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Entangled rings

Kevin M. O’Connor and William K. Wootters
Department of Physics, Williams College, Williamstown, Massachusetts 01267

~Received 24 September 2000; published 13 April 2001!

Consider a ring ofN qubits in a translationally invariant quantum state. We ask to what extent each pair of
nearest neighbors can be entangled. Under certain assumptions about the form of the state, we find a formula
for the maximum possible nearest-neighbor entanglement. We then compare this maximum with the entangle-
ment achieved by the ground state of an antiferromagnetic ring consisting of an even number of spin-1/2
particles. We find that, though the antiferromagnetic ground state typically does not maximize the nearest-
neighbor entanglement relative to all other states, it does so relative to other states having zeroz component of
spin.
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I. INTRODUCTION: ENTANGLEMENT SHARING

Quantum entanglement, as exemplified by the singlet s
of two spin-1/2 particles, (1/A2)(u↑↓&2u↓↑&), has been the
subject of much study in recent years@1#, largely because o
its connection with quantum communication@2# and compu-
tation @3#. Entanglement bears some resemblance to clas
correlation, but it differs in important respects, including t
fact that entangled objects can violate Bell’s inequality@4#.
Perhaps one of the most characteristic differences is thi
two similar quantum objects are completely entangled w
each other, then neither of them can be at all entangled
any other object, whereas there is no such restriction on c
sical correlations. This property is sometimes called
‘‘monogamy’’ of entanglement. For the special case of th
binary quantum objects—three qubits—a quantitative ext
sion of this rule has been proven in terms of a measure
entanglement called the ‘‘concurrence,’’ which takes valu
between zero and one: the square of the concurrence bet
qubitsA andB, plus the square of the concurrence betwe
qubitsA andC, cannot exceed unity@5#. In other words, to
the extent that qubitsA andB are entangled with each othe
they limit the entanglement between qubitsA andC.

The present paper further explores the degree to wh
entanglement can be shared among a number of qubits
focus on two closely related but distinct problems.~i! We
consider a ring ofN qubits in a translationally invarian
quantum state and ask to what extent nearest neighbors
be entangled with each other; specifically, we ask how la
the nearest-neighbor concurrence can be. Note that in
first problem there is no Hamiltonian specified; we are s
ply asking about the entanglement characteristics of quan
states.~ii ! For our second problem we consider a particu
physical system, namely a ring ofN spin-12 particles interact-
ing via the Heisenberg antiferromagnetic Hamiltonian, a
ask whether the ground state of this system is a state
maximum nearest-neighbor entanglement. We will find t
the antiferromagnetic ring maximizes entanglement withi
limited set of states, but not absolutely.

In both of these problems, we are focusing onpairwise
entanglement within a system ofN particles. A number of
problems with a similar focus have been considered bef
Dür @6# has shown that given a system ofN qubits and any
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specified set of pairs of those qubits, one can design a s
such that all the pairs in the chosen set are entangled an
the other pairs are not. For the specific case of three qu
Dür et al. @7# have found a state that maximizes theminimum
of the three pairwise entanglements; the concurrences for
state are all equal, the common value being 2/3. Koashiet al.
@8# have studied completely symmetric states ofN qubits and
have found that the maximum possible concurrence betw
pairs is exactly 2/N. Thus in this context where all the qubit
are required to be equally entangled with each other,
pairwise entanglement goes to zero in the limit of an infin
collection. Wootters@9# has considered a different problem
in which the qubits are arranged in an infinite line and on
the nearest-neighbor entanglement is maximized. He fo
that for the infinite chain in a translationally invariant sta
the nearest-neighbor concurrence does not have to be
but can be as large as 0.434. It is not yet known whether
value is optimal. The problem we are about to address is
simplest finite version of the infinite chain problem.

There have been several other studies of entangleme
N-component systems, usually focusing on higher-or
rather than pairwise entanglement@10#. Briegel and Raussen
dorf, in particular, have used the Ising interaction to gener
interesting states exhibiting high-order entanglement@11#.1

All of these studies contribute to our understanding of e
tanglement distributed among many objects. We hope
our present results can eventually be combined with ot
work to construct a general theory of entanglement shar
not limited to qubits or to any particular geometry.

