
PHYSICAL REVIEW A, VOLUME 63, 052301
Generalized measurements of atomic qubits
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We discuss how generalized measurements may be performed on various atomic systems including cold ions
and Rydberg atoms. The suggested methods rely on the fact that any generalized measurement can be identified
with a unitary transformation followed by a projective measurement in a higher-dimensional Hilbert space. If
the information to be measured is stored in the form of atomic qubits this unitary transformation can be
accomplished by redistributing the population of the relevant atomic levels.
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I. INTRODUCTION

Sparked by the fast development in the areas of quan
computation and quantum cryptography@1#, an interest in
quantum observations beyond von Neumann measurem
has been arising. The formalism of probability operator m
sures~POM! @2–4# was developed to describe general qua
tum measurements and allows us to interrogate qubit
more general ways.

The standard way of picturing a quantum measuremen
the von Neumann description@5#, where measuring the ob
servableA corresponds to a projection onto the eigenstate
the associated Hermitian operatorÂ. In an ideal von Neu-
mann measurement the wave function of the system is im
ined to ‘‘collapse’’ into one of these eigenstates and the m
surement result is given by the corresponding eigenva
The information that can be provided by a von Neuma
measurement is restricted in principle. In particular, obse
ables can be determined at the same time only if they ca
described in the same basis of eigenstates. The simultan
measurement of noncommuting observables, such as the
sition and momentum of a particle, requires a more gen
description@6,7# involving the introduction of observable
associated with another quantum system.

Another example suggesting the necessity of a gene
ized measurement is the discrimination between nonortho
nal states, a task interesting in the light of quantum cryp
graphic protocols based on two nonorthogonal states@8#.
Only if a system is prepared in one of two~or more! orthogo-
nal states is it possible to unambiguously determine this s
by means of a von Neumann measurement. In this case
only source of uncertainty associated with the measurem
is the technical imperfection of the detection process.
however, the states of interest are nonorthogonal, their fi
overlap causes an intrinsic uncertainty in the measurem
We may optimize the von Neumann measurement in orde
minimize the overall probability to obtain an erroneous res
@2,9#. Instead, we may choose to perform an error-free m
surement at the expense of sometimes obtaining an incon
sive result@10–13#. This is not a von Neumann measur
ment, since the number of potential results is greater than
dimensionality of the system. A particular example of t
discrimination between nonorthogonal states is the dist
tion between overcomplete states. If the number of sta
1050-2947/2001/63~5!/052301~8!/$20.00 63 0523
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exceeds the dimensionality of the system, an unambigu
state discrimination becomes impossible even if we allow
inconclusiveness@14,15#, and the optimal measurement
not a straightforward projection onto orthogonal states.

Given a measurement problem, it is usually a nontriv
task to find the optimal strategy. Only a few experimen
implementing state discrimination protocols, and only
photons, have been performed so far@16–19#. In this paper
we will concentrate on how to accomplish generalized m
surements on atomic systems. We will first, in Sec. II, brie
describe the theory of probability operator measures and
lustrate it with the examples of unambiguous state discri
nation and distinction between trine states. In Sec. III we w
introduce a measurement strategy involving a unitary tra
formation on an extension of the original system. In Secs.
and V we will explicitly show how POMs can be realized o
different atomic systems and describe the experimental
quirements.

II. GENERALIZED MEASUREMENTS

A generalized measurement can be expressed in the
guage of probability operator measures~POM! @2–4#. In this
formalism, each possible outcome of the measurement

beled byj, is associated with a Hermitian operatorP̂ j . The
probability Pj to obtain the result labeled byj is given by

Pj5Tr~ r̂P̂ j !, ~1!

wherer̂ is the premeasurement density operator of the s

tem. As a result, all the eigenvalues of the operatorsP̂ j have

to be positive or zero, andP̂ j forms a decomposition of the
identity operator,

(
j

P̂ j51̂. ~2!

The POM elements can always be represented by linear c
binations of pure state projectorsuC j&^C j u. For the applica-
tions considered in this paper, it is sufficient@20# to consider
POM elements of the form

P̂ j5uC j&^C j u. ~3!
©2001 The American Physical Society01-1
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For a von Neumann measurement, the POM elements ar
projectors onto the orthonormal eigenstates of the obs
able. In general, however, the statesuC j& are neither or-
thogonal nor normalized.

