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Continuum discretization in a basis of transformed harmonic-oscillator states
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The inclusion of the continuum in the study of weakly bound systems is discussed. A transformed harmonic-
oscillator basis is introduced to provide an appropriate discrete and finite basis for treating the continuum part
of the spectrum. As examples of application of the method the one-dimensional Poeschl-Teller and Morse
potentials are worked out. The strength functions corresponding to different operators that couple the ground
state to the continuum are investigated. It is found that the energy moments of those distributions are accurately
reproduced with a small basis set.
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I. INTRODUCTION

A general time-independent quantum-mechanical po
tial gives rise to a Hamiltonian with both bound and unbou
eigenstates. Usually, the Hamiltonian of the system ha
finite number of bound eigenstates while the unbound o
form a continuum. Therefore, a calculation of the syst
properties in terms of eigenfunctions ofH involves a sum-
mation over the discrete states as well as an integration
the continuum ones. The last one is an involved task
normally the properties of the bound system are analyzed
just using the bound eigenstates, while the continuum o
are of special relevance for dispersion processes. Howe
the study of the effect of the continuum part of the spectr
for treating properties of the bound system has a long tr
tion in physics~conversely, the effect of the bound states
dispersion processes has been widely investigated too!. Re-
cent examples can be found in nuclear@1–6#, molecular
@7–9#, and atomic physics@10–13#. In particular, in nuclear
physics the advent of the radioactive beam facilities has p
vided a variety of new nuclear structure problems@14# that
include halo nuclei and neutron and proton rich nuclei clo
to the drip lines. All these systems are weakly bound a
their proper treatment requires the inclusion in some way
the continuum part of the spectrum. This has been don
several ways, each one having its own advantages and d
backs. Among them we cite:

~i! TheR-matrix method@15# in which the basic idea is to
solve the many-body problem in a box and then make
matching with the adequate boundary conditions.

~ii ! The use of a Sturmian basis@16–18#, where one uses
bound states of scaled potentials, which are orthogonal w
weighted with the potentials.

~iii ! The Siegert pseudostate formulation@19#, which pro-
vides a finite basis representation of the outgoing wave
lutions to the radial Schro¨dinger equation for cutoff poten
tials.

~iv! The use of Gamow states@20#, which are nonnormal-
izable solutions of the Schro¨dinger equation correspondin
to outgoing boundary conditions characterized by comp
energies.

~v! The method of continuum discretization coupled cha
1050-2947/2001/63~5!/052111~9!/$20.00 63 0521
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nels ~CDCC! @21# in which the continuum is discretized b
means of taking fixed intervals, or bins, ofk-values in the
continuum states.

~vi! The expansion of the single-particle wave functio
in a harmonic-oscillator basis@22#.

This last method has become very popular since it p
vides a simple complete discrete basis. However, for wea
bound systems the Gaussian asymptotic behavior of
harmonic-oscillator wave functions is a poor representat
of the continuum. Thus, methods based in a general lo
scaling point transformation to the harmonic-oscillator fun
tions @23–27# have drawn considerable attention recen
@1–3#. The so-called transformed harmonic-oscillator ba
~THO! retains the simplicity of the harmonic-oscillator e
pansion and includes the correct asymptotic behavior.

In this paper we discuss a way of defining a THO ba
designed to take into account the continuum by an appro
ate discretization. We present the method and apply it to
analytic one-dimensional potentials of interest in molecu
physics: the Morse potential and the Poeschl-Teller poten
The method can be equally applied to three-dimensional
tentials. The paper is structured as follows. First, in Sec.
the formalism is presented and the transformation to in
duce a THO basis is proposed. In Sec. III, the application
the formalism to the Poeschl-Teller and Morse potentials
worked out. Finally, in Sec. IV the outlook and conclusio
of this paper are presented.