II. MAXIMIZING NEAREST-NEIGHBOR
ENTANGLEMENT

We begin by recalling the definition of the concurren
@12,13# between a pair of qubits, which we will think of a

1Though Ref.@11# is similar to our work in that it relates a mag
netic Hamiltonian to entanglement, the focus is quite different.
example, Ref.@11# uses the Hamiltonian dynamically to genera
entanglement from an initially unentangled state, whereas we fo
here on the entanglement of the ground state.
©2001 The American Physical Society02-1
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KEVIN M. O’CONNOR AND WILLIAM K. WOOTTERS PHYSICAL REVIEW A 63 052302
spin-12 particles. Letr be the density matrix of the pair
expressed in the standard basis$u↑↑&,u↑↓&,u↓↑&,u↓↓&%. Let r̃
be the spin-reversed density matrix, defined byr̃5(sy

^ sy)r
T(sy^ sy), where sy is the matrix (i

0
0

2 i) and the
superscriptT indicates transposition. Then the concurren
of r is given byC5max$l12l22l32l4,0%, where thel i
are the square roots of the eigenvalues ofrr̃ in descending
order.~These eigenvalues are guaranteed to be real and
negative even thoughrr̃ is not necessarily Hermitian.! Con-
currence is justified as a measure of entanglement by a t
rem @13# showing that C is a monotonically increasing
function of the entanglement of formation@14#. As we men-
tioned above, the values of concurrence range from zero
an unentangled state, to one, for a completely entangled
such as the singlet state.

We imagine a set ofN particles arranged in a ring, with
the locations of the particles labeled by an integeri
51, . . . ,N. In defining our problem, we restrict our attentio
to translationally invariant pure statesuc&, that is, states tha
under the cyclic permutationi→ i 1k ~mod N) are changed
by at most an overall phase factor. Translational invaria
forces the concurrence to be the same for each pair of ne
neighbors. The problem, then, is simply to find the maxim
possible value of this concurrence.2 In the Appendix we
show that the restriction to pure states entails no loss
generality: a translationally invariant mixed state can
have a greater pairwise concurrence than the best pure s

We have not yet been able to solve our problem in fu
We solve instead a more tractable problem in which we li
the set of states over which the maximization is to be do
Specifically, we require our states to satisfy the followi
two conditions.3

1. The stateuc& of the ring is an eigenstate of the totalz
component of spin.

2. Neighboring particles cannot both be in the stateu↑&.
Though we are clearly leaving out many possible states,
plausible that the maximum value we obtain for our
stricted problem will not be far from the absolute maximu
This is because our two conditions tend to favor states w

2For a general, nontranslationally invariant state, one could de
at least two distinct problems along similar lines:~i! maximize the
averageentanglement over all nearest-neighbor pairs, and~ii ! maxi-
mize theminimumentanglement of all nearest-neighbor pairs~see
Ref. @7#!. The first of these problems could be sensitive to the m
sure of entanglement one is using—e.g., concurrence, squared
currence, or entanglement of formation—even though these ar
monotonic functions of each other. Problem~ii !, which does not
have this sensitivity, may thus be more interesting; it may a
reduce to the translationally invariant problem considered here
related, but different, generalization of our problem would be
force all the concurrences between neighboring particles to be
same, without enforcing translational invariance of the state.
insist on translational invariance simply to make the problem m
manageable.

3Condition 2 breaks the symmetry betweenu↑& and u↓&. Our
choice to useu↑& rather thanu↓& in the statement of this condition i
arbitrary and does not affect any of our conclusions.
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high nearest-neighbor entanglement. To see this, let us
sider the density matrixr of a pair of nearest neighbors
obtained by tracinguc&^cu over all the other particles. Con
dition 1 implies that for any pair of particles, there can be
coherent superpositionof basis states with different numbe
of up spins, e.g.,u↓↓& and u↓↑&, because the correspondin
states of the rest of the chain are orthogonal. The den
matrix r must therefore have the following block-diagon
form:4

r5S v 0 0 0

0 w z 0

0 z̄ x 0

0 0 0 y

D . ~1!

One can show by direct calculation that the concurrence
this density matrix is

C52 max$uzu2Avy,0%. ~2!

Condition 2 implies that the matrix elementv is zero, so that
the neighboring-pair density matrix becomes

r5S 0 0 0 0

0 w z 0

0 z̄ x 0

0 0 0 y

D ~3!

and the concurrence becomes simply

C52uzu. ~4!