In the following we will give two explicit examples o
measurement situations and the corresponding optimal m
surement strategies. We will first consider the unambigu
distinction between two nonorthogonal states. We assu
that a quantum system was prepared in one of the state

uf1&5cosuu1&1sinuu2&,
~4!

uf2&5cosuu1&2sinuu2&,

where 0,u,p/4, andu1& and u2& are orthonormal. As the
statesuf1& and uf2& are nonorthogonal they cannot be d
tinguished from each other with certainty@10–13#. In order
to obtain an error-free measurement, we have to allow
inconclusiveness. The minimum probability for an inconc
sive result is given by the overlap̂f1uf2&5cos 2u.

We will know for certain that the system was prepared
stateuf1& if we detect that it is not in stateuf2&. This cor-
responds to a positive measurement outcome for a projec
in a direction orthogonal touf2&. Similarly we have to mea-
sure in a direction orthogonal touf1& in order to know that
the system was initially prepared in stateuf2&. Both mea-
surements can be performed at the same time only if the
detection states are orthogonal to each other. In orde
achieve this, we have to introduce a third dimension ortho
nal to the plane spanned byu1& andu2& as depicted in Fig. 1
and the states we want to project on are

uf18&5
1

A2
@ tan~u!u1&1u2&1A12tan2~u!u3&],

uf28&5
1

A2
@ tan~u!u1&2u2&1A12tan2~u!u3&].

The state orthogonal to these two,

uf?8&52A12tan2~u!u1&1tan~u!u3&,

corresponds to an inconclusive result. The respective P
elements are derived from the projection of these states b

FIG. 1. Unambiguous discrimination between the nonorthogo
statesuf1& and uf2& corresponds to a projection onto the sta
uf18&, uf28&, andu?&.
05230
the
v-

a-
s
e

r
-

on

o
to
-

M
ck

into the two-dimensional subspace,P̂15uC1&^C1u, P̂2

5uC2&^C2u, andP̂?5uC?&^C?u, where

uC1&5
1

A2
@ tanuu1&1u2&],

uC2&5
1

A2
@ tanuu1&2u2&], ~5!

uC?&52A12tan2uu1&.

A positive measurement outcome corresponding toP̂1,2 tells
us that the system was prepared in the stateuf1,2&, respec-

tively, while P̂? indicates an inconclusive result.
Another example of a measurement situation, which c

not be optimally solved by means of a von Neumann m
surement, is the distinction between linearly depend
states. Assume that our quantum system is prepared in on
the three nonorthogonal, symmetric states

uf j&5cos~a j !u1&1sin~a j !u2&, ~6!

with the anglesa15a,a25a12p/3, and a35a14p/3.
These states are usually referred to as the trine states@21–
23#. In order to measure in which trine state the system w
prepared, we again need to introduce a third state,u3&, or-
thogonal tou1& andu2&. We now associate the nonorthogon
trine states with three orthogonal states in three dimensi
in such a way that each trine state has a large overlap
one of the orthogonal states and only a small overlap w
the other two, as shown in Fig. 2. These three orthogo
states are given byA2/3uf j&1A1/3u3&, with j 51,2,3. Their
projection onto the two-dimensional initial subspace resu
in the statesuC j&5A2/3uf j&. It can be shown that, if the
statesuf j& are equiprobable, the POM that minimizes t
error probability indeed has the elements

P̂ j5
2

3
uf j&^f j u, ~7!

where j 51,2,3 @2,24,25#. We note that such measuremen
are also important in quantum communication proble
@20,27,28#.

al FIG. 2. Discrimination between the trine statesuf j& with j
51,2,3. The measurement corresponds to a projection onto
three mutually orthogonal statesuC j&.
1-2
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III. GENERAL MEASUREMENTS BY BASIS
TRANSFORMATION

Note that the unambiguous discrimination between t
nonorthogonal states as well as between trine states invo
the introduction of a third dimension. Neumark’s theore
@26# implies that any POM measurement can be realized
von Neumann measurement in an extended Hilbert sp
We need to introduce auxiliary states until the dimension
the Hilbert space coincides with the number of required m
surementsN. We denote these states that span the exten
Hilbert space withu j &, wherej 51, . . . ,N. This allows us to
associate each of theN required measurement outcomes w
one of the orthonormal statesu j &. In the following we will
outline the required measurement procedure. For simpli
we restrict ourselves to measurements on a two-dimensi
system; however, the same considerations can easily be
plied to systems of a higher dimension.

