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Entangled rings
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Consider a ring ofN qubits in a translationally invariant quantum state. We ask to what extent each pair of
nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula
for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entangle-
ment achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2
particles. We find that, though the antiferromagnetic ground state typically does not maximize the nearest-
neighbor entanglement relative to all other states, it does so relative to other states havingoreponent of

spin.
DOI: 10.1103/PhysRevA.63.052302 PACS nuntber03.67—a, 03.65.Ta, 75.10.Jm
[. INTRODUCTION: ENTANGLEMENT SHARING specified set of pairs of those qubits, one can design a state

such that all the pairs in the chosen set are entangled and all

Quantum entanglement, as exemplified by the singlet statihe other pairs are not. For the specific case of three qubits,
of two spin-1/2 particles, (12)(|71)—|11)), has been the Dur et al.[7] have found a state that maximizes theimum
subject of much study in recent yeddd, largely because of of the three pairwise entanglements; the concurrences for this
its connection with quantum communicatif®] and compu- state are all equal, the common value being 2/3. Koashl.
tation[3]. Entanglement bears some resemblance to classicE8] have studied completely symmetric stateNafubits and
correlation, but it differs in important respects, including thehave found that the maximum possible concurrence between
fact that entangled objects can violate Bell's inequdlity.  pairs is exactly 2. Thus in this context where all the qubits
Perhaps one of the most characteristic differences is this: ére required to be equally entangled with each other, the
two similar quantum objects are completely entangled withpairwise entanglement goes to zero in the limit of an infinite
each other, then neither of them can be at all entangled withollection. Wootter§9] has considered a different problem,
any other object, whereas there is no such restriction on claga which the qubits are arranged in an infinite line and only
sical correlations. This property is sometimes called thehe nearest-neighbor entanglement is maximized. He found
“monogamy” of entanglement. For the special case of threethat for the infinite chain in a translationally invariant state,
binary quantum objects—three qubits—a quantitative extenthe nearest-neighbor concurrence does not have to be zero
sion of this rule has been proven in terms of a measure dbut can be as large as 0.434. It is not yet known whether this
entanglement called the “concurrence,” which takes valuessalue is optimal. The problem we are about to address is the
between zero and one: the square of the concurrence betwesimplest finite version of the infinite chain problem.
qubits A and B, plus the square of the concurrence between There have been several other studies of entanglement in
gubits A and C, cannot exceed unit}5]. In other words, to  N-component systems, usually focusing on higher-order
the extent that qubitd andB are entangled with each other, rather than pairwise entanglemé¢h0]. Briegel and Raussen-
they limit the entanglement between qubisnd C. dorf, in particular, have used the Ising interaction to generate

The present paper further explores the degree to whiciteresting states exhibiting high-order entanglen{dn.
entanglement can be shared among a number of qubits. WAl of these studies contribute to our understanding of en-
focus on two closely related but distinct problenig. We  tanglement distributed among many objects. We hope that
consider a ring ofN qubits in a translationally invariant our present results can eventually be combined with other
guantum state and ask to what extent nearest neighbors camork to construct a general theory of entanglement sharing,
be entangled with each other; specifically, we ask how larg@ot limited to qubits or to any particular geometry.
the nearest-neighbor concurrence can be. Note that in this
first problem there is no Hamiltonian specified; we are sim-
ply asking about the entanglement characteristics of quantum II. MAXIMIZING NEAREST-NEIGHBOR
states.(ii) For our second problem we consider a particular ENTANGLEMENT
physical system, namely a ring bfspin-4 particles interact- } ) o
ing via the Heisenberg antiferromagnetic Hamiltonian, and We begin by recalling the definition of the concurrence
ask whether the ground state of this system is a state dfl2,13 between a pair of qubits, which we will think of as
maximum nearest-neighbor entanglement. We will find that
the antiferromagnetic ring maximizes entanglement within a
limited set of states, but not absolutely. Though Ref[11] is similar to our work in that it relates a mag-