Density matrices of the form~3! have been singled out in
two recent studies as having particularly high entanglem
Specifically, Ishizaka and Hiroshima@15# have proven that
such density matrices maximize entanglement for a fixed
of eigenvalues when one of the eigenvalues is zero.@They
also show numerically that the form~1! is optimal when all
four eigenvalues are nonzero, a result that has been pro
by Verstraeteet al. @16#.# Munro et al. @17# have shown that
certain states of the form~3! maximize concurrence for a
fixed value of the purity, defined as Tr(r2). These studies
suggest that our two conditions are consistent with high
tanglement, but they do not guarantee that we will be able
reach the absolute maximum. Indeed, we will see below
for at least one value ofN, the optimal concurrence isnot
achievable by any state satisfying our conditions. Nevert
less, our solution to the restricted problem will be useful
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o
A
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e

4In fact translational invariance implies that the matrix elementw
and x must be equal—the frequency of occurrence ofu↑↓& in the
ring must be the same as that ofu↓↑&—but we will not need to use
this equality in what follows.
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ENTANGLED RINGS PHYSICAL REVIEW A 63 052302
Sec. III where we discuss antiferromagnetic rings, and
should also serve as a good starting point for future work
the complete problem.

Condition 1 forces the ring’s stateuc& to have a fixed
numberp of up spins and a fixed numberN2p of down
spins, but it does not specify the value ofp. Our strategy will
be to fix the values of bothN and p and to maximize the
nearest-neighbor concurrence over all states having t
values and satisfying condition 2. This problem turns out
be exactly soluble, so that one can write down an anal
formula for the maximum concurrenceCmax(N,p). We can
then use this formula to find the optimal number of up spi
and hence the optimal concurrence, for any ring sizeN.

For fixedN andp, the most general state we are cons
ering has the form

uc&5 (
1< i 1,•••, i p<N

bi 1 . . . i p
u i 1 . . . i p&, ~5!

where u i 1 . . . i p& is the state in which the particles at loc
tions i 1 , . . . ,i p have their spins up and all the other particl
have their spins down. Though the above sum requires
ues ofb only for sets of indices that are in ascending ord
for convenience we defineb to be symmetric in all its indices
and equal to zero if any two indices have the same va
The normalization condition on the coefficientsb is

(
1< i 1,•••, i p<N

ubi 1 . . . i p
u251. ~6!

The condition of translational invariance is expressed as

bi 1 . . . i p
5eikubi 11k . . . i p1k , ~7!

where addition is understood to be modN and eiNu51. Fi-
nally, in accordance with condition 2 above, the coefficie
b must satisfy the constraint

bi 1 . . . i p
50 if i n2 i m51 for any n,m51, . . . ,p.

~8!

That is, no state is allowed in which two up-spins are ad
cent.

To find the concurrence between two neighboring p
ticles, we need to find the off-diagonal elementz of the two-
particle density matrix as expressed in Eq.~3!. Translational
invariance guarantees that the value ofz will be the same for
each pair of nearest neighbors; we consider a specific pa
locationsi and i 11. Taking the partial trace ofuc&^cu over
all the other particles, we find that

z5 (
1<k2,•••,kp<N

bi ,k2 . . . kp
b̄i 11,k2 . . . kp

, ~9!

so that

C52uzu5U (
1<k2,•••,kp<N

2bi ,k2 . . . kp
b̄i 11,k2 . . . kpU.

~10!
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This form tells us immediately that the concurrence can
maximized by choosing the coefficientsb to be real and non-
negative: if we were to use complex values, then the conc
rence could only be made larger, not smaller, by replac
each coefficientb by its absolute value. Let us therefore r
strict our attention to such real and non-negative states
that case, translational invariance takes the simple form

bi 1 . . . i p
5bi 11k, . . . ,i p1k . ~11!

Thus, once the values ofb1,i 2 . . . i p
are fixed, all the otherb’s

are determined.
The condition expressed by Eq.~8!, i.e., that no two up

spins should be adjacent, is an awkward one to enforce
rectly. It is therefore helpful to relate our problem to a sim
pler problem that does not have this constraint. Roug
speaking, we do this by removing from the ring the s
immediately to the right of each up spin. More precisely,
consider a ring ofN2p particles with exactlyp up spins, and
we assign to every stateuc& of our original ring~every state,
that is, that satisfies our conditions! a corresponding state
uf& of the smaller ring

uf&5 (
1< j 1,•••, j p<N2p

dj 1 . . . j p
u j 1 . . . j p&. ~12!

