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Optimal encoding and decoding of a spin direction
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For a system oN spins there are quantum states that can encode a direction in an intrinsic way. Information
on this direction can later be decoded by means of a quantum measurement. We present here the optimal
encoding and decoding procedure using the fidelity as a figure of merit. We compute the maximal fidelity and
prove that it is directly related to the largest zeros of the Legendre and Jacobi polynomials. We show that this
maximal fidelity approaches unity quadratically ifN1/We also discuss this result in terms of the dimension
of the encoding Hilbert space.
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[. INTRODUCTION proach unity linearly:F~1—1/N. Explicit realizations of
the optimal measurements with a finite number of outcomes
Entanglement and superposition are the most characterigvere obtained i3] for arbitraryN and minimal versions of
tic features of quantum states. They play a central role in théhese measurements fiirup to seven are if4].
storage and transmission of information in the quantum A surprise was recently presented &]. In this paper the
world and are responsible for the many remarkable, and ofauthors consideN=2 and show that states with two anti-
ten intriguing, quantum effects that are constantly being disparallel spind1]), || 1) provide a better encoding of Alice’s
covered. These effects, in turn provide new insights in thelirections than the two parallel-spin states use@ird]. The
difficult task of understanding quantum information. average fidelity is now (3v3)/6 which is larger than 3/4
Some time ago Peres and Woottgt$ posed an interest- for two parallel spins, i.e., Bob can have a better determina-
ing question. Imagine a quantum system composed of setion of Alice’s direction if she uses antiparallel spins. This is
eral subsystems, which are not necessarily entangled. How startling result, since classically one would expect that a
can we learn more about this system? By performing meadirection is encoded equally as well in a state pointing one
surements on the individual subsystems or on the system asaay as in one pointing the opposite way. The main reason
whole? They showed evidence that the latter, the so-calledihy this is not so in the quantum world, as will become clear
collective measurements, are more informative. Obviouslfrom our work, is the different dimensionality of the Hilbert
entanglement is the property responsible for this. In this cas&paces to which two parallel or two antiparallel spin states
however, it is not explicit, since the system can be chosen tbelong.
be in a product state, but hidden in the collective measure- At this point, the obvious reaction is to ask ourselves what
ment. are the best states Alice can use to encode directions. Since
Later Massar and Popes{2] addressed a more concrete the very natural state with only parallel spins is not optimal
problem. Imagine Alice has a systemMparallel spins. She for N=2, we expect that neither will it be for arbitrafy.
can use this system to tell Bob the direction along whichHence, one has to search for the optimal encoding state
some given unit vecton is pointing. She just has to rotate, gmong all the eigenstates @f S that Alice can produce.
or prepare in some other way, the state of her system so thghese eigenstates have the obvious, and very useful, prop-
it becomes an eigenstate Bf S, the projection of the total erty of pointing along the direction given liyin an intrinsic
spin in then direction. The state is then sent to Bob, whoseway, namely, independently of any reference frame Alice
task is to determine the direction encoded in the state. Hand Bob may share. In short, they are the quantum analog of
will need to perform a collective measurement and from eachhe gyroscope. One could use a much more general class of
one of its outcomes, labeled with an indexhe will have a  states to encode the information containediitsee[6] and
guess for Alice’s direction given by a unit vectéy. To  the last section of the present paperdowever, all other
quantify the quality of this communication procedure Massampossible encodings afi will necessarily require that Alice
and Popescu used the average fidelity, which is defined bgind Bob share a common reference frame. Hence, the whole
F=%,/dn(1+nA-n/,)/2P.(A), wheren is assumed to come procedure becomes less interesting, since one can argue that
from an isotropic source. Her,(n) is the probability of in this situation classical communication is more efficient.
getting the outcome if Alice’s direction isfi, anddn is the In this paper we will present a very general analysis of
rotationally invariant measure on the unit two-sphere. Thehese “quantum gyroscopes.” We compute the maximal av-
authors proved that the maximal average fidelity Bob carerage fidelity (hereafter we will usually drop ‘“average”
achieve isF=(N+1)/(N+2), which is readily seen to ap- when there is no ambiguityfor arbitraryN and show that it
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approaches unity quadratically inNL/ as compared to the coincides with Alice’s direction and it is zero when they are
linear behavior found if2] for parallel spins. As a by- opposite. Thus, ifi is isotropically distributed the average
product, we also compute the maximal fidelity for encodingfidelity can be written as
states of two arbitrary spins such as two nuclei. A short

description of the main results of this analysis was presented 1+nA-n,
in [6]. These results have recently been corroborated by nu- F:Z f dn 2
merical analysig7].

The paper is organized as follows. In Sec. Il we introducewhere p(fi) = U(fi)|A)(A|UT(A) anddn was defined in the
our notation and conventions and present a detailed calculantroduction. The evaluation df can be greatly simplified
tion of the maximal fidelity forN=2. We show that the py exploiting the rotational invariance of the integta). If
fidelity obtained by Gisin and Popescu [if] is optimal(@  we defineR, through the relation
result also obtained if8] using different methodsIn Sec.

