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Causality and propagation in the Wigner, Husimi, Glauber, and Kirkwood
phase-space representations
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Time evolution is considered in phase space in terms of evolution kernels for various phase-space quasi-
distributions. The propagators for the Wigner function, the standard-ordered function, the Kirkwood
~antistandard-ordered! function, the GlauberP andQ functions, and the Husimi function are explicitly written
as bilinear transforms of the evolution operator. Free propagation, propagation in dispersive media, and scat-
tering, are studied, and manifestations of causality and interference are analyzed. It is shown that free propa-
gation and scattering in the Husimi, Glauber, and Kirkwood representations with the underlying dynamics of
the Schro¨dinger equation involve divergent evolution kernels connecting distant phase-space points at all
times. The time evolution is much simpler in the Wigner representation where~i! free propagation is a simple
classical translation involving no interference, and~ii ! analytical properties of the scattering matrix restrict the
velocities of propagation so that no information can travel due to scattering faster than free motion. As an
example, a correlation is found between the coordinate and momentum of particles detected after they are
released from a box. Propagators with relativistic dispersion relations of free photons or Klein-Gordon particles
are briefly discussed in an Appendix.
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I. INTRODUCTION

The subject of this paper is to study the nature and pr
erties of time evolution or dynamics of a quantum system
phase space. Recent advances in atom optics and mole
physics require a quantum treatment of the time evolution
wave packets, which are partially localized both in mome
tum and in coordinate. It is often useful to formulate t
dynamics of these systems in phase space. Formulatio
quantum dynamics in phase space is also interesting fro
pure theoretical or fundamental perspective. One may w
der how must we change our concepts of evolution in
quantum regime.

Different representations of quantum mechanics in ph
space were introduced over the years. These include
Wigner function, the standard-ordered function, the Ki
wood ~antistandard-ordered! function, the GlauberP and Q
functions, the Husimi function, and other representations
will not be considered here. For a large body of informati
regarding these different quasidistributions the reader is
ferred to several seminal studies as well as excellent
comprehensive reviews@1–16,37,38#.

Phase-space representations of quantum systems we
ten used in the past to analyze the classical limit or class
quantum correspondence. The different phase-space re
sentations were introduced in this context as different qu
tum descriptions with a common classical limit. Compa
sons of varied properties of these representations in
quantum regime, where they differ, were given before w
an emphasis on the properties of stationary quantum s
@10,11,14#. Our focus here is complementary to the previo
studies: We analyze quantum dynamics by considering
comparing the propagators for the various phase-space
sidistribution functions. We do not consider here time ev
lution in terms of differential equations@11,17,18#, Wigner
1050-2947/2001/63~5!/052114~11!/$20.00 63 0521
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trajectories@8,19–22#, or superoperators@23#, nor do we dis-
cuss the advantages and difficulties of these approaches
stead, we focus on discussing dynamics in terms of evolu
kernels. The different phase-space quasidistributions are
ferent transforms of the density matrix and the tim
evolution of the density matrix is given by the time-evolutio
operator. The propagators for the quasidistributions
therefore given by different bilinear transforms of the evo
tion operator. We derive these transforms and study th
properties.

Quantum propagators can be quite different from class
propagators. The classical equations of motion define cla
cal trajectories in phase space for the coordinatesq(t) and
momentap(t), as a function of the timet. The classical
propagators in phase space are therefored functions over the
classical trajectories defining a one-to-one mapping betw
single points of the initial and final distributions. In quantu
mechanics, on the other hand, a single point of the pha
space distribution at one time can, in principle, be caus
connected to many points of this phase-space distributio
another time.

We will use the following definitions. When several~or
many! initial points contribute to the value at a single poi
of a phase-space distribution at a later time this is the pu
quantum effect of interference. Likewise, when the value
an initial point influences the value at a final point and the
two phase-space points are not connected by a trajectory
is the purely quantum effect of tunneling. The evolution ke
nels that we study are essentially influence functiona
When the evolution kernel connecting one phase-space p
at the initial timet50 to another phase-space point at a la
time t5t vanishes we conclude that these two points
causally disconnected for this time differencet.

We will see that properties of the time evolution can a
sume very different forms in the different phase-space r
©2001 The American Physical Society14-1
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resentations. Quantum mechanics can be studied in m
different representations. The physical results of an exp
ment or the theoretical predictions for an observable ef
do not depend on the representation chosen but a cl
choice often simplifies the analysis and sometimes helps
physical intuition. In the same way, a poor choice of a re
resentation can unnecessarily complicate simple things,
scuring an underlying elegance of a process. We will see
time evolution with the underlying dynamics of the Schr¨-
dinger equation assumes the simplest most transparent
in the Wigner representation. Only in the Wigner pha
space representation free propagation involves no tunne
or interference. A causality condition can be easily defin
and proven for scattering of the Wigner function, but it h
no simple analog in the other phase-space representat
Likewise, in cases where momentum conservation applie
is explicitly manifested in the propagators of some quasid
tributions but not in others.