In two dimensions we denote theN POM elementsP̂ j
5uC j&^C j u with j 51, . . . ,N where

uC j&5c j 1u1&1c j 2u2&. ~8!

Here u1& and u2& are the orthonormal basis states of t
initial system on which the measurement should be car

out. The fact thatP̂ j form a decomposition of the identit
operator~2! implies that

(
j 51

N

uc j 1u25(
j 51

N

uc j 2u251,

~9!

(
j 51

N

c j 1c j 2* 5(
j 51

N

c j 1* c j 250.

Our aim is to represent the statesuC j& as projections onto
the space spanned byu1& andu2& of orthonormal statesuC j8&
in the extendedN-dimensional Hilbert space. In order t
show that this is always possible we consider the follow
vectors:

uF i&5(
j 51

N

c j i* u j &, ~10!

for i 51, . . . ,N. It follows from the conditions~9! that uF1&
and uF2& are orthonormal. It is always possible to choo
N22 additional orthonormal vectorsuF3&, . . . ,uFN&, so
that $uF i&%, i 51, . . . ,N form an orthonormal basis span
ning theN-dimensional Hilbert space. The fact thatuF i& are
orthonormal means in particular that( i 51

N c j i* c ik5d jk . With
the help of this we can show that the states

uC j8&5(
i 51

N

c j i u i &5uC j&1(
i 53

N

c j i u i & ~11!

also form an orthonormal basis of theN-dimensional Hilbert
space. We can associate the POM elements in the
dimensional subspace with measurements in

N-dimensional Hilbert space byPj5Tr( r̂P̂ j )5Tr( r̂P̂ j8),
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whereP̂ j85uC j8&^C j8u. This means that the generalized me
surement can be performed as a von Neumann projec
onto the statesuC j8&.

In an experiment we perform measurements by moni
ing the populations of the atomic statesu j &. We therefore
have to map the statesuC j8& onto the ‘‘read-out’’ statesu j &
by means of a unitary transformation

Û5(
j 51

N

u j &^C j8u5(
i 51

N

(
j 51

N

c j i* u j &^ i u. ~12!

Unitarity follows from orthonormality and completeness
u j & and uC j8&.

Applied to an initial stateuc& in the subspace of the origi
nal system, the required transformation is

Ûuc&5(
j 51

N

u j &^C j8uc&5(
j 51

N

u j &^C j uc&. ~13!

This means that the probability to find the system in stateu j &
is exactlyPj5Tr( r̂P̂ j ), with r̂5uc&^cu. Thus, in order to
perform the desired POM measurement, we need to ef
the unitary transformÛ, and then measure the population
the basis statesu j &.

It has been shown for single photons or other propaga
particles@29# that any discrete unitary operator can be imp
mented by a sequence of beam splitters, wave plates,
mirrors acting on two-dimensional subspaces of the wh
Hilbert space. In the following we describe an analogo
scheme employing the electronic states of atoms.

IV. GENERALIZED MEASUREMENTS ON TRAPPED
IONS

Quantum information may be inscribed onto the popu
tion amplitudes of atomic levels. This is a key feature of t
quantum computation scheme by Cirac and Zoller in wh
the electronic states of trapped cold ions are the carrier
qubits. Many variations of this original proposal have be
devised since then, including schemes that allow ions
are not cooled to their motional ground state@30#. In this
section we will describe how POM measurements can
performed on an atomic system of this kind.

For simplicity we will assume that quantum informatio
is stored as a superposition of the two electronic statesu1&
and u2&. In order to allowN independent measurement ou
comes we will requireN read-out states that will be the tw
initial and N22 additional states. During the measureme
process, population amplitudes have to be transferred f
the two initial states to theN read-out states as described
Eq. ~13!. This can be achieved by a sequence of Ram
transitions@31#, coupling two of the atomic states at a tim
Each Raman transition may be understood as a unitary tr
formation in Hilbert space in the plane spanned by the t
involved basis states. The rotation angle is determined by
coupling strengthV and the interaction timet, and an addi-
tional phase factor arises from the phase differencew be-
tween the two Raman pulses. The transformation via a
1-3
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man transition is described by

R̂~Vt,w!5S cos@Vt/2# 2 ieiw sin@Vt/2#

2 ie2 iw sin@Vt/2# cos@Vt/2#
D ,

~14!

where the matrix elements are defined according toRi j

5^ i uR̂u j & throughout the paper. The order of the transform
tions and their respective angle and phase is determine
the POM elements. The final level occupation may be
tained via electron shelving@32# and corresponds to the re
sult of the generalized measurements.