In both of these problems, we are focusing @airwise  netic Hamiltonian to entanglement, the focus is quite different. For
entanglement within a system &f particles. A number of example, Ref[11] uses the Hamiltonian dynamically to generate
problems with a similar focus have been considered beforesntanglement from an initially unentangled state, whereas we focus
Dur [6] has shown that given a system Mfqubits and any here on the entanglement of the ground state.
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spin+ particles. Letp be the density matrix of the pair, high nearest-neighbor entanglement. To see this, let us con-
expressed in the standard bagist),|T1),[1 1),/ 1)}. Letp  sider the density matriy of a pair of nearest neighbors,
be the spin-reversed density matrix, defined oy (o, ~ Obtained by tracingy)(4| over all the other particles. Con-
®Uy)pT(Uy® o), where g, is the matrix (f) ) and the dition 1 implies that for any pair of particles, there can be no
superscriptT indicates transposition. Then the concurrencecoherent superpositioof basis states with different numbers
of p is given byC=maxA;—A,—A3—\,,0}, where thex;,  Of up spins, eglll) and|u)_, because the corresponding
are the Square roots of the eigenva|ue$fbﬁn descending states of the rest of the chain are Ol’thogonal. The denSIty
order.(These eigenvalues are guaranteed to be real and nofatrix p must therefore have the following block-diagonal
negative even thougpp is not necessarily HermitianCon-  form:

currence is justified as a measure of entanglement by a theo-

rem [13] showing thatC is a monotonically increasing v 0 0 O
function of the entanglement of formatiph4]. As we men- 0w z O
tioned above, the values of concurrence range from zero, for p= o 1)
an unentangled state, to one, for a completely entangled state 0 z x O
such as the singlet state. 0 0y

We imagine a set oN particles arranged in a ring, with
the locations of the particles labeled by an integer
=1, ... N. In defining our problem, we restrict our attention
to translationally invariant pure statgg), that is, states that
under the cyclic permutation—i+k (mod N) are changed
by at most an overall phase factor. Translational invariance C=2max|z|—vy,0}. 2
forces the concurrence to be the same for each pair of nearest
neighbors. The problem, then, is simply to find the maximumCondition 2 implies that the matrix elements zero, so that

possible value of this concurrentdn the Appendix we the neighboring-pair density matrix becomes
show that the restriction to pure states entails no loss of

generality: a translationally invariant mixed state cannot

One can show by direct calculation that the concurrence of
this density matrix is

have a greater pairwise concurrence than the best pure state. 0000
We have not yet been able to solve our problem in full. 0w z O
We solve instead a more tractable problem in which we limit P=1 o 2 x 0 (©)
the set of states over which the maximization is to be done.
Specifically, we require our states to satisfy the following 0 0y

two conditions’

1. The statgy) of the ring is an eigenstate of the to@l and the concurrence becomes simply
component of spin.

2. Neighboring particles cannot both be in the state c=2/7 ()
Though we are clearly leaving out many possible states, it is '

plausible that the maximum value we obtain for our re- ) . : :
stricted problem will not be far from the absolute maximum. Pensity matrices of the fornt3) have been singled out in

This is because our two conditions tend to favor states wittfW0 recent studies as having particularly high entanglement.
Specifically, Ishizaka and Hiroshinfd5] have proven that

such density matrices maximize entanglement for a fixed set
of eigenvalues when one of the eigenvalues is zErhey
’For a general, nontranslationally invariant state, one could defing|sq show numerically that the forfd) is optimal when all
at least two distinct problems along similar lings: maximize the  ¢5 eigenvalues are nonzero, a result that has been proven
averageentanglement over all nearest-neighbor pairs, (@ndnaxi- by Verstraeteet al.[16].] Munro et al.[17] have shown that
mize theminimumentanglement of all nearest-neighbor pdsse certain states of the forrf8) maximize concurrence for a

Ref.[7]). The first of these problems could be sensitive to the meag. o4 value of the purity, defined as Tf’() These studies
sure of entanglement one is using—e.g., concurrence, squared con- ' )

) ﬁuggest that our two conditions are consistent with high en-
currence, or entanglement of formation—even though these are at | t but thev d t tee that ill be able t
monotonic functions of each other. Probldii), which does not anglement, but they do not guarantee that we will be abie 1o

have this sensitivity, may thus be more interesting; it may alsoreaCh the absolute maximum. Indeed, we will see below that

reduce to the translationally invariant problem considered here. A{Of ‘_"‘t least one value df, the (_)ptlmal Concgrrence 10t
related, but different, generalization of our problem would be to@Chievable by any state satisfying our conditions. Neverthe-

force all the concurrences between neighboring particles to be th€SS, our solution to the restricted problem will be useful in
same, without enforcing translational invariance of the state. We
insist on translational invariance simply to make the problem more

manageable. “In fact translational invariance implies that the matrix elements

3Condition 2 breaks the symmetry betwegh and ||). Our  andx must be equal—the frequency of occurrence fof) in the
choice to usé1) rather tharj|) in the statement of this condition is ring must be the same as that|¢f} )—but we will not need to use
arbitrary and does not affect any of our conclusions. this equality in what follows.