[l we analyze the more general case of two states with equal A,=RZ (4)
but arbitrary spirs. The analysis for any number of spins is

in Sec. IV and our results and discussion are in Sec. V. Wand make the change of variables

conclude with an Appendix containing technical details.

t{p(MO,], ()

Rflﬁ—>ﬁ, (5)
II. TWO SPINS
we have
We start by assuming that Alice has two spins in a general
: S i ; ; ; 1+Ad.-Z

eigenstate ofi- S. (We skip the analysis of the simplest situ- F= f dn trl o(R)Q 6
ation in which Alice has only one spin. The reader can find it Z 2 Lp(MQ], ©
in [2,6], and our general formulas of Sec. IV can also be
specialized to this cagewWe can think of it as a fixed eigen- where
state ofS,=7-S (Z is the unit vector pointing along the Cita -
direction that Alice has rotated into the direction Q,=U(n)O,U(n). @)

=(cos¢siné,singsind,cosd). It is convenient to work in Notice that in general,Q,#1. We can regard), as

the irreducible representations of @) In the present case, .. : . . . .
= L X ' fixed or reference projectors associated with the single direc-
1/2® 1/2= 140, the general form of this fixed eigenstate is .. ~"_ . .
tion Z. In this sense, they are the counterpart of Alice’'s
IAV=A,[1,D)+A1,0+A_|1,-1)+AJ0,0, (1) fixed state|A). Inserting four times the closure relation

Sl ky(k|=1, wherek= +,0,—,s, and{|k)} is the basis of the

where, as usual, the normalized states of the bgsin), are ~ 'ePresentations&o,
labeled by the total spinS and the third component
S,: S4j.m)=j(j+1)|j,m) andS,j,m)=mlj,m). In the
following we stick to the general fornil) to treat all the
cases jointly, but one should keep in mind that only combi- 0)=
nations with definiteS, will be relevant for our analysis. The
rotated stateU (fi)|A), where U(fi) is the element of the s)=10,0,
SU(2) group associated with the rotatiagh-n=RZ, is pre-
cisely Alice’s general eigenstate 6f S. Obviously,U(f) is
reducible since it has the forrd(A)=U®(A)aUO(A), 14 cos
where U denotes the S(2) irreducible representation of F=%l Ai*A,wij dnTi)’k‘i(ﬁ)i)j,(ﬁ). 9)
spinj.

Next, Alice sends the rotated state to Bob, who tries to o o
determineri from his measurements. The most general ond'ere_the Tglces(lé,) I, j, and | also run over+,0,—s
he can perform is a positive-operator-valued measuremertkj(M=[9""&D ]ki(”):<k|u(n)|_1> are the S(2) rota-
(POVM). We specify this POVM by giving a set of positive 10N matrices in the $0 representations, and
Hermitian operator$O, }, that are a resolution of the identity

|+£)=|1,+£1),

1.0, ®

we obtain

wkj:Z (k| Q[j). (10)
I=> o,. 2

Now, one can easily evaluate the integrals and obtain the
fidelit

For each outcome, Bob makes a guess for the direction. Y

As we mentioned in the Introduction, the quality of the guess F=ATWA, (17

is quantified in terms of the fidelity, which we can view as a

“score.” To Bob’s guessfi,, we give the scoref=(1  whereA=(A, ,Ay,A_,A)! andA' is its transposed com-
+n-n,)/2. We see that the fidelitfyis unity if Bob’s guess plex conjugate. The matriyV is
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where the entries marked with are not relevant for our The m=0 case
analysis since we consider eigenstatesSpfonly for the or m=0 one has|A)=Ay|1,00+AJ0,0), with |Ag|?
’ S| ’ )

fixed stategA). These, and the corresponding rotated states.
U(n)|A), are the only ones that point along a definite direc-

tion in an absolute sense, i.e., even if Alice and Bob

share a common reference frame. From its definifi0),

|Ag|?=1. The maximal fidelity is the largest eigenvalue of
the 2x 2 submatrix of Eq(12) corresponding to then=0

?to noEubspace:

follows thatw;; are real non-negative numbers lajf are in 3+|woed 3tV
A s 00
general complex numbers farj. There are other con- F= 6 = 6 (18
straints onw;; stemming from the conditioX,O, =1
It reaches its maximal valug, for
ws=1l, > w,=3. (13) ww=3=w,,=w__=0. (19)
1=%0~
Substituting back into Eq.18) we obtain[5]
Because of the Schwarz inequality, we also have 343
Fo= 5 (20
| 0] *< oowss= wop. (14
The corresponding eigenvector is
Let us discuss the implications of these equations for differ- s
1 e
ent values oim. A= — 1,0+ —[0,0), 21)
v2 V2

The m==1 case

where the phase is the unconstrained paramg&teargwg.

The fixed statgA) for m=1 is simply |A)=|1,1), i.e.,  Notice that the family of state&1) contains entangled as
A;=1 andA;=A_=As=0. In this case the fidelity is given well as unentangled states. With the cho&é=+1 one

by the elemenW, . of Eq. (12),

Fow 3wy T20wptw__- 3 wet20__ 3
= = = —_—— < —
o 12 4 12 4

obtains the product statés|), || 1); precisely those consid-
ered by Gisin and Popes¢&], which led them to the con-
clusion that antiparallel spins are better than parallel spins
for encoding a direction.

