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Time evolution is considered in phase space in terms of evolution kernels for various phase-space quasi-
distributions. The propagators for the Wigner function, the standard-ordered function, the Kirkwood
(antistandard-ordergdunction, the GlaubeP andQ functions, and the Husimi function are explicitly written
as bilinear transforms of the evolution operator. Free propagation, propagation in dispersive media, and scat-
tering, are studied, and manifestations of causality and interference are analyzed. It is shown that free propa-
gation and scattering in the Husimi, Glauber, and Kirkwood representations with the underlying dynamics of
the Schrdinger equation involve divergent evolution kernels connecting distant phase-space points at all
times. The time evolution is much simpler in the Wigner representation whefree propagation is a simple
classical translation involving no interference, diiglanalytical properties of the scattering matrix restrict the
velocities of propagation so that no information can travel due to scattering faster than free motion. As an
example, a correlation is found between the coordinate and momentum of particles detected after they are
released from a box. Propagators with relativistic dispersion relations of free photons or Klein-Gordon particles
are briefly discussed in an Appendix.
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I. INTRODUCTION trajectoried 8,19-23, or superoperatof®3], nor do we dis-
cuss the advantages and difficulties of these approaches. In-
The subject of this paper is to study the nature and propstead, we focus on discussing dynamics in terms of evolution
erties of time evolution or dynamics of a quantum system irkernels. The different phase-space quasidistributions are dif-
phase space. Recent advances in atom optics and molecufarent transforms of the density matrix and the time-
physics require a quantum treatment of the time evolution oévolution of the density matrix is given by the time-evolution
wave packets, which are partially localized both in momen-operator. The propagators for the quasidistributions are
tum and in coordinate. It is often useful to formulate thetherefore given by different bilinear transforms of the evolu-
dynamics of these systems in phase space. Formulation tibn operator. We derive these transforms and study their
guantum dynamics in phase space is also interesting from properties.
pure theoretical or fundamental perspective. One may won- Quantum propagators can be quite different from classical
der how must we change our concepts of evolution in theropagators. The classical equations of motion define classi-
guantum regime. cal trajectories in phase space for the coordinai@3 and
Different representations of quantum mechanics in phasmomentap(t), as a function of the time. The classical
space were introduced over the years. These include thgropagators in phase space are therefofienctions over the
Wigner function, the standard-ordered function, the Kirk-classical trajectories defining a one-to-one mapping between
wood (antistandard-ordergdunction, the GlaubeP andQ  single points of the initial and final distributions. In quantum
functions, the Husimi function, and other representations thatnechanics, on the other hand, a single point of the phase-
will not be considered here. For a large body of informationspace distribution at one time can, in principle, be causally
regarding these different quasidistributions the reader is rezonnected to many points of this phase-space distribution at
ferred to several seminal studies as well as excellent andnother time.
comprehensive reviewd -16,37,38 We will use the following definitions. When sever@r
Phase-space representations of quantum systems were afany) initial points contribute to the value at a single point
ten used in the past to analyze the classical limit or classicalf a phase-space distribution at a later time this is the purely
guantum correspondence. The different phase-space reprg@dantum effect of interference. Likewise, when the value at
sentations were introduced in this context as different quanan initial point influences the value at a final point and these
tum descriptions with a common classical limit. Compari-two phase-space points are not connected by a trajectory, this
sons of varied properties of these representations in this the purely quantum effect of tunneling. The evolution ker-
guantum regime, where they differ, were given before withnels that we study are essentially influence functionals.
an emphasis on the properties of stationary quantum statd¥hen the evolution kernel connecting one phase-space point
[10,11,14. Our focus here is complementary to the previousat the initial timet=0 to another phase-space point at a later
studies: We analyze quantum dynamics by considering antime t= 7 vanishes we conclude that these two points are
comparing the propagators for the various phase-space queausally disconnected for this time difference
sidistribution functions. We do not consider here time evo- We will see that properties of the time evolution can as-
lution in terms of differential equationsl1,17,18, Wigner  sume very different forms in the different phase-space rep-
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resentations. Quantum mechanics can be studied in many 1

different representations. The physical results of an experi- gf(q,p)z —Zf dgf dnf dq'Z(¢é,mexdié(q’'—q)
ment or the theoretical predictions for an observable effect 4m

do not depend on the representation chosen but a clever Z
choice often simplifies the analysis and sometimes helps our —i np]< q’ + 57
physical intuition. In the same way, a poor choice of a rep-

resentation can unnecessarily complicate simple things, ob- ~ . ) _ -
scuring an underlying elegance of a process. We will see tha¥ere p is the density matrix(14]. For a pure statep
time evolution with the underlying dynamics of the Schro =|#){#| but we do not assume thatis necessarily pure.
dinger equation assumes the simplest most transparent forfe function{(&,7) defines the representation. Restrictions
in the Wigner representation. Only in the Wigner phase-0n the choice of functiong(¢,») were given, for example,
space representation free propagation involves no tunnelir&@ Ref.[10] but lately relaxed by Ref24]. In this paper we