The coefficientsd are defined in terms of the original coe
ficients b1,i 2 . . . i p

with 1, i 2,•••, i p . Let j 25 i 221,

j 35 i 322, . . . ,j p5 i p2(p21); then d1,j 2 . . . j p

[AN/(N2p)b1,i 2 . . . i p
. The values of the otherd’s are de-

termined by translational invariance—that is,dj 1 . . . j p

5dj 11k, . . . ,j p1k (modN2p)—and as before, we take

dj 1 . . . j p
to be symmetric under permutations of the indic

and equal to zero whenever two indices have the same va
The factorAN/(N2p) is included in order to makeuf&
normalized: translations around the ring generate fewerd’s
than b’s, so that thed’s need to be larger.5 Let us define a
pseudoconcurrenceC8 of the smaller ring by analogy with
Eq. ~10!,

C85 (
1<k2,•••,kp<N2p

2dj ,k2 . . . kp
d̄j 11,k2 . . . kp

, ~13!

where we have omitted the absolute value sign since thed’s
are all real and non-negative. Because our states of the s
ring do not satisfy condition 2,C8 is not the nearest-neighbo
concurrence of the stateuf&. However, because of the rela
tionship betweend andb, we can useC8 to find the concur-
renceC of our original ring,

C5
N2p

N
C8. ~14!

5For each collection ofb’s that are equal because of translation
invariance, there is a corresponding set ofd’s, and the ratio of the
sizes of these sets is alwaysN/(N2p).
2-3
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KEVIN M. O’CONNOR AND WILLIAM K. WOOTTERS PHYSICAL REVIEW A 63 052302
Thus we want to find the maximum possible value ofC8
over all real and non-negative, translationally invariant sta
of the (N2p)-particle ring with exactlyp up spins.

To do this, let us rewrite Eq.~13! in a more convenien
form by introducing the creation and annihilation operato

aj
†5S 0 1

0 0D and aj5S 0 0

1 0D , ~15!

which act on the particle at locationj of the small ring and
are expressed here in the basis$u↑&,u↓&%. In terms of these
operators, Eq.~13! becomes simply

C852^fuaj 11
† aj uf&. ~16!

The value given by Eq.~16! is the same for all pairs$ j , j
11%. We can therefore writeC8 as the average of this quan
tity over j,

C85
2

N2p
^fu (

j 51

N2p

aj 11
† aj uf&. ~17!

Again using our assumption that the coefficients are real,
can reexpress Eq.~17! as

C852S 1

N2pD ^fuHuf&, ~18!

where

H52 (
j 51

N2p

~aj
†aj 111aj 11

† aj !. ~19!

In other words, a stateuf& maximizesC8 if it minimizes the
expectation value of the operatorH, as long as this minimum
is achieved with only non-negative real values of the coe
cientsd.

The operator H is the Hamiltonian for the one
dimensional ferromagneticXY model; so our problem re
duces to finding the lowest-energy state of this model w
exactlyp spins up. This is a solved problem@18#. The solu-
tion begins with the observation that the operatorsa† anda
are not quite fermionic creation and annihilation operato
since @aj ,ak#5@aj ,ak

†#5@aj
† ,ak

†#50 for j 5” k, whereas
truly fermionic operators attached to different sites wou
anticommute. It is helpful to define new creation and ann
lation operatorsc† andc that are genuinely fermionic

cj5expF ip(
k51

j 21

ak
†akGaj , ~20!

cj
†5aj

†expF2 ip(
k51

j 21

ak
†akG . ~21!

In terms of thec operators, we have

H52 (
j 51

N2p

~cj
†cj 111cj 11

† cj ! if p is odd ~22!
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H52 (
j 51

(N2p)21

~cj
†cj 111cj 11

† cj !

1~cN2p
† c11c1

†cN2p! if p is even. ~23!

For either odd or evenp, the Hamiltonian can be diagona
ized exactly, so that the system can be regarded as a co
tion of p independent identical fermions. For oddp, one finds
that the energy eigenvalues of these fermions areem
522 cos@2mp/(N2p)#, m51, . . . ,N2p, whereas for
even p they are em522 cos@(2m11)p/(N2p)#, m
51, . . . ,N2p. The minimum value of̂ fuHuf& is the sum
of the p smallest valuesem , since in the ground state th
fermions will occupy thep lowest energy levels. This sum
turns out to be given by the following formula, valid for bot
even and odd values ofp,

Emin52

2 sinS pp

N2pD
sinS p

N2pD . ~24!

The stateuf& corresponding to this energy is the discre
version of the ground-state wave function of a set ofp hard
beads on a loop of wire. The coefficientsdj 1 . . . j p

associated
with this state can be taken to be real and non-negative,
the state is translationally invariant. Thus the assumed c
ditions are met and we can useEmin to find the maximum
pseudoconcurrenceCmax8 in accordance with Eq.~18!,

Cmax8 52
1

N2p
Emin5

2 sinS pp

N2pD
~N2p!sinS p

N2pD . ~25!

