5unk1mu.

The largest eigenvaluexl of M determines the maximal fi
delity through the relation

F5
11xl

2
. ~53!

To find xl , we set up a recursion relation for the charact
istic polynomial ofM:

Ql 11~x!5~dl 112x!Ql~x!2cl
2Ql 21~x!, ~54!

with the initial valuesQ21(x)50 andQ0(x)51. Equation
~54! resembles the recursion relation of orthogonal poly
mials, but at first sight the solution does not seem straig
forward at all. We thus work out in detail the simplest ca
for which mA5mB50. For this particular instance Eq.~54!
reads

Ql 11~x!52xQl~x!2
l 2

4l 221
Ql 21~x!, ~55!

where we have used the definitions~46!, ~47!, and~52!. We
can rewrite Eq.~55! as

~ l 11!F2
~2l 11!~2l 21!

~ l 11!
Ql 11~x!G

5~2l 11!xF2l 21

l
Ql~x!G2 l @2Ql 21~x!#.

~56!
05230
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It is now apparent that the terms inside the square brac
can be absorbed into a redefinition of the characteristic p
nomial through anx-independent change of normalizatio
namely,

Ql~x![~21! l
l !

~2l 21!!!
Pl~x!5~21! l

2l~ l ! !2

~2l !!
Pl~x!.

~57!

This leads us to the recursion relation of the Legendre po
nomials:

~ l 11!Pl 11~x!5~2l 11!xPl~x!2 lPl 21~x!. ~58!

Working along the same lines, it is easy to convince o
self that the general solution of Eq.~54! is, up to a normal-
ization factor, the Jacobi polynomialPl

a,b(x) @12#:

Ql~x!5~21! l
2l l ! ~ l 12m!!

~2l 12m!!
Pl

a,b~x!, ~59!

where

a5umB2mAu, b5mB1mA , ~60!

and m is defined in Eq.~43!. Note thatm can be written
simply asm5(a1b)/2. Note also thatPl

0,0 is the Legendre
polynomialPl .

From the result~A12! in the Appendix it turns out that the
maximal value of the fidelity~53! is attained formA5mB
50, i.e., precisely the particular case of Legendre polyno
als discussed above. Thus, from Eq.~53! we have

Fmax5
11xJ11

0,0

2
, ~61!

wherexn
a,b stands for the largest zero ofPn

a,b(x). The fact
that mA5mB50 implies that maximal fidelity can be trans
lated into physical terms by saying that Alice’s states a
Bob’s projectors musteffectivelyspan the largest possibl
Hilbert space. For a fixed choice ofmA , not necessarily op-
timal, the bestmB is that for which the Hilbert space
spanned byU(nW )uA& and U(nW B)uB& coincide, i.e.,mA5mB
5m. In this case, the maximal value of the fidelity is give
by Eq. ~53!, with xl5xJ112m

0,2m , i.e., F5(11xJ112m
0,2m )/2

,Fmax. One reaches the same conclusion ifmB is fixed and
mA can be adjusted for optimal results@see the discussion in
the Appendix after Eq.~A12!#.

IV. GENERAL CASE: N SPINS

We now show that the solution we obtained in the p
ceding section is in fact of general validity. Recall that in o
original problem Alice hasN spins. Let us suppose thatN is
even~oddN will be considered below!. As usual, Alice con-
structs her states by rotating a fixed eigenstate ofSz . In
terms of the irreducible representations of SU~2!, such states
can be written as
9-6
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uA&5 (
j 5mA

N/2 S (
a

Aj
au j ,mA ;a& D , (

j 5mA

N/2

(
a

uAj
a~m!u251.

~62!

The main difference from the previous example of two eq
spinss is that for j ,N/2 the irreducible representationsU ( j )

appear more than once in the Clebsch-Gordan decompos
of (1/2)^ N. Hence, we label the different occurrences w
the indexa, which we can view as a new quantum numb
required to break the degeneracy of Alice’s system of sp
under global rotations. Similarly, the expression for Bob
fixed stateuB& is

uB&5 (
j 5mB

N/2 S (
b

Bj
bu j ,mB ,b& D . ~63!

However, it is known that equivalent matrix representatio

Dmm8
~ j ,a!

~nW !5^ j ,m;auU~nW !u j ,m8;a& ~64!

are not orthogonal under the group integration, i.e., fora
Þb one has in general

E dnDmm8
~ j ,a!

