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Generalized measurements of atomic qubits
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We discuss how generalized measurements may be performed on various atomic systems including cold ions
and Rydberg atoms. The suggested methods rely on the fact that any generalized measurement can be identified
with a unitary transformation followed by a projective measurement in a higher-dimensional Hilbert space. If
the information to be measured is stored in the form of atomic qubits this unitary transformation can be
accomplished by redistributing the population of the relevant atomic levels.
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[. INTRODUCTION exceeds the dimensionality of the system, an unambiguous
state discrimination becomes impossible even if we allow for
Sparked by the fast development in the areas of quantunmconclusivenes$14,15, and the optimal measurement is
computation and quantum cryptograpfl], an interest in not a straightforward projection onto orthogonal states.
guantum observations beyond von Neumann measurements Given a measurement problem, it is usually a nontrivial
has been arising. The formalism of probability operator meatask to find the optimal strategy. Only a few experiments
sures(POM) [2—4] was developed to describe general quanimplementing state discrimination protocols, and only on
tum measurements and allows us to interrogate qubits iphotons, have been performed so [fa6—19. In this paper
more general ways. we will concentrate on how to accomplish generalized mea-
The standard way of picturing a quantum measurement isurements on atomic systems. We will first, in Sec. Il, briefly
the von Neumann descriptid®], where measuring the ob- describe the theory of probability operator measures and il-
servableA corresponds to a projection onto the eigenstates olustrate it with the examples of unambiguous state discrimi-
the associated Hermitian operatar In an ideal von Neu- Nation and distinction between trine states. In Sec. Il we will
mann measurement the wave function of the system is imad0troduce a measurement strategy involving a unitary trans-
ined to “collapse” into one of these eigenstates and the mealormation on an extension of the original system. In Secs. IV
surement result is given by the corresponding eigenvaluend V we will explicitly show how POMs can be realized on
The information that can be provided by a von Neumanrdifferent atomic systems and describe the experimental re-
measurement is restricted in principle. In particular, observauirements.
ables can be determined at the same time only if they can be
described in the same basis of eigenstates. The simultaneous Il. GENERALIZED MEASUREMENTS
measurement of noncommuting observables, such as the po-

sition and momentum of a particle, requires a more generaluaA geor}erg'g:gi"rt"egsgrr:t”;reme‘iz(%i)%pfgfi]elfjlr:q;ige lan-
description[6,7] involving the introduction of observables guag P y op )

associated with another quantum system. formalism, each possible outcome of the measAurement, la-

Another example suggesting the necessity of a generaPeled byj, is associated with a Hermitian operaldy. The
ized measurement is the discrimination between nonorthogderobability P; to obtain the result labeled Kyis given by
nal states, a task interesting in the light of quantum crypto- .
graphic protocols based on two nonorthogonal sta8s Pi=Tr(pll;), (1)
Only if a system is prepared in one of tyar more orthogo-
nal states is it possible to unambiguously determine this stat@herep is the premeasurement density operator of the sys-
by means of a von Neumann measurement. In this case, t 5

) i ; I? m. As a result, all the eigenvalues of the operafbjrshave
only source of uncertainty associated with the measurement

is the technical imperfection of the detection process. Iff0 Pe positive or zero, anH; forms a decomposition of the
however, the states of interest are nonorthogonal, their finitélentity operator,

overlap causes an intrinsic uncertainty in the measurement.

We may optimize the von Neumann measurement in order to > ﬁj =1 2
minimize the overall probability to obtain an erroneous result j

[2,9]. Instead, we may choose to perform an error-free mea- .
surement at the expense of sometimes obtaining an inconcldhe€ POM elements can always be represented by linear com-
sive result{10—-13. This is not a von Neumann measure- inations of pure state projectord;)(¥|. For the applica-
ment, since the number of potential results is greater than tHéons considered in this paper, it is suffici¢@0] to consider
dimensionality of the system. A particular example of thePOM elements of the form

discrimination between nonorthogonal states is the distinc- .

tion between overcomplete states. If the number of states Hj=|\I’j>(\lfj|. 3)
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FIG. 1. Unambiguous discrimination between the nonorthogonal ~FIG. 2. Discrimination between the trine statgs;) with j
states|¢,) and |¢,) corresponds to a projection onto the states=1,2,3. The measurement corresponds to a projection onto the
[61), |d3), and|?). three mutually orthogonal stat¢¥;).

