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Realization of a quantum algorithm using a trapped electron
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We show how a single trapped electron offers the opportunity to realize universal quantum logic gates
within the present experimental possibilities. As an example, we propose to implement the Deutsch algorithm
by using the quantized cyclotron motion and the electron spin as qubits.

DOI: 10.1103/PhysRevA.63.052307 PACS number~s!: 03.67.Lx, 03.65.2w
s
s

-
o
e

-

a
on
c
u

r
b
en
th
m
l
e
io
ia

en

o
n

io
e

e
on

p
nt
n

n,
lv

al
e
ard
ady
to

or-

ibe
stic
the
n a
in
to

V,
up
rees

to
ec.
d

of
trap

the

c-
I. INTRODUCTION

Many theoretical proposals have presented scheme
implement quantum computation in several different phy
cal systems: trapped ions@1#, neutral atoms@2#, cavity QED
@3#, and solid-state devices@4#. However, up to now the ex
perimental realizations have been very few and limited t
low number of qubits. For example, in the case of trapp
ions, the controlled-NOT ~CNOT! quantum logic gate with two
qubits has been realized@5#, and more recently, entangle
ment of four particles has been achieved@6#. The same NMR
experiments@7# are still controversial@8#. Therefore, it is
worthwhile to explore other directions, searching for altern
tive systems, suitable for quantum logic implementati
They should fulfill two main requirements: long decoheren
times and exceedingly high control from outside to manip
late the qubits and make the final readout.

Recently, an electron in a Penning trap@9# has drawn
attention as a potential candidate for quantum logic ope
tions @10#. This claim is based on the almost complete a
sence of decoherence mechanisms and on the experim
accuracy achieved so far. Just to mention a few facts,
system has been designed to perform the most precise
surement of the electrong factor @11# and other fundamenta
constants. Radiative damping is negligible, also becaus
cavity effects that prevent emission of synchrotron radiat
@12,13#. Moreover, transitions induced by blackbody rad
tion become extremely unlikely below 1 K@12#. All this,
very recently, has led to the nondestructive observation
Fock states for the cyclotron motion@12#.

This last experimental realization motivates the pres
proposal. Contrary to Ref.@10#, we encode the two qubits in
the cyclotron and spin degrees of freedom of the electr
This choice is determined by the fact that these are the o
motions that are truly quantum. Indeed, the axial oscillat
and the magnetron motion are still in a classical regim
although, considering the experimental improvements, th
exist possibilities that in the near future the axial moti
could be cooled down to its ground state@14#.

Moreover, in the present paper, the electron state pre
ration and manipulation rely on a completely differe
mechanism. Here the essential ingredient is the anharmo
ity of the cyclotron motion and the coupling with the spi
due to small relativistic corrections. Once we can reso
1050-2947/2001/63~5!/052307~9!/$20.00 63 0523
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different cyclotron and spin transitions, even condition
logic gates, like theCNOT, become feasible. Furthermore, w
show how to realize one-qubit rotations, i.e., the Hadam
transform. With these elements in hand, one can alre
build up a small network. Indeed, two qubits are enough
implement the Deutsch algorithm and to test the perf
mances of this prototype of quantum processor.

The paper is organized as follows. In Sec. II, we descr
the physical system, with special emphasis on the relativi
corrections that affect the energy-level structure of
trapped electron. How to manipulate the electron state i
controlled way is the subject of Sec. III. We then recall,
Sec. IV, the Deutsch algorithm and the network required
implement it. Its physical realization is explained in Sec.
where we provide a detailed explanation of how to build
universal logic gates using the cyclotron and the spin deg
of freedom. The efficiency of the measurement scheme
read out the outcomes of the computation is analyzed in S
VI. Finally, we summarize in Sec. VII our main results an
discuss future perspectives for this system.

II. ELECTRON IN A PENNING TRAP

In this section, we briefly review the essential features
the dynamics of a single electron trapped in a Penning
@9#, the so-calledgeonium atom@13,15#, in view of possible
applications to quantum information processing.

The trapping mechanism relies on the combination of
electrostatic quadrupole potential

V~x,y,z!5V0

z22~x21y2!/2

2d2
, ~1!

with the uniform magnetic fieldB5Bk̂ along thez axis. In
Eq. ~1!, V0 is the potential applied between the trap ele
trodes, while the characteristic lengthd is determined by the
trap size

d2[
1

2 S z0
21

r 0
2

2 D , ~2!

with 2z0 being the height of the trap andr 0 its radius.
The dynamics of a trapped electron, of chargee and mass

m, is governed by the Hamiltonian
©2001 The American Physical Society07-1
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H05
1

2m S p2
e

c
A0D 2

1eV2m•B, ~3!

whereA0 is the vector potential

A0~x,y!5 1
2 B3r ~4!

andm[ge\/(4mc)s is the electron intrinsic magnetic mo
ment, with g being the electron g factor and s
[(sx ,sy ,sz) the spin operator having Pauli matrices
components.

