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Continuum discretization in a basis of transformed harmonic-oscillator states
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The inclusion of the continuum in the study of weakly bound systems is discussed. A transformed harmonic-
oscillator basis is introduced to provide an appropriate discrete and finite basis for treating the continuum part
of the spectrum. As examples of application of the method the one-dimensional Poeschl-Teller and Morse
potentials are worked out. The strength functions corresponding to different operators that couple the ground
state to the continuum are investigated. It is found that the energy moments of those distributions are accurately
reproduced with a small basis set.
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[. INTRODUCTION nels (CDCC) [21] in which the continuum is discretized by
means of taking fixed intervals, or bins, kivalues in the

A general time-independent quantum-mechanical poteneontinuum states.
tial gives rise to a Hamiltonian with both bound and unbound  (vi) The expansion of the single-particle wave functions
eigenstates. Usually, the Hamiltonian of the system has # @ harmonic-oscillator basf22].
finite number of bound eigenstates while the unbound ones This last method has become very popular since it pro-
form a continuum. Therefore, a calculation of the systenvides a simple complete discrete basis. However, for weakly
properties in terms of eigenfunctions Bfinvolves a sum- bound systems the Gaussian asymptotic behavior of the
mation over the discrete states as well as an integration ovélarmonic-oscillator wave functions is a poor representation
the continuum ones. The last one is an involved task an@f the continuum. Thus, methods based in a general local-
normally the properties of the bound system are analyzed b§caling point transformation to the harmonic-oscillator func-
just using the bound eigenstates, while the continuum onelons [23—27 have drawn considerable attention recently
are of special relevance for dispersion processes. Howevdrl—3]. The so-called transformed harmonic-oscillator basis
the study of the effect of the continuum part of the spectrund THO) retains the simplicity of the harmonic-oscillator ex-
for treating properties of the bound system has a long tradiPansion and includes the correct asymptotic behavior.
tion in physics(conversely, the effect of the bound states on  In this paper we discuss a way of defining a THO basis
dispersion processes has been widely investigated Rer  designed to take into account the continuum by an appropri-
cent examples can be found in nuclddr6], molecular —ate discretization. We present the method and apply it to two
[7-9], and atomic physicE10—13. In particular, in nuclear analytic one-dimensional potentials of interest in molecular
physics the advent of the radioactive beam facilities has proPhysics: the Morse potential and the Poeschl-Teller potential.
vided a variety of new nuclear structure problefad] that ~ The method can be equally applied to three-dimensional po-
include halo nuclei and neutron and proton rich nuclei closdentials. The paper is structured as follows. First, in Sec. II,
to the drip lines. All these systems are weakly bound andhe formalism is presented and the transformation to intro-
their proper treatment requires the inclusion in some way ofluce a THO basis is proposed. In Sec. llI, the application of
the continuum part of the Spectrum_ This has been done |H’]€ formalism to the Poeschl-Teller and Morse potentials is
several ways, each one having its own advantages and draW_Orl(-Ed out. Fina”y, in Sec. IV the outlook and conclusions
backs. Among them we cite: of this paper are presented.

(i) The R-matrix method 15] in which the basic idea is to
solve the many-body problem in a box and then make thell. FORMALISM OF THE TRANSFORMED HARMONIC-
matching with the adequate boundary conditions. OSCILLATOR STATES (THO) IN ONE-DIMENSIONAL

(i) The use of a Sturmian badi$6—18, where one uses HAMILTONIANS
bound states of scaled potentials, which are orthogonal when

weighted with the potentials. harmonic-oscillator states to weakly bound systems. Such

_(iii) The Siegert pseudostate formulatidi®], which pro- gy qtomg as the deuteron, halo nuclei, or Van der Waals mol-
vides a finite basis representation of the outgoing wave so;

. . o . ecules are of current interest. We consider the one-
lutions to the radial Schabinger equation for cutoff poten-

In this section we will apply the formalism of transformed

dimensional Hamiltonian given by

tials.
(iv) The use of Gamow staté&0], which are nonnormal- #2 d?
izable solutions of the Schdinger equation corresponding h=— 2 grz ten, (1)
to outgoing boundary conditions characterized by complex
energies. wherer is the relative coordinate of two particleg, is the

(v) The method of continuum discretization coupled chan+educed mass, ang(r) is the interaction between both par-
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ticles. If distances are measured in unitsaof! such thatx ~ This condition together with Eq5) provide a basis set with
=ar is dimensionless and energies are given in units othe asymptotic behavior described above. Equat@nis

h2a?/ u, the preceding Hamiltonian can be written as equivalent to the nonlinear equation
1 d? x s 1+erf(s)
h=—3 g 700, I e I CO

)

which will be the Hamiltonian used hereafter. Note that
andv(x) are then dimensionless quantities. . ) L . .