or interference. A causality condition can be easily defined®cus on the best known and most used phase-space repre-

and proven for scattering of the Wigner function, but it has;entations: the Wigner function, the standard-ordered func-

no simple analog in the other phase-space representatio on, .the Kirkwood (ar'1t|§tanda.rd—ordered‘.unctlon, .theP
Likewise, in cases where momentum conservation applies, hction, ano_l the Husimi function, for whicl(¢, ») is, re-
: - . . .. spectively, given by
is explicitly manifested in the propagators of some quasidis-
tributions but not in others.
The paper is organized in the following way: in Sec. Il the
phase-space propagators for several well known and widely
used quasidistributions are explicitly written for a general (&)= ex;{—iﬁgrl} 3
time evolution as transforms of off-diagonal matrix elements 2
of the evolution operator and as transforms of an evolution
function of the momentum in the special case of conserved K B i
momentum. Free propagation is discussed in Sec. Il with an &&= exp{l 5577}' @
application to the simple example of releasing a particle from
a box where a correlation is found between the coordinate Amx
exp{ 772
4
Amk )
ex;{ ) n

and momentum of particles detected after they are released. Fém= ex[{4mx &
wherex andm are constants defining the representation. The

The discussion of scattering in Sec. IV includes single-

channel scattering, a study of causality, and a generalization
GlauberQ function is a special case of the Husimi function.
Other phase-space distributions, e.g., with singular kernels,

: . ) X f
to multichannel scattering. Conclusions are presented in Sec. MEn)= eXF{ — 4_52
mx
are not considered here but can be considered as[ 24|l

VI. Relativistic dispersion relations are briefly discussed in
the Appendix.
A. Phase-space quasidistribution functions Transformations between the phase-space representations
are given by the integralsl4]:

Quantum mechanics can be represented in phase space in
different ways. Various phase-space representations of a . , Y S Ny
guantum state can be constructed by transforming the density ei(q.p)= | da’ [ dp'gy(a’—a.p’—p)er(a’.p’),
matrix p, and any operatoA into scalar function®,(q,p) @)
and A(q,p), respectively, so that TpA] . e
=(1/27h) fdpfdgA(g,p)e(d,p). A consistent definition ¢ _ _J d f drexdi(éd+ 7
for the transform of an operator versus the transform of the gi(a.p) 472 ¢ mexii(a np)])\(g, 7))’
density ensures that quantum expectation values, traces, and (8
observables do not depend on the representation. Formally,
these transforms replace operators and density matrixes I§imple examples include
symbols, i.e.c-number scalar functions. Different orders of
g andp define the different symbols . For example, the stan-
dard ordered function introduced by Meh&, and its com-
plex conjugate, the Kirkwood function, are defined by con-

Pt

h
q’_§77>! (1)

MEm=1, 2

; ®)

. (®

II. PROPAGATORS IN PHASE SPACE

1 i
9w (a,p)=0gus(q,p) = ﬁexr{i#qp}, (9)

jugate ordering of] andp. H W 1 me 1,
A unified form for the phase-space quasidistributions is 9w(d,P)=0p(q,p)= T7-ex n 9]¢ mih P |
given by (10
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while divergent integrals are encountered when consideringNigner propagator second, and transforming back into the
original representation at the end.

1 h
P _ oW _ = ; 2
9w(d,P) =9y (a.p) Zﬂf dgequgq]ex[{4mxg C. Momentum conservation
In the following sections propagation with different dis-
. (11)  persion relations and scattering are considered. It is useful to
study first the case of conserved momentum in which the
We will use this unified notation and reversible transforms'oMentum operator commutes with Fhe Hamiltonian, and
: the momentum eigenstates are also eigenstates of the evolu-
throughout this paper. :
tion operator. Namely,

fimk

1
_ i 2
szf dnexp:lnp]exr{ 77

B. Propagators U(t)[py=Ui(p)|p), 17
Time evolution of the density matrix is given by the time- N
evolution operator and (q|U(t)|p)=(2h) U (p)exdiqp/#i]. The propaga-
tor for the Wigner function is then the Wigner transform of
p=U(t)poUT(1). (12)  theevolution function Yp),

For the phase-space distributions, a phase-space propaga . _ _ iJ’ Ce
is defined as the evolution kernel in the following way: E’f"(q,p,qo,po)— o(p p°)27-r dgexpi&(a—do)]

fi h
Po+ Ef Uf(po_if)- (18)

ef(q,p)=f quf dPoL (9, P;o.Po) @5(doPo)- XUy
(13 :
Just as simple are the propagators for the standard-ordered
This definition was considered in Refs3,25-3( for the  function and the Kirkwood function,
Wigner function. Here, we extend it to all the phase-space

gerg[)elgentatlons. The propagators are normalized and Int%ts(q.pi%,po):5(P—P0)EJ dé exdi£(q—qo)]

¢ [ XUy(po)Uf (po—#€), (19
J dQJdpﬁt(q,p;qo,poFquof dpoL¢(d,P;do,Po)