For a von Neumann measurement, the POM elements are thigo the two-dimensional subspacél,=|¥)(¥,|, II,
projectors onto the orthonormal eigenstates of the observ;m, YW andil — | W) (W], where
able. In general, however, the statel;) are neither or- 2/ = 20 (AN

thogonal nor normalized.

In the following we will give two explicit examples of W)= i[tan0| 1)+|2)],
measurement situations and the corresponding optimal mea- V2
surement strategies. We will first consider the unambiguous
distinction between two nonorthogonal states. We assume 1
that a quantum system was prepared in one of the states W)= E[tanﬂ 1)—12)1, (5)

|p1) =c0s6|1)+sin | 2),

A positive measurement outcome correspondinﬁ;g tells
where 0< < /4, and|1) and|2) are orthonormal. As the us that the system was prepared in the stdie,), respec-
states|¢;) and|¢,) are nonorthogonal they cannot be dis- a1y while I1, indicates an inconclusive result.
tinguished from each other with certairjty0-13. In order Another exémple of a measurement situation, which can-

to obtalun an error-_lf_rr;ee me_asuremer;)t, k‘)’?’l‘? hfave to aIIowaohot be optimally solved by means of a von Neumann mea-
Inconclusiveness. The minimum probability for an inconclu-g,-ement, is the distinction between linearly dependent

sive result is given by the overlah,| ¢;) =cos 2. _ states. Assume that our quantum system is prepared in one of
We will know for certain that the system was prepared iny,q three nonorthogonal, symmetric states

state| ¢,) if we detect that it is not in statlp,). This cor-
responds to a positive measurement outcome for a projection |¢j>=cos(aj)|1)+sin(aj)|2>, (6)

in a direction orthogonal tpg,). Similarly we have to mea-

sure in a direction orthogonal {@,) in order to know that ~with the anglesa;=a,a,=a+27/3, and az=a+4x/3.

the system was initially prepared in stdi#,). Both mea- These states are usually referred to as the trine sfafes
surements can be performed at the same time only if the tw@3]. In order to measure in which trine state the system was
detection states are orthogonal to each other. In order tprepared, we again need to introduce a third st&®g, or-
achieve this, we have to introduce a third dimension orthogothogonal tg 1) and|2). We now associate the nonorthogonal
nal to the plane spanned by) and|2) as depicted in Fig. 1, trine states with three orthogonal states in three dimensions,

| p,) =c0os6|1)—sin 4| 2),

and the states we want to project on are in such a way that each trine state has a large overlap with

one of the orthogonal states and only a small overlap with

1 the other two, as shown in Fig. 2. These three orthogonal
|¢1>:E[tar( 0)|1)+2)+V1-tarr(0)[3)], states are given by2/3 ¢;)+1/33), with j=1,2,3. Their

projection onto the two-dimensional initial subspace results
L in the state§W;)=2/3 ¢;). It can be shown that, if the

n_ 1 —12)+ V1 —tard(8)|3)]. states| ¢;) are equiprobable, the POM that minimizes the
|$2) \/E[tar( 011)-12) tarf(9)[3)] error probability indeed has the elements
The state orthogonal to these two,
|5y =—1—tarf(6)|1)+tan 6)|3),
wherej=1,2,3[2,24,25. We note that such measurements

corresponds to an inconclusive result. The respective POMre also important in quantum communication problems
elements are derived from the projection of these states ba¢R0,27,28.