Finally, using the relation~14!, we get the maximum neares
neighbor concurrence of our original ring ofN particles,

Cmax~N,p!5

2 sinS pp

N2pD
N sinS p

N2pD . ~26!

Again, this is the maximum value under the following a
sumptions:~i! the ring has exactlyp spins up, and~ii ! no two
up spins are adjacent.

For a given value ofN, we now need to find out wha
value ofp maximizesCmax(N,p). For any fixedN it is easy
enough to carry out this maximization explicitly. Conside
for example, the caseN57. In a ring of seven particles, th
numberp of up spins can have any of the following value
without violating our condition 2:p50, 1, 2, and 3. Inserting
these numbers into Eq.~26! we get the corresponding value
of the concurrence:C50, 0.286, 0.462, and 0.286. Thus fo
a ring of seven particles it is best~under our assumptions! to
have two spins up and five spins down. We have carried
2-4
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this sort of direct maximization for the first several values of the ring sizeN, with the following results:

N 2 3 4 5 6 7 8 9 10

popt 1 1 1 1 or 2 2 2 2 3 3
Cmax 1.000 0.667 0.500 0.400 0.471 0.462 0.433 0.444 0.4
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Note that though the maximum concurrence tends to
crease with increasingN, it is by no means monotonic.

It is interesting to find the limiting value ofCmax as N
goes to infinity. To do this, we write Eq.~26! in terms ofN
and a[p/N, and holda fixed asN goes to infinity. The
result is

Cmax~a!5
2

p
~12a!sinS ap

12a D . ~27!

This equation gives the maximum nearest-neighbor con
rence~under our assumptions! for an infinite chain of spin-12
particles in which the overall density of up spins isa. It is
reassuring that this formula is identical to the one obtaine
Ref. @9#, which considered only infinite chains. Differentia
ing Eq. ~27!, one finds that the optimal value ofa is
0.300 844, for whichCmax50.434 467. This number is thu
our candidate for the maximum nearest-neighbor conc
rence of an infinite chain of qubits~as in Ref.@9#!. Note that,
perhaps surprisingly, for rings of five and eight particles,
maximum values ofC as given in the above table aresmaller
than the limiting value for an infinite chain. This is no dou
because in these cases one is near the ‘‘borderline’’ betw
two different values ofpopt , and neither is particularly good
This fact also suggests that the casesN55 andN58 are the
best places to look for examples in which the maximu
concurrence isnot achieved by a state satisfying our cond
tions.

Indeed, by relaxing condition 2, onecan achieve higher
entanglement forN55. The state

uc&5
1

A5
$sinu@ u↑↑↓↓↓&1•••#1cosu@ u↑↓↑↓↓&1•••] %,

~28!

where the ellipses stand for all translations of the given b
state, has a nearest-neighbor concurrenceC50.468 whenu
50.302, which is better than the value shown in the ab
table. We have looked for similar numerical improveme
for N56, 7, 8, 9, and 10, in each case relaxing condition
but preserving condition 1, and we have found none~not
even forN58). ForN54 we have removed both condition
1 and 2 and have found no numerical improvement. Fina
for N53 it follows from Refs.@7# and @8# that our result is
optimal without these conditions. Thus it is conceivable t
our formula gives the true maximum for many values ofN,
though it does not do so for all values. In any case, it gi
us a lower bound on the maximum nearest-neighbor con
rence, which we will be able to use in the following sectio
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To close this section, we write down explicitly th
neighboring-pair density matrix for our optimal state of t
infinite chain. In the form~3!, the matrix elementsw andx
must both be equal toa, the density of up spins. This i
because every up-spin is isolated, so that the probability
the pair stateu↑↓& is the same as the probability that the fir
particle has its spin up, and similarly for the probability
u↓↑&. We already have the value ofz, namely, half the con-
currence; so the density matrix is

r5S 0 0 0 0

0 0.301 0.217 0

0 0.217 0.301 0

0 0 0 0.398

D . ~29!

This matrix is not quite one of the special states identified
Munro et al. @17#, which maximize entanglement for a fixe
purity of the density matrix. Such a state would have
three of the nonzero diagonal elements equal to 1/3. The
that it is not the same shows that our problem is not equ
lent to the fixed-purity problem. Nevertheless, it is intere
ing that the two results are as similar as they are.