1
-1 1 LN@P%Po = 3D poly | deexisa-ao)]

The propagator for the Wigner phase-space distribution has a XUy(pothéEUTL(po). (20
simple expression in terms of matrix elements of the evolu-
tion operator, The propagators for the function and the Husimi function

are more complicated,

1 i
CtW(q,p;qo,po)=mf dq’fdp’ exp{g(q’pmop’)} £(9,p;d0,Po)

ity iy ~ [ dp——— exr{——l (p—pl)z}
X\ a=59"|U(1)|po— 5P Jrmkh m«h
1 R 1 1 ) hAimxk )
><<po+ 5p'|UT(D)]q+ zq’>- (15) ng dnexpin(po—Pi)+—;—7
Explicit examples can be found in Ref&5,26,3Q. All other Xif déexdi &(q—qo)]
propagators can be expressed in terms of this Wigner propa- 2m
gator and the transforming functiogs " 5
XUy p1t5¢€ Uf(Dl__§) (21)
L£{(9,p;do,Po) 2 2
=—L{(4,p0:Yo.P), (22)
=qu1fdp1f dqu dp2£{"(q1,P1302.P2) Creo
where the propagator for tefunction is obtained from the
X giy(d1—9,p1—P)gy (Go— 02, Po~ P2)- (16)  propagator for the Husimi function by exchanging initial and

final momentap, and p, and changing the overall sign.
Formally, these propagators are equivalent to transformingVhile the integrals diverge, these propagators are well-
into the Wigner representation first, propagating with thedefined distributions, as they obey EG4).
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The propagators for the Wigner, standard-ordered, an@{'(q,p;qo,po)
Kirkwood functions explicitly display momentum conserva-
tion with §(p—py) and a symmetry between initial and final
coordinates and momenta. The propagators forRHenc-
tion and the Husimi function do not have these properties. In
fact the propagation of the Husimi function seems to be car-
ried out with a Gaussian distribution of momenta around the
final momentum, while the relation to the initial momentum
is ill defined, and the reverse applies to the propagation of
the P function. Clearly momentum is conserved regardless of
the representation chosen to describe the process. Integration
of the time evolution in all these representations would give
the same result for any observable consequences of momen-

tum conservation. In some representations, however, morpe integrals oveg often diverge but reduce to simpke
mentum is conserved explicitly in the evolution kernel: thenctions in cases whene(p, £) does not depend o

value of these quasidistributions at a phase-space point Thege propagators do not define in general a one-to-one
propagates only into phase-space points with the same m@qrespondence between initial and final phase-space points.

mentum. In other representations the intrinS!C prope_rty 'Of'l'hey can involve both tunneling and interference. The devia-
momentum conservation is obscured. The point to point iNgigns of £KS from a one-to-one correspondence are the

1

1
o _ _ 2
_fdpl WGXF{ meL(p pl)}
1 i Aimk )
Xﬁf dnexpin(po—Py)+—;—7

1
X f dg exfi £(d—do— tu¥(py,£)]

=—L£{(9,P0;00,p)- (28)

fluence functional does not display it and it is recovered only,

after integration.

Ill. FREE PROPAGATION

Free propagation is defined by a dispersion relatip)
which gives the evolution function

result of a dependence of the velocity functiaf§</S on &.

In the limit of #—0 the dependence afiand these devia-
tions vanish. For some specific dispersion relationdoes

not depend org¢ also in the quantum regime and the exact
quantum propagator is equal to its classical limit. In these
cases a simple one-to-one correspondence between initial
and final phase-space points is obtainpe:p, andg=qq

+tu(pg) - Things are essentially more complicated for the
Husimi andP functions. Here, even whandoes not depend

Ui(p)= exd —iw(p)t]. (23 on ¢ and the integration ovef gives 8(q—qo—tu(p;)) ,
one still has to integrate over, wherep, is neither equal to
) . ) _ the initial momentunp, nor to the final momenturp.
Introducing the auxiliary velocity functions
A. Free nonrelativistic massive particles
ho| p+ fg —ﬁw( p— ﬁg) The dispersion relation Qf free massiv_e pa_lrticles, whose
W B 2 2 wave functions obey the Schiimger equation, is
u™(p, &)= Y . (29 ,
p
ho(p)= 5. (29)
ho(p+hé)—ho(p)
u(p, &)= heé ' (254 The auxiliaryu functions derived from it are
W(p,)= (30)
hw(p)—ho(p—hf) S me
uS(p,§)= " : (26)
p hé
_ u(p, &)= —+ 5, (3D
the free propagators of the Wigner, standard-ordered, and m m
Kirkwood functions are given by the transforms
p hé
S - __>
up. &)= 5 (32

WIKIS . 1 R

Ly (q,p,qo,po)=6(p—po)2—f déexpliéla—do
. Note that whileu"(p, &) does not depend og, u¥'s(p,¢)
do. Based on the previous considerations, we therefore ex-
pect the propagator in the Wigner representation to uniquely
display a one-to-one correspondence between initial and final
phase-space points. For this dispersion, the general form of
all the phase-space propagators is given by

—tuS(pg, )1}, (27)

while the propagators for th® function and the Husimi
function are
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L££(9,p;do,Po) In a_ll] the representatiolns_, excluding Wigner, there is a com-
petition between the limits of large time and smalland
deviations of the free propagators from their classical limit
grow with time.