II. FORMALISM OF THE TRANSFORMED HARMONIC-
OSCILLATOR STATES „THO … IN ONE-DIMENSIONAL

HAMILTONIANS

In this section we will apply the formalism of transforme
harmonic-oscillator states to weakly bound systems. S
systems as the deuteron, halo nuclei, or Van der Waals m
ecules are of current interest. We consider the o
dimensional Hamiltonian given by

h52
\2

2m

d2

dr2 1v~r !, ~1!

wherer is the relative coordinate of two particles,m is the
reduced mass, andv(r ) is the interaction between both pa
©2001 The American Physical Society11-1
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ticles. If distances are measured in units ofa21 such thatx
5ar is dimensionless and energies are given in units
\2a2/m, the preceding Hamiltonian can be written as

h52
1

2

d2

dx2 1v~x!, ~2!

which will be the Hamiltonian used hereafter. Note thah
andv(x) are then dimensionless quantities.

In order to maximize the continuum contribution we a
sume that the system has just one bound state,cB(x), though
the present formalism can be easily extended to systems
several bound states as well as to three-dimensional syst

hcB~x!5eBcB~x!. ~3!

The Hamiltonianh has also an infinite number of eigenstat
in the continuum that, however, are not normalizable. O
objective is to develop a procedure that allows a conven
description of the states in the continuum by means o
finite number of normalizable states.

The general formalism presented herewith is applied
the next section to two cases of interest in molecular phys
the Poeschl-Teller@28#, and Morse@29# potentials.

A. Coordinate transformation

Let us consider the one dimensional harmonic-oscilla
basis

fn
HO~s!5NnHn~s!exp~2s2/2!, ~4!

where Hn(s) are the usual Hermite polynomials andNn

5(Ap2nn!) 21/2 the corresponding normalization constan
This basis is orthogonal and forms a complete set for
functions that are square integrable ins. Besides, if we make
an arbitrary change of coordinates, given by the mono
nously increasing functionx5x(s), and its inverses5s(x),
the functions

wn
THO~x!5Ads

dx
fn

HO@s~x!# ~5!

are orthogonal and form a complete set of all the functio
that are square integrable inx. These functions are calle
THO states.

The transformationx(s) is arbitrary in principle. How-
ever, it can be chosen in order to describe properly the p
erties of bound states in finite potentials. So, for small val
of s, the harmonic-oscillator may be a reasonable approxi
tion for the potentialv(x), and thusx should depend linearly
on s. However, for large values ofs, the harmonic-oscillator
wave functions behave as exp(2s2/2), while the bound wave
function inv(x) behaves as exp(2qx), whereq2/25eB . So,
for larges, qx has to be proportional tos2/2.

If the bound state wave functioncB(x) is known, the
transformationx(s) can be completely determined by requ
ing that

w0
THO~x!5cB~x!. ~6!
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This condition together with Eq.~5! provide a basis set with
the asymptotic behavior described above. Equation~6! is
equivalent to the nonlinear equation

E
2`

x

ucB~x8!u2dx85E
2`

s

uf0
HO~s8!u2ds85

11erf~s!

2
,

~7!

which defines implicitly the functionx5x(s) as well as its
inverse. It should be noticed that the derivative can be w
ten as

dx~s!

ds
5S f0

HO~s!

cB@x~s!#
D 2

. ~8!

Once the wave function of the ground state provides
function x5x(s), we can employ the THO basis, Eq.~5!, to
describe the continuum of our system. Note that, as the T
are orthogonal, and then50 state is the only bound state o
the system, the states withn>1 describe the continuum. W
expect that, as the dimension of the THO basis increases
wave functions explore distances beyond the range of
potential and, at the same time, they have oscillations ins
the potential. Thus, the THO basis allows for an appropri
description of long range phenomena, and at the same tim
permits to describe accurately short-range effects.

B. Diagonalization of the Hamiltonian. Width of the states.

We evaluate the matrix elements of the Hamiltonianh in
the THO basis. It should be noticed that the statew0

THO(x)
5cB(x) is an eigenstate ofh, but this is not the case for th
states withn>1. Let us consider the matrix element

^THO,nu~h2eB!uTHO,m&

5E dx wn
THO~x!~h2eB!wm

THO~x!. ~9!

We can take into account that wm
THO(x)

5p1/4NmHm@s(x)#w0
THO(x), and that (h2eB)w0

THO(x)50,
to write

^THO,nu~h2eB!uTHO,m&

5
ApNnNm

2 E dx w0
THO~x!@Hn@s~x!#,

†~h2eB!,Hm@s~x!#‡#w0
THO~x!. ~10!