In order to maximize the continuum contribution we as-Wh'Ch defines implicitly t_he functlorx=x(s_,) as well as its .
sume that the system has just one bound stagéx), though inverse. It should be noticed that the derivative can be writ-
the present formalism can be easily extended to systems witrﬁ nas
several bound states as well as to three-dimensional systems:

d HO(S) 2
X(s)_< 0 ]) ®

hig(X) =egip(X). () ds | yg[x(s)

_The Ham|ltpn|arh has also an infinite number of eigenstates Once the wave function of the ground state provides the
in the continuum that, however, are not normalizable. Our,

objective is to develop a procedure that allows a convenienfuncuonx:x(s)’ we can employ the THO basis, E®), o
JECHIVE pap . escribe the continuum of our system. Note that, as the THO
description of the states in the continuum by means of a = X
e . are orthogonal, and the=0 state is the only bound state of
finite number of normalizable states. . . ;
. - .. the system, the states witi=1 describe the continuum. We
The general formalism presented herewith is applied in . . L
. . : ._expect that, as the dimension of the THO basis increases, the
the next section to two cases of interest in molecular physmsv\h,jwe functions explore distances bevond the ranae of the
the Poeschl-Tellef28], and Morsg29] potentials. P Y 9

potential and, at the same time, they have oscillations inside
_ _ the potential. Thus, the THO basis allows for an appropriate
A. Coordinate transformation description of long range phenomena, and at the same time it
Let us consider the one dimensional harmonic-oscillatopermits to describe accurately short-range effects.
basis

d)ﬁo(s):/\/an(s)exq—sz/Z), 4) B. Diagonalization of the Hamiltonian. Width of the states.
We evaluate the matrix elements of the Hamiltonieim
where H,(s) are the usual Hermite polynomials aod,  the THO basis. It should be noticed that the sta§é'(x)
=(Jm2"n!) “*2 the corresponding normalization constants.= ig(x) is an eigenstate df, but this is not the case for the
This basis is orthogonal and forms a complete set for alktates withn=1. Let us consider the matrix element
functions that are square integrablesirBesides, if we make

an arbitrary change of coordinates, given by the monoto- (THO,n|(h—eg)| THO,m)
nously increasing functior=x(s), and its inverses=s(x),
the functions =f dx ¢ O(x)(h—eg) o 1O (x). 9
THO ds HO ; THO
en ()= \gxén [5(X)] (5 We can take into account that ¢, °(x)

=7 NiHuls(x) Jeg"(x), and that b—eg) g™ °(x) =0,
are orthogonal and form a complete set of all the functiond0 Write
that are square integrable i These functions are called

THO states. (THO,n|(h—eg)| THO,m)

The transformatiorx(s) is arbitrary in principle. How-
ever, it can be chosen in order to describe properly the prop- _ ‘/;NnNmf dx oMo [H, [S(X)]
erties of bound states in finite potentials. So, for small values 2 %o " ’

of s, the harmonic-oscillator may be a reasonable approxima- THO
tion for the potentiab (x), and thus« should depend linearly [(h—eg),Hm[ ) [Tleo (). (10
ons. However, for large values & the harmonic-oscillator o )
wave functions behave as expg/2), while the bound wave The double commutator is independent of the potential, and
function inv(x) behaves as exp(x), whereq?/2=eg. So,  9IVes
for larges, qx has to be proportional te?/2.
If the bound state wave functiomyg(x) is known, the _ dHu[s(x)] dHp[s(x)]
transformatiorx(s) can be completely determined by requir- [Hals(x)].[(h—eg), Hmls()]1]= dx dx '
ing that (11

@0 9(X) = Yg(X). (6)  writing the integral in terms of, one gets
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(THO,n|(h—eg)| THO,m) (N,i|(h—eg)?|N,i)
2 ds ? - . .
:annmNmf dsexp(—s)Hn-1(S)Hm-1(8)| 5| - :ZO<N,||h—eB|THo,n><THo,n|h—eB|N,|>.
12) (19)

This expression can be easily evaluated using Gaussiddsing Egs.(12) and(16)
quadratures. Note that the only information required is the

derivative of the functiorx(s), evaluated at the points, , (THO,n|(h—eg)|N,i)

which define the quadrature. dpN-1 2
The matrix elements witlh=0 or m=0 vanish. This is = E/\/nf dsexq_sz)dH”(s) () (d_s)

due to the fact that the state of=0 is an eigenstate of the 2 ds ds dx

Hamiltonian. Let us consider that we diagonalize the Hamil- (20)

tonian in aN dimensional basis of THO states, fram 0 to . _ . .

i=N—1. The eigenstates of the Hamiltonian, in this re- This expression can be integrated by parts to give
ri is, are given .

stricted basis, are given by (THO,n|(h—eg)|N,i)

IN.0)=|THO.,0) (13 1 , ( d)
- _EN”j dsHy(s)exp(—s%)| 25—
IN,i)= >, [THO,j)(THO,j|N,i), (14 (dPMs)(dS)Z)
=1 x| ———=( =] |, (21)
ds dx

where the statefN,i) (i=1,... N—1) represent the con-
tinuum states in the truncated dimensional THO basis.
They can be expressed in theepresentation as

Now, we can use the closure properties of the Hermite poly-
nomials, to obtain

i N J4pN—1 THO (N,i|(h—eg)?|N,i)
(XIN D =g (x) = 7PN s(x)]eg"O(x), (15

d
( 2s— d_S)
2
. (22)

1 2
=|=| | dsexp —s?
whereP!'!(s) is a polynomial given by (2) f P=s)

N-1 X(dPiN_l(S)(ds)z)
PN-1(g)= 21 NiH,(8)(THO,j|N, ). (16) ds |dx
=

It is remarkable that the knowledge of the functiqis) is all
The eigenvalues of the Hamiltonian, in the restricted basiswe need to obtain wave functions, energies, and widths of
are related to the wave function through the Hamiltonian eigenstates in the THO basis.