~ 2
=51 &, @
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Ill. GENERAL MEASUREMENTS BY BASIS

wherell/ = | ){W|. This means that the generalized mea-
TRANSFORMATION ! 1

surement can be performed as a von Neumann projection
Note that the unambiguous discrimination between twoonto the state¥;).

nonorthogonal states as well as between trine states involved In an experiment we perform measurements by monitor-

the introduction of a third dimension. Neumark’s theoreming the populations of the atomic statg§$. We therefore

[26] implies that any POM measurement can be realized as lhave to map the statdﬂ’{) onto the “read-out” statesj)

von Neumann measurement in an extended Hilbert spacey means of a unitary transformation

We need to introduce auxiliary states until the dimension of

. L. . . N N N
the Hilbert space coincides with the number of required mea- - ) , oy
surementdN. We denote these states that span the extended U :]Zl (¥ |:;l jzl ARG (12)
Hilbert space withj), wherej=1, ... N. This allows us to
associate each of thérequired measurement outcomes with Unitarity follows from orthonormality and completeness of
one of the orthonormal statég). In the following we will i) and|\l'j’>.

outline t_he required measurement procedure. For. simpl_icity Applied to an initial staté) in the subspace of the origi-
we restrict ourselves to measurements on a two-dimensiongh| system, the required transformation is

system; however, the same considerations can easily be ap-

plied to systems of a higher dimension. R N N
In two dimensions we denote tHé POM elementd U|¢f>=j21 |J><Wi |'/’>:j21 |J><Wi|¢>' (13
=|W;)(¥;| with j=1, ... N where

This means that the probability to find the system in stpte
|Wi)= 1] 1)+ ;2] 2). ® . S o .
is exactly P;=Tr(pII;), with p=[)(¢|. Thus, in order to
Here |1) and |2) are the orthonormal basis states of thePerform the desired POM measurement, we need to effect

initial system on which the measurement should be carriethe unitary transfornt), and then measure the population in

out. The fact thafl; form a decomposition of the identity the basis states). , ,

operator(2) implies that It.has been shown fpr single photons or other propagating
particles[29] that any discrete unitary operator can be imple-

N N mented by a sequence of beam splitters, wave plates, and
> |vil2=2 92l%=1, mirrors acting on two-dimensional subspaces of the whole
=1 =1 Hilbert space. In the following we describe an analogous

N N ) scheme employing the electronic states of atoms.
* * —
jzl lr/fjl,rljjz 121 (//111,/1]2 0. IV. GENERALIZED MEASUREMENTS ON TRAPPED

IONS
Our aim is to represent the stalleﬁp as projections onto

the space spanned by) and|2) of orthonormal statefs¥’/) Quantum information may be inscribed onto the popula-
in the extended\-dimensional Hilbert space. In order to tion amplitudes of atomic levels. This is a key feature of the

show that this is always possible we consider the followingdu@ntum computation scheme by Cirac and Zoller in which
vectors: the electronic states of trapped cold ions are the carriers of

qubits. Many variations of this original proposal have been

N devised since then, including schemes that allow ions that
|<1>i>=2 Pili), (10)  are not cooled to their motional ground sta89]. In this

=1 section we will describe how POM measurements can be

ori=1. Nt olows fom the condionsg natny  PUTOTES S Mo e e e,
and |®,) are orthonormal. It is always possible to choose. plicity . d .
L is stored as a superposition of the two electronic stgies
N—2 additional orthonormal vectorsbs), ... |®y), SO and|2). In order to allowN independent measurement out-
that{|®;)}, i=1,... N form an orthonormal basis span- ' : : P :
ning theN-dimensional Hilbert space. The fact thdt)) are  ~on o> V© will require\ read-out states that will be the two
orthonormal means in particular thﬁf‘. X0 s IWith initial and N—2 additional states. During the measurement
the help of thi P how th tth=ll{jit¢|k_ ik process, population amplitudes have to be transferred from
€ help of this we can show that the states the two initial states to thé&l read-out states as described in
N N Eqg. (13). This can be achieved by a sequence of Raman
|‘I’j'>:2 Wiiliy = |q;j>+2 ili) (11)  transitions[31], cou_p_llng two of the atomic states at a time.
i=1 i=3 Each Raman transition may be understood as a unitary trans-
_ ) ) ) formation in Hilbert space in the plane spanned by the two
also form an orthonormal basis of thedimensional Hilbert  j,yolved basis states. The rotation angle is determined by the
space. We can associate the POM elements in the tWQspling strengtif) and the interaction time, and an addi-
dimensional  subspace with measurements in - tgjona| phase factor arises from the phase differepcbe-
-dimensional Hilbert space j=Tr(pllj)=Tr(pll}), ween the two Raman pulses. The transformation via a Ra-
N-d | Hilbert b Tr(pIl,) =Tr(pIl! t the two R I The transf t R
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man transition is described by