The paper is organized in the following way: in Sec. II t
phase-space propagators for several well known and wi
used quasidistributions are explicitly written for a gene
time evolution as transforms of off-diagonal matrix eleme
of the evolution operator and as transforms of an evolut
function of the momentum in the special case of conser
momentum. Free propagation is discussed in Sec. III with
application to the simple example of releasing a particle fr
a box where a correlation is found between the coordin
and momentum of particles detected after they are relea
The discussion of scattering in Sec. IV includes sing
channel scattering, a study of causality, and a generaliza
to multichannel scattering. Conclusions are presented in
VI. Relativistic dispersion relations are briefly discussed
the Appendix.

II. PROPAGATORS IN PHASE SPACE

A. Phase-space quasidistribution functions

Quantum mechanics can be represented in phase spa
different ways. Various phase-space representations
quantum state can be constructed by transforming the de

matrix r̂ t and any operatorÂ into scalar functions% t(q,p)

and A(q,p), respectively, so that Tr@ r̂ tÂ#
5(1/2p\)*dp*dqA(q,p)% t(q,p). A consistent definition
for the transform of an operator versus the transform of
density ensures that quantum expectation values, traces
observables do not depend on the representation. Form
these transforms replace operators and density matrixe
symbols, i.e.,c-number scalar functions. Different orders

q̂ andp̂ define the different symbols . For example, the st
dard ordered function introduced by Mehta@6#, and its com-
plex conjugate, the Kirkwood function, are defined by co

jugate ordering ofq̂ and p̂.
A unified form for the phase-space quasidistributions

given by
05211
ny
ri-
ct
er
ur
-
b-
at

rm
-
ng
d
s
ns.
it
-

ly
l
s
n
d
n

te
d.

-
on
c.

e in
a

ity

e
nd

lly,
by

-

-

s

% t
z~q,p!5

1

4p2E djE dhE dq8z~j,h!exp@ i j~q82q!

2 ihp#K q81
\

2
hUr̂ tUq82

\

2
h L , ~1!

where r̂ is the density matrix@14#. For a pure stater̂
5uc&^cu but we do not assume thatr̂ is necessarily pure
The functionz(j,h) defines the representation. Restrictio
on the choice of functionsz(j,h) were given, for example
in Ref. @10# but lately relaxed by Ref.@24#. In this paper we
focus on the best known and most used phase-space r
sentations: the Wigner function, the standard-ordered fu
tion, the Kirkwood ~antistandard-ordered! function, the P
function, and the Husimi function, for whichz(j,h) is, re-
spectively, given by

zW~j,h!51, ~2!

zS~j,h!5 expF2 i
\

2
jh G , ~3!

zK~j,h!5 expF i
\

2
jh G , ~4!

zP~j,h!5 expF \

4mk
j2GexpF\mk

4
h2G , ~5!

zH~j,h!5 expF2
\

4mk
j2GexpF2

\mk

4
h2G , ~6!

wherek andm are constants defining the representation. T
GlauberQ function is a special case of the Husimi functio
Other phase-space distributions, e.g., with singular kern
are not considered here but can be considered as well@24#.

Transformations between the phase-space representa
are given by the integrals@14#:

% t
z~q,p!5E dq8E dp8gl

z ~q82q,p82p!% t
l~q8,p8!,

~7!

gl
z ~q,p![

1

4p2E djE dh exp@ i ~jq1hp!#
z~j,h!

l~j,h!
.

~8!

Simple examples include

gW
S/K~q,p!5gK/S

W
~q,p!5

1

\p
expF6

i

\
2qpG , ~9!

gW
H

~q,p!5gP
W~q,p!5

1

p\
expF2

mk

\
q2GexpF2

1

mk\
p2G ,

~10!
4-2
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while divergent integrals are encountered when consider

gW
P

~q,p!5gH
W~q,p!5

1

2pE dj exp@ i jq#expF \

4mk
j2G

3
1

2pE dh exp@ ihp#expF\mk

4
h2G . ~11!

We will use this unified notation and reversible transfor
throughout this paper.

B. Propagators

Time evolution of the density matrix is given by the tim
evolution operator

r̂ t5Û~ t !r̂0Û†~ t !. ~12!

For the phase-space distributions, a phase-space propa
is defined as the evolution kernel in the following way:

% t
z~q,p!5E dq0E dp0L t

z~q,p;q0 ,p0!%0
z~q0 ,p0!.

~13!

This definition was considered in Refs.@3,25–30# for the
Wigner function. Here, we extend it to all the phase-sp
representations. The propagators are normalized and
grable

E dqE dpL t
z~q,p;q0 ,p0!5E dq0E dp0L t

z~q,p;q0 ,p0!

51. ~14!

The propagator for the Wigner phase-space distribution h
simple expression in terms of matrix elements of the evo
tion operator,

L t
W~q,p;q0 ,p0!5

1

2p\E dq8E dp8 expF i

\
~q8p1q0p8!G

3K q2
1

2
q8UÛ~ t !Up02

1

2
p8L

3 K p01
1

2
p8UÛ†~ t !Uq1

1

2
q8L . ~15!

Explicit examples can be found in Refs.@25,26,30#. All other
propagators can be expressed in terms of this Wigner pr
gator and the transforming functionsg,

L t
z~q,p;q0 ,p0!