The double commutator is independent of the potential,
gives

@Hn@s~x!#,†~h2eB!,Hm@s~x!#‡#5
dHn@s~x!#

dx

dHm@s~x!#

dx
;

~11!

writing the integral in terms ofs, one gets
1-2
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^THO,nu~h2eB!uTHO,m&

52nNnmNmE dsexp~2s2!Hn21~s!Hm21~s!S ds

dxD
2

.

~12!

This expression can be easily evaluated using Gaus
quadratures. Note that the only information required is
derivative of the functionx(s), evaluated at the pointssn ,
which define the quadrature.

The matrix elements withn50 or m50 vanish. This is
due to the fact that the state ofn50 is an eigenstate of th
Hamiltonian. Let us consider that we diagonalize the Ham
tonian in aN dimensional basis of THO states, fromi 50 to
i 5N21. The eigenstates of the Hamiltonian, in this r
stricted basis, are given by

uN,0&5uTHO,0& ~13!

uN,i &5 (
j 51

N21

uTHO,j &^THO,j uN,i &, ~14!

where the statesuN,i & ( i 51, . . . ,N21) represent the con
tinuum states in the truncatedN dimensional THO basis
They can be expressed in thex representation as

^xuN,i &5c i
N~x!5p1/4Pi

N21@s~x!#w0
THO~x!, ~15!

wherePi
N21(s) is a polynomial given by

Pi
N21~s!5 (

j 51

N21

NjH j~s!^THO,j uN,i &. ~16!

The eigenvalues of the Hamiltonian, in the restricted ba
are related to the wave function through

~ei
N2eB!5

1

2
d i j E dsexp~2s2!

3
dPi

N21~s!

ds

dPj
N21~s!

ds S ds

dxD
2

. ~17!

The use of the THO basis also allows to calculate
width of the states. In order to do so, we evaluate the ma
elements of the operator (h2eB)2 in the basisuN,i &. Note
that if the statesuN,i & were the true eigenstates of the Ham
tonian, in a complete basis, then this matrix element wo
just be (Ei

N2eB)2. However, asuN,i & are only eigenstates o
the Hamiltonian in a restricted basis, they will show a spre
of energies when expanded in terms of the true continu
eigenstates ofh. A measure of that spread is given by

G i
N5A^N,i u~h2eB!2uN,i &2~Ei

N2eB!2. ~18!

Let us use the fact that the THO states form a complete ba
Then, we have
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^N,i u~h2eB!2uN,i &

5 (
n50

`

^N,i uh2eBuTHO,n&^THO,nuh2eBuN,i &.

~19!

Using Eqs.~12! and ~16!

^THO,nu~h2eB!uN,i &

5
1

2
NnE dsexp~2s2!

dHn~s!

ds

dPi
N21~s!

ds S ds

dxD
2

.

~20!

This expression can be integrated by parts to give

^THO,nu~h2eB!uN,i &

5
1

2
NnE dsHn~s!exp~2s2!S 2s2

d

dsD
3XdPi

N21~s!

ds S ds

dxD
2C. ~21!

Now, we can use the closure properties of the Hermite po
nomials, to obtain

^N,i u~h2eB!2uN,i &

5S 1

2D 2E dsexp~2s2!F S 2s2
d

dsD
3XdPi

N21~s!

ds S ds

dxD
2CG2

. ~22!

It is remarkable that the knowledge of the functionx(s) is all
we need to obtain wave functions, energies, and widths
the Hamiltonian eigenstates in the THO basis.

C. Matrix elements of operators. Sum rules

Let us consider the matrix elements of an arbitrary lo
operatorO(x), which is a function of the coordinatex. The
matrix element that connects the ground stateuN,0& to the
continuum stateuN,i & is just

^N,i uOuN,0&5p1/4E dx Pi
N21@s~x!#O~x!uw0

THO~x!u2.

~23!

This integral is more conveniently written in terms of th
variables

^N,i uOuN,0&5ApE ds Pi
N21~s!O„x~s!…exp~2s2!,

~24!

an expression that can be very simply evaluated using Ga
ian quadratures. From this last formula we can define
following global magnitudes.

~i! Total strength: It is given by
1-3
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ST~O;N!5(
i

u^N,i uOuN,0&u2. ~25!