III. ENTANGLEMENT IN AN ANTIFERROMAGNETIC
RING

Though we introduced an effective Hamiltonian in ord
to solve the preceding problem, the problem itself did n
specify any Hamiltonian. We now consider a more concr
physical model of a ring ofN qubits, namely, an antiferro
magnetic ring of spin-12 particles in which neighboring par
ticles interact via the Heisenberg Hamiltonian

H5(
i

N

sW i•sW i 11 . ~30!

HeresW 5(sx ,sy ,sz) is the vector of Pauli matrices and, a
before, the sumi 11 is understood to wrap around to 1 whe
i 5N. This model has been studied extensively over ma
decades, much of the foundational work having been d
by Bethe in the early days of quantum mechanics@19#. In the
spirit of Sec. II we ask a new question about the model: d
the ground state maximize the nearest-neighbor entan
ment? We restrict our attention to rings with anevennumber
of particles, partly because the calculation is considera
simpler in that case, and partly because the symmetry of
even-N ground state suggests an interesting refinemen
our question, as we will see shortly.
2-5
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For the antiferromagnetic ring there is good reason to
pect a connection between minimizing the energy and m
mizing the entanglement. Contrary to what one would exp
classically, the ground state is not simply the alternating s
u↑↓↑↓•••&. Though this alternating state minimizes the e
ergy due to thesz part of the Hamiltonian, it does not do s
well for thesx andsy parts. By contrast, the ground state f
N52, which is the singlet state

uc&5
1

A2
~ u↑↓&2u↓↑&), ~31!

treats all directions of space equivalently since it is rotati
ally invariant. Intuitively, one expects that for a ring ofN
particles, each pair of nearest neighbors is ‘‘trying’’ to be
the singlet state in order to minimize its own energy but
thwarted to some extent by the similar efforts of neighbor
pairs. Now, the singlet state is maximally entangled; so i
certain sense each pair of nearest neighbors, by tryin
minimize its energy, is also trying to be entangled. We w
to see whether the pairs go as far in this direction as t
possibly could, that is, whether they in fact maximize t
nearest-neighbor entanglement. Though we do not yet k
the maximum possible value of this entanglement~because
of the extra conditions we imposed on our states in Sec.!,
we can nevertheless use the result of Sec. II as a bench
for evaluating the entanglement of the antiferromagne
ring. For example, if the nearest-neighbor concurrence of
infinite chain is less than 0.434 467, we know that the
tanglement is not maximal.

We begin by invoking some basic facts about the grou
state of an antiferromagnetic ring with an even number
particles @20#: it is translationally invariant, and it is an
eigenstate of the totalz component of spin with eigenvalu
zero. These properties guarantee that the density matri
each pair of neighboring particles has the form

r5S v 0 0 0

0 w z 0

0 z̄ w 0

0 0 0 v

D . ~32!

Let E be the ground-state energy of the system, so thatE/N
is the contribution from a single pair:E/N5Tr@r(sW •sW )#.
We now reexpress the energyE/N in terms of the matrix
elements ofr. The matrix sW •sW , written explicitly in the
standard basis, is

sW •sW 5S 1 0 0 0

0 21 2 0

0 2 21 0

0 0 0 1

D . ~33!

Thus

E/N5Tr @r~sW •sW !#52~v2w12 Rez!54~v1 Rez!21,
~34!
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where we have used the fact that Trr51.
It is useful at this point to write the matrix elementsv and

z in terms of the coefficients that define the ring’s stateuc&.
Just as in Sec. II, we can writeuc& as

uc&5 (
1< i 1,•••, i p<N

bi 1 . . . i p
u i 1 . . . i p&, ~35!

wherep now has the specific valueN/2. And just as before,
we have

z5 (
1<k2,•••,kp<N

bi ,k2 . . . kp
b̄i 11,k2 . . . kp

. ~36!

The corresponding expression for the matrix elementv is

v5 (
1<k3,•••,kp<N

ubi ,i 11,k3 . . . kp
u2. ~37!

Note that changes in the phases of the coefficientsb do not
affect v, though they do affectz. In order to minimize the
energy as given in Eq.~34!, we want to choose these phas
so that Rez is as negative as possible. For a fixed set
absolute values of theb’s, this can be done be letting all th
b’s be real, with alternating signs given by

sign of bi 1 . . . i p
5~21! i 11•••1 i p, ~38!

in which case every term of Eq.~36! is negative or zero.
Thus for the ground state of this system, we can write
energy per particle as

E/N54~v2uzu!21. ~39!

Now, recall that the concurrence of a density matrix of t
form ~32! is @Eq. ~2!#

C5max$2~ uzu2v !,0%. ~40!