B 0)= co§ Q7/2] —iei‘Psir[QT/Z]),

—ie ®siNQ /2] co§ Q0 7/2]
(14

where the matrix elements are defined accordingRfp

=(i|R|j) throughout the paper. The order of the transforma-
tions and their respective angle and phase is determined b
the POM elements. The final level occupation may be ob-
tained via electron shelvingB2] and corresponds to the re-
sult of the generalized measurements.

The maximal number of measurement outcomes that cai
be obtained is limited to the number of atomic levels that can
be addressed. In the following we describe the sequences (
Raman pulses required for the unambiguous discrimination
between two nonorthogonal states and the measurement
trine states.

Examples

Let an atom be prepared in one of the two nonorthogonal
stateg ¢,) and| ¢,) described in Eq4). These states can be
realized as superpositions of the atomic ley&jsand|2). In
order to detect unambiguously in which of these states the
system was prepared, we need to employ a third atomic
level, |3). Our aim is to associate the stafes;) and|o,)
with the orthogonal statgsh;) and|¢,) as depicted in Fig.

1. These have to be transformed into the atomic stidtps
and|2), whose population can then be detected by electron
shelving. The required unitary transformation is achieved by

a Raman transition of the effective pulse lengthr/2
=arccos/1—tarfd and with the phase difference= /2,

Ji—tarfd O tarf 6

FIG. 3. Pulse sequence for measuring a POM with atoms for the
example of discrimination between trine states. Above: Subsequent
rotations of the atomic states. Below: Corresponding Raman transi-
tions between the atomic levela)—(c) followed by a detection via

Uup= 0 1 0 . electron shelvindd).
—tarf¢ 0 1—tarfé , .
state|1). This can be done by using a Raman pulse between
The failure to discriminate between states) and|¢,) will the atomic level§1) and|2) of the effective pulse length
correspond to the atom being left in sta8s. QO 7/2= « and the phase difference= /2,

In our second example we want to discriminate between

the three trine states cosa sSina O

|¢;) =coq a;)|1) +sin(a))|2), (15) R,=| —sina cosa 0
with the anglesy; = a,a,= a+27/3, andas= a+47/3. As 0 0 1
for the nonorthogonal states, these states will be realized as
superpositions of the populations in the atomic leygjsand  The states are then rotated between the lej#lsand |3)
|2) and we want to associate the three trine states with thasing a Raman transition with 7/2=arccos(/2/3) and ¢

three orthogonal atomic level4), |2), and|3). The popu- =/2,

lation of these states will then provide a measurement of the

trine stateg ¢;). As these are not orthogonal they cannot be == =
distinguished with 100% accuracy. The best one can possibly . 2/8 0 13
do is to transfer each of the trine states in 2/3 of all cases to R,= 0 1 0 |[.
one of the detection states and in 1/6 of all cases to each one _ \/1—/3 0 \/2—/3

of the two remaining “wrong” detection states. This is

achieved with the following sequence of Raman transitions,

depicted in Fig. 3. First the initial trine states are rotated sarhe final rotation takes place between levi2$ and |3)|
that one of them, hergp,), lies in the direction of the basis with a pulse duration of) 7/2=arccos(/1/2),
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1 0 0 U+2>
Ry=| 0 12 12|, ¥
0 V12 112
W
The required unitary transformation 5= §3§2ﬁ1.
In our examples we have employed only Raman pulses |1> |2>

with a phase difference @f= /2 which reflects that we had

to determine real population amplitudes. In general, phase
differences between the Raman pulses will allow the dis- @) @) |Ey)
crimination between states with complex amplitudes.