It is convenient to introduce the following ladder oper
tors:

az5Amvz

2\
z1 iA 1

2\mvz
pz , ~5!

ac5
1

2 FAmṽc

2\
~x2 iy !1A 2

\mṽc

~py1 ipx!G , ~6!

am5
1

2 FAmṽc

2\
~x1 iy !2A 2

\mṽc

~py2 ipx!G , ~7!

obeying the commutation relation@ai ,aj
†#5d i , j , with i , j

5z,c,m. These operators refer, respectively, to three h
monic oscillators, describing the quantized motion of t
trapped electron. Here we have defined the frequencyṽc

[Avc
222vz

2, connected to the cyclotron

vc[
ueuB
mc

~8!

and to the axial oscillation frequencies

vz[AeV0

md2
. ~9!

The new operators, Eqs.~5!–~7!, allow us to recast the
Hamiltonian, Eq.~3!, in the more transparent form@13#

H052\vmS am
† am1

1

2D1\vc8S ac
†ac1

1

2D
1\vzS az

†az1
1

2D1
\

2
vssz . ~10!

The magnetron motion takes place at frequencyvm

[(vc2ṽc)/2 around a potential hill and is, therefore, u
stable as one can see from the minus sign in Eq.~10!. How-
ever, this instability is fully under control, because the ma
netron motion is weakly coupled to the environment. Hen
the electron does not roll down the potential hill, but rema
well confined inside the trap for several months.

The frequency of the cyclotron oscillatorvc8[(vc

1ṽc)/2 is slightly different from the bare cyclotron fre
quency defined in Eq.~8!, because of the presence of th
electrostatic trapping field.
05230
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The axial motion consists of a harmonic oscillation, ne
the trap center, at frequencyvz @see Eq.~9!#, depending on
the quadrupole potential, which provides the axial confin
ment.

Note that these three motions build up a well-defined
erarchy in the frequency rangevm!vz!vc8 . Typical values
@13# of the eigenfrequencies arevm /(2p).12 kHz,
vz /(2p).64 MHz, andvc8/(2p).164 GHz.

Beside these external degrees of freedom, there is an
ternal degree of freedom, the spin, which precedes aro
the magnetic field at the frequency

vs[
g

2

ueuB
mc

. ~11!

Here we recall that, due to the electron anomaly, the factog
is different from the value 2 and the spin precession f
quencyvs is experimentally distinguishable@13# from the
cyclotron frequencyvc , presented in Eq.~8!.

From the Hamiltonian Eq.~10!, it is easy to realize tha
the energy levels of an electron in a Penning trap are gi
by

E0~n,k,l ,s!52\vmS l 1
1

2D1\vc8S n1
1

2D
1\vzS k1

1

2D1
\vs

2
s, ~12!

where the four quantum numbersl 50,1,2, . . . , n
50,1,2, . . . , k50,1,2, . . . , ands561 define, respectively
the magnetron, cyclotron, axial, and spin states.

In typical experimental configurations@13#, the axial har-
monic oscillator is coupled to an external detection circu
which heats up this motion. However, switching off the i
teraction with the measurement device, one could cool
axial motion down to 80 mK@12#. This implies that at the
thermal equilibrium, the average axial quantum numberk is
of the order of 30. So this motion is still in the classic
regime. The same conclusion applies to the magnetron
tion, whose temperature is controlled by means of a sideb
cooling technique@13#. The situation is, instead, quite differ
ent for the cyclotron motion, which has been recently p
pared in the lowest Fock statesun&c , with n ranging from 0
to 4 @12#. Extremely remarkable is the fact that below 1
the cyclotron motion remains in its ground state for an
definite time and in the first excited state for 13 s@12#.

In this paper, we will focus only on the true quantu
motions of the electron, namely the cyclotron oscillator a
the spin, with the aim of using them as registers for quant
information. The electron spin, being a two-level syste
lends itself quite naturally to encode the logical statesu0&
andu1&. Instead, it is not so obvious to implement a qubit
a multilevel system like a harmonic oscillator with equa
spaced energy levels. This is, unfortunately, the case of
cyclotron motion. A possible way to circumvent this proble
is to introduce some kind of anharmonicity in order to a
dress a specific transition between two energy levels.
7-2
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Actually, before perturbing this simple system from ou
side, we can consider the intrinsic sources of anharmonic
Such an analysis has been already done@13# because of the
exceedingly high precision spectroscopy experiments car
out on the geonium. The main corrections to the Hamilton
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Eq. ~10! are produced by the relativistic effects@16,17# and
by the departures of the actual electrostatic field from
ideal quadrupole potential of Eq.~1!. These effects, treate
in perturbation theory, result in the following corrections
the energy levels of Eq.~12!:
DE~n,k,l ,s!'
eV0C4\2

2d4m2 H 3

2vz
2 S k21k1

1

2D2
3

vz~vc82vm!
~2k11!~n1 l 11!1

3

2~vc82vm!2 F S n1
1

2D 2

1S l 1
1

2D 2

14S n1
1

2D S l 1
1

2D1
1

2G J 2
~\vc8!2

2mc2 Fn11/21~vm /vc8!2~ l 11/2!