1 The difference between the Wigner representation and
- i " other representations here is striking. Free propagation in all
XZTJ dni(& mexiz(p’=p)] other representations is based on interference. The value of
1 each initial point contributes to the values of many final
x—f du[ (& )] texdin(po—p')]. (33)  points and the value of each final point is determined by the
2m values of many initial points. The Wigner function is the

This time, the free propagator depends on the representatio%nIy phase-space function freely propagating in a completely

In the classical limit ofi—0 we recover for all the repre- classical way. Each point of the freely propagating Wigner

sentations the simple propagator functlon.m-oves on the-class!cal trajectany= qo+tp/m, p
=po. This is but a manifestation of the well-known fact that

lim ££(0,p;00.Po) = 8(p—Po) 8(o+tp/m—q), (34) the differential equation for the free Wigner function is iden-
#—0 tical to the classical Liouville equation while no such equiva-
lence exists for the other phase-space quasidistributions.

1 .
= ZJ d&f dp'exdié(gqo+tp’/m—q)]

but for finiteZ the propagators are not the simg@ldunction
of free classical propagation. Unique in this respect is the
free propagator for the Wigner function, whose simple form B. Example: releasing a particle from a box

is exact in th ntum regim well as in the classical on . . .
s exactin the quantum regime as well as in the classical one, The problem of releasing a particle from a box in quan-

tum mechanics can be considered for photons, for relativistic
or nonrelativistic massive particles, or using model-
éndependent argumen{81-33. Here we limit the discus-

£(d,p;do,Po) = 8(p—po) 8(do+tp/m—q). (35

In all the other representation the integrals defining the fre Sion to nonrelativistic particles. Relativistic dispersion rela-
propagator by Eq33) diverge for finite/s. Nevertheless, the ions are considered ir?the A 'endix P
propagators defined by these divergent integrals are welf- PP )

: S : . Suppose that dt=0 we release a particle from a box and
Qef|ned d|str|but!ons. In particular, they are normalized anc{hat tr?g particle wave function was Izom‘ined within the box
integrable, obeying Eq14).

The free propagators for the standard-ordered functior?ttgo: ¥(q)=0 unless—a<q<a. The particle is propa-

and the Kirkwood(antistandard-ordere¢dunctions are, re- gating in free zspace according to the Sainger equation
spectively, and w(p)=p“/2m . The free propagator depends on the

representation, and as a result, the physical picture of the
release from the box is different in the different representa-
tions. The Husimi and th® distributions are not even con-
1 [ p ] 5 fined to the box at=0. The standard ordered and the Kirk-
=5(Do—p)zf déexp 'f(QOHa—Q) Tig—=§ wood functions are confined to the box initially but when
) released propagate in a complicated manner, exhibiting, for
(36) example, what seems like interference. In contrast, a remark-
ably simple picture is obtained for the Wigner function’s free
*im +im 5 propagation. The particle Wigner functiontat 0 is confined
=3(Po=P) V517 &M S (GoFtP/m=a)7), within the box: 0¢'(q,p)=0 unless—a<qg<a (as a result
) (37 of the confinement of the wave function and the definition of
the Wigner functioh Free propagation in the Wigner repre-
where the integral representation of Eg6) is exact while  sentation is trivial and we immediately get the Wigner func-
the expression in Eq.thinspad87) was obtained after a tion of the released particle at any later tite
regularization. The free propagators for tRefunction and
the Husimi distribution are e!'(a,p)=ep (q—tp/m,p). (40

£(q,p;do.po)

£{(9,p;do.Po)
Unlike the wave function that is initially confined and in-
m stantly fills all space when released, and unlike the Husimi
ex;{——z(qoﬂp/m—q)zl distribution that even initially extends over all space, the
h kt Wigner function is confined to the box &t 0, freely propa-

-1 1
" 27 NV amhxk

7 kct? gates by a simple classical translation when released, and
X f dnexp{—i n(Qo+tpo/m—q)+ 2 7]2} (38)  does not fill phase space even at infinite times. In fact, it is
m zero almost everywhere in phase space and differs from zero
. only in the constant-width strip defined by the inequality
=—L(d,Po:do.P)- (39  —a+tp/m <g<a+tp/m. For each momentum the release
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is a pure translation of the initial Wigner function at a con- t=0, p=-0.4 t=T, p=-0.4 £=2T, p=-0.4
stant velocity defined by this momentum. The projection into
coordinate space does not vanish for apy/d pQ}N(q,p)
#0. This reflects an instantaneous filling of coordinate
space, which is indeed the correct description in the nonrel- _; _; =T, p=1 t=2T, p=1
ativistic regime. One could equivalently follow the released ﬂ
1