052302-2



ENTANGLED RINGS PHYSICAL REVIEW A 63 052302

Sec. Il where we discuss antiferromagnetic rings, and ifThis form tells us immediately that the concurrence can be

should also serve as a good starting point for future work omrmaximized by choosing the coefficierigo be real and non-

the complete problem. negative: if we were to use complex values, then the concur-
Condition 1 forces the ring’s state/) to have a fixed rence could only be made larger, not smaller, by replacing

numberp of up spins and a fixed numbé&—p of down each coefficienb by its absolute value. Let us therefore re-

spins, but it does not specify the valuemfOur strategy will ~ strict our attention to such real and non-negative states. In

be to fix the values of bottN and p and to maximize the that case, translational invariance takes the simple form

nearest-neighbor concurrence over all states having these

values and satisfying condition 2. This problem turns out to biy i =Pk ke (13)

be exactly soluble, so that one can write down an analytic

formula for the maximum concurrene,,(N,p). We can  Thus, once the values &f;, . ; are fixed, all the otheb’s

then use this formula to find the optimal number of up spinsare determined.

and hence the optimal concurrence, for any ring $ize The condition expressed by E(B), i.e., that no two up
For fixedN andp, the most general state we are consid-spins should be adjacent, is an awkward one to enforce di-
ering has the form rectly. It is therefore helpful to relate our problem to a sim-
pler problem that does not have this constraint. Roughly
)= z b i lig. ..o (5) speaking, we do this by removing from the ring the site
1=ip<T<i=n L' P/ immediately to the right of each up spin. More precisely, we

’ consider a ring oN — p particles with exactlp up spins, and
whereli .. .ip) is the state in which the particles at loca- we assign to every state) of our original ring(every state,
tionsiy, ... i, have their spins up and all the other particlesthat is, that satisfies our conditiona corresponding state
have their spins down. Though the above sum requires val+) of the smaller ring
ues ofb only for sets of indices that are in ascending order,
for convenience we defineto be symmetric in all its indices . .
and equal to zero if any two indices have the same value. |¢>:1gjl<,2<j “N-p dil---ip“l - Jp)
The normalization condition on the coefficieriss P

(12

The coefficientd are defined in terms of the original coef-
2_1. (6) ficients bl,iz...ip with 1<i,<---<ip. Let j,=i,—1,

bi, i |*=
1=ip<T<ip=N igeip ja=ig—=2,... jp=ip—(p—1); then lez---ip
= \/N/(N_p)bl,iz...ip- The values of the otheat’s are de-
termined by translational invariance—that is:ljl___jp

bil__.ipzeikobi1+k...ip+ky M =dj ... j,+k (ModN—p)—and as before, we take

o N . i1 to be symmetric under permutations of the indices
where' addition is undgrstood 'FO. be médinde’™"=1. '.:". and equal to zero whenever two indices have the same value.
nally, in accordance with condition 2 above, the coefficient

b must satisfy the constraint SThe fa.ctor.\/N/(N—p) is included |n.order to makéq?)
normalized: translations around the ring generate fe®r

thanb’s, so that thed’s need to be larget.Let us define a

The condition of translational invariance is expressed as

b, ;=0 if i,—in,=21 forany n,m=1,...p. ; )
1rp ®) pseudoconcurrenc€’ of the smaller ring by analogy with
Eg. (10),
That is, no state is allowed in which two up-spins are adja-
cent. C'= > 2d; d; , (13
To find the concurrence between two neighboring par- 1<kp<:--<kp<N-p P TG g