(15 From this analysis one can also obtain important informa-

where the second condition in EGL3) has been used.

maximal value, which we denote By, , is then

tion about the optimal POVM. Taking into account that one
The can always take the projecto@s to be one dimensionb],
we can write Bob'’s reference projectdis as

Q.=c/ |V ¥, 22
F L= % (16) r I’| r>< r ( )
where|¥,) are normalized states amg are positive num-
This value occurs for bers. The values ab;; [see Eq(10)] endow the information
about the components ¢¥,) in the spherical basi€). To
be specific, consider states witti=0. The maximal-fidelity
w_ _=wp=0=w,, =3 a7

condition (19) implies that the statef¥,) must also have
m=0; hence |V, )=«,|1,00+3,/0,0). This result is, to

The casem=—1, for which |A)=|1,—1), is completely some extent, what one expects: in order for a POVM to be
analogous with the index substitutioh« —. The maximal optimal, the measurement must project on states as similar as

value of the fidelity is alsd~_=2.

possible to the signal state. Further, the Schwarz inequality
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(14) becomes an equality if and onlydf, /8, =\ for all r. If ~ Wwill be used in the general analysis in the sections below,
this is the case, the fidelity can reach the maximal vélye where they will prove very efficient. Recall that for any finite
Then, imposing the POVM conditior(d3), it is straightfor- ~Meéasurement on isotropic distributions it is always possible
ward to verify that al|¥,) must coincide with a single state, 0 find a continuous POVM that gives the same fide]BY.

which we denote byB), Therefore, restricting ourselves to this type of measurement
does not imply any loss of generality. We illustrate this point
V3 gld for N=2 andm=0 to introduce the notation that will be
|¥,)=|B)= 7|1:0)+ 7|0,0>- (23)  used in the following sections.

We have seen that the matrix elemeats contain all the
The relative weight of thél,0) and|0,0) componentsy3:1, information requi_red for cpmputing the fidelity, indepen-
is easily understood as being the square root of the dimerflently of any particular choice of POVM. Any measurement
sion of the Hilbert spaces correspondingjtel and 0. We for which wj; satisfy the condition17) for m=1 or (19) for
therefore see that optimal POVMs can be obtained by rotat™=0 is surely optimal. A continuous POVM s just a par-
ing the single reference stajB). The weightsc, are free t|cul_arly simple and gseful re_allzatlon. It amounts to taking
parameters except for the constraint the indexr to be continuous, i.e.,

> c=4. (24) > - f dng, (28)

r

where the subindeB in the invariant measure refers to Bob
(measuring devige Substituting Eq(22) into Eq. (10) one
obtains in the continuous version

Because the Hilbert space has dimension 4, a PQbpA
timal or no) must consist of at least four projectors. Let us
show that indeed an optimal POVM with this minimal num-
ber of projectors exists. Since the number of projectors in the
POVM equals the dimension of the Hilbert space, we are wki:J dnge(rig)(k|B)(B]j), (29
actually dealing with a von Neumann measurement, i.e.,

where|B) is the normalized staté23) andc(fig) is a con-
tinuous positive weight, which plays the role gf and ac-
cording to Eq.(24) must satisfy

0,0,=0,6s. (25

Hence(¥,|¥,)=1=c,=1 for the four values of, which
is, of course, consistent with ER4). Inverting Eq.(7) and
taking into account Eq22), we see that the four unit vectors J dngc(ng)=4. (30
A, have to be chosen so that

We now show that in fact(fig) is a constant and, hence,

4 4 @
2 OFZ U(ﬁ,)|B>(B|UT(ﬁ,)=}I. (26) equal to 4. Conditior{26) reads
r=1 r=1

- - T > —
By symmetry, they should correspond to the vertices f dngC(Mig)U (M) [B)(BU"(Mg) =1 3D

of a tetrahedron inscribed in a unit sphere, i.@, hich i ival

=(cos¢;-sin 6, ,sin¢, sin 6, ,cos6,) with which is equivalent to

_ _ 2j+1 . N N

cost;=1, ¢;=0, == | dnge(fig) DU (Ag) D" ¥ (Ag) =68 Srymr
(27) 4

N 2 o
cosf, = — 3, ¢r=(r—2)?, r=2,3,4. i,j’=0,1. (32

Using the well-known orthogonality relation of the matrix

It is easy to verify that with this choice conditiai26) is representations of S@) [11],

fulfilled and the maximal fidelity(20) is attained. One can
check that the four projectof26) are equal to those already . , 1
considered by Gisin and Popescu[Bl. Our aim here was f dn@%)m (ﬁ)@ﬁr'l,::(ﬁ)z '—511’5m1m" (33
just to explain their choice of POVM. Finite optimal POVMs v 1 2j+1 '
for N>2 are less straightforward to obtain. However, thegna gptains
results of{3,4], which enable us to construct finite POVMs
N c(ng)=c=4, (34

for code states with maximah, [N/2N/2)=|17---T), can
also be used here for other valuesfWe will comment on  which is just the total dimension (81) of the Hilbert space
this issue in our last section. to which the statg(23) belongs. Therefore, the projectors