particle from the wave function and not from the
momentum-projected Wigner function. Once the wave func-

tion is initially confined to a finite region of space the mo- a g q
mentum is unbounded and the released wave function instar t=0. p=1.8 t=T, p=1.8 £=2T, p=1.8
taneously spreads to all space. This is well known and is no

our concern here. The new result obtained here in the Wigne

representation and demonstrated below for an explicit ex- I 4 I I

ample is a simple correlation between the coordinate and
momentum of a particle detected after its release. Suppose FIG. 1. Att<0 a massive and nonrelativistic particle is con-
that we use a physical detector to detect the released particlied to a box—a<qg<a . At t=0 the particle, initially at the
then in the Wigner representation the detector would also bground state of the box, is released. Three slices of the Wigner
characterized by a phase-space excepting fund@@&;34. function of this particle are shown. Each slice is depicted at three
This analysis shows that for particles measured by a physicgﬂiﬁerent times. Att<<0 the Wigner function is confined to the box
detector at timet and at a large distance from the initial —a<g<a and all momentum slices overlap. & 0 each momen-
location of the particle, there will be a correlation betweentum slice is shifted unchanged at a constant velocity proportional to
the approximate positioq of the detected particle and this |ts. momgntum. Qlﬁerent slices propagate with different ve!ocme§.
particle’s approximate momentum Sllcg_s with negative momentum propaga_ue to the left and slices with
As an explicit example for the release in the Wigner rep-PoSitivé momentum propagate to the right. Thusfaff>0 the
resentation, we consider here as an initial state the ground/ces SPread out and even more so at a later timeT.
state wave function of a particle in an infinite box. The initial

wave function is J f dpdae®(a,p)eg (q—tp/m,p), (43)

#(@)=0, |a|>a, wherep®(q,p) is the excepting function of the detec{@8].

. lal<a (41)

w(q>=%_sir{21<q+a>
a a

and the freely propagating Wigner function at any time
t=0 is 0{¥(q,p)=0 for |g—pt|>a and

’ ..,.-:.h;,AII."IMJIJM.‘.A. )

cog w(q—pt)/a] sin(2p/#)(a—[q—pt])]

elap=—""m 2p/h ! ! !
t=0 t=T t=2T
sin (2p/f+mla)(a—|q—pt|)]
2mha(2p/th+ mla)
sin{ (2p/fi+ wla)(a—|q—pt))] < ‘- 4
2mha(2plt+ mla) (42) FIG. 2. The complete Wigner function whose slices were de-

picted in Fig. 1 is shown with its projection into coordinate space at
for |q—pt|<a, where we have used E¢40) and results the three different times=0,T,2T . The coordinate probability dis-
from Refs.[14,8]. This Wigner function at three different tribution shown in the mi.ddleiline instantly fills up space upon the
times is depicted in Figs. 1 and 2. releasg. A_close look at its tail, depicted at the bottom line, reveals
The envelope of the spreading wave packet is given b at thls_tall looks the same up to a scale as one approach larger and
projection into coordinate space i.e., by integrating @@ arger distancesthus no labeling was put on the axe®nly att

h It of ically i . W <0 the envelope vanishes abruptly at the wall of the box while at
overp. The result of numerically integratingd pe;"(q,p) at any later time it has an infinite tail that never vanishes. This features

different times is also depicted in Fig. 2. As expected, any jnstantaneous spreading are well known. Here we demonstrate
instantaneous spreading of the wave packet in coordinai@at the instantaneous spreading is but a projection of the Wigner
space occurs. function shown in the first line, which is confined to a narrow strip

If, instead of projecting into coordinate space, we takein phase space a+ pt<qg<a+ pt at all times. This simple obser-
into account the experimental fact that the released particlgation immediately leads to a rather strong physical result: a corre-
can only be detected by a physical detector, an interestingtion between the approximate coordinate and the approximate mo-
result follows. The probability for a detection is given by  mentum of a particle detected after its release is obtained.
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If the detection is given by the action of an operator thengtp(q,p;qo,po)
0P(q,p) is the Weyl transform of this operator, but real

detectors can be more complicated than that. For our discus- 1 1 5
sion here it is sufficient to assume that the detector is physi- = f dle=heXF{ - m(po— P1) }
cally placed at some location, so that a particle can be de- Mk

tected only at a given coordinate ran@g= A . Using only 1 Amx

the facts thatey'(q—pt,p) is zero unless—a<q-—pt<a Xﬁf dnex;{i n(Pr=P)+—4— 772}
and Qg(q,p) is zero unlesy—A<q<Qy+A, we imme-

diately find that the probability to detect the particle with 1 i\, h
momentum bigger thanQ,+A+a)/t or smaller than Q, Xﬁj déA| pit+ 5 E]AT P15 ¢
—A—a)/t is identically zero.
We conclude that as long as the Salinger equation xexgié(@—do—tu™(p1,8))] (48)