We thus arrive at the following expression for the conc
renceCgs of the ground state of this system, assuming~as is
the case! that the ground-state energy is sufficiently negat
to makeCgs positive.

Cgs52 1
2 @~E/N!11#. ~41!

This simple relationship depends on the fact that the num
of particles in the ring is even. IfN were odd, the pair density
matrix would not have the form~32! and its concurrence
would most likely not be a simple function of the energ
alone.

The ground-state energies of antiferromagnetic rings h
been computed for many values ofN @20,21#, including the
limiting caseN→` @22#. From these results and Eq.~41! we
can immediately write down the concurrences. The follo
ing table shows the values ofCgs for several values ofN,
along with corresponding values ofCmax that we computed
in Sec. II. The Figure 0.386 appearing in the table as
concurrence of the ground state of the infinite chain can
written exactly as 2 ln 221.
2-6
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N 2 4 6 8 10 ••• `

2E/N 3.000 2.000 1.868 1.825 1.806••• 1.773
Cgs 1.000 0.500 0.434 0.412 0.403••• 0.386
Cmax 1.000 0.500 0.471 0.433 0.449••• 0.434

Thus, though for very small rings the antiferromagne
ground states are as entangled as the states we found in
II, for larger rings they fall short. We can therefore conclu
that the ground state of an antiferromagnetic ring does no
general maximize nearest-neighbor entanglement.

There is, however, a more limited sense in which th
ground states do maximize entanglement; this is the refi
ment we mentioned earlier. Let us restrict our attention to
set of states which, like the ground state, are translation
invariant and have zero totalz component of spin. We will
call such states ‘‘balanced.’’ We now show that the antif
romagnetic ground state maximizes entanglement within
set of balanced states.

Let us divide the set of all balanced states into equi
lence classes, two states being called equivalent if their
efficientsbi 1 . . . i p

in Eq. ~35! agree in magnitude, differing
only in their phases. Of all the states in a given equivale
class, none has a greater nearest-neighbor concurrence
the unique state in that class for which the phases are g
by Eq. ~38!. This is because, as in the case of the grou
state, such phases allow perfect constructive interferenc
Eq. ~36!. To put it in symbols,C(c)<C(c0), whereuc& is a
general balanced state anduc0& is the state obtained fromuc&
by adjusting the phases of theb’s in accordance with Eq
~38!. Now, for uc0&, the expectation value of the energ
^c0uHuc0& is given by the same expression as in Eq.~39!

1

N
^c0uHuc0&54~v2uzu!21. ~42!

The concurrence ofuc0& is given by Eq.~40!, so we have

C~c!<C~c0!5maxH 2
1

2 F 1

N
^c0uHuc0&11G ,0J

<maxH 2
1

2
@~E/N!11#,0J 5Cgs . ~43!

The last inequality comes from the fact that the ground s
minimizes the expectation value of the energy. We have t
shown that no balanced state has a nearest-neighbor co
rence larger than that of the ground state.

For comparison with Eq.~29!, it is interesting to write
down explicitly the neighboring-pair density matrix for th
ground state of an infinite antiferromagnetic chain. This d
sity matrix is uniquely determined by the value of the co
currence,C52 ln 221, and by the fact that the state is rot
tionally invariant ~the latter condition implies thatuzu1v
5w). One finds that
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r5S 0.102 0 0 0

0 0.398 20.295 0

0 20.295 0.398 0

0 0 0 0.102

D . ~44!

If we think of the spins of the antiferromagnetic chain
‘‘trying’’ to maximize their entanglement, then evidentl
they are using a rather different strategy than the one
used in Sec. II. There is no longer any prohibition agai
neighboring up spins. Indeed the presence of such up-
pairs in the antiferromagnetic chain allows the off-diagon
elementz to have a larger magnitude than in Eq.~29!, which
is good for entanglement. On the other hand, the presenc
such pairs also forces the matrix elementv5^↑↑uru↑↑& to
be nonzero, which is what reduces the concurrence to a v
less than our best value of Sec. II.

Shortly after the first version of the present paper a
peared, Arnesenet al. reported on related work on antiferro
magnetic and ferromagnetic chains at nonzero temperat
and in nonzero magnetic fields@23#. Their work is comple-
mentary to ours in that it is primarily numerical and emph
sizes the temperature and field dependence of the nea
neighbor entanglement rather than the entanglement of
ground state.