V. GENERALIZED MEASUREMENTS
ON RYDBERG ATOMS

In contrast to the scheme introduced in the preceding sec- 1) 12)
tion, here we will devise a procedure where all the read-out
states are different from the states in which the quantum FIG. 4. Top: Quantum information is initially stored in the

mformatpn is stor_ed. This is necessary, for example_, if th%tomic levels|1) and |2), which are subsequently coupled Ko

read out is done via strongly decaying states. Alternatively, iteaq-out levels. The population probability in the read-out level

might be useful to employ Rydberg levels as read-out state§+ 2) corresponds to the measurement outcofneBottom:

which will be tested by ionization. dressed-state picture of the required coupling between the levels
Again, we restrict ourselves to a two-dimensional sub-1) |2} |®,),|®,). The remaining\— 2 stategE,) do not interact

space spanned Hyt) and|2), in which the quantum infor-  with the rest of the system.

mation is initially stored. For any state in this subspace rep-

resented by the density operatorwe wish to perform a

N
measurement witt\ possibIerAutcomes.AThe probability for |d,)= E lﬁﬁ“ +2),
outcomej should beP;=Tr(pIl;)=(¥|p|¥;) with |¥;) =1
= ;1|1)+ ¥;,]2) as in Eq.(8). One way to achieve this is to (19
coherently couple the levelg) and|2) to N read-out levels N
{13), ... ,.|N+2>} .and .then to obsgrve in which of tr)ese the )= wHli+2).
atom resides. This will succeed if we can transfosnac- =1
cording to
N The POM conditions, Eq9), guarantee that these states are
;)_43':2 l] +2>(q/j|,3|qu><j +2|. (16) orthonormal, and we note that they are also orthonormal to
j=1 |1) and |2). We choose the remainingN states

|P3), ..., |PNyo) SO that they, together witlb,) and|d,),
The probability to find the atom in levgl+2 corresponds span theN+2-dimensional Hilbert space. The time evolu-

then to thejth measurement outcome, tion Eq.(18) corresponds to a transformation of the basis set
{Iit,i=1,... N+2 into {|®;)},j=1,... N+2. The uni-
(j+ 2|Z7’|j +2)=P;j. (17)  tarity of T follows directly from the orthonormality of these
sets of states.
In the following we identify the unitary transformatidnthat As only the state$l) and|2) are initially populated, the

required time evolution is fully determined by the coupling

NRe e
convertsp into p =TpT". |1)>|®,) and |2)«|®,), while the other states

The action ofT on the state$l) and|2) is given by the |3} . |N+2) may be transformed into ary states that
requirement thap' provides the correct probabilitieB; . together with|®,) and|®,) form a basis set of thél+ 2
Hence only the action of on the state$3), ... |N+2)  dimensional Hilbert space, see Fig. 4.
remains to be determined. We writein the form The essential part of the interaction-picture Hamiltonian

that effects the desired transformation is therefore given by
N+2

N
T=2 (+2)( 412520 +2)= 2, 12l

H=Q(|®,)(1]+|P,)(2])+H.c. (20)
(18

In going from the first to the second line we have introducedBecause all states involved are orthogonal, this Hamiltonian
the states implies the time-evolution operator
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T=00SQt(|D1)(P | +[1)(L]+]Do)(P,| +]2)(2])
—i SinQt(| D )(L+[1)(DPy|+| D)2 +]2)(D2])

+ > |E(E. (21
=}

The stategE,) are the eigenstates of the Hamiltonic2®),
supplementing the four eigenstatepP()+|1))/y2 and
(|®,)*|2))/y2. Thus, the statd€,) span the subspace cor-
responding to the projectol—|1)(1]|—|2)(2|—|®}{( P,
| —|D,)(P,|. At the time Qt= /2, the desired transforma-
tion is effected. Equatiori20) gives the simplest Hamil-
tonian that produces the required time evolution in @4).
We may add arbitrary couplings between the stadg
without changing the essential part of the time evolution.
The Hamiltonian Eq(20) can also be written in terms of
the atomic levelgj) by inserting Eq.(19),

N
H :Q,Zl (gl +2)(A+ g5l +2)(2))+Hee. (22

The parameterg; and ¢, that characterize the POM ele-
ments, as defined in E@8), specify the relative phase and

magnitude of the required laser coupling between the states

1),

|2) and the read-out levels.