~nW !Dmm8
~ j ,b!* ~nW !Þ0, ~65!

and the completeness relation*dnB O(nW B)5I doesnot hold
for the simple choice of projectors O(nW B)
5cU(nW B)uB&^BuU†(nW B). We can circumvent this difficulty
by introducing several copies ofuB&^Bu. A single direction
~unit vector! nW B is thus associated with

O~nW B!5U~nW B!@ uB&^Bu1uB8&^B8u1uB9&^B9u1¯#U†~nW B!.
~66!

The fixed projectors in the square brackets will be ju
ciously chosen to eliminate the off-diagonal terms com
from the mixing of equivalent representations in the clos
relation. The projectorsO(nW B) are explicitly of rank higher
than 1. However, recalling@9#, we can view the right-hand
side of Eq. ~66! as defining a sum of rank-1 projecto
O(nW B)1O8(nW B)1O9(nW B)1¯ . The two points of view are
equivalent if the averaged fidelity is used as a figure of me
In a suggestive compact notation we can write

uB&^Bu1uB8&^B8u1uB9&^B9u1¯[uB&•^Bu, ~67!

where

uB&[ (
j 5mB

N/2 S (
b

Bj
bu j ,mB ,b& D , ~68!

and

Bj
b[~Bj

b ,Bj8
b ,Bj9

b ,...!. ~69!

Next, we introduce a set of orthonormal vectors$bj
a%,

bj
a
•bj

b5dab, ~70!

and define the vectorsBj
a as
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Bj
a5A2 j 11bj

a . ~71!

Note that for convenience we henceforth use a different n
malization of the statesuB&,uB8&,... @see Eq.~40!#. With the
above definitions one can easily see that*dnB O(nW B)5I and,
hence, the set of projectors~66! defines a POVM.

The fidelity can be read off from Eq.~45! and is given by

F5
1

2
1

1

2 (
j 5m

N/2

(
a

m j~Aj
a!2

1 (
j 5m11

N/2

(
ab

Aj 21
a ~bj 21

a
•bj

b!Aj
bn j2

1

2 (
j 5mA

m21

(
a

~Aj
a!2,

~72!

where the phases have been chosen so thatn j , Aj
a , andBj

a

are real. In generalbj
aPRk, wherek must be greater than o

equal to the highest degeneracy of the irreducible repre
tations in the Clebsch-Gordan series of (1/2)^ N, since oth-
erwise Eq.~70! could not be satisfied. Equation~72! suggests
the definition

A j5(
a

Aj
abj

a , ~73!

which enables us to write

F5
1

2
1

1

2 (
j 5m

N/2

m j uA j u21 (
j 5m11

N/2

A j 21•A jn j2
1

2 (
j 5mA

m21

uA j u2.

~74!

Using the Schwarz inequality we have

F<
1

2
1

1

2 (
j 5m

N/2

m j uA j u21 (
j 5m11

N/2

uA j 21uuA j un j2
1

2 (
j 5mA

m21

uA j u2.

~75!

The right-hand side is exactly the fidelity~45! of the preced-
ing section with the substitution

Aj→Ãj[uA j u5S (
a

~Aj
a!2D 1/2

. ~76!

This equation shows that the existence of several equiva
representations in the Clebsch-Gordan decomposition of
ice’s Hilbert space cannot be used to increase the valu
the fidelity already obtained in Sec. III. The equality hol
when all vectorsA j are parallel, in which case we recove
Eq. ~45!. The square root on the right-hand side of Eq.~76!
plays the role of an effective component ofuA& on the Hilbert
space of asingle irreducible representationj. The specific
ways uA& projects on each one of the equivalent represen
tions are of no relevance, providedÃj do not change. As far
as the fidelity is concerned, all of them are equivalent
taking a stateuÃ& that belongs toN/2% (N/221)% (N/2
22)%¯ ~no duplications!, with the corresponding compo
nents given byÃj .
9-7
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TABLE I. Maximal fidelities as a function of the number of spins.

N 1 2 3 4 5 6 7

FN
2

3

31)

6

61A6

10

51A15

10
0.9114 0.9306 0.9429
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As we have just seen, the maximal fidelity can
achieved from a code state containing only one of each i
ducible representation. These types of state are formally
same as those considered in the simplified example of
equal spinss15s25s studied in Sec. III, for whichs^ s
5J% (J21)%¯% 0, with J52s5N/2. The problem of an
even number of spins is thus completely solved: accordin
Eq. ~53! the maximal fidelity is given by

FN5
11xN/211

0,0

2
for N even, ~77!

wherexN/211
0,0 is the largest zero of the~Legendre! polyno-

mial PN/211(x)5PN/211
0,0 (x).