5E dq1E dp1E dq2E dp2L t
W~q1 ,p1 ;q2 ,p2!

3gW
z ~q12q,p12p!gz

W~q02q2 ,p02p2!. ~16!

Formally, these propagators are equivalent to transform
into the Wigner representation first, propagating with t
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Wigner propagator second, and transforming back into
original representation at the end.

C. Momentum conservation

In the following sections propagation with different di
persion relations and scattering are considered. It is usefu
study first the case of conserved momentum in which
momentum operator commutes with the Hamiltonian, a
the momentum eigenstates are also eigenstates of the e
tion operator. Namely,

Û~ t !up&5Ut~p!up&, ~17!

and ^quÛ(t)up&5(2p\)21/2Ut(p)exp@iqp/\#. The propaga-
tor for the Wigner function is then the Wigner transform
the evolution function U(p),

L t
W~q,p;q0 ,p0!5d~p2p0!

1

2pE dj exp@ i j~q2q0!#

3UtS p01
\

2
j DUt* S p02

\

2
j D . ~18!

Just as simple are the propagators for the standard-ord
function and the Kirkwood function,

L t
S~q,p;q0 ,p0!5d~p2p0!

1

2pE dj exp@ i j~q2q0!#

3Ut~p0!Ut* ~p02\j!, ~19!

L t
K~q,p;q0 ,p0!5d~p2p0!

1

2pE dj exp@ i j~q2q0!#

3Ut~p01\j!Ut* ~p0!. ~20!

The propagators for theP function and the Husimi function
are more complicated,

L t
H~q,p;q0 ,p0!

5E dp1

1

Apmk\
expF2

1

mk\
~p2p1!2G

3
1

2pE dh expF ih~p02p1!1
\mk

4
h2G

3
1

2pE dj exp@ i j~q2q0!#

3UtS p11
\

2
j DUt* S p12

\

2
j D ~21!

52L t
P~q,p0 ;q0 ,p!, ~22!

where the propagator for theP function is obtained from the
propagator for the Husimi function by exchanging initial a
final momentap0 and p, and changing the overall sign
While the integrals diverge, these propagators are w
defined distributions, as they obey Eq.~14!.
4-3
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BILHA SEGEV PHYSICAL REVIEW A 63 052114
The propagators for the Wigner, standard-ordered,
Kirkwood functions explicitly display momentum conserv
tion with d(p2p0) and a symmetry between initial and fin
coordinates and momenta. The propagators for theP func-
tion and the Husimi function do not have these properties
fact the propagation of the Husimi function seems to be c
ried out with a Gaussian distribution of momenta around
final momentum, while the relation to the initial momentu
is ill defined, and the reverse applies to the propagation
theP function. Clearly momentum is conserved regardless
the representation chosen to describe the process. Integr
of the time evolution in all these representations would g
the same result for any observable consequences of mo
tum conservation. In some representations, however,
mentum is conserved explicitly in the evolution kernel: t
value of these quasidistributions at a phase-space p
propagates only into phase-space points with the same
mentum. In other representations the intrinsic property
momentum conservation is obscured. The point to point
fluence functional does not display it and it is recovered o
after integration.

III. FREE PROPAGATION

Free propagation is defined by a dispersion relationv(p)
which gives the evolution function

Ut~p!5 exp@2 iv~p!t#. ~23!

Introducing the auxiliary velocity functions

uW~p,j![

\vS p1
\

2
j D2\vS p2

\

2
j D

\j
, ~24!

uK~p,j![
\v~p1\j!2\v~p!

\j
, ~254!

uS~p,j![
\v~p!2\v~p2\j!

\j
, ~26!

the free propagators of the Wigner, standard-ordered,
Kirkwood functions are given by the transforms

L t
W/K/S~q,p;q0 ,p0!5d~p2p0!

1

2pE dj exp$ i j@q2q0

2tuW/K/S~p0 ,j!#%, ~27!

while the propagators for theP function and the Husimi
function are
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L t
H~q,p;q0 ,p0!

5E dp1

1

Apmk\
expF2

1

mk\
~p2p1!2G

3
1

2pE dh expF ih~p02p1!1
\mk

4
h2G

3
1

2pE dj exp@ i j„q2q02tuW~p1 ,j!…#

52L t
P~q,p0 ;q0 ,p!. ~28!

The integrals overj often diverge but reduce to simpled
functions in cases whereu(p,j) does not depend onj.

These propagators do not define in general a one-to-
correspondence between initial and final phase-space po
They can involve both tunneling and interference. The dev
tions of L t

W/K/S from a one-to-one correspondence are
result of a dependence of the velocity functionsuW/K/S on j.
In the limit of \→0 the dependence onj and these devia-
tions vanish. For some specific dispersion relationsu does
not depend onj also in the quantum regime and the exa
quantum propagator is equal to its classical limit. In the
cases a simple one-to-one correspondence between i
and final phase-space points is obtained:p5p0 and q5q0
1tu(p0) . Things are essentially more complicated for t
Husimi andP functions. Here, even whenu does not depend
on j and the integration overj gives d„q2q02tuW(p1)… ,
one still has to integrate overp1, wherep1 is neither equal to
the initial momentump0 nor to the final momentump.