12vm /vc8
1

1

2

vz

vc8
S k1

1

2D1
1

2

vc

vc8
sG2

2
\2vz

4

4mc2~vc82vm!2 F S n1
1

2D S l 1
1

2D2
1

4G2
~\vz!

2

16mc2 F S k1
1

2D 2

1
3

4G
1~112a!

~\vz!
2

4mc2
s
n11/21~vm /vc8!~ l 11/2!

12vm /vc8
2

a\2vcvzs

4mc2 S k1
1

2D , ~13!
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wherea[(g22)/2 is theelectron anomaly andC4 is a con-
stant depending on the geometrical properties of the trap
on the additional potential applied to compensation el
trodes.

On the right-hand side of Eq.~13!, the first term in curly
brackets is the energy shift due to the electrostatic effe
while the other terms are the energy shifts due to the rela
istic effects. These corrections makes the three oscillat
describing the electron motion inside the trap, anharmo
i.e., their energy levels are no longer equally spaced.

For the cyclotron oscillator, the transition frequency b
tween neighboring levels of quantum numbersn11 andn,
in typical experimental configurations, becomes, neglec
the smaller terms of Eq.~13! and settingvm /vc8.0,

vc~n,s![
E~n11,k,l ,s!2E~n,k,l ,s!

\

'vc82d~n11!2
d

2
s, ~14!

where E(n,k,l ,s)5E0(n,k,l ,s)1DE(n,k,l ,s) and d
[\vc

2/(mc2). Equation~14! shows that the cyclotron tran
sition frequency depends on the quantum numbersn and s.
Hence, the relativistic effects turn on an interaction betwe
the cyclotron and the spin motion. Consequently, under
same assumptions, we find that the spin-flip frequency

vs~n![
E~n,k,l ,11!2E~n,k,l ,21!

\
'vs2dS n1

1

2D
~15!

depends on the cyclotron excitationn.
These considerations are better illustrated by a schem

view of the energy levels of the system presented in Fig
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Here and in the remainder of the paper, we neglect the
pendence on the magnetronm and axialk quantum numbers
since the magnetron motion is essentially decoupled from
other electronic degrees of freedom and the axial oscilla
is only relevant to the final measurement process. A disc
sion of this last step is postponed to Sec. VI. Therefore
Fig. 1, we restrict the energy-level scheme to the low-lyi
cyclotron and spin levels. Note that different cyclotron
spin transition frequencies differ by multiples ofd/2p
'200 Hz. This is a very small shift compared to the ch
acteristic cyclotron and spin frequencies, which are of
order of 160 GHz. In principle, cyclotron and spin individu
transitions are resolvable because the corresponding na
linewidths, due to radiative decay@13#, are much narrower
However, a careful analysis requires us to take into acco

FIG. 1. Energy-level scheme~not to scale! of cyclotron, n
50,1,2,3, . . . , andspin, s561, motion, including the relativistic
corrections discussed in Eq.~13!. The transition at the anomaly
frequencyva8 produces an exchange of energy between the cy
tron motion and the spin.
7-3
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even the extremely small coupling to the axial motion int
duced by the relativistic corrections@see Eq.~13!#. This is a
source of fluctuations, because, as mentioned before,
axial motion is in a thermal state. To minimize the cons
quent line-shape broadening, it is necessary to cool the a
motion as much as possible. This is done when the a
oscillator is isolated from its environment, i.e., from the e
ternal detection circuit.

In the next section, we take advantage of the anharmo
ity of the cyclotron oscillator and of the dependence of
spin-flip transition frequency on the cyclotron state, to coh
ently manipulate the electron state inside the Penning tra

III. PREPARATION OF THE ELECTRON STATE

The relativistic effects are mainly responsible for the e
ergy shifts discussed at the end of the preceding section
particular, the cyclotron energy levels are no longer equ
spaced, as happens, instead, for a harmonic oscillator.
fact opens up the possibility to address transitions betw
specific levels. To this end, we need a tunable microw
source interacting with the trapped electron.