ticles, we need to find the off-diagonal elemerf the two-

particle density matrix as expressed in E8). Translational Where we have omitted the absolute value sign sincelthe
invariance guarantees that the value afill be the same for ~ are all real and non-negative. Because our states of the small
each pair of nearest neighbors; we consider a specific pair &ing do not satisfy condition 2" is not the nearest-neighbor
locationsi andi+1. Taking the partial trace di/)(y| over ~ concurrence of the stateb). However, because of the rela-

all the other particles, we find that tionship betweenl andb, we can useC’ to find the concur-
renceC of our original ring,
z= > Bik, .. kDPitik,. . K, ©) N—p
Iskp<---<kp=N P . C= N Cc'. (14
so that
C=2|z|= E 2bi .« EHK al °For each collection ob’s that are equal because of translational
Isky<'+ <k,=N 2T m2rTp invariance, there is a corresponding setltsf, and the ratio of the

(10 sizes of these sets is alwag(N—p).
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Thus we want to find the maximum possible value@f and
over all real and non-negative, translationally invariant states

. . . . (N-p)—1
of the (N— p)-particle ring with exactlyp up spins. B + t
To do this, let us rewrite E¢13) in a more convenient H=~ J.Zl (CjCj+17Cj11Cy)
form by introducing the creation and annihilation operators
0 1 . +(CN_pC1+Cien-p) if p iseven. (29
ajT:(O 0 and aj:(l O)’ (15) For either odd or evep, the Hamiltonian can be diagonal-

ized exactly, so that the system can be regarded as a collec-
which act on the particle at locatignof the small ring and ~tion of pindependent identical fermions. For oddone finds
are expressed here in the ba§is),||)}. In terms of these that the energy eigenvalues of these fermions efe

operators, Eq(13) becomes simply =—2co$2mm/(N-p)], m=1,...N—p, whereas for
even p they are e,=-—2co$(2m+1)7/(N—p)], m
C’=2<¢>|aj*+laj|q5>. (166  =1,... N—p. The minimum value of ¢|H|¢) is the sum

of the p smallest valueg,,, since in the ground state the
The value given by Eq(16) is the same for all pair§j,j  fermions will occupy thep lowest energy levels. This sum
+1}. We can therefore writ€’ as the average of this quan- turns out to be given by the following formula, valid for both
tity overj, even and odd values ¢f

2 NP ) T
C'=y=p!¢l _21 aj 12y ). (17) 25"'<Np—_p)
" Emin=— 7 a \ (24)
Again using our assumption that the coefficients are real, we sin(NT)
can reexpress Eql7) as P

1 The statd ¢) corresponding to this energy is the discrete
C'= —(—)(¢|H|¢>), (18  Version of the ground-state wave function of a sepdtfard
N—p beads on a loop of wire. The coefficiemiﬁ o associated

with this state can be taken to be real and non-negative, and

where . . : .
the state is translationally invariant. Thus the assumed con-
N-p ditions are met and we can ugg,;, to find the maximum
H=—2 (alaj.1+a,,a)). (190  pseudoconcurrendg; ., in accordance with E(18),
=1
In other words, a statep) maximizesC' if it minimizes the 1 2si N=o
expectation value of the operatdy as long as this minimum Clia=— Enmin= P _ (25)
is achieved with only non-negative real values of the coeffi- N—p . ™
. (N—p)sin
cientsd. N—p

The operator H is the Hamiltonian for the one-
dimensional ferromagnetiXY model; so our problem re- Finally, using the relatioril4), we get the maximum nearest-
duces to finding the lowest-energy state of this model withneighbor concurrence of our original ring Nfparticles,
exactlyp spins up. This is a solved probleh8]. The solu-
tion begins with the observation that the operamtsanda 2 sir( b )

are not quite fermionic creation and annihilation operators, c NI N—p 26
since [aj,a]=[a;.a;]=[a],af]=0 for j#k, whereas maxN,P)= [ (26)
truly fermionic operators attached to different sites would NS'”(N_p)

anticommute. It is helpful to define new creation and annihi-

lation operators’ andc that are genuinely fermionic Again, this is the maximum value under the following as-

sumptionsii) the ring has exactlp spins up, andii) no two
up spins are adjacent.