A. Free nonrelativistic massive particles

The dispersion relation of free massive particles, who
wave functions obey the Schro¨dinger equation, is

\v~p!5
p2

2m
. ~29!

The auxiliaryu functions derived from it are

uW~p,j!5
p

m
, ~30!

uK~p,j!5
p

m
1

\j

2m
, ~31!

uS~p,j!5
p

m
2

\j

2m
. ~32!

Note that whileuW(p,j) does not depend onj, uK/S (p,j)
do. Based on the previous considerations, we therefore
pect the propagator in the Wigner representation to uniqu
display a one-to-one correspondence between initial and
phase-space points. For this dispersion, the general form
all the phase-space propagators is given by
4-4



tio
-

th
rm
n

re

e
n

tio

m-

it

and
all

e of
al
the
e

tely
er

at
n-
a-
.

n-
stic
el-

la-

d
ox

he
the
ta-
-
k-
n
for

ark-
ee

of
-
c-

-
imi
he

and
t is
zero
ity
e

CAUSALITY AND PROPAGATION IN THE WIGNER, . . . PHYSICAL REVIEW A 63 052114
L t
z~q,p;q0 ,p0!

5
1

2pE djE dp8exp@ i j~q01tp8/m2q!#

3
1

2pE dhz~j,h!exp@ ih~p82p!#

3
1

2pE dm@z~j,m!#21exp@ im~p02p8!#. ~33!

This time, the free propagator depends on the representa
In the classical limit of\→0 we recover for all the repre
sentations the simple propagator

lim
\→0

L t
z~q,p;q0 ,p0!5d~p2p0!d~q01tp/m2q!, ~34!

but for finite\ the propagators are not the simpled function
of free classical propagation. Unique in this respect is
free propagator for the Wigner function, whose simple fo
is exact in the quantum regime as well as in the classical o

L t
W~q,p;q0 ,p0!5d~p2p0!d~q01tp/m2q!. ~35!

In all the other representation the integrals defining the f
propagator by Eq.~33! diverge for finite\. Nevertheless, the
propagators defined by these divergent integrals are w
defined distributions. In particular, they are normalized a
integrable, obeying Eq.~14!.

The free propagators for the standard-ordered func
and the Kirkwood~antistandard-ordered! functions are, re-
spectively,

L t
S/K~q,p;q0 ,p0!

5d~p02p!
1

2pE dj expF i jS q01t
p

m
2qD6 i

\t

2m
j2G

~36!

5d~p02p!A6 im

2pt\
expF7 im

2t\
~q01tp/m2q!2G ,

~37!

where the integral representation of Eq.~36! is exact while
the expression in Eq.thinspace~37! was obtained after a
regularization. The free propagators for theP function and
the Husimi distribution are

L t
H~q,p;q0 ,p0!

5
21

2p
A 1

pm\k
expF2

m

\kt2
~q01tp/m2q!2G

3E dh expF2 ih~q01tp0 /m2q!1
\kt2

4m
h2G ~38!

52L t
P~q,p0 ;q0 ,p!. ~39!
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In all the representations, excluding Wigner, there is a co
petition between the limits of large time and small\ and
deviations of the free propagators from their classical lim
grow with time.

The difference between the Wigner representation
other representations here is striking. Free propagation in
other representations is based on interference. The valu
each initial point contributes to the values of many fin
points and the value of each final point is determined by
values of many initial points. The Wigner function is th
only phase-space function freely propagating in a comple
classical way. Each point of the freely propagating Wign
function moves on the classical trajectoryq5q01tp/m, p
5p0. This is but a manifestation of the well-known fact th
the differential equation for the free Wigner function is ide
tical to the classical Liouville equation while no such equiv
lence exists for the other phase-space quasidistributions

B. Example: releasing a particle from a box

The problem of releasing a particle from a box in qua
tum mechanics can be considered for photons, for relativi
or nonrelativistic massive particles, or using mod
independent arguments@31–33#. Here we limit the discus-
sion to nonrelativistic particles. Relativistic dispersion re
tions are considered in the Appendix.

Suppose that att50 we release a particle from a box an
that the particle wave function was confined within the b
at t<0: C(q)50 unless2a,q,a. The particle is propa-
gating in free space according to the Schro¨dinger equation
and \v(p)5p2/2m . The free propagator depends on t
representation, and as a result, the physical picture of
release from the box is different in the different represen
tions. The Husimi and theP distributions are not even con
fined to the box att50. The standard ordered and the Kir
wood functions are confined to the box initially but whe
released propagate in a complicated manner, exhibiting,
example, what seems like interference. In contrast, a rem
ably simple picture is obtained for the Wigner function’s fr
propagation. The particle Wigner function att50 is confined
within the box:%0

W(q,p)50 unless2a,q,a ~as a result
of the confinement of the wave function and the definition
the Wigner function!. Free propagation in the Wigner repre
sentation is trivial and we immediately get the Wigner fun
tion of the released particle at any later timet,

% t
W~q,p!5%0

W~q2tp/m,p!. ~40!