IV. CONCLUSIONS

We have obtained two main results. First, for translatio
ally invariant rings ofN qubits, we have found values of th
nearest-neighbor concurrences that we know to be ach
able and that for some values ofN appear to be optimal. At
the least, they are lower bounds on the maximum poss
concurrences. Second, we have found that the ground sta
an antiferromagnetic ring with an even number of partic
typically does not maximize the nearest-neighbor conc
rence over all states, but that it does achieve such a m
mum over the set of translationally invariant states with
net spin in thez direction. This set of ‘‘balanced’’ state
includes all the eigenstates of total spin with eigenvalue ze
so we can also say that the ground state maximizesC relative
to all the spin-0, or rotationally invariant states.

Putting Secs. II and III together, we can conclude th
whatever the maximum-concurrence states may be, they
certainly not balanced. In other words, for maximizing co
currence it is best to have one direction of spin favored o
the opposite direction. This is perhaps counterintuitive, si
a maximally unbalanced state such asu↑↑↑•••& is not en-
tangled at all.

The subject of Sec. III represents an unusual mix: o
does not often associate entanglement with energy min
zation. One might wonder whether the entangleme
maximization property of antiferromagnetic rings, limite
though it is, is a special case of a more general connec
between energy and entanglement. Do physical systems
to favor entangled states over unentangled states?
straightforward interpretation of this question, the answ
would seem to be no.Ferromagneticsystems, for example
have ground states in which the spins are completely un
2-7
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tangled. Perhaps one could identify a special class of Ha
tonians with interesting entanglement-maximizing prop
ties, but at present it is not clear how large such a class m
be.
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APPENDIX: TRANSLATIONALLY INVARIANT MIXED
STATES

In the main part of this paper we assumed that our ri
were in pure states. But one could also consider translat
ally invariant mixed states. We now show that no such s
could have a greater nearest-neighbor entanglement tha
best translationally invariant pure state.

Let r be a mixed state of a ring ofN qubits. It is transla-
tionally invariant in the sense that it is unchanged unde
permutation of basis states that corresponds to a transla
~E.g., in a one-step translation forN57, the basis state
u0100111& becomesu1010011&.! The stater typically can be
decomposed into pure states in many ways; we consider
such decomposition

r5(
k

uck&^cku, ~A1!

where each state vectoruck& is subnormalizedso that
z^ckuck& z2 is the probability with whichuck& appears in the
mixture.

There is no guarantee that eachuck& is itself translation-
ally invariant. However, we can create from Eq.~A1! a new
decomposition in which all the states are translationally
variant. First, we enlarge the decomposition~A1! by averag-
ing over allN translations:

r5
1

N (
k,m

uckm&^ckmu, ~A2!

whereuckm& is obtained fromuck& by anm-step translation.
Next, we define a set of translationally invariant pure sta
ufkn& as follows:

ufkn&5
1

N (
m

e(2p i /N)mnuckm&, n50, . . . ,N21.

~A3!
sc

t.
-

.
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Note that eachufkn& has a norm less than or equal to on
Finally, we construct the following mixture, which is anoth
decomposition ofr:

(
k,n

ufkn&^fknu5
1

N2 (
k,n,m,m8

e(2p i /N)n(m2m8)uckm&^ckm8u

5
1

N (
k,m

uckm&^ckmu5r. ~A4!

We may write this decomposition in a more standard fo
by defining normalized state vectorsuFkn& such thatufkn&
5ApknuFkn&. Then we have

r5(
k,n

pknuFkn&^Fknu. ~A5!

Thusr can always be written as a mixture of translationa
invariant pure states, namely, the statesuFkn&.

We now need to find the concurrence of a pair of neig
boring particles when the whole ring is in the stater. Let
rpair be the density matrix of such a pair, obtained by trac
over the rest of the system, which we callR.

rpair5TrRr5(
k,n

pkn TrRuFkn&^Fknu. ~A6!

Concurrence is a convex function on the set of density m
trices, so we have

C(rpair)5CS (
k,n

pkn TrRuFkn&^Fknu D
<(

k,n
pknC~TrRuFkn&^Fknu!. ~A7!

The quantityC(TrRuFkn&^Fknu) is the concurrence of the
pair of qubits when the whole ring is in the pure stateuFkn&.
The nearest-neighbor concurrence forr is thus no larger than
the average of the nearest-neighbor concurrences for a s
translationally invariant pure states. Therefore, one of th
pure states must yield a concurrence at least as large a
one determined byr. In other words, no translationally in
variant mixed state can have a larger pairwise entanglem
than the best translationally invariant pure state.
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