A very convenient trap geometry is represented by
cylindrical one@18,19#, because it acts like a cylindrical m
crowave cavity with well-characterized radiation mod
@20–22#. This latest generation of traps presents the adv
tage, over traditional hyperbolic traps, of better control of
electron-cavity interaction. A fundamental effect due to t
cavity presence is the inhibition of synchrotron radiati
when the cyclotron oscillation frequency is tuned away fro
any cavity mode. A cyclotron Fock state lifetime of 13 s h
been observed@12#, which is 140 times longer than the ex
pected value in free space. Moreover, the electron remain
the cyclotron ground state until a resonant driving field
injected into the trap. We are, therefore, confident tha
properly designed sequence of pulses can manipulate
electron state in a controlled way. More precisely, we c
sider an external microwave source exciting the cyclot
motion. The linearly polarized driving field is represented
means of the vector potential

Aext52A sin~Vt2w! ı̂ , ~16!

whereA andV are, respectively, the amplitude and the fr
quency of the wave. We neglect the spatial dependenc
the external field because the electron motion is confined
region much smaller than the wavelength of the radiation
the microwave range. This fact allows us to use the dip
approximation.

Hence, the Hamiltonian of the system, Eq.~3!, should be
accordingly modified in order to include the applied exter
field

H.H02
e

mc
p•Aext1

e2

mc2
A0•Aext, ~17!

where we neglected the term proportional toAext
2 . For fre-

quenciesV of the external field close to the frequencyvc8 of
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the cyclotron oscillator, the relevant part of the syste
Hamiltonian, in the interaction picture, can be written as

HIP
(cycl).AS ueu

4mc
A\mṽc

2
1

e2B

4mc2
A \

2mṽc
D

3~ace
2 iw1ac

†eiw!. ~18!

Thus, by carefully tuning the source frequency to the va
vc(n50,s521)5vc82d/2 ~see Fig. 1! and applying the
drive for a time t, we excite only transitions between th
following levels:

u0&cu↓&→FcosS ht

2 D u0&c2 ieiw sinS ht

2 D u1&cG u↓&, ~19!

u1&cu↓&→FcosS ht

2 D u1&c2 ie2 iw sinS ht

2 D u0&cG u↓&, ~20!

where the Rabi frequency is

h[
A
\ S ueu

2mc
A\mṽc

2
1

e2B

2mc2
A \

2mṽc
D ~21!

andun&c , u↓& (u↑&) indicate, respectively, the cyclotron sta
with excitation numbern and the spin-down~-up! state. We
define the above interaction as apc(1/2)(ht,w) pulse.

From Fig. 1, we also see, in the same way, that when
external source frequency is on resonance withvc(n50,s
511)5vc823d/2, we couple two different pairs of cyclo
tron levels,

u1&cu↓&→FcosSA2
ht

2 D u1&c2 ieiw sinSA2
ht

2 D u2&cG u↓&,

~22!

u2&cu↓&→FcosSA2
ht

2 D u2&c2 ie2 iw sinSA2
ht

2 D u1&cG u↓&,

~23!

u0&cu↑&→FcosS ht

2 D u0&c2 ieiw sinS ht

2 D u1&cG u↑&, ~24!

u1&cu↑&→FcosS ht

2 D u1&c2 ie2 iw sinS ht

2 D u0&cG u↑&. ~25!

We denote the above interaction as apc(3/2)(ht,w) pulse.
We have seen how the interaction between the elec

and an external microwave source provides a tool to con
the cyclotron state, leaving the spin unaffected. Then
need another mechanism to manipulate the electron spin.
required interaction is obtained by applying, inside the trap
small magnetic fieldb, which lies in thexy plane and oscil-
lates at a frequency close to the spin resonancevs @13#,

b~ t !5b@ ı̂ cos~vt1u!1 ̂ sin~vt1u!#. ~26!

In this case, the relevant part of the system Hamiltonian
comes, in the interaction picture~IP!,
7-4
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H IP
(spin).\

x

2
~s1e2 iu1s2eiu!, ~27!

where the Rabi frequency isx[gueub/(2mc) and s6

[(sx6 isy)/2. If the small magnetic field is applied for
time t and has a sufficiently narrow bandwidth center
around the valuevs(n50)5vs2d/2, it produces a spin flip
only if the cyclotron state isu0&c ,

u0&cu↓&→u0&cFcosS xt

2 D u↓&2 ie2 iu sinS xt

2 D u↑&G , ~28!

u0&cu↑&→u0&cFcosS xt

2 D u↑&2 ieiu sinS xt

2 D u↓&G . ~29!

We define this interaction as aps0(xt,u) pulse.
When, instead, the oscillating transverse magnetic fiel

tuned on resonance withvs(n51)5vs23d/2, the spin flip
takes place only if the cyclotron state isu1&c ,

u1&cu↓&→u1&cFcosS xt

2 D u↓&2 ie2 iu sinS xt

2 D u↑&G , ~30!

u1&cu↑&→u1&cFcosS xt

2 D u↑&2 ieiu sinS xt

2 D u↓&G . ~31!

This interaction is defined as aps1(xt,u) pulse.
It is important to note that the two pulses shown abo

execute transformations on the spin states controlled by
cyclotron state. This suggests the possibility of perform
conditional logic operations, which involve the cyclotron a
the spin states, in a very straightforward way. We rec
therefore, in the next section a basic quantum algorithm
the universal logic gates required to realize it.