In the limit of very large number of statesN, the set of states
becomes a complete set, and one can use closure, so th

ST~O!5 lim
N→`

ST~O;N!5^N,0uO2uN,0&. ~26!

So, one should obtain, in the largeN limit,

ST~O!5p21/2E ds O„x~s!…2exp~2s2!

5E dx O~x!2cB~x!2. ~27!

~ii ! Energy weighted sum rule: It is given by

EW~O;N!5(
i

~ei
N2eB!u^N,i uOuN,0&u2. ~28!

In the limit of very large number of statesN, we can use the
basis closure to expressEW(O)5 lim

N→`
EW(O;N) in terms

of a double commutator

EW~O!5
1

2
^N,0u†O~x!,@h2eB ,O~x!#‡uN,0&. ~29!

The double commutator can be explicitly evaluated, to g

†O~x!,@h2eB ,O~x!#‡5S dO~x!

dx D 2

. ~30!

Thus, one obtains

EW~O!5p21/2 1
2 E dsS dO~x!

dx U
x5x(s)

D 2

exp~2s2! ~31!

5 1
2 E dx @dO~x!/dx#2cB~x!2. ~32!

~iii ! Polarizability: It is given by

P~O;N!5(
iÞ0

~ei
N2eB!21u^N,i uOuN,0&u2. ~33!

In the limit of a large number of states,P(O)
5 lim

N→`
P(O;N) converges to a constant value, that can

evaluated from the variation of matrix element of the Ham
tonian h2eB with the ground stateugs(t)& of a perturbed
Hamiltonianh1tO(x) @30#:

P~O!5
1

2
lim
t→0

d2

dt2
^gs~ t !uh2eBugs~ t !&. ~34!

We can use the values of these global magnitudes
evaluate the convergence as the number of THO state
cluded in the calculation is increased. With regard to
05211
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form of the operatorsO(x), we will consider two different
cases. First, we takeO(x)5x, a long-range operator, to de
scribe effects of external fields, such as the Coulomb field
this case,x represents the electric dipole operator. In seco
place, we consider a short-range operatorO(x)5v(x), to
describe possible effects of internal correlations, wh
would have a range similar to the potential.

III. APPLICATION TO ANALYTIC ONE-DIMENSIONAL
HAMILTONIANS

A. The Poeschl-Teller Hamiltonian

The Poeschl-Teller potential@28# is widely used in mo-
lecular physics, for example, to model bending vibratio
and conveys a considerable attention in other fields@6#. It is
written as

v~x!52D
1

cosh2~x!
, ~35!

where2D is the value of the potential in its minimum. Th
variablex5ar , wherer is the relative coordinate anda is
the inverse of the range of the potential. The depth of
potentialD can be written as

D5
1

2
j ~ j 11!, ~36!

in terms of a new parameterj @31# which is a positive real
number. The bound eigenstates of the Poeschl-Teller Ha
tonian can be written in terms ofj as

C j v~x!5N j vPj
( j 2v)~z!, ~37!

wherev is an integer taking values from 0 to the integer p
of j, Nj v5A( j 2v)v!/(2 j 2v)! is a normalization constant
z5tanh(x), and Ps

(p)(z) are the associated Legendre fun
tions whens is integer. In the present paper we considej
51, the only true bound statev50, has an energy ofeB5
2 1

2 and its wave function is written as

cB
PT~x!5

1

A2 cosh~x!
. ~38!

In this case there is another state forv51, which is not
normalizable, corresponding to a resonance in the continu
at zero energy. The use of an integer value ofj is assumed, in
the present paper for simplicity, but it is not mandatory. T
relationship betweenx ands stems from the Eq.~5!

1

A2 cosh~x!
5Ads

dx
p21/4exp~2s2/2!. ~39!

Direct integration gives both the dependence ofs on x and
vice versa: erf(s)5tanh(x). Thes(x) function is presented in
Fig. 1.

In this case the derivative of the functions(x) can be
written in terms of thes variable as
1-4
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ds

dx
5

Ap

2
exp~s2!@12erf 2~s!#, ~40!

facilitating the calculations. This result allows us to write t
THO basis in thes coordinate space as

wn
THO~x!5

1

A2n11n!
Hn@s~x!#A12erf 2@s~x!#. ~41!