A. Effects of decay

We will now modify the previously described scheme by
allowing decay from the read-out level8), ... |N+2).
We denote the nondecaying part of the wave function of ou
system by|W(t))=3"7c;(t)|j), and the decay rate from
the read-out levdlj + 2) by I'j 1. Our aim is to associate the
total probability for a decay of the staf¢+2) with the
measurement outconte, ,

fo dtl'jolc42(D)[*=P;. (23

The time evolution of the atomic system is given by the
equations

N
cy(t)=— ijzl Pi1Ci12(1),

N
Ca(t)= =12, YiaCialt), (24

: g - T,
Cj+2(0)= = i[P1Ca(0+ TaCa(D)] = —5¢pa(D),

whereJ;; and ¥;, describe the coupling of the levels)
and|2) to the N read-out levelgj+2). We have neglected

off-diagonal damping, assuming that the bare states are well L
enough separated in energy for this to be unimportant. In Cjra(D) =i

general, we now have to determine the coupling rg;tgs

05230
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andT//jz from the set ofN+ 2 differential equations so that
Eq. (23) is fulfilled. In the following we will do this for two
special cases, first, assuming identical decay fes=1,
and second, for decay rates that exceed all coupling rates.
When all read-out states decay with the same probability
I', the required coupling rates must be proportional to the
coupling in the absence of decay and wez?qqt= Qo1 and
T//J-z:QO(//jz. We expect that the amplitude of the read-out
state|j +2) depends on the initial population in statds
and|2) and on the respective coupling rates. This inspires
the Ansatz

Cj+2(1) =[#1€1(0) + ¢75¢2(0) Je(t). (29

The overall decay from this level can then be written as

fwdtr|cj+2(t)|2=P,-fwdtr|c(t)|2, (26)
0 0

where we have expressed thth measurement outcome
probability asP;=[y};¢1(0)+ ¢,c,(0)|%. Comparing this
with Eq. (23) we require

f:dtl“|c(t)|2= 1. (27)
Inserting the Ansatz25) into Eq. (24) we find
C1(t) = —i€QqCs(0)c(t),
i Co(t) = —iQcz(0)c(b), (28)

P1C1 (1) + 45C,(1) T
¥11€1(0) + 45c5(0) 2

Here we have used the POM conditiof®. Eliminating c,
andc, we find the second-order equation

c(t)=—iQ, c(t).

. r.
c(t)+ Ec(t)+Qgc(t)=o, (29

which is solved by
c(t)=e TV A cogQt/2)+Bsin(Qt/2)], (30)

with the Rabi frequency) = \40Q2—T?/4. The assumption
that initially only the levels/1) and|2) are populated and
Cj+2(0)=0 requires that A=0, and Ccj;,(0)=
—iQo[ #j1¢1(0)+ #j,¢,(0)] determines the coefficiel® as
B=—i20,/Q. For this choice of coefficients also the re-
quirementf 3T |c(t)|?=1 from Eq.(27) is satisfied. The am-
plitude of the read-out levej +2) undergoes damped Rabi
oscillations,

0
2L 701(0) + Whca(0)Je T sin(t2).
(31

1-6
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The population probability in levelj+2) is given by We note that the set of equatio(®}) describes a system,
|c;+2(1)|*=Pj|c(t)|? and the overall decay from this level is where a cw laser couples the read-out levels to a continuum
indeed equal to the measurement outcdme and induces ionization. The measurement outcémneould