The maximal number of measurement outcomes that
be obtained is limited to the number of atomic levels that c
be addressed. In the following we describe the sequence
Raman pulses required for the unambiguous discrimina
between two nonorthogonal states and the measureme
trine states.

Examples

Let an atom be prepared in one of the two nonorthogo
statesuf1& anduf2& described in Eq.~4!. These states can b
realized as superpositions of the atomic levelsu1& andu2&. In
order to detect unambiguously in which of these states
system was prepared, we need to employ a third ato
level, u3&. Our aim is to associate the statesuf1& and uf2&
with the orthogonal statesuf18& and uf28& as depicted in Fig.
1. These have to be transformed into the atomic statesu1&
and u2&, whose population can then be detected by elect
shelving. The required unitary transformation is achieved
a Raman transition of the effective pulse lengthVt/2
5arccosA12tan2u and with the phase differencew5p/2,

ÛUD5S A12tan2u 0 tan2u

0 1 0

2tan2u 0 A12tan2u
D .

The failure to discriminate between statesuf1& anduf2& will
correspond to the atom being left in stateu3&.

In our second example we want to discriminate betwe
the three trine states

uf j&5cos~a j !u1&1sin~a j !u2&, ~15!

with the anglesa15a,a25a12p/3, anda35a14p/3. As
for the nonorthogonal states, these states will be realize
superpositions of the populations in the atomic levelsu1& and
u2& and we want to associate the three trine states with
three orthogonal atomic levelsu1&, u2&, and u3&. The popu-
lation of these states will then provide a measurement of
trine statesuf j&. As these are not orthogonal they cannot
distinguished with 100% accuracy. The best one can poss
do is to transfer each of the trine states in 2/3 of all case
one of the detection states and in 1/6 of all cases to each
of the two remaining ‘‘wrong’’ detection states. This
achieved with the following sequence of Raman transitio
depicted in Fig. 3. First the initial trine states are rotated
that one of them, hereuf1&, lies in the direction of the basi
05230
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stateu1&. This can be done by using a Raman pulse betw
the atomic levelsu1& and u2& of the effective pulse length
Vt/25a and the phase differencew5p/2,

R̂15S cosa sina 0

2sina cosa 0

0 0 1
D .

The states are then rotated between the levelsu1& and u3&
using a Raman transition withVt/25arccos(A2/3) andw
5p/2,

R̂25S A2/3 0 A1/3

0 1 0

2A1/3 0 A2/3
D .

The final rotation takes place between levelsu2& and u3&u
with a pulse duration ofVt/25arccos(A1/2),

FIG. 3. Pulse sequence for measuring a POM with atoms for
example of discrimination between trine states. Above: Subseq
rotations of the atomic states. Below: Corresponding Raman tra
tions between the atomic levels~a!–~c! followed by a detection via
electron shelving~d!.
1-4
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GENERALIZED MEASUREMENTS OF ATOMIC QUBITS PHYSICAL REVIEW A63 052301
R̂35S 1 0 0

0 A1/2 A1/2

0 2A1/2 A1/2
D .

The required unitary transformation isÛ5R̂3R̂2R̂1.
In our examples we have employed only Raman pul

with a phase difference ofw5p/2 which reflects that we had
to determine real population amplitudes. In general, ph
differences between the Raman pulses will allow the d
crimination between states with complex amplitudes.

V. GENERALIZED MEASUREMENTS
ON RYDBERG ATOMS

In contrast to the scheme introduced in the preceding
tion, here we will devise a procedure where all the read-
states are different from the states in which the quan
information is stored. This is necessary, for example, if
read out is done via strongly decaying states. Alternatively
might be useful to employ Rydberg levels as read-out st
which will be tested by ionization.