For an odd number of spins we can proceed as in Sec
but considering now states with two different spins:s1
5s, s25s1 1

2 . The corresponding Clebsch-Gordan deco
position is also nondegenerate:s^ (s11/2)5J% (J21)
%¯% 1/2, with J52s1 1

2 5N/2. The results from Eqs
~37!–~54! are still valid ~for the value ofJ we have just
specified!. The optimal values ofmA and mB are again the
minimal ones: mA5mB5 1

2 . The maximal fidelity is

FN5
11xN/211/2

0,1

2
for N odd, ~78!

wherexN/211/2
0,1 stands for the largest zero of the Jacobi po

nomial PN/211/2
0,1 (x). This completes the solution of the ge

eral problem.
It is physically obvious that the larger the number of sp

Alice can use the better she should be able to encodenW . One
thus expects that the maximal fidelity should increase mo
tonically with N. It is interesting to obtain this result from th
properties of the zeros of the Jacobi polynomials. For
even number of spins,N52n22, the corresponding zero i
xn

0,0, whereas forN11 it is xn
0,1, andxn21

0,1 for N21. Proving
that FN21,FN,FN11 amounts to showing that

xn21
0,1 ,xn

0,0 ,xn
0,1, ~79!

but this is just a particular case of Eq.~A9! for a50 andb
51.

Not only the optimal strategy Alice can devise withN
spins leads to a fidelity larger thanFN21 . She can also use
nonoptimal ones and still improve onFN21 . For example,
for N54, the choicemA5mB51, which is nonoptimal, gives
a fidelity F5(101A10)/15.(61A6)/105F3 . This is also
a trivial consequence of Eq.~A9! as in this case one ha
x2

0,2.x2
0,1. In physical terms, this tells us that the dimensi

of the Hilbert space spanned byU(nW )uA& and U(nW B)uB&
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whenN54 andmA5mB51 ~including equivalent spin rep
resentations only once! is still larger than the maximal avail
able dimension forN53.

V. DISCUSSION AND OUTLOOK

In this paper we have addressed the problem of optim
ing strategies for encoding and decoding directions on
quantum states of a system ofN spins. We have restricted
ourselves to states that point along a definite direction in
intrinsic way, namely, to eigenstates ofnW •SW . This case is of
great interest since no prior knowledge of any sender’s~Al-
ice’s! reference state or frame by the recipient~Bob! is
needed at all for a viable transfer of the information. W
have optimized both Alice’s states and Bob’s measureme
Our results are summarized in Eqs.~77! and~78!, where we
give the maximal averaged fidelitiesFN . Interestingly
enough, these results can be written in terms of the larg
zeros of the Jacobi polynomial, which are known to play
important role in angular momentum theory and are in
mately related to the matrix representations of SU~2!. The
states that lead to the maximal fidelities are among those
have the smallest~non-negative! values ofnW •SW , namely,m
50 for N even andm5 1

2 for N odd, but still span the larges
Hilbert space under rotations.

We display the values of the maximal fidelity forN up to
7 in Table I for illustrational purposes. It shows, e.g., that t
optimal encoding with three spins (m5 1

2 ) gives F35(6
1A6)/10;0.845, which is already larger than the corr
sponding maximal value for four parallel spins
(m52): F5 5

6 ;0.833 @2#. This illustrates a general fea
ture: the optimal strategies discussed here lead to fidel
that increase withN much faster than that of sending parall
spins. In fact, Eq.~A13! shows thatFN approaches unity
quadratically in the number of spins, namely,

FN;12
j2

N2 , ~80!

wherej;2.4 is the first zero of the Bessel functionJ0(x). In
contrast, if parallel spins are used the maximal fidelity a
proaches unity only linearly,F;121/N.