In Fig. 2 we plot the first five states of the THO basis forj
51. In this case the Hamiltonian matrix can be easily co
puted from Eq.~12! and its diagonalization provides us wit
eigenvalues and eigenfunctions. According to Eq.~6!, we
obtain one negative eigenvalue at the precise energyeB5
2 1

2 , and in addition,N21 positive eigenvalues correspon
ing to the continuum discretization. The resulting energ
for increasing values of theN parameter are depicted in Fig
3, with N ranging from 2 to 20. The appearance of symme
doublets is due to the symmetric form of the potential, wh
provides wave functions with well-defined parity. As the d

FIG. 1. Functions(x) for the Poeschl-Teller Hamiltonian cha
acterized byj 51.

FIG. 2. THO basis for the Poeschl-Teller Hamiltonian, fromn
50 to 4.
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mension of the THO basis increases, new energy levels
pear. On the one hand, many of them lie close to the z
energy, increasing the level density in the region. On
other hand, new levels explore higher energies.

The wave functions obtained are orthonormal~see Fig. 4
where we present theN55 case! and, as expected, with
increasing energy they extend to higherx ranges while the
nodes accumulate in the vicinity of the origin. They have t
desired asymptotic behavior and their nature allows fo
straightforward use in calculations.

Once the eigenvalues and eigenfunctions of the Ham
tonian are obtained, we proceed to check convergence
closure of the truncated basis, calculating the total stren
energy weighted sum rule, and polarizability for a typic
long-range operator (x) and a short-range one@the potential
v(x)]. The results obtained are presented in Tables I and
respectively.

In Table I we include only evenN values. The oddN
11 cases give identical result since the negative parity st
are the only ones connected to the ground state due to
antisymmetric nature of thex operator. The operatorv(x) is

FIG. 3. Eigenvalues of the Poeschl-Teller Hamiltonian in t
THO basis with dimensions ranging fromN52 to 20.

FIG. 4. Eigenstates (n50 to 4) of the Poeschl-Teller Hamil
tonian diagonalized in theN55 THO basis.
1-5
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F. PÉREZ-BERNAL et al. PHYSICAL REVIEW A 63 052111
symmetric and thus the situation is the opposite. Con
quently, only oddN values are shown in Table II.

In the long-range operator case the convergence is
fast for the three observables computed. ForN54 ~three
states in the continuum, only two with the right parity! we
obtain the exact values within a 2/1000 relative error. For
potential operator, the convergence is also fast although
needN517 ~eight states with the right parity! in the worst of
the cases, to reach the same relative error as before.
remarkable that the polarizability associated to the poten
operator converges very rapidly. This indicates that per
bative corrections to the energy of the bound state, du
changes of the potentials, will be obtained accurately in
basis. In both cases we should stress the fast converg
obtained, which points out that the discretization perform
is able to simulate correctly the continuum effects with t
inclusion of few states in the THO basis.

B. The Morse Hamiltonian

The Morse potential@29# is a commonplace to model an
harmonic vibrations in diatomic molecules@32# and it is be-

TABLE I. Convergence of the total strength (ST), energy
weighted sum rule (EW), and polarizability~P! of the operatorx as
a function of the THO basis dimension for the Poeschl-Te
Hamiltonian. N is the total number of basis states. In this ca
because of the parity selection rule, only odd parity states are
nected to the ground state through thex operator.

N ST(x,N) EW(x,N) P(x,N)

2 0.815 77 0.527 09 1.262 54
4 0.822 45 0.500 34 1.420 50
6 0.822 467 0.499 99 1.423 44
8 0.500 00 1.423 49

10 0.500 00 1.423 50

Exact Value 0.8224 67 0.500 00 1.423 50

TABLE II. Convergence of theST, EW sum rule, andP of the
operatorv(x) as a function of the THO basis dimension for th
Poeschl-Teller Hamiltonian.N is the total number of basis states.
this case, because of the parity selection rule, only even parity s
are connected to the ground state through thev(x) operator.