Again, we restrict ourselves to a two-dimensional su
space spanned byu1& and u2&, in which the quantum infor-
mation is initially stored. For any state in this subspace r
resented by the density operatorr̂ we wish to perform a
measurement withN possible outcomes. The probability fo

outcome j should bePj5Tr( r̂P̂ j )5^C j ur̂uC j& with uC j&
5c j 1u1&1c j 2u2& as in Eq.~8!. One way to achieve this is to
coherently couple the levelsu1& andu2& to N read-out levels
$u3&, . . . ,uN12&% and then to observe in which of these t
atom resides. This will succeed if we can transformr̂ ac-
cording to

r̂→ r̂85(
j 51

N

u j 12&^C j ur̂uC j&^ j 12u. ~16!

The probability to find the atom in levelj 12 corresponds
then to thej th measurement outcome,

^ j 12ur̂8u j 12&5Pj . ~17!

In the following we identify the unitary transformationT̂ that
convertsr̂ into r̂85T̂r̂T̂†.

The action ofT̂ on the statesu1& and u2& is given by the
requirement thatr̂8 provides the correct probabilitiesPj .
Hence only the action ofT̂ on the statesu3&, . . . ,uN12&
remains to be determined. We writeT̂ in the form

T̂5(
j 51

N

~ u j 12&^C j u1uF j 12&^ j 12u!5 (
j 51

N12

uF j&^ j u.

~18!

In going from the first to the second line we have introduc
the states
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uF1&5(
j 51

N

c j 1* u j 12&,

~19!

uF2&5(
j 51

N

c j 2* u j 12&.

The POM conditions, Eq.~9!, guarantee that these states a
orthonormal, and we note that they are also orthonorma
u1& and u2&. We choose the remainingN states
uF3&, . . . ,uFN12& so that they, together withuF1& anduF2&,
span theN12-dimensional Hilbert space. The time evol
tion Eq.~18! corresponds to a transformation of the basis
$u j &%, j 51, . . . ,N12 into $uF j&%, j 51, . . . ,N12. The uni-
tarity of T̂ follows directly from the orthonormality of thes
sets of states.

As only the statesu1& and u2& are initially populated, the
required time evolution is fully determined by the couplin
u1&↔uF1& and u2&↔uF2&, while the other states
u3&, . . . ,uN12& may be transformed into anyN states that
together withuF1& and uF2& form a basis set of theN12
dimensional Hilbert space, see Fig. 4.

The essential part of the interaction-picture Hamiltoni
that effects the desired transformation is therefore given

Ĥ5V~ uF1&^1u1uF2&^2u!1H.c. ~20!

Because all states involved are orthogonal, this Hamilton
implies the time-evolution operator

FIG. 4. Top: Quantum information is initially stored in th
atomic levelsu1& and u2&, which are subsequently coupled toN
read-out levels. The population probability in the read-out le
u j 12& corresponds to the measurement outcomej. Bottom:
dressed-state picture of the required coupling between the le
u1&,u2&,uF1&,uF2&. The remainingN22 statesuEk& do not interact
with the rest of the system.
1-5
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T̂5cosVt~ uF1&^F1u1u1&^1u1uF2&^F2u1u2&^2u!

2 i sinVt~ uF1&^1u1u1&^F1u1uF2&^2u1u2&^F2u!

1 (
k51

N22

uEk&^Eku. ~21!

The statesuEk& are the eigenstates of the Hamiltonian~20!,
supplementing the four eigenstates (uF1&6u1&)/A2 and
(uF2&6u2&)/A2. Thus, the statesuEk& span the subspace co
responding to the projector1̂2u1&^1u2u2&^2u2uF1&^F1
u2uF2&^F2u. At the timeVt5p/2, the desired transforma
tion is effected. Equation~20! gives the simplest Hamil-
tonian that produces the required time evolution in Eq.~18!.
We may add arbitrary couplings between the statesuEk&
without changing the essential part of the time evolution.

The Hamiltonian Eq.~20! can also be written in terms o
the atomic levelsu j & by inserting Eq.~19!,

Ĥ5V(
j 51

N

~c j 1* u j 12&^1u1c j 2* u j 12&^2u!1H.c. ~22!

The parametersc j 1* andc j 2* that characterize the POM ele
ments, as defined in Eq.~8!, specify the relative phase an
magnitude of the required laser coupling between the st
u1&, u2& and the read-out levels.