IV. THE DEUTSCH ALGORITHM

The Deutsch algorithm@23,24# is the simplest quantum
algorithm, nevertheless it is important because it shows
the computing power of a quantum device.

Let us consider a Boolean functionf that maps$0,1%
→$0,1%. There are exactly four functions of this type: tw
constant functions

f 1~0!5 f 1~1!50, ~32!

f 2~0!5 f 2~1!51; ~33!

and two balanced functions

f 3~0!50, f 3~1!51, ~34!

f 4~0!51, f 4~1!50. ~35!

Is it possible, by computingf only once, to find out whethe
it is constant or balanced, i.e., whether the binary numb
f (0) and f (1) are the same or different?

Classical intuition tells us that we have to evaluate b
f (0) and f (1), that is, to computef twice, to give a conclu-
sive answer to the previous question. This is not so when
05230
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resorts to quantum mechanics and to its most peculiar
tures, such as entanglement and superposition. Indee
quantum algorithm allows us to solve the problem with
single function evaluation.

According to the Deutsch algorithm, we should simp
perform the following operations:~i! We take two qubits and
prepare them in the product stateu0&u1&; ~ii ! we apply to
each qubit the unitary Hadamard transformationH, which
produces the superposition states

u0&→
1

A2
~ u0&1u1&), ~36!

u1&→
1

A2
~ u0&2u1&); ~37!

~iii ! we evaluate the unknown function on the first qubit a
then store the result in the second qubit in the following w

ux&uy&→ux&u f ~x! % y&. ~38!

~the symbol% indicates addition modulo 2!; ~iv! we apply
again the transformationH to each qubit; and~v! we perform
a measurement on the first qubit. If the first qubit is in t
stateu0&, the function is constant; if it is in the stateu1&, the
function is balanced.

Describing the algorithm in detail, the application of th
Hadamard transformH to each qubit of the initial state rea
izes

u0&u1&→ 1
2 ~ u0&1u1&)~ u0&2u1&). ~39!

Then the evaluation of the unknown function produces

1
2 ~ u0&1u1&)~ u0&2u1&)→ 1

2 $u0&@ u f ~0!&2u1% f ~0!&]

1u1&@ u f ~1!& 2u1% f ~1!&] %.
~40!

At this stage, depending on which function we consider,
have four possible outcomes. Finally, by applying once ag
the Hadamard transformH to each qubit, we obtain

1
2 @ u0&~ u0&2u1&)1u1&~ u0&2u1&)]→u0&u1& for f 1 ,

~41!

1
2 @ u0&~ u1&2u0&)1u1&~ u1&2u0&)]→2u0&u1& for f 2 ,

~42!
1
2 @ u0&~ u0&2u1&)1u1&~ u1&2u0&)]→u1&u1& for f 3 ,

~43!
1
2 @ u0&~ u1&2u0&)1u1&~ u0&2u1&)]→2u1&u1& for f 4 .

~44!

We emphasize that, regardless of the specific Boolean fu
tion implemented, the second qubit always ends up in s
u1&. However, even though it does not convey any inform
tion on the parity properties of the function, it may turn o
to be useful to check for eventual errors taking place in a r
experiment.
7-5
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We then move to analyze how this mathematical pro
dure can be implemented using an electron in a Penning

V. REALIZATION OF THE DEUTSCH ALGORITHM

In order to implement the Deutsch algorithm using
single trapped electron, we store the quantum informatio
the cyclotron motion and in the spin degree of freedom of
electron. We identify the first two cyclotron statesu0&c ,u1&c
with the logic statesu0&,u1& of the first qubit, while the spin
statesu↓&,u↑& represent, respectively, the logic statesu0&,u1&
of the second qubit.

In the remainder of this section, we describe in detail h
to realize the logic operations, which build up this algorith
by means of the external driving fields introduced in Sec.

A. Performing the Hadamard transform

The Hadamard transform@see Eqs.~36! and ~37!# is a
one-qubit fundamental logic gate, which should be appl
separately to the cyclotron and spin states. It essentially
duces a rotation of the two logic statesu0& and u1&.