Unlike the wave function that is initially confined and in
stantly fills all space when released, and unlike the Hus
distribution that even initially extends over all space, t
Wigner function is confined to the box att50, freely propa-
gates by a simple classical translation when released,
does not fill phase space even at infinite times. In fact, i
zero almost everywhere in phase space and differs from
only in the constant-width strip defined by the inequal
2a1tp/m ,q,a1tp/m. For each momentum the releas
4-5
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BILHA SEGEV PHYSICAL REVIEW A 63 052114
is a pure translation of the initial Wigner function at a co
stant velocity defined by this momentum. The projection in
coordinate space does not vanish for anyq, *dp% t

W(q,p)
Þ0. This reflects an instantaneous filling of coordina
space, which is indeed the correct description in the non
ativistic regime. One could equivalently follow the releas
particle from the wave function and not from th
momentum-projected Wigner function. Once the wave fu
tion is initially confined to a finite region of space the m
mentum is unbounded and the released wave function ins
taneously spreads to all space. This is well known and is
our concern here. The new result obtained here in the Wig
representation and demonstrated below for an explicit
ample is a simple correlation between the coordinate
momentum of a particle detected after its release. Supp
that we use a physical detector to detect the released par
then in the Wigner representation the detector would also
characterized by a phase-space excepting function@28,34#.
This analysis shows that for particles measured by a phys
detector at timet and at a large distance from the initi
location of the particle, there will be a correlation betwe
the approximate positionq of the detected particle and th
particle’s approximate momentump.

As an explicit example for the release in the Wigner re
resentation, we consider here as an initial state the grou
state wave function of a particle in an infinite box. The init
wave function is

c~q!50, uqu.a,

c~q!5
1

Aa
sinF p

2a
~q1a!G , uqu,a ~41!

and the freely propagating Wigner function at any tim
t>0 is % t

W(q,p)50 for uq2ptu.a and

% t
W~q,p!5

cos@p~q2pt!/a#

p\a

sin@~2p/\!~a2uq2ptu!#
2p/\

1
sin@~2p/\1p/a!~a2uq2ptu!#

2p\a~2p/\1p/a!

1
sin@~2p/\1p/a!~a2uq2ptu!#

2p\a~2p/\1p/a!
~42!

for uq2ptu,a, where we have used Eq.~40! and results
from Refs. @14,8#. This Wigner function at three differen
times is depicted in Figs. 1 and 2.

The envelope of the spreading wave packet is given
projection into coordinate space i.e., by integrating Eq.~42!
overp. The result of numerically integrating*dp% t

W(q,p) at
different times is also depicted in Fig. 2. As expected,
instantaneous spreading of the wave packet in coordi
space occurs.

If, instead of projecting into coordinate space, we ta
into account the experimental fact that the released par
can only be detected by a physical detector, an interes
result follows. The probability for a detection is given by
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E E dpdq%D~q,p!%0
W~q2tp/m,p!, ~43!

where%D(q,p) is the excepting function of the detector@28#.

FIG. 1. At t<0 a massive and nonrelativistic particle is co
fined to a box2a,q,a . At t50 the particle, initially at the
ground state of the box, is released. Three slices of the Wig
function of this particle are shown. Each slice is depicted at th
different times. Att<0 the Wigner function is confined to the bo
2a,q,a and all momentum slices overlap. Att.0 each momen-
tum slice is shifted unchanged at a constant velocity proportiona
its momentum. Different slices propagate with different velociti
Slices with negative momentum propagate to the left and slices
positive momentum propagate to the right. Thus, att5T.0 the
slices spread out and even more so at a later timet52T.

FIG. 2. The complete Wigner function whose slices were
picted in Fig. 1 is shown with its projection into coordinate space
the three different timest50,T,2T . The coordinate probability dis-
tribution shown in the middle line instantly fills up space upon t
release. A close look at its tail, depicted at the bottom line, reve
that this tail looks the same up to a scale as one approach large
larger distances~thus no labeling was put on the axes!. Only at t
<0 the envelope vanishes abruptly at the wall of the box while
any later time it has an infinite tail that never vanishes. This featu
of instantaneous spreading are well known. Here we demons
that the instantaneous spreading is but a projection of the Wig
function shown in the first line, which is confined to a narrow st
in phase space2a1pt,q,a1pt at all times. This simple obser
vation immediately leads to a rather strong physical result: a co
lation between the approximate coordinate and the approximate
mentum of a particle detected after its release is obtained.
4-6
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If the detection is given by the action of an operator th
%D(q,p) is the Weyl transform of this operator, but re
detectors can be more complicated than that. For our dis
sion here it is sufficient to assume that the detector is ph
cally placed at some location, so that a particle can be
tected only at a given coordinate rangeQ06A . Using only
the facts that%0

W(q2pt,p) is zero unless2a,q2pt,a
and %0

D(q,p) is zero unlessQ02A,q,Q01A, we imme-
diately find that the probability to detect the particle wi
momentum bigger than (Q01A1a)/t or smaller than (Q0
2A2a)/t is identically zero.