After dwelling on minimal POVMs, it is convenient to O(fig) =cU(ig)|B)(B|UT(fig) in Eq. (31) describe an opti-
consider also the other end of the spectrum: POVMs withmal continuous POVM. They are obtained from the fixed
infinitely many outcomes or continuous POVNE)]. They  state(23) in a manner analogous to the construction of the
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minimal POVM in Eqs(26) and(27), excepting the constant B; and the positive weight are determined by the complete-
factor ¢ required by the normalization of the matrix repre- ness relatiorf dng O(fig) =1, which using Eq(33) leads to

sentations of S(2). _ _ the normalization condition
To complete the analysis &f=2, we calculate the maxi-
mal fidelity for a given(nonoptima) fixed state|A) with m |B,—|= V(2j+1)c, (40

=0. Without any loss of generality it can be written as
_ and a value forc given by
[A)=1Aol| 1.0 +[Ade'?[0,0), |Ao]*+|Ad*=1, (35
c=(J+1)2—m3. (41)
where we have used the same phase convention as in Eﬂ' ) . o . .
(21) From Eq (12) and the Constra"']t@_:s) and (14) itis otice that the factor p+ 1lin Eq (40) IS jUSt the dimension
straightforward to see that the maximal value of the f|deI|tyOf the Hilbert space of the irreducible representatjoof

is SU(2), and c is the dimension of the total Hilbert space.
Thus, Eq.(39) is the straight generalization of the sta(23).
1 |Al|A{ The fidelity can be written as
A=5 T (36) 3
v3 1+cosf .
F=c 2 AjA"BI B, f dnTDg;mA(ﬁ)

To attain this value, Bob must perform an optimal POVM, Jj'=m
characterized by Eq(23). He may use, for instance, the XQ(J )% (n) 42
minimal one[Egs.(26)—(27)], or the continuous on®(ng).
From Eq.(36) it follows that for any fixed stat€35) with where
3 <|Ao|<V3/2 the fidelity is higher than that of the parallel
case(i.e., m=*1) for whichF=F . =3. m=max(m, ,Mg). (43)

IIl. TWO ARBITRARY SPINS The integral in Eq(42) can be easily computed by noticing

that cosg=D{5)(f). Using again the orthogonality relations
Imagine now that Alice can use two equal but arbltrary(33) we have

spinss; =s,=s to encode the directions. This can be seen as

a generalization of the simple case studied in the preceding () sk

section. However, the most important feature of this analysis, f dncosé @mlmz(n)gmimz(n)

as will be shown in Sec. 1V, is that it provides the solution of

our original problem, namely, that of obtaining the maximal

fidelity when Alice hasN spins at her disposal. 21 +1
According to the Clebsch-Gordan decomposition, a nor-

malized eigenvector of the total spin in thalirection with  where (j;m4;j,m,|jsms) are the Clebsch-Gordan coeffi-

S (10;imy|j ' mi)(105im,lj'my),  (44)

eigenvaluem, can be written as cients ofj;®j,—j3. The fidelity can be recast as
J : 11 1
W= Alm) 3 a1 @) Fogtp 2 mlAl G X LA A AT
1 m—1

where J=2s. The statelA) and its component#; should _ = |A-|2 (45)
carry the labem, to denote the different eigenvalues$f; 25,
however, we will drop it to simplify the notation. A general

eigenstate ofi- S has the form (/)| A, whereU (i) is now where the last term is zero fon,<mg and the coefficients

wj andy; are
J
Ui =& udn). 38 mam
(M= v (39) =TT 49
j=mg j(+1)
The POVM projectors can be constructed from a fixed state (j?°—m A)( J ) 12
|B) of the form vj= j 27— ) (47)

The phases5; in Eq. (47) are arbitrary. Th ey are just the
generalization of the single free phase of E2B). Here we
have o;= arg(Bj i—1)- The maximal fidelity is achieved by
namely,O(fig) = cU(1ig)|B)(B|U"(fiz). Note thatB) is an choosmg& equal to the phases of the signal stite
eigenvector ofS, with eigenvaluemg, although we also

drop the labemg here. The absolute value of the coefficients sj=arg Bf'Bj_j)=argAf Aj_,). (48)

J
|B>=j§ Bj|j,mg), (39
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It is now apparent that the terms inside the square brackets

with the exception of the last one, which necessarily vancan be absorbed into a redefinition of the characteristic poly-

ishes for optimal statel#\), i.e.,A;=0 for j<m. Gathering
all these results, we obtain for the fidelity
F=3+3A'MA. (49

HereA'=(|A;|,|A;_1],|A;_5],...) is thetranspose oA, and
M is a real matrix of tridiagonal form,

d ¢
C-1 - 0
M= . dg c , (50
0 c, d, ¢
c; d;
with
[=J+1—m, (51
and
dv=MKrm-1,
(52
Ck=| Vi ml-

The largest eigenvalug, of M determines the maximal fi-
delity through the relation

_ 1+X|

5 (53

To find x;, we set up a recursion relation for the character-

istic polynomial ofM:
Q4100 =(di+ 1= 0Q) —cfQ1(x), (54

with the initial valuesQ_1(x)=0 andQqy(x)=1. Equation

nomial through amx-independent change of normalization,
namely,

I I(|)2

Q0=(~1)' g7y P00 = (= D)5 Pi(x).