A. Effects of decay

We will now modify the previously described scheme
allowing decay from the read-out levelsu3&, . . . ,uN12&.
We denote the nondecaying part of the wave function of
system byuC(t)&5( j 51

N12cj (t)u j &, and the decay rate from
the read-out levelu j 12& by G j 12. Our aim is to associate th
total probability for a decay of the stateu j 12& with the
measurement outcomePj ,

E
0

`

dtG j 12ucj 12~ t !u25Pj . ~23!

The time evolution of the atomic system is given by t
equations

ċ1~ t !52 i (
j 51

N

c̃ j 1cj 12~ t !,

ċ2~ t !52 i (
j 51

N

c̃ j 2cj 12~ t !, ~24!

ċ j 12~ t !52 i @c̃ j 1* c1~ t !1c̃ j 2* c2~ t !#2
G j 12

2
cj 12~ t !,

where c̃ j 1 and c̃ j 2 describe the coupling of the levelsu1&
and u2& to theN read-out levelsu j 12&. We have neglected
off-diagonal damping, assuming that the bare states are
enough separated in energy for this to be unimportant
general, we now have to determine the coupling ratesc̃ j 1
05230
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and c̃ j 2 from the set ofN12 differential equations so tha
Eq. ~23! is fulfilled. In the following we will do this for two
special cases, first, assuming identical decay ratesG j 125G,
and second, for decay rates that exceed all coupling rate

When all read-out states decay with the same probab
G, the required coupling rates must be proportional to
coupling in the absence of decay and we setc̃ j 15V0c j 1 and
c̃ j 25V0c j 2. We expect that the amplitude of the read-o
stateu j 12& depends on the initial population in statesu1&
and u2& and on the respective coupling rates. This inspi
the Ansatz

cj 12~ t !5@c j 1* c1~0!1c j 2* c2~0!#c~ t !. ~25!

The overall decay from this level can then be written as

E
0

`

dtGucj 12~ t !u25PjE
0

`

dtGuc~ t !u2, ~26!

where we have expressed thej th measurement outcom
probability asPj5uc j 1* c1(0)1c j 2* c2(0)u2. Comparing this
with Eq. ~23! we require

E
0

`

dtGuc~ t !u251. ~27!

Inserting the Ansatz~25! into Eq. ~24! we find

ċ1~ t !52 iV0c1~0!c~ t !,

ċ2~ t !52 iV0c2~0!c~ t !, ~28!

ċ~ t !52 iV0

c j 1* c1~ t !1c j 2* c2~ t !

c j 1* c1~0!1c j 2* c2~0!
2

G

2
c~ t !.

Here we have used the POM conditions~9!. Eliminating c1
andc2 we find the second-order equation

c̈~ t !1
G

2
ċ~ t !1V0

2c~ t !50, ~29!

which is solved by

c~ t !5e2Gt/4@A cos~Vt/2!1B sin~Vt/2!#, ~30!

with the Rabi frequencyV5A4V0
22G2/4. The assumption

that initially only the levelsu1& and u2& are populated and
cj 12(0)50 requires that A50, and ċ j 12(0)5
2 iV0@c j 1* c1(0)1c j 2* c2(0)# determines the coefficientB as
B52 i2V0 /V. For this choice of coefficients also the re
quirement*0

`Guc(t)u251 from Eq.~27! is satisfied. The am-
plitude of the read-out levelu j 12& undergoes damped Rab
oscillations,

cj 12~ t !52 i2
V0

V
@c j 1* c1~0!1c j 2* c2~0!#e2Gt/4 sin~Vt/2!.

~31!
1-6
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The population probability in levelu j 12& is given by
ucj 12(t)u25Pj uc(t)u2 and the overall decay from this level
indeed equal to the measurement outcomePj .

In general, for differing decay ratesG j 12 in Eq. ~24!, the
coupling rates have to be changed from the ones we use
the absence of decay. In the following we will consider t
case of strong decay, whenG j 12@uc̃ i1,i2u for all j and i. In
this case, the population of the levelsu j 12& immediately
follows the population of levelsu1& andu2&. This enables us
to use adiabatic elimination, settingċ j 1250. We note that
this approximation is correct only over larger time interva
and cj 12(0)50 is not satisfied. The population in leve
u j 12& is then determined by

cj 12~ t !52
2i

G j 12
@c̃ j 1* c1~ t !1c̃ j 2* c2~ t !#. ~32!