In general, for differing decay ratd3 . , In Eq. (24), the  then be contained in the properties of the liberated electron.
coupling rates have to be changed from the ones we used in
the absence of decay. In the following we will consider the
case of strong decay, whdf']+2>|z~/;,1|2| for all j andi. In . B .
this case, the population of the levdist2) immediately To illustrate the modified measurement scheme, we will
follows the population of levelgl) and|2). This enables us ~consider the same examples as before. We want to unam-
to use adiabatic elimination, settlrtg+2 0. We note that biguously distinguish between the two nonorthogonal states

this approximation is correct only over larger time intervals9'Ven in EQ.(4) with a minimal probability of obtaining an
and ¢;.,(0)=0 is not satisfied. The population in level inconclusive result. The POM elemen‘ﬂsl, 1‘[2, and Ho
|j +2) is then determined by corresponding to the three measurement outcomes are de-
fined by the states given in E¢p). In order to associate the
2i - ~ respective probabilities with the population in the three
Cjva(t)=— m[’ﬂrlcl(tH YiaCa()]- 32 atomic levels|1), |2), and|3), we apply a Hamiltonian of
the form in Eq.(22)

B. Examples

Substituting this into Eq(24) we obtain the equation system

- tan( 9) 1
t )= 22 |¢Jl|2c1(t}+¢//,1¢//]2c2(t) H—Q<W(|3><1|+|4><1|)+ﬁ(|3><2|_|4><2|)
j+2
(33 _ A=
_ TTpea(V)+ [yal? C2(t) NG tar?(0)|5><1|>+H.c., (39
c2<t>——22

Fj+2

where we have inserted the valugs andy;, as defined by
éhe POM elements in Ed5).

Experimentally this Hamiltonian may be realized by driv-
ing the specified transitions with resonant laser pulses with

3 QoL 2 ~ QoL 2 the given amplitudes. The popu!ation of_thv_a al_inIiary Ryd-
1= Tz//jl, 2= Tz/;jz. (34  berg states may then be determined by ionization.

With decay, the couplings need to be modified according
to Eq.(34) for the probability to decay out of the system via
level j+2 to be equal toP; as required. In this case the
observation of the fluorescence constitutes the projective
measurement. In order to be able to tell which transition the
photon came from, the bare read-out levels need to be well
separated in energy. The measurement outcome will be en-
: (39 coded in the frequency of the fluorescent light and for a
C(t) =~ QoCa(1). suitable choice of levels also in its polarization.

The trine states of E(6) are optimally distinguished by
the same Hamiltonian as the one derived above(B§). if
the angled is set to/3.

We now set the coupling rates proportionalig and i;,
defining the POM elements and to the square root of th
decay rates,

For this choice of coupling rates we can apply the POM
conditions(9) so that the equations of motion fof andc,
decouple,

ci(t)=—Qqcy (1),

By inserting the solutions of these equations; J(t)
=exd —Qt]c; A0), into Eq.(32) we find for the amplitudes
of the read-out levels,

- [28g _
Cj+a(t) = —1 \/ L ¥f1C1(0) + yfoe5(0) Je~ %, VI- CONCLUSIONS
jt2 . . S .
(36) We have investigated the possibility of accessing quan-
tum information which is stored as a superposition of atomic
The corresponding population probability is then levels. Measurements of populations or transition amplitudes

within this atomic system correspond to von Neumann mea-
surements and are limited in principle. In order to perform
generalized measurements beyond von Neumann projections
we suggest employing additional atomic levels and associat-
so that the probability for decay out of the system via leveling every possible measurement outcome with the population
|j +2) is equal to the probability?; as required in Eq(23). of a different atomic read-out level. We have devised several
Thus, we expect that, in the case (sfrong decay, we are experimentally feasible methods to perform such a general-
able to correct for the decay by weighing the couplings beized measurement. The initial atomic population may be
tween the levels as described in E84). transferred by controlled Raman pulses into a higher-

20
¢4 o(1)|2=P; =

—Qqt
e~ 3
]Fj+2 ( 7)
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dimensional Hilbert space, and the resulting population probatomic qubits will become important, e.g., in the context of
ability can then be tested via the quantum jump technique. iguantum computation.

another scheme the atomic population is transferred by laser
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