(57)

This leads us to the recursion relation of the Legendre poly-
nomials:
(I+1)P1(x) =21+ DxP(x)—IP|_4(x).  (58)
Working along the same lines, it is easy to convince one-
self that the general solution of E(p4) is, up to a normal-
ization factor, the Jacobi polynomi&*®(x) [12]:

B 21+ 2m)! ab
Q|(X)—(—1)(2|+T)!P| (X), (59
where
a=|mg—my|, b=mg+mg,, (60)

and m is defined in Eq.(43). Note thatm can be written
simply asm= (a+b)/2. Note also thaP"? is the Legendre
polynomial P, .

From the resulfA12) in the Appendix it turns out that the
maximal value of the fidelity53) is attained formy=mg
=0, i.e., precisely the particular case of Legendre polynomi-
als discussed above. Thus, from Ef3) we have

00
1+X5%1

2 (61

Fmax=

wherex®P? stands for the largest zero &2°(x). The fact
thatma=mg=0 implies that maximal fidelity can be trans-
lated into physical terms by saying that Alice’s states and

(54) resembles the recursion relation of orthogonal polynoBQb’S projectors mus_erctivﬂyspan the largest p_ossible
mials, but at first sight the solution does not seem straightHilbert space. For a fixed choice of,, not necessarily op-
forward at all. We thus work out in detail the simplest casetimal, the bestmg is that for which the Hilbert spaces

for which my=mg=0. For this particular instance E¢4)
reads

|2

Qi+1(x)= 22-1

—xQ|(x)— (59

7 Q-1(%),

where we have used the definitio@®), (47), and(52). We
can rewrite Eq(55) as

spanned byJ(A)|A) andU(fig)|B) coincide, i.e.,my=mg
=m. In this case, the maximal value of the fidelity is given
by Eq. (53), with x=x32__, ie., F=(1+x32_ )2
<Fnax- One reaches the same conclusiomy is fixed and
m, can be adjusted for optimal resuftee the discussion in
the Appendix after EqA12)].

IV. GENERAL CASE: N SPINS

We now show that the solution we obtained in the pre-

(I+ 1)[ — waﬂ(x) ceding section is in fact of general validity. Recall that in our
(I+1) original problem Alice hadN spins. Let us suppose thidtis
_ even(odd N will be considered beloy As usual, Alice con-
=(21+1)x ) == Qi_1(X)]. structs her states by rotating a fixed eigenstateSaf In

(56)

terms of the irreducible representations of(3)Jsuch states
can be written as
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N/2 N/2 .
BY=/2j +1b". (72)
|A>— Z (E Aj, mA,a>> 2 2 |AMmP=1. ] j
I=Ma @ 62) Note that for convenience we henceforth use a different nor-

malization of the state8),|B’),... [see Eq(40)]. With the
The main difference from the previous example of two equapbove definitions one can easily see thabg O(rig) = and,
spinssis that forj <N/2 the irreducible representatiob) ~ hence, the set of projecto(66) defines a POVM.

appear more than once in the Clebsch-Gordan decomposition The fidelity can be read off from E¢45) and is given by
of (1/2)*N. Hence, we label the different occurrences with N/2

the indexa, which we can view as a new quantum number _ _ 1 1 2 2 (A2

required to break the degeneracy of Alice’s system of splns 2 i

under global rotations. Similarly, the expression for Bob’s

fixed state|B) is vz

+ 2 2 AL b)AR Y- 5 E > (A2,
N/2 j=m+1 ap =mp «a
BY= 2 |2 Bflims.h)). (63 (72

— B

a (23
However, it is known that equivalent matrix representauons where the phases Ilavekbeen chosen soithady’, andB;
are real. In generd’ e R*, wherek must be greater than or

@‘r#n:”)(n):(j ,m;a|U(R)]j,m’;a) (64) equal to the h|ghest degeneracy of the irreducible represen-
tations in the Clebsch-Gordan series of (£/2) since oth-
are not orthogonal under the group integration, i.e., dor erwise Eq(70) could not be satisfied. Equatidf2) suggests
# 3 one has in general the definition

f dn@ 9@l E* (F)x0, (65) Aj=2 Ab, (73)

and the completeness relatigdng O(rig) =1 doesnothold  \\hich enables us to write
for the simple choice of projectors O(fig)

=cU(ﬁB)|B)<B|UT(ﬁB). We can circumvent this difficulty 1 1 N2 N/2 1 Mt

. ! ; : S 2 )
by introducing several copies ®B)(B|. A single direction +5 > wilAl%+ 2 AirAY TS 2 A
(unit vectoy g is thus associated with j=m j=ma 74
O(fig) =U(fig)[|B){B|+|B'){B'|+|B"}B"|+---]UT(A