Substituting this into Eq.~24! we obtain the equation system

ċ1~ t !522(
j 51

N uc̃ j 1u2c1~ t !1c̃ j 1c̃ j 2* c2~ t !

G j 12
,

~33!

ċ2~ t !522(
j 51

N c̃ j 1* c̃ j 2c1~ t !1uc̃ j 2u2c2~ t !

G j 12
.

We now set the coupling rates proportional toc j 1 and c j 2
defining the POM elements and to the square root of
decay rates,

c̃ j 15AV0G j 12

2
c j 1 , c̃ j 25AV0G j 12

2
c j 2 . ~34!

For this choice of coupling rates we can apply the PO
conditions~9! so that the equations of motion forc1 andc2
decouple,

ċ1~ t !52V0c1~ t !,
~35!

ċ2~ t !52V0c2~ t !.

By inserting the solutions of these equations,c1,2(t)
5exp@2V0t#c1,2(0), into Eq.~32! we find for the amplitudes
of the read-out levels,

cj 12~ t !52 iA2V0

G j 12
@c j 1* c1~0!1c j 2* c2~0!#e2V0t.

~36!

The corresponding population probability is then

ucj 12~ t !u25Pj

2V0

G j 12
e2V0t, ~37!

so that the probability for decay out of the system via le
u j 12& is equal to the probabilityPj as required in Eq.~23!.
Thus, we expect that, in the case of~strong! decay, we are
able to correct for the decay by weighing the couplings
tween the levels as described in Eq.~34!.
05230
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We note that the set of equations~24! describes a system
where a cw laser couples the read-out levels to a continu
and induces ionization. The measurement outcomePj would
then be contained in the properties of the liberated elect

B. Examples

To illustrate the modified measurement scheme, we w
consider the same examples as before. We want to un
biguously distinguish between the two nonorthogonal sta
given in Eq.~4! with a minimal probability of obtaining an

inconclusive result. The POM elementsP̂1 , P̂2, and P̂?
corresponding to the three measurement outcomes are
fined by the states given in Eq.~5!. In order to associate the
respective probabilities with the population in the thr
atomic levelsu1&, u2&, and u3&, we apply a Hamiltonian of
the form in Eq.~22!

Ĥ5VS tan~u!

A2
~ u3&^1u1u4&^1u!1

1

A2
~ u3&^2u2u4&^2u!

2A12tan2~u!u5&^1u D 1H.c., ~38!

where we have inserted the valuesc j 1 andc j 2 as defined by
the POM elements in Eq.~5!.

Experimentally this Hamiltonian may be realized by dri
ing the specified transitions with resonant laser pulses w
the given amplitudes. The population of the auxiliary Ry
berg states may then be determined by ionization.

With decay, the couplings need to be modified accord
to Eq. ~34! for the probability to decay out of the system v
level j 12 to be equal toPj as required. In this case th
observation of the fluorescence constitutes the projec
measurement. In order to be able to tell which transition
photon came from, the bare read-out levels need to be
separated in energy. The measurement outcome will be
coded in the frequency of the fluorescent light and for
suitable choice of levels also in its polarization.

The trine states of Eq.~6! are optimally distinguished by
the same Hamiltonian as the one derived above Eq.~38! if
the angleu is set top/3.

VI. CONCLUSIONS

We have investigated the possibility of accessing qu
tum information which is stored as a superposition of atom
levels. Measurements of populations or transition amplitu
within this atomic system correspond to von Neumann m
surements and are limited in principle. In order to perfo
generalized measurements beyond von Neumann projec
we suggest employing additional atomic levels and assoc
ing every possible measurement outcome with the popula
of a different atomic read-out level. We have devised seve
experimentally feasible methods to perform such a gene
ized measurement. The initial atomic population may
transferred by controlled Raman pulses into a high
1-7
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dimensional Hilbert space, and the resulting population pr
ability can then be tested via the quantum jump technique
another scheme the atomic population is transferred by l
pulses from stable information storage levels into a differ
set of atomic read-out levels which may be Rydberg levels
fast decaying levels. The measurement outcomes may
be obtained by ionization, or by directly observing the dec
photons. We expect that generalized measurements
ry

o

-

,

J.

E.

05230
-
In
er
t
r
en
y
on

atomic qubits will become important, e.g., in the context
quantum computation.
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