For a given value o, we now need to find out what
value ofp maximizesC,,.{N,p). For any fixedN it is easy
enough to carry out this maximization explicitly. Consider,
. (22) for example, the casd=7. In a ring of seven particles, the

numberp of up spins can have any of the following values
without violating our condition 2p=0, 1, 2, and 3. Inserting
In terms of thec operators, we have these numbers into E¢6) we get the corresponding values
N—p of the concurrenceC=0, 0.286, 0.462, and 0.286. Thus for
H=— (clci. +cl,,c) if pisodd (22 2 ring of seven particles_it is b_eéunder our assumptiom_so
5 A A have two spins up and five spins down. We have carried out

aj ) (20)

-1
oy i t
cj—ex+7rkzl alay

j—1
t_of ; T
CJ —aj ex%_|77k21 akak
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this sort of direct maximization for the first several values of the ring Bizeith the following results:

N 2 3 4 5 6 7 8 9 10
Popt 1 1 1 1or2 2 2 2 3 3
Cinax 1.000 0.667 0.500 0.400 0.471 0.462 0.433 0.444 0.449

Note that though the maximum concurrence tends to de- To close this section, we write down explicitly the
crease with increasindy, it is by no means monotonic. neighboring-pair density matrix for our optimal state of the
It is interesting to find the limiting value of,,x asN infinite chain. In the form(3), the matrix elementsy and x
goes to infinity. To do this, we write E¢26) in terms of N must both be equal ta, the density of up spins. This is
and a=p/N, and holda fixed asN goes to infinity. The because every up-spin is isolated, so that the probability of
result is the pair staté] | ) is the same as the probability that the first
particle has its spin up, and similarly for the probability of
2 | am |1 1). We already have the value af namely, half the con-
Crad @)= —(1=a)sin 7—1. (27 currence; so the density matrix is

0 0 0
0.301 0.217 0
0.217 0.301 0

0 0 0.39

This equation gives the maximum nearest-neighbor concur-

rence(under our assumptioh$or an infinite chain of spirk

particles in which the overall density of up spinsas It is p=
reassuring that this formula is identical to the one obtained in

Ref.[9], which considered only infinite chains. Differentiat-

ing Eqg. (27), one finds that the optimal value aof is

0.300 844, for whichC,,,=0.434 467. This number is thus This matrix is not quite one of the special states identified by
our candidate for the maximum nearest-neighbor concurMunro et al.[17], which maximize entanglement for a fixed
rence of an infinite chain of qubitas in Ref[9]). Note that, purity of the density matrix. Such a state would have all
perhaps surprisingly, for rings of five and eight particles, thethree of the nonzero diagonal elements equal to 1/3. The fact
maximum values o€ as given in the above table asmaller  that it is not the same shows that our problem is not equiva-
than the limiting value for an infinite chain. This is no doubt lent to the fixed-purity problem. Nevertheless, it is interest-
because in these cases one is near the “borderline” betwedng that the two results are as similar as they are.

two different values op,,;, and neither is particularly good.

(29

o O O o

This fact also suggests that the calles5 andN=8 are the ;| ENTANGLEMENT IN AN ANTIFERROMAGNETIC
best places to look for examples in which the maximum RING
concurrence isot achieved by a state satisfying our condi-
tions. Though we introduced an effective Hamiltonian in order
Indeed, by relaxing condition 2, orean achieve higher to solve the preceding problem, the problem itself did not
entanglement foN=5. The state specify any Hamiltonian. We now consider a more concrete
physical model of a ring oN qubits, namely, an antiferro-
1 magnetic ring of spirg particles in which neighboring par-
|¢):E{sin OLTTLLLy+---14+cosal| T TLL)+ -1}, ticles interact via the Heisenberg Hamiltonian
(28) N
Hin Gi Gy (30)

where the ellipses stand for all translations of the given basis
state, has a nearest-neighbor concurrebee).468 whend
=0.302, which is better than the value shown in the abovedere o= (o ,0y,0;) is the vector of Pauli matrices and, as
table. We have looked for similar numerical improvementsbefore, the sum+ 1 is understood to wrap around to 1 when
for N=6, 7, 8, 9, and 10, in each case relaxing condition 2i=N. This model has been studied extensively over many
but preserving condition 1, and we have found ndnet  decades, much of the foundational work having been done
even forN=28). ForN=4 we have removed both conditions by Bethe in the early days of quantum mechapi. In the