(M) = U(Ma)[|B)(BI +[B")(B"| +|B")(B"] ((B) Using the Schwarz inequality we have

The fixed projectors in the square brackets will be judl- 1 1 N2 2, N/2 m-1 )
ciously chosen to eliminate the off-diagonal terms coming™<3 * 35 Z wil A=+ %‘4 . |Aj-al Ay — 5;; |A|%.
from the mixing of equivalent representations in the closure . J=MA (75)

relation. The projector®(rig) are explicitly of rank higher

than 1. However, recalling9], we can view the right-hand The right-hand side is exactly the fidelit¢5) of the preced-
side of Eq.(66) as defining a sum of rank-1 projectors jng section with the substitution
O(ng)+ 0O’ (ng)+O"(ng)+---. The two points of view are

equivalent if the averaged fidelity is used as a figure of merit. ~ w2 vz

In a suggestive compact notation we can write Ai—A=lAl= ( ; (A)) ) : (76)

[B)(B+|B')B’| +|B")(B"|+---=|B)-(B|,  (67) This equation shows that the existence of several equivalent
where representations in the Clebsch-Gordan decomposition of Al-
ice’s Hilbert space cannot be used to increase the value of

N2 _ the fidelity already obtained in Sec. Ill. The equality holds
B)= 2> (E Bﬂj,ms,ﬁ)), (68 when all vectorsA; are parallel, in which case we recover
1=mg \ A Eq. (45). The square root on the right-hand side of Etf)
and plays the role of an effective component|af on the Hilbert
space of asingle irreducible representation The specific
BfE(Bf,Bj’ﬁ,B;’ﬁ,_”)_ (69)  ways|A) projects on each one of the equivalent representa-
) tions are of no relevance, provid@ql do not change. As far
Next, we introduce a set of orthonormal vectbs}, as the fidelity is concerned, all of them are equivalent to
be. pB= 528 (70) taking a state|A) that belongs toN/2& (N/2—1)® (N/2
o ' —2)@®- -+ (no duplicationy with the corresponding compo-
and define the vecto8]" as nents given bﬁj .
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TABLE I. Maximal fidelities as a function of the number of spins.

N 1 2 3 4 5 6 7
Fu 2 stv3 6+/6 5+ 15 0.9114 0.9306 0.9429
3 6 10 10

As we have just seen, the maximal fidelity can bewhenN=4 andm,=mg=1 (including equivalent spin rep-
achieved from a code state containing only one of each irreresentations only ongés still larger than the maximal avail-
ducible representation. These types of state are formally thable dimension foN=3.
same as those considered in the simplified example of two
equal spinss;=s,=s studied in Sec. lll, for whichs®s V. DISCUSSION AND OUTLOOK
=Jo(J—1)&---80, with J=2s=N/2. The problem of an
even number of spins is thus completely solved: according to In this paper we have addressed the problem of optimiz-

Eq. (53) the maximal fidelity is given by ing strategies for encoding and decoding directions on the
quantum states of a system Nfspins. We have restricted

1+xﬁ’,°2+ N ourselves to states that point along a definite direction in an
Fn=——— for N even, (77 intrinsic way, namely, to eigenstates ®fS. This case is of

great interest since no prior knowledge of any sendels
wherexﬁ',ozﬂ is the largest zero of thé_egendré polyno- ice’s) reference statel or frame by the re_c:lple(ﬁot_)) is
mial P (x)=P% . (x) needed at all for a viable transfer of the information. We
N/2+1 N2t 1V have optimized both Alice’s states and Bob’s measurements.

For an odd number of spins we can proceed as in Sec. Ilbur results are summarized in Eq#7) and (78), where we

but considering now states with two different spins; ive the maximal averaged fidelitieE Interestingl
=s, s,=s+3. The corresponding Clebsch-Gordan decom-Y 9 N gy

position is also nondegenerates® (s-+1/2)=J& (J— 1) enough, these results can be written in terms of the largest
®---®1/2, with J=2s+ 1=N/2. The results from Eqs zeros of the Ja(_:ob| polynomial, which are known to pla)_/ an
(37)—(54) ,are Still valid (?or the' value ofJ we have just. important role in angular _momentum th.eory and are inti-
specified. The optimal values ofm, and mg are again the mately related to the matrix representations of(@UThe
minimal 6ne5' Mi=ma=1 The rﬁaximal ?’idelity s states that lead to the maximal fidelities are among those that
CoA TR have the smalledinon-negative values offi-S, namely,m
1+XRJ’/12+1/2 =_0 for N even andn= 3 fqr N odd, but still span the largest

FN:T for N odd, (78  Hilbert space under rotations.