We conclude that as long as the Schro¨dinger equation
governs the dynamics, particles released from this box
detected at approximate positions and approximate mom
consistent with finite velocities. The release of a parti
from a box involves instantaneous spreading in coordin
space but this instantaneous spreading is just the projec
of a combination of simple translations with finite velociti
in phase space. We note that a measurement by its
nature is always conducted in phase space@28,34#.

Clearly, the result for the correlation between the appro
mate location of the detector and the approximate meas
momentum of the detected particle can be proven by
analysis in any representation~Kirkwood, Husimi, Glauber,
coordinate or momentum space, or any other! but it is in the
Wigner representation that the simple nature of this proc
is most apparent.

IV. SCATTERING

A. Single-channel scattering

If the propagation is asymptotically free yet includes
small region of interaction, a scattering matrix can be
fined. For single-channel scattering, as well as for the ela
channel of multichannel scattering, a single amplitudeA(p)
and the dispersion relationv(p) define the propagation:

Ut~p!5A~p!exp@2 iv~p!t#. ~44!

The propagators in the different representations are

L t
W~q,p;q0 ,p0!

5d~p2p0!
1

2pE djAS p1
\

2
j DA* S p2

\

2
j D

3exp$ i j@q2q02tuW~p,j!#%, ~45!

L t
S~q,p;q0 ,p0!5d~p2p0!

1

2pE djA~p!A* ~p2\j!

3exp@ i j„q2q02tuS~p,j!…#, ~46!

L t
K~q,p;q0 ,p0!5d~p2p0!

1

2pE djA~p1\j!A* ~p!

3exp@ i j„q2q02tuK~p,j!…#. ~47!
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L t
P~q,p;q0 ,p0!

5E dp1

1

Apmk\
expF2

1

mk\
~p02p1!2G

3
1

2pE dh expF ih~p12p!1
\mk

4
h2G

3
1

2pE djAS p11
\

2
j DA* S p12

\

2
j D

3exp@ i j„q2q02tuW~p1 ,j!…# ~48!

5L t
H
„q,p0 ;q0 ,p…. ~49!

The propagators for single-channel scattering in the differ
phase-space representations are given by bilinear inte
transforms of the scattering amplitude. They provide diff
ent mappings from the energy domain where the amplitu
are defined to the time domain where the propagators
Mappings between the energy and time domains are par
larly interesting for the discussion of causality.

B. Causality

The scattering amplitudeA(p) and its properties depen
on the specific problem considered. It often has the follow
properties when analytically continued into the complex m
mentum plane:

~i! A* (p)5A(2p), or A* (p)52A(2p).
~ii ! A(p) is analytic in the upper half of the complexp

plane.
~iii ! A(p)→1 asupu→`.

These properties were proven in Ref.@35# for the Schro¨-
dinger equation with a positive potential, but are more g
eral. Whenever the transition amplitude has these proper
the propagators are given by

L t
W~q,p;q0 ,p0!5d~p2p0!

1

2pE djAS p1
\

2
j DAS 2p

1
\

2
j Dexp@ i j„q2q02tuW~p,j!…#,

~50!

L t
S~q,p;q0 ,p0!5d~p2p0!

1

2pE djA~p!A~2p1\j!

3exp@ i j„q2q02tuS~p,j!…#, ~51!

L t
K~q,p;q0 ,p0!5d~p2p0!

1

2pE djA~p1\j!A~2p!

3exp@ i j„q2q02tuK~p,j!…#, ~52!
4-7
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L t
P~q,p;q0 ,p0!

5E dp1

1

Apmk\
expF2

1

mk\
~p02p1!2G

3
1

2pE dh expF ih~p12p!1
\mk

4
h2G

3
1

2pE djAXp11
\

2
jCAX2p11

\

2
jC

3exp@ i j„q2q02tuW~p1 ,j!…# ~53!

5L t
H~q,p0 ;q0 ,p!. ~54!

The integral overj can now be considered as a conto
integral in the complexj plane. BecauseA(p6\j) and
A(p6\j/2) are analytic in the upperj plane it is possible to
deform the contour of*`

`dj to the arc at infinity of the uppe
j plane, whereA→1. In general, this will not give any
simple result or insight. The integral over the arc at infin
can assume very complicated forms and would often dive
for an arbitrary dependence of the auxiliaryu functions onj.
Only for cases in whichu(p,j)5v(p) does not depend onj,
a simple result follows. In these cases the integral ovej
would vanish identically for q.q01tv(p). For q,q0
1tv(p) different dispersions, different scattering amp
tudes, and different representations would all give differ
propagators but under the assumptions specified abov
these different propagators will vanish for coordinates too
apart at times that are too short. The limit on the propaga
is then locally set by the velocityv(p).

A very interesting situation occurs for massive particles
the non-relativistic limit for which\v(p)5p2/2m. The
manifestation in phase-space of the analytical propertie
the scattering matrix then depends on the representatio
previous work we have shown that in the Wigner repres
tation

L t
W~q.q01tp/m!50. ~55!