governs the dynamics, particles released from this box are

detected at approximate positions and approximate momenta o ] ) (49)
consistent with finite velocities. The release of a particle t{4:Po; G0, P)-

from a box involves instantaneous spreading in coordinate

space but this instantaneous spreading is just the projectiofhe propagators for single-channel scattering in the different
in phase space. We note that a measurement by its vegyansforms of the scattering amplitude. They provide differ-
nature is always conducted in phase spa834. ent mappings from the energy domain where the amplitudes
Clearly, the result for the correlation between the approxigre defined to the time domain where the propagators act.
mate location of the detector and the approximate measura@appings between the energy and time domains are particu-

momentum of the detected particle can be proven by afyrly interesting for the discussion of causality.
analysis in any representatigirkwood, Husimi, Glauber,

coordinate or momentum space, or any ofloert it is in the _
Wigner representation that the simple nature of this process B. Causality

IS most apparent. The scattering amplitud&(p) and its properties depend
on the specific problem considered. It often has the following
IV. SCATTERING properties when analytically continued into the complex mo-
mentum plane:

o . . (i) A*(p)=A(—p), or A*(p)=—A(—p).
If the propagation is asymptotically free yet includes a (i) A(p) is analytic in the upper half of the complex
small region of interaction, a scattering matrix can be depjane.

fined. For single-channel scattering, as well as for the elastic (jijj) A(p)—1 as|p|— .
channel of multichannel scattering, a single amplitéde)

A. Single-channel scattering

and the dispersion relation(p) define the propagation: These properties were proven in RES5] for the Schre
dinger equation with a positive potential, but are more gen-
Ui(p)=A(p)exd —iw(p)t]. (44)  eral. Whenever the transition amplitude has these properties,

the propagators are given by
The propagators in the different representations are

h
p+ 55

1
£(9,p;90,po)=8(p— —fd A A(—
£%(9,p: o, Po) t (0,P;d0,Po) = (P po)zﬂ_ & p

1 % # # _ w
=5(p—po)5f déA| p+ 55 A* p—§§ t5¢ exdié(q—qgo—tu™(p,é))],
X expli[q—do—tu™(p,&)1}, (45) (50
1 N 1
E?(q,p:qo.po)=6(p—po)zf déA(P)A* (p—hé) Et(q,p,qo,po)=5(p—po)%f déA(P)A(—p+hé)
x exfi £(q—qgo—tus(p,&))], (46) X exfi &(g—dgo—tu3(p, &)1, (51)
K . 1 * K . 1
ﬁt(q.p,qo,po)=5(p—po)ﬂf déA(p+AE)A*(p) Et(q,p,qO,po)=5(p—po)EJ déA(p+hé)A(—p)
X exfli £(q—go—tuX(p,&))]. (47) xexdié(@—go—tuk(p,&)], (52
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ﬁtp(q,p;%'po) this free propagation can be with any momentum, hence the
propagation velocity is not really confined.
1
=] dp —ex;{——(p -p )2}
f ' Jamch mwh 0T C. Multichannel scattering
1 . Amx In the general case of multichannel scattering3meatrix
Xo—| dpexgin(pi—p)+ 7 is defined in the following way:
2 4
1 f h — SN0
— _ _ _ SP=Ilim (k|Ug(t)U(t)|p). (56)
| déA(Dﬁ zf)A( py+ 25) A LeBnle)
xexgié(@—do—tu"(py,é))] (53) o , , ,
The asymptotic time evolution of a momentum eigenfunction
= £, Po;do.P)- (54) s then given by
The integral overé can now be considered as a contour ~ _f P AT
integral in the complext plane. Becausé\(p=#¢&) and UD)lp)= | dkUo(®[k)(k|Ug(t)U(t)]p)
A(p=hél2) are analytic in the uppeét plane it is possible to
deform the contour of _d¢ to the arc at infinity of the upper EJ’ dkS exd —itw(k)]|Kk). (57)
¢ plane, whereA—1. In general, this will not give any

simple result or insight. The integral over the arc at infinity

can assume very complicated forms and would often divergghe substitution of Eq(57) in Eq. (15) gives the propagator
for an arbitrary dependence of the auxiliarjunctions oné.  for the Wigner function for multichannel scattering with a

Only for cases in whichi(p,£) =v(p) does not depend af)  general dispersion relation as a bilinear transform of the scat-
a simple result follows. In these cases the integral aver tering matrix,

would vanish identically forg>qy+tv(p). For q<qq
+tv(p) different dispersions, different scattering ampli-
tudes, and different representations would all give different, w .
. 2 ¢ (3,P;0o.Po)
propagators but under the assumptions specified above all

these different propagators will vanish for coordinates too far 1 Do’ 12tk K' /2
apart at times that are too short. The limit on the propagation = zj dkf dq’f dp’f dk's? ., Spotp'i2
is then locally set by the velocity(p). (27h)

A very interesting situation occurs for massive particles in i
the non-relativistic limit for which%w(p)=p?/2m. The X exp{g[p’q(ﬁ— k'q+q'(p— k)]}

manifestation in phase-space of the analytical properties of
the scattering matrix then depends on the representation. In K’
Xexp it w( ) —itw

!