As shown in Sec. III, an external microwave field pr
vides a tool to manipulate the cyclotron state, without cha
ing the spin state. However, the relativistic corrections
not able to lift completely the degeneracy between transi
frequencies. From Fig. 1 and Eqs.~22!–~25!, one realizes
that an external microwave source at frequencyvc823d/2
excites, unfortunately, also an unwanted transition to the
clotron stateu2&c . In order not to populate extra cyclotro
levels, we are then compelled to play with the electron sp
too. Therefore, the transformationH on the cyclotron qubit,
the first qubit of our network, is implemented by means
the following six pulses:~i! A pc(1/2)(p,p) pulse; ~ii ! a
pc(1/2)(p/2,2p/2) pulse; ~iii ! a multifrequency pulse con
sisting of the two pulsesps0(p,p/2), ps1(p,p/2); ~iv! a
pc(1/2)(p,p) pulse;~v! a pc(1/2)(p/2,2p/2) pulse; and~vi! a
multifrequency pulse consisting of the two pulsesps0(p,
2p/2), ps1(p,2p/2). To show how this procedure work
we consider the most general two-qubit state of the syst

c1u0&cu↓&1c2u1&cu↓&1c3u0&cu↑&1c4u1&cu↑&. ~45!

The application of the first two pulses affects the cyclotr
states only if the spin state is down. According to Eqs.~19!
and ~20!, it yields

c1

i

A2
~ u0&c1u1&c)u↓&1c2

i

A2
~ u0&c2u1&c)u↓&

1c3u0&cu↑&1c4u1&cu↑&. ~46!

With the third pulse we flip the spin states, as shown in E
~28!–~31!,

2c1

i

A2
~ u0&c1u1&c)u↑&2c2

i

A2
~ u0&c2u1&c)u↑&

1c3u0&cu↓&1c4u1&cu↓&. ~47!
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The fourth and fifth pulse are identical, respectively, to t
first two and produce

2c1

i

A2
~ u0&c1u1&c)u↑&2c2

i

A2
~ u0&c2u1&c)u↑&

1c3

i

A2
~ u0&c1u1&c)u↓&1c4

i

A2
~ u0&c2u1&c)u↓&.

~48!

Finally, the sixth pulse flips the spin states again, obtaini

c1

i

A2
~ u0&c1u1&c)u↓&1c2

i

A2
~ u0&c2u1&c)u↓&

1c3

i

A2
~ u0&c1u1&c)u↑&1c4

i

A2
~ u0&c2u1&c)u↑&.

~49!

It is easy to see that we have globally performed the H
amard transformH on the cyclotron qubit.

We now consider the implementation of the same tra
formation on the spin qubit, i.e., the second qubit. The sm
transverse magnetic field, discussed in Sec. III, carries
this task in a very quick way. Indeed, by applying two mu
tifrequency pulses, namely~i! a multifrequency pulse con
sisting of the two pulsesps0(p,p) andps1(p,p); and~ii ! a
multifrequency pulse consisting of the two puls
ps0(p/2,p/2) andps1(p/2,p/2), we are able to prepare th
spin in a superposition state, regardless to the correspon
cyclotron excitation,

u↓&→
i

A2
~ u↓&1u↑&), ~50!

u↑&→
i

A2
~ u↓&2u↑&). ~51!

This operation corresponds to the Hadamard transformH on
the second qubit, apart from an overall phase factor.

B. Performing the Boolean function evaluation

The second step of Deutsch algorithm requires us
evaluate the Boolean functionf on the first qubit and to add
the result to the second one, as is shown in Eq.~38!. This
operation, whenf 5 f 1, reduces to the identity, that is,

u0&cu↓&→u0&cu↓&, ~52!

u0&cu↑&→u0&cu↑&, ~53!

u1&cu↓&→u1&cu↓&, ~54!

u1&cu↑&→u1&cu↑&. ~55!

So to evaluatef 1, we have to do nothing.
7-6
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Considering the other constant functionf 2, its evaluation
is equivalent to aNOT gate applied to the second qubit,

u0&cu↓&→u0&cu↑&, ~56!

u0&cu↑&→u0&cu↓&, ~57!

u1&cu↓&→u1&cu↑&, ~58!

u1&cu↑&→u1&cu↓&. ~59!

Indeed, we see that the spin is flipped regardless of the v
of the corresponding cyclotron excitation. To implement t
above transformation, we need to apply the small transv
magnetic field long enough to flip the spin. This is achiev
by means of the following two pulses.

~i! A ps0(p,p) pulse flips the spin when the cyclotron
in stateu0&c ,

u0&cu↓&→ i u0&cu↑&, ~60!

u0&cu↑&→ i u0&cu↓&; ~61!

~ii ! a ps1(p,p) pulse flips the spin when the cyclotron is
stateu1&c ,

u1&cu↓&→ i u1&cu↑&, ~62!

u1&cu↑&→ i u1&cu↓&. ~63!