This property of the Wigner function tells us that no info
mation can be transferred faster than free motion as lon
the assumptions regarding the analytical properties of
scattering amplitude hold@26,29#. Here we have checked fo
this property in the other phase-space representations
found that no such simple restriction applies to the ot
phase-space propagators. In them, the velocity functionu
depend onj, and the contributions from the arcs at infini
diverge. We note, however, that the reason for the lost s
plicity is not in the scattering process but rather in the f
propagation which is so simple for the Wigner function y
so complicated for the other phase-space quasidistributi
Note that the Husimi function propagator as was notic
before does not explicitly display momentum conservati
As a result, while it is confined by classical free propagati
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this free propagation can be with any momentum, hence
propagation velocity is not really confined.

C. Multichannel scattering

In the general case of multichannel scattering theSmatrix
is defined in the following way:

Sk
p[ lim

t→`
^kuÛ0

†~ t !Û~ t !up&. ~56!

The asymptotic time evolution of a momentum eigenfunct
is then given by

Û~ t !up&5E dkÛ0~ t !uk&^kuÛ0
†~ t !Û~ t !up&

[E dkSk
p exp@2 i tv~k!#uk&. ~57!

The substitution of Eq.~57! in Eq. ~15! gives the propagato
for the Wigner function for multichannel scattering with
general dispersion relation as a bilinear transform of the s
tering matrix,

L t
W~q,p;q0 ,p0!

5
1

~2p\!2E dkE dq8E dp8E dk8S
k1k8/2

p02p8/2
Sp01p8/2

†k2k8/2

3expF i

\
@p8q01k8q1q8~p2k!#G

3expF i tvS k2
k8

2 D2 i tvS k1
k8

2 D G . ~58!

As in the preceding sections, this expression simplifies c
siderably for the dispersion relations of free nonrelativis
massive particles,

L t
W~q,p;q0 ,p0!5

1

2p\E dp8E dk8S
p1k8/2

p02p8/2
Sp01p8/2

†p2k8/2

3expF i

\
p8q01k8S q2t

p

mD G . ~59!

Note that the diagonal part of the scattering matrix rep
duces the single-channel case analyzed in the preceding
tions. The propagators for the other phase-space funct
are obtained from Eqs.~58! or ~59! by the transform of Eq.
~16! and involve more complicated expressions. Equat
~59! is simple enough to be useful. The application of E
~59! to specific physical systems remains to be done.
4-8
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V. CONCLUSIONS

Consider three statements regarding time evolution.
~i! Free propagation involves no tunneling or interferen
~ii ! Causality limits velocities of propagation.
~iii ! Momentum is conserved if the eigenfunctions of t

momentum operator are also eigenfunctions of the Ham
tonian.

Are these statements correct? In this paper we have s
ied these statements using different phase-space repres
tions. We have found some conditions and premises
which these statements formalized in some representa
are indeed correct. Clearly this depends on the underly
dynamics. We have shown that the choice of a representa
can also be essential because while the physical conte
these statement does not depend on it, the ability to un
biguously define ‘‘tunneling,’’ ‘‘interference,’’ ‘‘momen-
tum,’’ ‘‘velocity,’’ and ‘‘causality’’ can strongly depend on
the representation. For example, for nonrelativistic mass
particles these properties of quantum time evolution are s
ply defined and explicitly correct in the Wigner represen
tion, while in other representations the simplicity of defin
tion is lost and with it these properties of the time evolutio
while still true, are obscured.

We have first considered free propagation. We ha
shown that in general, free propagation is not restricted
one-to-one correspondence between initial and final ph
space points. The value of a time-evolved quasidistribut
at a single phase-space point is usually determined by
values of this quasidistribution at many phase-space poin
a previous time. We say that the propagation involves
these cases the quantum phenomena of interference. In
propagation with the underlying dynamics of the Sch¨-
dinger equation no initial quasidistribution is shifted u
changed. Each point of the initial Husimi function, for e
ample, influences each and every point of the final Hus
function. Free propagation of the Husimi, Kirkwood, andP
functions is based in this case on interference. Unique in
respect is the free propagation of the Wigner function wh
does define a one-to-one correspondence between initia
final phase-space points. A semiclassical approximation
covers the one-to-one correspondence between initial an
nal phase-space points in all the representations but de
tions of the actual free propagation from its semiclass
limit grow with time for all the quasidistribution except fo
the Wigner function whose free propagator is identical to
semiclassical limit. While the time evolution of the oth
quasidistributions is a complicated one, involving, for e
ample, divergent kernels, the time evolution of the Wign
function is simple: each of its points is moving in pha
space on a well-defined trajectory and with a well-defin
velocity, as if a classical point particle was propagati
there. Since each momentum slice is being shifted
changed at a different velocity, the complete distribution
reshaped, and so is its projection into coordinate space.
was demonstrated for the release of a particle from a b
For other dispersion relations free propagation will in ge
eral involve interference in all the phase-space represe
tions.
05211
.

l-

d-
nta-
r
ns
g

on
of
-

e
-

-

,

e
a
e-
n
he
at
n
ree

i

is
h
nd
e-
fi-
ia-
l

s

-
r

d

-
s
is

x.
-
ta-

Single-channel and multichannel scattering was con
ered next. It was shown that the propagators are bilin
transforms of the scattering matrix. Causality conditions
termine the analytical properties of the scattering matrix
the complex momentum plane. These analytical proper
then manifest themselves as restrictions on the phase-s
propagator, limiting the velocity of propagation. It wa
shown that the propagator for the Wigner function conne
ing two phase-space points vanishes if these two points h
different momenta or if the coordinate distance betwe
them is too big. The limit on the propagation of informatio
contained in the value of the Wigner function at a sing
phase-space point is set by free propagation of a class
particle initially at this phase-space point. The analytic
properties of the scattering amplitude manifest themselve
phase-space as restrictions on the propagator for the Wi
function. Given these analytical properties, no informati
can be transferred by scattering faster than by free motion
other representation this property is obscured. Divergent
nels connect in these representations phase-space poin
different momenta or of arbitrary large distances at arbitr
short times.