K+ —

previous work we have shown that in the Wigner represen- k—— 5

tation 2

} . (58)

w As in the preceding sections, this expression simplifies con-
L (q>do+tp/m)=0. (55  siderably for the dispersion relations of free nonrelativistic
massive particles,

This property of the Wigner function tells us that no infor-

mation can be transferred faster than free motion as long as 1

the assumptions regarding the analytical properties of the E:’V(q,p;qo,po)=ﬂf dp'f dk’
scattering amplitude holi®26,29. Here we have checked for 7

this property in the other phase-space representations and i

found that no such simple restriction applies to the other Xexp{gp’q(ﬁ k'
phase-space propagators. In them, the velocity functions

depend or¢, and the contributions from the arcs at infinity

diverge. We note, however, that the reason for the lost simNote that the diagonal part of the scattering matrix repro-
plicity is not in the scattering process but rather in the freeduces the single-channel case analyzed in the preceding sec-
propagation which is so simple for the Wigner function yettions. The propagators for the other phase-space functions
so complicated for the other phase-space quasidistributionare obtained from Eqg58) or (59) by the transform of Eq.
Note that the Husimi function propagator as was noticed16) and involve more complicated expressions. Equation
before does not explicitly display momentum conservation(59) is simple enough to be useful. The application of Eq.
As a result, while it is confined by classical free propagation(59) to specific physical systems remains to be done.

Po—P'12atp—K'12
Sp+ k'/2 Spo+ p’/2

p
q—tE”. (59
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V. CONCLUSIONS Single-channel and multichannel scattering was consid-
ered next. It was shown that the propagators are bilinear
transforms of the scattering matrix. Causality conditions de-
(it) Causality limits velocities of propagation. termine the analytical properties of the scattering matrix .in
(iiil) Momentum is conserved if the eigenfunctions of thethe comp!ex momentum plane. The_se analytical properties
momentum operator are also eigenfunctions of the HamiI:[hen manlfest_ ths_:mselves as restrictions on th_e phase-space
tonian. propagator, limiting the velocity of propagation. It was

shown that the propagator for the Wigner function connect-
Are these statements correct? In this paper we have stuffld tWo phase-space points vanishes if these two points have

ied these statements using different phase-space represerfidierent momenta or if the coordinate distance between
tions. We have found some conditions and premises fol1€M IS t00 big. The limit on the propagation of information
which these statements formalized in some representatioff@nt@ined in the value of the Wigner function at a single
are indeed correct. Clearly this depends on the underlyin§n@S€-space point is set by free propagation of a classical
dynamics. We have shown that the choice of a representatidffrticle initially at this phase-space point. The analytical
can also be essential because while the physical content BfoPerties of the scattering amplitude manifest themselves in
these statement does not depend on it, the ability to unanp@Se-space as restrictions on the propagator for the Wigner
biguously define “tunneling,” “interference momen- function. Given these analytical properties, no information
tum,” “velocity,” and “causaiity” can strongl)’/ depend on €&n be transferred by scattering faster than by free motion. In
the representation. For example, for nonrelativistic massiv@ther representation this property IS obscured. D|vergen§ ker-
particles these properties of quantum time evolution are sim2€!S connect in these representations phase-space points of
ply defined and explicitly correct in the Wigner representa_dlfferent momenta or of arbitrary large distances at arbitrary

tion, while in other representations the simplicity of defini- SNOrt times.

tion is lost and with it these properties of the time evolution, . 1 1€ Particular simple nature of the dynamics of nonrela-
while still true. are obscured. tivistic massive particles in the Wigner representation sug-

We have first considered free propagation. We havdest that this representation may be a useful representation

shown that in general, free propagation is not restricted to f @nalyzing actual systems and experiments, in particular in
one-to-one correspondence between initial and final phas@°mM-optics as was done, for example, in RE#®,40

space points. The value of a time-evolved quasidistribution

at a single phase-space point is usually determined by the ACKNOWLEDGMENT

values of this quasidistribution at many phase-space points at

a previous time. We say that the propagation involves in  This researctiNo. 181/00-1 was supported by The Israel
these cases the quantum phenomena of interference. In fr&§ience Foundation.

propagation with the underlying dynamics of the Sehro

dinger equation no initial qga}gidistribytipn is .Shifted UN-  APPENDIX: RELATIVISTIC DISPERSION RELATIONS
changed. Each point of the initial Husimi function, for ex-

ample, influences each and every point of the final Husimi In this appendix we make several observations as to the
function. Free propagation of the Husimi, Kirkwood, aRd results obtained from naively replacing the dispersion rela-
functions is based in this case on interference. Unique in thifon 7 w(p)= p2/2m above by the dispersion relation
respect is the free propagation of the Wigner function whichi w(p)=cp or by #iw(p) = c\/p?+ m?c?. The first is the dis-
does define a one-to-one correspondence between initial apersion relation for free photons or light waves, and the sec-
final phase-space points. A semiclassical approximation reand for Klein-Gordon particles.