This can be understood in terms of the dimensiond of the
Hilbert space used effectively in each case, which is a dir
sum of the Hilbert spaces of the irreducible representati
of SU~2! involved. Here ‘‘effectively’’ means ‘‘nonredun-
dantly;’’ thus equivalent representations count only on
Encoding withN parallel spins uses only the Hilbert space
the representationJ5N/2, whose dimension isd5N11,
whereas our optimal strategy uses a much larger Hilb
space, withd5(N/211)2 for N even andd5(N/211)2
9-8
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2 1
4 for N odd; in both casesd;N2. We are led to the con

clusion that the fidelity as a function ofd tends to unity as

F'12
a

d
, ~81!

wherea is of order 1 and depends on the particular strate
Improvements on the approach discussed in this paper

only come from encoding and decoding procedures
make extensive use of the available Hilbert space, nam
strategies that use the redundant equivalent representa
In @6# we presented a strategy for which the maximal fide
approaches unity exponentially in the number of spins,
F;1222N. We argued there that this encoding is likely
lead to the maximal fidelity one can possibly achieve withN
spins, since it makes effective use of the whole Hilbert sp
of the system, for whichd52N @thus, Eq.~81! also holds in
this case#. The corresponding encoding process, howev
involves complicated unitary operations and, moreover
seems to require that Alice and Bob share a common re
ence frame@13#.

We have obtained our general results using continu
POVMs, but finite ones can also be designed. ForN parallel
spins (mA5mB5N/2), a general recipe for finite optima
POVMs exists@3#, and minimal versions for up toN57 can
be found in@4#. The unit vectorsnW r associated with the out
comes of these POVMs are the vertices of certain polyhe
inscribed in the unit sphere. ForN<7 we have explicitly
verified that these very same polyhedra can be used to de
finite optimal POVMs for any value ofmA5mB<N/2.
Moreover, the minimal POVMs of@4# remain minimal for
the states considered here. We have discussed this iss
detail for N52 in Sec. II. ForN53 the polyhedron corre
sponding to the minimal POVM is the octahedron@4#. One
can easily verify thatOr5U(nW r)uB&^BuU†(nW r) satisfy the
completeness condition@~2! for both mB5 1

2 and mB5 3
2 ,

where uB& is given in Eq.~39!#. We hence believe that th
discretization of a continuous POVM is a geometrical pro
lem, i.e., it seems to be independent of the statesuB&.

The optimal statesuA& can easily be computed from th
matrix M in Eq. ~50!, as they are the eigenvectors corr
sponding to the maximal eigenvalue. Recall that forN52
one obtains the one-parameter family of states~21! which
includes the product statesu↑↓&,u↓↑&. ForN.2, product states
of the typeu↑↓↑↑↓¯& do not seem to be optimal. Conside
e.g.,N54. The optimal eigenvector ofM is

uA&5
&

3
u2,0&1eig1

1

&
u1,0&1eig0A 5

18 u0,0&, ~82!

which is clearly not a product state of the individual spins
any choice of the phases~it is also entangled if considered a
a bipartite system of two spin-1 subsystems!. One could ar-
gue that this solution is not entirely general because
Clebsch-Gordan series of (1/2)^ 4 contains the representatio
1 three times and 0 twice, whereas in Eq.~82! they appear
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only once. However, any optimal state has the same ‘‘eff
tive’’ componentsÃj @see Eqs.~75! and~76!#, which can be
read off from Eq.~82!:

Ã25
&

3
, Ã15

1

&
, Ã05A 5

18 . ~83!

Note now thatany product state withm50 ~two spins up
and two spins down!, e.g.,u↑↑↓↓&, u↑↓↓↑&, has an ‘‘effective’’
Clebsch-Gordan decomposition given byÃ25Ã15Ã0
51/), which are not the values in Eq.~83!. Therefore,
these product states cannot be optimal. Nevertheless,
lead to a maximal fidelityF5(1515&12A5)/30'0.885,
which is remarkably close toF4'0.887. This is likely to be
the case for arbitraryN. These issues are currently und
investigation.
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APPENDIX

In this Appendix we collect the mathematical properti
of the Jacobi polynomialsPn

a,b(x) that we use in the text. We
are concerned only with integer values ofa andb such that
b>a>0. Further properties can be found in@12# and @14#.

For fixeda andb, $Pn
a,b(x)% is a set of orthogonal poly-

nomials, wheren labels the degree of each polynomial in th
set. A convenient definition can be stated in terms of th
Rodrigues formula:

Pn
a,b~x!5

~21!n

2nn!
~12x!2a~11x!2b

dn

dxn

3@~12x!n1a~11x!n1b#. ~A1!