We display the values of the maximal fidelity frup to
o1 _ 7 in Table | for illustrational purposes. It shows, e.g., that the
wherexy,, 1, Stands for the largest zero of the Jacobi p°|y'optimal encoding with three spinsm=2) gives Fy=(6
nomial Py, 1,5(X). This completes the solution of the gen- +6)/10~0.845, which is already larger than the corre-

eral problem. _ ~ sponding maximal value for four parallel spins
It is physically obvious that the larger the number of SpinS(m=2): F=

, < =2~0.833[2]. This illustrates a general fea-
Alice can use the better she should be able to enGod@ne  yre: the optimal strategies discussed here lead to fidelities
thus expects that the maximal fidelity should increase monog, 4t increase wittN much faster than that of sending parallel

tonically with N. It is interesting to obtain this result from the spins. In fact, Eq(A13) shows thatF, approaches unity
properties of the zeros of the Jacobi polynomials. For ayuadratically in the number of spins, namely
even number of spind\=2n—2, the corresponding zero is

x%0, whereas foN+ 1 itis x2*, andx®?, for N— 1. Proving &2
that Fy_;<Fyn<Fy471 amounts to showing that Fn~1-Jz (80)
0,1 0,0 0,1
XnZ1<Xp" <X, (79 where¢~2.4 is the first zero of the Bessel functidg(x). In

contrast, if parallel spins are used the maximal fidelity ap-

but this is just a particular case of Eg9) for a=0 andb proaches unity only linearlys ~1— 1/N.
=1 This can be understood in terms of the dimengl@f the

Not only the optimal strategy Alice can devise with  Hilpert space used effectively in each case, which is a direct
spins leads to a fidelity larger thdf\_;. She can also use sum of the Hilbert spaces of the irreducible representations
nonoptimal ones and still improve dfy_;. For example, of SU(2) involved. Here “effectively” means “nonredun-
for N=4, the choiceny=mg=1, which is nonoptimal, gives  dantly;” thus equivalent representations count only once.
a fidelity F = (10+ \/10)/15>(6+ /6)/10=F5. This is also  Encoding withN parallel spins uses only the Hilbert space of
a trivial consequence of EqA9) as in this case one has the representatiod=N/2, whose dimension isl=N+1,
x92>x3". In physical terms, this tells us that the dimensionwhereas our optimal strategy uses a much larger Hilbert
of the Hilbert space spanned Hy(fi)|A) and U(fig)|B)  space, withd=(N/2+1)? for N even andd=(N/2+1)?
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— 1 for N odd; in both cased~N?. We are led to the con- 0nly once. However, any optimal state has the same “effec-

clusion that the fidelity as a function oftends to unity as  tive” componentsA; [see Eqs(75) and(76)], which can be
read off from Eq.(82):

a
F~1-—, (81) V2 4 1 4 7
d A2_ 3 ’ Al_\/i’ AO_ 18- (83)

wherea is of order 1 and depends on the particular strategyNote now thatany product state wittm=0 (two spins up
Improvements on the approach discussed in this paper caghd two spins downe.g..|1T/1), [T111), has an “effective”

only come from encoding and decoding procedures tha&lebsch-Gordan decomposition given bf,=A,=A

make extensive use of the available Hilbert space, namely.’y 2™\ nion“are not the values in EQ83). 2The;eforg,

strategies that use the redundant equivalent represeptat'iorfﬁese product states cannot be optimal. Nevertheless, they
In [6] we presented a strategy for which the mammal_ﬂde!ﬂylead t0 a maximal fidelityF = (15+ 5v2+ 21/5)/30~0.885
approaches unity exponentially in the number of spins, "€-which is remarkably close t6,~0.887. This is likely to b,e

F~1-—2"N. We argued there that this encoding is likely to X )
. A . . the case for arbitranN. These issues are currently under
lead to the maximal fidelity one can possibly achieve With investigation

spins, since it makes effective use of the whole Hilbert space
of the system, for whicld=2N [thus, Eq.(81) also holds in
this casé The corresponding encoding process, however, ACKNOWLEDGMENTS
involves complicated unitary operations and, moreover, it \we thank S. Popescu, A. Bramon, G. Vidal, and WrDu
seems to require that Alice and Bob share a common refefy stimulating discussions, and M. Lavelle for a critical
ence fram¢13]. _ _ reading of the manuscript. Financial support from CICYT
We have obtained our general results using continuoug:gntracts No. AEN98-0431 and No. AEN99-0766, CIRIT
POVMs, but finite ones can also be designed. Iﬂqnarallel Contracts No. 1998SGR-00026, No. 1998SGR-00051, and

spins a=mg=N/2), a general recipe for finite optimal N 1999SGR-00097, and EC Contract No. IST-1999-11053
POVMs existd3], and minimal versions for up tN=7 can 5 acknowledged.

be found in[4]. The unit vectorsi, associated with the out-
comes of these POVMs are the vertices of certain polyhedra
inscribed in the unit sphere. Fdt<7 we have explicitly
verified that these very same polyhedra can be used to design In this Appendix we collect the mathematical properties
finite optimal POVMs for any value ofma=mg<N/2.  of the Jacobi polynomial®?°(x) that we use in the text. We
Moreover, the minimal POVMs of4] remain minimal for  are concerned only with integer valuesafndb such that
the states considered here. We have discussed this issuege-a=0. Further properties can be found[it2] and[14].
detail forN=2 in Sec. Il. ForN=3 the polyhedron corre- For fixeda andb, {P2"(x)} is a set of orthogonal poly-
sponding to the minimal POVM is the octahedriat]. One  nomjals, where labels the degree of each polynomial in the
can easily verify thaiO,=U(n,)|B)(B|U(f,) safisfy the set A convenient definition can be stated in terms of their