covers the one-to-one correspondence between initial and fi- There is no position operator that is covariant and Hermit-
nal phase-space points in all the representations but devi@gan. Thus, it is not clear whether quasidistribution functions
tions of the actual free propagation from its semiclassicaln phase space for photons, light waves, or relativistic mas-
limit grow with time for all the quasidistribution except for sive particles with the underlying dynamics of the Klein-
the Wigner function whose free propagator is identical to itsGordon equation can be rigorously defined. Furthermore, a
semiclassical limit. While the time evolution of the other new definition for the quasidistribution may require a modi-
quasidistributions is a complicated one, involving, for ex-fied definition for the propagators. Nevertheless, different
ample, divergent kernels, the time evolution of the Wignerphase-space quasidistributions, in particular the Glaber
function is simple: each of its points is moving in phaseand Q functions, are widely used in quantum optics with
space on a well-defined trajectory and with a well-defineddefinitions based on second quantization of the radiation
velocity, as if a classical point particle was propagatingfield. It was shown in Ref[13] that a covariant Wigner
there. Since each momentum slice is being shifted unphase-space representation can be rigorously applied to lo-
changed at a different velocity, the complete distribution iscalized light waves by using the light-cone coordinate sys-
reshaped, and so is its projection into coordinate space. Thiem. These localized light waves, however, cannot represent
was demonstrated for the release of a particle from a boxphotons. A recent discussion of the difficulties in defining a
For other dispersion relations free propagation will in gen-Wigner representation for massive particles obeying Lorenz
eral involve interference in all the phase-space representaavariance was given in Ref36].

tions. The difficulties pertaining to the definition of these quasi-

Consider three statements regarding time evolution.
(i) Free propagation involves no tunneling or interference

052114-9
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distributions are beyond the scope of this paper and are natnalytical and asymptotic properties of the scattering ampli-
the subject of this appendix. Here we simply examine thdude. This restriction was unique to the Wigner representa-
properties of the propagator as it was defined above with théon. If, however, we replacéiw(p)=p?/2m by #w(p)
changed dispersion relations. Our attempts to treat in this=cp a similar restriction applies as well to all the different
way relativistic propagation with the dispersion relations ofphase-space representations here considered, namely,
Klein-Gordon particles have failed due to difficulties with

pranch cuts. Even free prqpaggtion with the Qispersion rela- E:N/S/K/P/H(|q0_q|>tc):0. (A2)
tions of Klein-Gordon particles is not well defined in phase

space. In contrast, we find that the propagators with the di =ven though the propagators inside the lightcofmy € q

persion_ relations of light waves are well d_efined, sir_nple, an —tc) may differ considerably depending on the representa-
causal in all the phase-space representations considered here. .

. ) . ._1ioNh, the phase-space propagators considered here are con-
Properties that were unique to the Wigner representauo?

2 i ) i . ined to within the lightcones, regardless of the representa-
for the Schrdinger dispersion apply just as well in all the . .
. ) tion chosen. Under the above assumptions, the phase-space
other phase-space representations as soon agnanely) . . : S . .
replaces the dispersion relatidia(p) = p2/2m by #w(p) point-to-point propagation of quasidistributions with the dis-
—¢p. All the propagators describing free motion in the dif- persion relations of asymptotically free photons is limited by

ferent representations become trivial the speed of light.
P ’ The asymptotic limiti w(p)—cp as|p|— o , which uni-

{ . — _ —ql— versally holds for relativistic systems, is not a sufficient con-
£i(4.pido.Po)=3(p—Po) &(|do—al ~ct).  (AD) dition to ensure(|qo—q|>tc)=0. If u(p,&) has singulari-
The propagators for free evolution define in this case a oneties at the upper half of the compléxplane, as it does, for
to-one correspondence between initial and final points, andxample, forhw(p)=cyp?>+m?c? the integral does not
the initial quasidistribution, whatever it was, is shifted un-vanish even though the integral over the arc at infinity does.
changed at the speed of light. Propagation with the dispemifficulties with the causality of free time evolution of rela-
sion relations of free photons of all the phase-space quasidivistic particles due to branch cuts in the dispersion relations
istributions involves no interference and no tunneling and thevere considered in Ref31] not in phase space but other-
free propagator does not depend on the representation. Thesése in a similar context, while difficulties with consistently
features are not true for other dispersion relations. In generatiefining a Wigner function for relativistic free particles were
free propagation is not restricted to a one-to-one corresporconsidered in Ref.36].
dence between initial and final phase-space points, and dif- Comparing the expressions for both free propagators and
ferent representations require different propagators. single-channel scattering we recognize a similarity between
For the Schrdinger equation, we have proven a restric- the propagators with o(p)=cp and these propagators with
tion on the propagator in the Wigner representation foriw(p)=p?/2m in the Wigner representation. No such simi-
single-channel scattering under certain assumptions on tHarity exits in the other phase-space representations.
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