N ST(v,N) EW(v,N) P(v,N)

3 0.511 992 0.061 675 0.073 9799
5 0.527 628 0.108 383 0.074 0682
7 0.531 714 0.132 586 0.074 0737
9 0.532 854 0.143 771 0.074 0741

11 0.533 187 0.148 694
13 0.533 287 0.150 812
15 0.533 318 0.151 713
17 0.533 328 0.152 096

Exact Value 0.533 333 0.152 381 0.074 0741
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e-

ry

e
e

is
al
r-
to
is
ce

d

coming of wide use in polyatomic structure calculatio
through the local mode picture@33,34#. The form of the po-
tential is

v~x!5D$@12exp~2x!#221%, ~42!

where x5ar , with r the relative coordinate anda the in-
verse of the potential range, andD is the potential depth in
the minimum (x50). D can be written in terms of a param
eter j @35#, which is a positive real number, as

D5
1

2 S j 1
1

2D 2

. ~43!

The bound wave functions for the Morse potential are w
ten as

C j v~x!5Nj v exp~2z/2!zj 2vLv
2 j 22v~z!, ~44!

wherev is an integer number taking values from 0 up to t
integer part ofj, Nj v5A(2 j 22v)v!/(2 j 2v)! is a normal-
ization constant,z5(2 j 11)exp(2x) is the Morse variable,
andLs

(p)(z) are the generalized Laguerre polynomials of d
grees and orderp. As in the previous case we takej 51. The
only true bound state in this case,v50, has energyeB5
2 1

2 and its wave function is

cB
M~x!53 exp~2x!exp@23 exp~2x!/2#. ~45!

For v51 there is another state that is not normalizable a
corresponds to a resonance in the continuum at zero ene

Direct integration in Eq.~7! provides the relation betwee
x ands:

@11erf~s!#/25@113 exp~2x!#exp@23 exp~2x!#.
~46!

Numerically solving this equation we get thes(x) function
plotted in Fig. 5. The behavior ofs(x) reflects the potentia

r
,
n-

tes

FIG. 5. Functions(x) for the Morse Hamiltonian characterize
by j 51.
1-6
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asymmetry. Once thes(x) function is computed we can de
fine the THO basis following Eq.~5!. The result forN55 is
depicted in Fig. 6.

The Hamiltonian diagonalization in the THO basis pr
vides with eigenvalues and eigenfunctions. We plot in Fig
the energies obtained increasing the dimension of the b
from N52 to 20. The bound-state energy lies at its ex
value,eB52 1

2 , while the behavior of the positive eigenva
ues is similar to the preceding case, excluding the appear
of parity doublets. Note the different scaling in Figs. 3 and
which shows the different behavior of the Poeschl-Teller a
Morse potentials.

The eigenfunctions~see Fig. 8! form an orthonormal set
They are not symmetric, as expected, but as in the prev
case, they both increase the number of nodes in the re
around the origin and explore higheruxu values asn in-
creases. Positive values ofx are explored much more rapidl
as a function ofn than the negative ones.

With the obtained eigenvalues and eigenfunctions,
again check the convergence and closure of the trunc
basis calculating the total strength, energy weighted s

FIG. 6. Basis of THO for the Morse Hamiltonian, fromn50
to 4.

FIG. 7. Eigenvalues of the Morse Hamiltonian in the THO ba
with dimensions ranging fromN52 to 20.
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rule, and polarizability for thex operator and the potentialv.
The results obtained are presented in Tables III and IV.
this case we cannot make any symmetry simplification.

In Table III the results for thex operator are presented
showing a very fast convergence for all the computed
servables. ForN55 ~four states in the continuum! we obtain
around 1/1000 maximum relative error. For the potential o
erator~see Table IV! with N56 the maximum relative erro
is around 1/1000. Also, in this case, the convergence of
polarizability associated to the potential operator is very fa

As in the Poeschl-Teller potential we should stress
fast convergence obtained, even faster in this case. That
ports the evidence for considering the truncated THO ba
as a suitable tool for continuum discretization.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper a THO basis has been introduced to prod
appropriate normalizable states for discretizing the c
tinuum. This is a fundamental problem in quantum mech
ics and is especially relevant when treating weakly bou
systems. The THO basis used in this paper is obtained b
local scale transformation~LST! that converts the ground
state of the system into the harmonic-oscillator~HO! ground
state. Thus the only previous requirement to apply this f

s

FIG. 8. Eigenstates (n50 to 4) of the Morse Hamiltonian di-
agonalized in theN55 THO basis.