The particular simple nature of the dynamics of nonre
tivistic massive particles in the Wigner representation s
gest that this representation may be a useful representa
for analyzing actual systems and experiments, in particula
atom-optics as was done, for example, in Refs.@39,40#
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APPENDIX: RELATIVISTIC DISPERSION RELATIONS

In this appendix we make several observations as to
results obtained from naively replacing the dispersion re
tion \v(p)5p2/2m above by the dispersion relatio
\v(p)5cp or by \v(p)5cAp21m2c2. The first is the dis-
persion relation for free photons or light waves, and the s
ond for Klein-Gordon particles.

There is no position operator that is covariant and Herm
ian. Thus, it is not clear whether quasidistribution functio
in phase space for photons, light waves, or relativistic m
sive particles with the underlying dynamics of the Klei
Gordon equation can be rigorously defined. Furthermore
new definition for the quasidistribution may require a mo
fied definition for the propagators. Nevertheless, differ
phase-space quasidistributions, in particular the GlaubeP
and Q functions, are widely used in quantum optics wi
definitions based on second quantization of the radia
field. It was shown in Ref.@13# that a covariant Wigner
phase-space representation can be rigorously applied to
calized light waves by using the light-cone coordinate s
tem. These localized light waves, however, cannot repre
photons. A recent discussion of the difficulties in defining
Wigner representation for massive particles obeying Lor
invariance was given in Ref.@36#.

The difficulties pertaining to the definition of these qua
4-9
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distributions are beyond the scope of this paper and are
the subject of this appendix. Here we simply examine
properties of the propagator as it was defined above with
changed dispersion relations. Our attempts to treat in
way relativistic propagation with the dispersion relations
Klein-Gordon particles have failed due to difficulties wi
branch cuts. Even free propagation with the dispersion r
tions of Klein-Gordon particles is not well defined in pha
space. In contrast, we find that the propagators with the
persion relations of light waves are well defined, simple, a
causal in all the phase-space representations considered

Properties that were unique to the Wigner representa
for the Schro¨dinger dispersion apply just as well in all th
other phase-space representations as soon as one~naively!
replaces the dispersion relation\v(p)5p2/2m by \v(p)
5cp. All the propagators describing free motion in the d
ferent representations become trivial,

L t
z~q,p;q0 ,p0!5d~p2p0!d~ uq02qu2ct!. ~A1!

The propagators for free evolution define in this case a o
to-one correspondence between initial and final points,
the initial quasidistribution, whatever it was, is shifted u
changed at the speed of light. Propagation with the disp
sion relations of free photons of all the phase-space qua
istributions involves no interference and no tunneling and
free propagator does not depend on the representation. T
features are not true for other dispersion relations. In gene
free propagation is not restricted to a one-to-one corresp
dence between initial and final phase-space points, and
ferent representations require different propagators.

For the Schro¨dinger equation, we have proven a restr
tion on the propagator in the Wigner representation
single-channel scattering under certain assumptions on
,
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analytical and asymptotic properties of the scattering am
tude. This restriction was unique to the Wigner represen
tion. If, however, we replace\v(p)5p2/2m by \v(p)
5cp a similar restriction applies as well to all the differe
phase-space representations here considered, namely,

L t
W/S/K/P/H~ uq02qu.tc!50. ~A2!

Even though the propagators inside the lightcone (uq02q
u,tc) may differ considerably depending on the represen
tion, the phase-space propagators considered here are
fined to within the lightcones, regardless of the represen
tion chosen. Under the above assumptions, the phase-s
point-to-point propagation of quasidistributions with the d
persion relations of asymptotically free photons is limited
the speed of light.

The asymptotic limit\v(p)→cp asupu→` , which uni-
versally holds for relativistic systems, is not a sufficient co
dition to ensureL(uq02qu.tc)50. If u(p,j) has singulari-
ties at the upper half of the complexj plane, as it does, for
example, for \v(p)5cAp21m2c2 the integral does no
vanish even though the integral over the arc at infinity do
Difficulties with the causality of free time evolution of rela
tivistic particles due to branch cuts in the dispersion relatio
were considered in Ref.@31# not in phase space but othe
wise in a similar context, while difficulties with consistent
defining a Wigner function for relativistic free particles we
considered in Ref.@36#.

Comparing the expressions for both free propagators
single-channel scattering we recognize a similarity betw
the propagators with\v(p)5cp and these propagators wit
\v(p)5p2/2m in the Wigner representation. No such sim
larity exits in the other phase-space representations.
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