From Eq.~A1! follows the recursion relation

xPn
a,b~x!5anPn11

a,b ~x!1bnPn
a,b~x!1gnPn21

a,b ~x!,
~A2!

with

an5
2~n11!~n1a1b11!

~2n1a1b11!~2n1a1b12!
,

bn5
b22a2

~2n1a1b!~2n1a1b12!
, ~A3!

gn5
2~n1a!~n1b!

~2n1a1b!~2n1a1b11!
.

9-9
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Equation~A1! also implies that

dPn
a,b~x!

dx
5

n1a1b11

2
Pn21

a11,b11~x!. ~A4!

The normalization is chosen so that the coefficientAn of the
highest power ofPn

a,b(x)5Anxn1Bnxn211¯ is

An5
G~2n1a1b11!

2nn!G~n1a1b11!
. ~A5!

The following two relations can also be obtained from t
definition ~A1!:

~2n1a1b!Pn
a,b21~x!5~n1a1b!Pn

a,b~x!

1~n1a!Pn21
a,b ~x!, ~A6!

~n1b1a11!
11x

2
Pn

a,b11~x!

5~n11!Pn11
a,b21~x!1bPn

a,b~x!. ~A7!

Let us recall some basic facts about the zeros of ortho
nal polynomials.~i! Any nth-order orthogonal polynomia
Pn has n real simple zeros. For Jacobi polynomials the
zeros lie in the interval~21,1!. ~ii ! The zeros ofPn and
Pn11 are interlaced.~iii ! For x greater than the largest zer
the polynomial is a monotonically increasing function@if the
polynomial is normalized as in Eq.~A5!, whereAn.0#. In
particular,Pn(x) must be positive in this region.

Now we can prove the results needed in the text. As th
we denote byxn

a,b the largest zero of the polynomialPn
a,b(x).

Let us start by showing that

xn21
a11,b11,xn

a,b . ~A8!

From property~iii ! above it follows that the left-hand side o
Eq. ~A4! is manifestly positive forx.xn

a,b . Hence, so is the
right-hand side. We conclude thatxn21

a11,b11 cannot belong to
this region and Eq.~A8! follows. j

Next, we prove the inequality

xn21
a,b ,xn

a,b21,xn
a,b . ~A9!

We evaluate Eq.~A6! at x5xn
a,b and use properties~ii !

(⇒xn21
a,b ,xn

a,b) and~iii !, which imply thatPn21
a,b (xn

a,b).0, to
05230
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show that Pn
a,b21(xn

a,b).0. We repeat the process forx
5xn21

a,b and conclude thatPn
a,b21(xn21

a,b ),0. HencePn
a,b21

has a zero in the interval (xn21
a,b ,xn

a,b). This is necessarily the
largest zeroxn

a,b21 since, according to Eq.~A6! and proper-
ties ~ii ! and ~iii ! Pn

a,b21(x).0 for x.xn
a,b . Thus Eq.~A9!

follows. j
The inequality

xn
a,b11,xn11

a,b21 ~A10!

can be proven as follows. Evaluate Eq.~A7! at x5xn
a,b11 so

that the left-hand side of this equation is zero. The sec
inequality in Eq. ~A9! and property ~iii ! imply that
Pn

a,b(xn
a,b11).0. Hence the first term on the right-hand sid

of Eq. ~A7! must be negative, i.e.,Pn11
a,b21(xn

a,b11),0, and
Eq. ~A10! follows immediately, since otherwise property~iii !
would not hold forPn11

a,b21. j

For two given integersl,m consider now the following se
of zeros:

Cm
l 5$xl 2m9

m92m8,m91m8 :m<m8<m9< l %. ~A11!

We want to prove that

maxCm
l 5xl 2m

0,2m ~A12!

According to Eq.~A8!, loweringm9 by 1 leads us to a large

zero. The maximum is then in the subset$xl 2m8
0,2m8 :m<m8

< l %. The inequality~A10! now implies~A12!. j

Finally, we give the large-n ~asymptotic! behavior ofxn
a,b

@12#:

xn
a,b512

ja
2

2n2 1OS 1

n3D , ~A13!

whereja is the first zero of the Bessel functionJa(x). For
a50, which is relevant for our discussion in Sec. V, we al
give the subleading term:

xn
0,b512

j0
2

2n2 S 12
b11

n D1OS 1

n4D , ~A14!

where

j05j52.405. ~A15!
m
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