An overall phase factor apart, the above pulses perform
requestedNOT operation on the spin qubit.

The evaluation of the balanced functionf 3 produces the
transformations

u0&cu↓&→u0&cu↓&, ~64!

u0&cu↑&→u0&cu↑&, ~65!

u1&cu↓&→u1&cu↑&, ~66!

u1&cu↑&→u1&cu↓&. ~67!

We point out that the spin is flipped only if the cyclotro
state isu1&c . This kind of conditional logic operation is
so-called controlled-NOT ~CNOT!, in which the first qubit acts
as the controller, while the second qubit is the target. In
system, this two-qubit logic gate may be implemented w
just two pulses: ~i! A ps1(p,p/2) pulse, and ~ii ! a
pc(5/2)(2p,w) pulse with arbitrary phase and in resonan
with the transition frequencyvc825d/2. As a matter of fact,
starting from the generic two-qubit state,

c1u0&cu↓&1c2u1&cu↓&1c3u0&cu↑&1c4u1&cu↑&, ~68!

the first pulse, flipping the spin state only if the cyclotro
oscillator is in the stateu1&c , transforms the initial state into

c1u0&cu↓&2c2u1&cu↑&1c3u0&cu↑&1c4u1&cu↓&. ~69!
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We then need the second pulse to correct the minus sig
front of the coefficientc2. Indeed, this pulse acts only on th
state u1&cu↑&, changing its phase factor during a comple
Rabi cycle,

c1u0&cu↓&1c2u1&cu↑&1c3u0&cu↑&1c4u1&cu↓&. ~70!

Finally, we consider the evaluation of the other balanc
function f 4, which gives rise to the following transforma
tions:

u0&cu↓&→u0&cu↑&, ~71!

u0&cu↑&→u0&cu↓&, ~72!

u1&cu↓&→u1&cu↓&, ~73!

u1&cu↑&→u1&cu↑&. ~74!

These operations are equivalent to aCNOT in which the target
qubit, i.e., the spin, changes state when the controller,
the cyclotron, is in stateu0&c rather thanu1&c . However, its
implementation is not so straightforward as in the case
function f 3. In the present case, we need five pulses:~i! A
ps0(p,2p/2) pulse to flip the spin when the cyclotron is
stateu0&c ; ~ii ! a pc(1/2)(2p,w) pulse with arbitrary phase to
change the phase factor of cyclotron states with spin do
during a complete Rabi cycle;~iii ! a multifrequency pulse
consisting of the two pulsesps0(p,2p/2) and ps1(p,
2p/2) to flip all the spins;~iv! a pc(5/2)(2p,w) pulse with
arbitrary phase, which affects only the phase factor of s
u1&cu↑&; and~v! a multifrequency pulse consisting of the tw
pulses ps0(p,p/2) and ps1(p,p/2), which flips the spin
states again.

For the sake of brevity, we do not show explicitly th
intermediate steps of the above sequence. However, it is
mediate to check that the generic two-qubit state

c1u0&cu↓&1c2u1&cu↓&1c3u0&cu↑&1c4u1&cu↑& ~75!

is turned into

c1u0&cu↑&1c2u1&cu↓&1c3u0&cu↓&1c4u1&cu↑&, ~76!

which is the desired result. We have, hence, proved how
implement also two-qubit operations with a single trapp
electron.

To complete the Deutsch algorithm, one needs to ap
once again the Hadamard transformH to both cyclotron and
spin qubits, according to the prescription of Sec. V A. In t
end, the readout of the first qubit state provides a conclus
answer to the question of whether the unknown Boole
function is constant or balanced.

However, before moving on to discuss the final measu
ment over the cyclotron and, optionally, spin qubit states,
would like to briefly mention an alternative implementatio
of the Deutsch algorithm. This second option relies on
changing the roles of the cyclotron and of the spin: The la
is going to represent the first qubit, i.e., the controller, wh
the first becomes the target. The advantage here is tha
transverse oscillating magnetic field may have a broa
7-7
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bandwidth. Hence, even without selectively addressing
spin-flip frequencies, it remains possible to perform the
quired one- and two-qubit operations on both the spin
the cyclotron oscillator. The price to pay, however, is
slightly longer sequence of pulses to realize theNOT and
CNOT gates, because of the not completely removed deg
eracy between cyclotron transition frequencies.

VI. MEASURING THE QUBIT STATE

In order to measure the cyclotron and spin states, the
mogeneous magnetic field of the trap is modified by a sm
additional field, the so-called magnetic bottle@13#,

DB5B2F S z22
x21y2

2 D k̂2z~x ı̂1ŷ !G . ~77!

This field couples the cyclotron and the spin motions to
axial oscillation producing a shift in the axial frequency d
pending on the cyclotron and spin quantum numbers, tha

dvz5DṽzS gs

4
1n1

1

2D , ~78!

whereDṽz is a constant proportional toB2. An alternative
method @25# exploits, instead, the relativistic coupling b
tween the different electronic degrees of freedom.