APPENDIX

completeness conditiof(2) for both mg=3 and mg=3, Rodrigues formula:
where |B) is given in Eq.(39)]. We hence believe that the
discretization of a continuous POVM is a geometrical prob- b (=" d"
lem, i.e., it seems to be independent of the stiBgs PRP(X) = W(l—x)_a(lﬂLX)_bﬁ
The optimal state$A) can easily be computed from the ’
matrix M in Eg. (50), as they are the eigenvectors corre- X[(L—x)""3(1+x)"*P]. (A1)

sponding to the maximal eigenvalue. Recall that o« 2
one obtains the one-parameter family of stai2® which From Eq.(Al) follows the recursion relation
includes the product statés ),|| T). ForN>2, product states

of the type[1/11/---) do not seem to be optimal. Consider, XP32(x) = a, PP, () + B PEP(X) + v, P3P, (%),
e.g.,N=4. The optimal eigenvector dfl is (A2)
with
v2 iy L 0y3
|A)=?|2,0)+e 15|1,0)+e 0 E|0,0>, (82 2(n+1)(n+a+b+1)

T (2nta+b+1)(2n+at+b+2)’

which is clearly not a product state of the individual spins for b2— a2
any choice of the phasé# is also entangled if considered as
a bipartite system of two spin-1 subsysten@@ne could ar-
gue that this solution is not entirely general because the
Clebsch-Gordan series of (1/2) contains the representation _ 2(n+a)(n+b)

1 three times and O twice, whereas in Eg2) they appear n (2n+a+b)(2n+a+b+1)"

Pr=Zn+a+b)(2nta+b+2)’ (A3)
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Equation(Al) also implies that show that P3P~ 1(x2P)>0. We repeat the process for
=x2P, and conclude thaP"~ l(x 1)<0. HencepaP~1

patibtliy), (A4) has a zero in the intervakf", ,x2P). This is necessarily the
dx 2 largest zero®? ! since, according to EGA6) and proper-

ties (i) and (i) P2*~%(x)>0 for x>x3". Thus Eq.(A9)

dP2P(x) _n+at+b+1

The normalization is chosen so that the coefficigptof the

. abroy A on ne1, .. follows. |
highest power oP;"(X) =AX"+Bx""*+--- is The inequality
I'2n+a+b+1) ab+1 ab-1
= <Xy’ Al10
"M (ntatbil) (AS) N+l (AL0)
can be proven as follows. Evaluate E47) atx=x3' b+1 g0

The following two relations can also be obtained from the

definition (AL): that the left-hand side of this equation is zero. The second

inequality in Eq. (A9) and property (i) imply that
PaP(x2P*1y> 0. Hence the first term on the right-hand side
of Eq. (A7) must be negative, i.eRP>"1(x3**1)<0, and

+(n+a)PaP,(x), (A6)  Eq.(A10) follows immediately, since otherwise propettiy)
a,b-1

(2n+a+b)P2P"L(x)=(n+a+b)P¥P(x)

would not hold forPy/; . |
(N+b+a+1)— 1+Xx pa b+1(y) For two given integer§m consider now the following set
of zeros:
=(n+1) Pﬁf;l(x) +bP3P(x). (A7) L= <<ty (ALD)

Let us recall some basic facts about the zeros of orthog
nal polynomials.(i) Any nth-order orthogonal polynomial
P, hasn real simple zeros. For Jacobi polynomials these maxC!, =x2" (A12)
zeros lie in the interval—1,1). (ii) The zeros ofP, and m m
Pn+1 are interlaced(iii) For x greater than the largest zero, According to Eq(A8), loweringm” by 1 leads us to a larger
the polynomial is a monotonically increasing functighthe zero. The maximum is then in the subs{etf’zm' ‘m=m’

- . X . o
polynomial is normalized as in E§A5), whereA,>0]. In <I}. The inequality(A10) now implies(A12). -

particular,P,(x) must be positive in this region. ab
Now we can prove the results needed in the text. As therer Fmally, we give the larger (asymptotig behavior ofxy

we denote by P the largest zero of the polynomiBf-°(x).

ve want to prove that

Let us start by showing that £2 1
=1--5%+0 A13
XAl xab (A8) 2n? ) (AL3)

From property(iii ) above it follows that the left-hand side of where &, is the first zero of the Bessel functialj(x). For
Eqg. (A4) is manifestly positive f0|x>xﬁ'b. Hence, so is the a=0, which is relevant for our discussion in Sec. V, we also
right-hand side. We conclude the}"}*** cannot belong to ~ give the subleading term:

this region and Eq(A8) follows. | )
Next, we prove the inequality xﬂ'bzl— 2_02( 1 E) +O(i4), (A14)
xaP <xadb-loyab, (A9) " " "
where
We evaluate Eq(A6) at x=x$}'b and use propertiesii)
(=x3P, <x@P) and(iii ), which imply thatP?", (x2?)>0, to £o=£=2.405. (A15)
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