1 and 2 and have found no numerical improvement. Finallyspirit of Sec. Il we ask a new question about the model: does
for N=3 it follows from Refs.[7] and[8] that our result is the ground state maximize the nearest-neighbor entangle-
optimal without these conditions. Thus it is conceivable thatment? We restrict our attention to rings with enennumber

our formula gives the true maximum for many valued\pf  of particles, partly because the calculation is considerably
though it does not do so for all values. In any case, it givesimpler in that case, and partly because the symmetry of the
us a lower bound on the maximum nearest-neighbor concuevenN ground state suggests an interesting refinement of
rence, which we will be able to use in the following section. our question, as we will see shortly.
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For the antiferromagnetic ring there is good reason to exwhere we have used the fact thatpFe 1.
pect a connection between minimizing the energy and maxi- It is useful at this point to write the matrix elementand
mizing the entanglement. Contrary to what one would expect in terms of the coefficients that define the ring’s stat.
classically, the ground state is not simply the alternating statgust as in Sec. I, we can write¢) as
[T171---). Though this alternating state minimizes the en-
ergy due to ther, part of the Hamiltonian, it does not do so )= 2 b i i) (35
well for the o, ando, parts. By contrast, the ground state for 1<iy< T <ip=N Ty dplilee-Tp/s
N=2, which is the singlet state

wherep now has the specific valug/2. And just as before,

)=—=1D)=111) @y "
V2 ' -~
— . o : z= > bik,.. kbBi+ik,.. k- (36)
treats all directions of space equivalently since it is rotation- Iskp<---<kp=N P P

ally invariant. Intuitively, one expects that for a ring bf _ _ . )

particles, each pair of nearest neighbors is “trying” to be in The corresponding expression for the matrix elemers

the singlet state in order to minimize its own energy but is

thwarted to some extent by the similar efforts of neighboring v= E 1bi sk, w2 (37)

pairs. Now, the singlet state is maximally entangled; so in a Iskg<'T-<kp=N "~ T3P

certain sense each pair of nearest neighbors, by trying to ) o

minimize its energy, is also trying to be entangled. We wantNote that changes in the phases of the coefficierds not

to see whether the pairs go as far in this direction as thegffectv, though they do affect. In order to minimize the

possibly could, that is, whether they in fact maximize the€nergy as given in Eq34), we want to choose these phases

nearest-neighbor entanglement. Though we do not yet kno®© that Re is as negative as possible. For a fixed set of

the maximum possib|e value of this entang|emé]ﬁcause absolute values of thie’s, this can be done be |ett|ng all the

of the extra conditions we imposed on our states in Sec. |1 b’s be real, with alternating signs given by

we can nevertheless use the result of Sec. Il as a benchmark

for evaluating the entanglement of the antiferromagnetic

ring. For example, if the nearest-neighbor concurrence of the ] ) i

infinite chain is less than 0.434 467, we know that the enin Which case every term of Eq36) IS negative or zero.

tanglement is not maximal. Thus for the gr_ound state of this system, we can write the
We begin by invoking some basic facts about the groun®nergy per particle as

state of an antiferromagnetic ring with an even number of

particles[20]: it is translationally invariant, and it is an E/N=4(v—|z))- 1. (39

eigenstate of the totd component of spin with ei'genvalu'e ow, recall that the concurrence of a density matrix of the

zero. These properties guarantee that the density matrix %Brm (32) is [Eq. (2)]

each pair of neighboring particles has the form '

signof by =(=1)lt" ", (38)

b 0 0 0 C=max2(|z|-v),0}. (40)
Ow z O We thus arrive at the following expression for the concur-
=y 7 0 (32 renceCy, of the ground state of this system, assumiag is
z W the casgthat the ground-state energy is sufficiently negative
0 0 0 v to makeCyg positive.
Let E be the ground-state energy of the system, so bk Cys= —3[(E/N)+1]. (41)

is the contribution from a single paiE/N=Tr[p(c-o)]. o _ .
We now reexpress the ener@/N in terms of the matrix  1his simple relationship depends on the fact that the number
elements ofp. The matrix &- o, written explicitly in the  Of particles in the ring is even. N were odd, the pair density
standard basis, is matrix would not have the fornt32) and its concurrence
would most likely not be a simple function of the energy
alone.
The ground-state energies of antiferromagnetic rings have
(33) been computed for many values Nf[20,21], including the
limiting caseN— o [22]. From these results and E@.1) we
can immediately write down the concurrences. The follow-
ing table shows the values @ for several values oN,
Thus along with corresponding values &f,,,, that we computed
in Sec. Il. The Figure 0.386 appearing in the table as the
E/IN=Tr[p(c-0)]=2(v—w+2 Rez)=4(v+ Rez)—1, concurrence of the ground state of the infinite chain can be
(34 written exactly as 2 In21.