As a matter of fact, the axial motion is the only one eas
detectable, because its characteristic frequency lies in
radio waves. To this purpose, the axial motion is driven
an alternated voltage applied to the trap electrodes. The
cillating electron induces a measurable current in the exte
circuit. Thanks to the extremely narrow line shape of t
axial resonance, even frequency shifts of 1 Hz can be
served@12#.

However, the magnetic bottle introduces an extra lin
width to cyclotron and spin transitions, because of the fl
tuations fed in by the coupling with the axial motion. T
prevent this unwanted effect, it is necessary to switch on
magnetic bottle only when all the operations on the qub
have been performed. This is possible if one uses a vari
bottle, generated by superconducting loops, with the cur
induced by a flux transformer@13,26#.

For simplicity, we takeg52 in Eq.~78!. We see then tha
a spin flip and a change of 1 in the cyclotron number p
duce the same frequency shiftDṽz /(2p)512.4 Hz @12#,
which is much more than the experimental resolutio
Hence, in reference to our scheme to implement the Deu
algorithm, given that the spin leaves the network in its up
state, we can determine the cyclotron stateun&c from the
frequency shift in the axial oscillation.

In particular, the states of the two-qubit register,u0&cu↓&
and u1&cu↑&, correspond to different shifts of the axial fre
quency. Therefore, by measuring the axial resonance, we
tain complete information on both the qubits, i.e., we det
mine the cyclotron excitation and the spin state. Thus, in
case, we just need to monitor the oscillation frequency of
axial motion to read out the result of the computation and
check that the second qubit is truly returned to its init
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state. This can be regarded as a very simple test of the
rectness of the algorithm implementation.

Unfortunately, because of the smallness of the elect
anomaly, to our knowledge it is not yet possible to reso
between the shifts produced by the two-qubit statesu1&cu↓&
andu0&cu↑&. However, the spin state is usually@13# observed
after a while, in order to allow the cyclotron motion to rela
to its ground state. A continuous quantum-nondemolit
~QND! observation of the cyclotron motion@12# enables us,
then, to detect the eventual quantum jump fromu1&c to u0&c ,
which distinguishes between the two electronic statesu1&cu↓&
and u0&cu↑&. Anyway, even without a QND measurement
the cyclotron state, this limitation is not so crucial for th
Deutsch algorithm. Indeed, if no error takes place, the p
sible outcomes of the algorithm are represented by the p
u0&cu↑& or u1&cu↑&. Hence, within the current technology, on
is always able to discriminate whether the Boolean funct
is constant or balanced.

VII. CONCLUSIONS

In this paper, we presented a method to implement
Deutsch algorithm using a single trapped electron. In
scheme, the qubits are stored in the first two cyclotron lev
and in the electron spin. We exploit the small relativis
corrections to make the cyclotron motion anharmonic a
selectively address specific transitions, by means of a tun
microwave source. Spin-flip transition frequencies are
fected too by these relativistic corrections, so that they
pend on the cyclotron quantum numbern. This mutual inter-
action between cyclotron motion and spin is essential
realize two-qubit gates like theCNOT. However, we also
mentioned an approach with less stringent requirements
the resolution of spin-flip transitions. Even without discrim
nating between different spin transition frequencies, one
able to perform the unitary operations required by the De
sch algorithm. This is possible when the spin plays the r
of the first qubit, while the cyclotron oscillator represents t
second one.

We are aware that scalability is not so obvious in t
system under consideration. However, the present prop
can provide proof of the principle of the validity of quantu
logic operations and can be easily implemented with
present technology.

To increase the number of qubits, one may use the a
motion along thez axis of the trap. In typical experimenta
situations, this degree of freedom is in a classical regim
because of the interaction with the external detection circ
However, it could be isolated from the environment
switching off the external measuring apparatus. At this sta
the axial motion is ready to be cooled down to its grou
state by means of cavity sideband cooling. This is not s
an irrelevant improvement, since with just three qubits o
can implement a recently proposed algorithm@27#, which is
a variant on Grover’s search@28#. Other options, to build up
a larger quantum register, are presently under investigat
They rely on the anharmonic corrections to make use
more pairs of cyclotron and axial levels.

In conclusion, we feel it is worthwhile to realize this pro
7-8
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totype of a quantum computer. It may serve as a playgro
to test, at least, the simplest quantum algorithms, which
quire only one or two qubits@27#. To this end, we tried to
model our theoretical proposal on the current technolog
and experimental possibilities.
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