TABLE III. Convergence of theST, EW sum rule, andP of the
operatorx as a function of the THO basis dimension for the Mor
Hamiltonian.N is the total number of basis states.

N ST(x,N) EW(x,N) P(x,N)

2 1.082 07 0.593 44 0.658 937
3 1.100 99 0.500 68 0.894 608
4 1.101 67 0.500 04 0.950 650
5 1.101 68 0.500 00 0.960 174
6 0.961 193
7 0.961 235
8 0.961 235

Exact Value 1.101 68 0.500 00 0.961 237
1-7
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malism is to know~either analytically or numerically! the
ground state of the system. This defines the LST and all
to generate all the states in the THO basis by transform
the HO wave functions. The states in the THO basis
discrete, normalizable, and have exponentially decrea
asymptotic behavior. Although the basis is infinite, it is po
sible to get good approximations to the exact results w
calculating observables of interest by truncating the basi
few states in the continuum region. In the calculations p
sented in this paper, truncating just to 7 or 8 states in
continuum gives the exact results within around one per
relative error in the worst of the cases.

In this paper we have presented the formalism for o
dimensional potentials and we have chosen the case of
one bound state. However we have performed calculat
for several bound states and the same kind of results
obtained. The THO basis converge very rapidly to the ex
energies of the bound eigenstates while states in the
tinuum lie close to zero energy, increasing the level den
in that region, and few of them explore higher-energy
gions.

The formalism presented here can be of use whene
bound states close to the dissociation limit are concerne
in the cases in which the coupling between bound and c
tinuum states are important. It can be used for structure
culation to evaluate strength functions into the continu
and to perform scattering calculations taking into account
breakup effects.

TABLE IV. Convergence of theST, EW sum rule, andP of the
operatorv(x) as a function of the THO basis dimension for th
Morse Hamiltonian.N is the total number of basis states.

N ST(v,N) EW(v,N) P(v,N)

2 0.575 235 0.120 856 0.013 4195
3 0.669 899 0.178 806 0.093 6744
4 0.740 342 0.689 425 0.093 7489
5 0.749 840 0.919 480 0.093 7500
6 0.749 996 0.938 555
7 0.750 000 0.937 510
8 0.937 500

Exact Value 0.750 000 0.937 500 0.093 7500
is,

ys

e

z

y
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The use of THO wave functions in practical calculatio
involves increasing the numberN of states considered in th
calculation until convergence is achieved. In this sense,
THO basis has an advantage over the use of a box to ca
late continuum effects, because, in this case, one has to
with two continuum parameters, which are the radius of
box, and the maximum energy of the states considered. T
it is much harder to demonstrate convergence when there
two parameters to vary, instead of just one discrete par
eter.

The CDCC calculations have similar convergence pr
lems. The bins describing continuum discretization are s
that when expressed in terms of the coordinates, they va
at distances of the order of 1/Dk. A practical CDCC calcu-
lation requires to fix the maximumk value considered and
the intervalDk of the bins, so that the number of bins
given by N5kmax/Dk. Here, also to demonstrate conve
gence, one has to deal with two parameters. In addition,
CDCC method requires to solve the Schro¨dinger equation for
all the energies in the continuum. In our case, there is o
one discrete parameter to check convergence and it is
required to solve the Schro¨dinger equation for the ground
state.

The THO basis also has some similarities with the St
mian basis. In both cases the basis is discrete and norm
able, and the wave functions have the same asymptotic
havior as the ground state. However, the Sturmian b
requires solving the Schro¨dinger equation for increasing va
ues of the potential depth, obtaining in this way wave fun
tions with the same energy, but more nodes. These w
functions are not orthogonal, as they correspond to differ
Hamiltonians. Besides, the Sturmian basis gives an accu
description of the interior of the potential, but it converg
very slowly to describe large separations. Thus, the T
basis has the advantage that one has to solve only the S¨-
dinger equation for the ground state, the wave functions
orthogonal, and the description of distances beyond the
tential range seems to be satisfactory.
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