C_QL
Sy
Il

o O O
N
H
LN
|_\
~ © O o
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N 2 4 6 8 10 ... 0.102 0 0 0
—E/N 3.000 2.000 1.868 1.825 1.806-- 1.773 | o 0398 —-0295 O "
Cgs 1000 0.500 0.434 0.412 0.403-- 0.386 P 0 —0295 0.398 0

Cmax 1.000 0.500 0.471 0.433 0.449.- 0434 0 0 0 0.10

. ) _ If we think of the spins of the antiferromagnetic chain as

Thus, though for very small rings the antn‘erromagnet|0utryingn to maximize their entanglement, then evidently
ground states are as entangled as the states we found in S%y are using a rather different strategy than the one we
I, for larger rings they fall short. We can therefore conclude ;sed in Sec. 1. There is no longer any prohibition against
that the grou_nd_ state of an an_tiferromagnetic ring does not "ﬁeighboring up spins. Indeed the presence of such up-spin
general maximize nearest-neighbor entanglement. pairs in the antiferromagnetic chain allows the off-diagonal

There is, however, a more limited sense in _whlch th‘?s%lememz to have a larger magnitude than in E89), which
ground states do maximize entanglement; this is the refingg good for entanglement. On the other hand, the presence of
ment we mentioned earlier. Let us restrict our attention to thegy,c, pairs also forces the matrix element(11|p|11) to
set of states which, like the ground state, are translationallyo nonzero, which is what reduces the concurrence to a value
invariant and have zero totalcomponent of spin. We will |a5s than our best value of Sec. II.
call such states “balanced.” Wg now show that the gnpfer— Shortly after the first version of the present paper ap-
romagnetic ground state maximizes entanglement within thﬁeared, Arneseat al. reported on related work on antiferro-
set of balanced states. _ ~ magnetic and ferromagnetic chains at nonzero temperatures

Let us divide the set of all balanced states into equivazng in nonzero magnetic field@3]. Their work is comple-
lence classes, two states being called equivalent if their cQyentary to ours in that it is primarily numerical and empha-
efficientsb; i in Eq. (35 agree in magnitude, differing sjzes the temperature and field dependence of the nearest-
only in their phases. Of all the states in a given equivalenc@eighbor entanglement rather than the entanglement of the
class, none has a greater nearest-neighbor concurrence thgmound state.
the unique state in that class for which the phases are given
by Eq. (38). This is because, as in the case of the ground
state, such phases allow perfect constructive interference in
Eq.(36). To put it in symbolsC()<C(i), where|) is a We have obtained two main results. First, for translation-
general balanced state anf) is the state obtained frohy) ally invariant rings ofN qubits, we have found values of the
by adjusting the phases of th®s in accordance with Eq. nearest-neighbor concurrences that we know to be achiev-
(38). Now, for |iq), the expectation value of the energy able and that for some values Nfappear to be optimal. At
(o|H| o) is given by the same expression as in E2f) the least, they are lower bounds on the maximum possible

concurrences. Second, we have found that the ground state of
an antiferromagnetic ring with an even number of particles
$<¢0|H|¢fo>=4(v—|2|)—1- (42) typically does not maximize the nearest-peighbor concur-
rence over all states, but that it does achieve such a maxi-
mum over the set of translationally invariant states with no
net spin in thez direction. This set of “balanced” states
includes all the eigenstates of total spin with eigenvalue zero;
so we can also say that the ground state maxintizesdative
to all the spin-0, or rotationally invariant states.

Putting Secs. Il and lll together, we can conclude that
whatever the maximum-concurrence states may be, they are
certainly not balanced. In other words, for maximizing con-
=Cys. (43 currence it is best to have one direction of spin favored over

the opposite direction. This is perhaps counterintuitive, since
a maximally unbalanced state such|a$T---) is not en-
The last inequality comes from the fact that the ground statéangled at all.
minimizes the expectation value of the energy. We have thus The subject of Sec. Il represents an unusual mix: one
shown that no balanced state has a nearest-neighbor concdiees not often associate entanglement with energy minimi-
rence larger than that of the ground state. zation. One might wonder whether the entanglement-

For comparison with Eq(29), it is interesting to write maximization property of antiferromagnetic rings, limited
down explicitly the neighboring-pair density matrix for the though it is, is a special case of a more general connection
ground state of an infinite antiferromagnetic chain. This denbetween energy and entanglement. Do physical systems tend
sity matrix is uniquely determined by the value of the con-to favor entangled states over unentangled states? In a
currenceC=2In2-1, and by the fact that the state is rota- straightforward interpretation of this question, the answer
tionally invariant (the latter condition implies thajz|+v would seem to be nd-erromagneticsystems, for example,
=w). One finds that have ground states in which the spins are completely unen-

IV. CONCLUSIONS

The concurrence dfio) is given by Eq.(40), so we have

1

1
C(l//)gc(l/fo):ma% - E[N<¢O|H|¢/o>+1 0

smax{ - %[(E/N)+1],O
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tangled. Perhaps one could identify a special class of HamilNote that each¢,,) has a norm less than or equal to one.
tonians with interesting entanglement-maximizing proper-Finally, we construct the following mixture, which is another
ties, but at present it is not clear how large such a class mightecomposition op:

be.
1 (2m@i/N)n(m—m’)
ACKNOWLEDGMENT ; | prn){ icnl = NG > e | em) (Wi |
) k,n,m,m’
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y P = N % |¢km><¢km|zp- (A4)

APPENDIX: TRANSLATIONALLY INVARIANT MIXED
STATES We may write this decomposition in a more standard form

In the main part of this paper we assumed that our ringsi y \/diﬂ|rc11|)ng> ng?;ihvzvidhz?ete vectoi®y,) such that ¢yn)
were in pure states. But one could also consider translation- Pinl Pkn-
ally invariant mixed states. We now show that no such state
could have a greater nearest-neighbor entanglement than the p=2 Prnl Pien)( Ppcrl- (A5)
best translationally invariant pure state. k.n

Let p be a mixed state of a ring & qubits. It is transla-
tionally invariant in the sense that it is unchanged under &husp can always be written as a mixture of translationally
permutation of basis states that corresponds to a translatioimvariant pure states, namely, the stag,).
(E.g., in a one-step translation fo&i=7, the basis state We now need to find the concurrence of a pair of neigh-
|010011} becomeg$101001}.) The statep typically can be  boring particles when the whole ring is in the stateLet

decomposed into pure states in many ways; we consider amppair be the density matrix of such a pair, obtained by tracing

such decomposition over the rest of the system, which we cBll
p:; |'pk><l//k|’ (A1) ppair:Ter:%:1 pknTrR|q)kn><q)kn|- (A6)

where each state vectdry) is subnormalizedso that

K lﬁk|¢k>|2 is the probability with which¢) appears in the Concurrence is a convex function on the set of density ma-

trices, so we have

mixture.

There is no guarantee that edak) is itself translation-
ally invariant. However, we can create from EA1) a new C(ppai) =C| X Pn TrRI P Pyerl
decomposition in which all the states are translationally in- kin

variant. First, we enlarge the decompositi@l) by averag-

ing over allN translations: <> PrnC(TrRI PN D). (A7)
k,n
1 > A2
P"N& [ Yn (Y A2 1he quantity C(Trg|®y,)(®,,|) is the concurrence of the

pair of qubits when the whole ring is in the pure stabg,,).
where|yyp,) is obtained from/y,) by anmrstep translation.  The nearest-neighbor concurrence fds thus no larger than
Next, we define a set of translationally invariant pure stateshe average of the nearest-neighbor concurrences for a set of

| dny as follows: translationally invariant pure states. Therefore, one of these
pure states must yield a concurrence at least as large as the
| )= E D e@mi/Nmn . v =0, ... N—1. one deter_mined by. In other words, no t_rar?slationally in-
N “m variant mixed state can have a larger pairwise entanglement

(A3) than the best translationally invariant pure state.
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