N B 1 ) C. Matrix elements of operators. Sum rules
(€ —eB)—§5ideseXp(—S) . . . .
et us consider the matrix elements of an arbitrary local
2 operatorO(x), which is a function of the coordinate The
) (17)  matrix element that connects the ground siig) to the

continuum stateN, i) is just

dP'"*(s) dP}"Y(s) (ds
s ds |dx

The use of the THO basis also allows to calculate the . _
width of the states. In order to do so, we evaluate the matrix (N11OIN.0)= WIMJ dx P Ts(0 1000 ¢g () 2.
elements of the operatoh{eg)? in the basigN,i). Note (23
that if the state$N,i) were the true eigenstates of the Hamil- _ ) . ) ]
tonian, in a complete basis, then this matrix element WouIdTh'_S integral is more conveniently written in terms of the
just be €EN—eg)2. However, agN,i) are only eigenstates of Variables
the Hamiltonian in a restricted basis, they will show a spread
of energies when expanded in terms of the true continuum (N,i|O|N,0)= \/; ds F{“*l(s)O(x(s))exp(—sz),

eigenstates ofi. A measure of that spread is given by (24)

I'=V(N,i|(h—eg)?N,i)— (EN—ep)2. (18 an expression that can be very simply evaluated using Gauss-
ian quadratures. From this last formula we can define the
Let us use the fact that the THO states form a complete basifollowing global magnitudes.
Then, we have (i) Total strength: It is given by
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ST(O;N)=Ei |(N,i|O|N,0)|2. (25)

PHYSICAL REVIEW A 63 052111

form of the operator©(x), we will consider two different
cases. First, we tak®(x)=x, a long-range operator, to de-
scribe effects of external fields, such as the Coulomb field. In

In the limit of very large number of statég the set of states this casex represents the electric dipole operator. In second
becomes a complete set, and one can use closure, so thatPlace, we consider a short-range operafix) =v(x), to

ST(O)=NIim Sr(0;N)=(N,0/0?|N,0). (26)
So, one should obtain, in the largelimit,
S1(0)= w’l’zf ds O(x(s))?exp( —s?)
- [ axomzye002 @27
(i) Energy weighted sum rule: It is given by
Ew(ON)=2, (el' ~eg) (NIOINOI”. (28

In the limit of very large number of staté$ we can use the
basis closure to expreg’s\,(O)zlimNHxEW(O;N) in terms

of a double commutator

1
Ew(0)=5(N,0[[O(x),[h—eg, 000 IIN.0).  (29)

describe possible effects of internal correlations, which
would have a range similar to the potential.

IIl. APPLICATION TO ANALYTIC ONE-DIMENSIONAL
HAMILTONIANS

A. The Poeschl-Teller Hamiltonian

The Poeschl-Teller potentigR8] is widely used in mo-
lecular physics, for example, to model bending vibrations,
and conveys a considerable attention in other figfdslt is
written as

1

v()=-D cosH(x)’

(39

where—D is the value of the potential in its minimum. The
variablex= ar, wherer is the relative coordinate and is

the inverse of the range of the potential. The depth of the
potentialD can be written as

1
D=3i(i+1), (36)

The double commutator can be explicitly evaluated, to givein terms of a new parametgi{31] which is a positive real

(30

dO(x))2
dx ’

[O(X),[h—eB,O(X)]]=(

Thus, one obtains

dO(x)
dx

2
EW(O)=m"1?1 j ds( ) exp(—s?) (31)
X=X(s)

:%J dx[dO(x)/dx]?¢g(x)>. (32
(iii ) Polarizability: It is given by
P(O;N):_;) (eN—ep) "H(N,i|OIN,0))2. (33

In the Ilimit of a large number of statesP(O)

number. The bound eigenstates of the Poeschl-Teller Hamil-
tonian can be written in terms ¢fas

(37

wherev is an integer taking values from 0 to the integer part
of j, Nj,= J(j—v)v!/(2j—v)! is a normalization constant,
z=tanhf), and P(Sp)(z) are the associated Legendre func-
tions whens is integer. In the present paper we consigler
=1, the only true bound state=0, has an energy adg=

— 1 and its wave function is written as

Vi,()=N},P{™(2),

1
YR T(x)= % (38)

2 coslix)

In this case there is another state ioe1, which is not
normalizable, corresponding to a resonance in the continuum
at zero energy. The use of an integer valugisfassumed, in

=lim  _P(O;N) converges to a constant value, that can bethe present paper for simplicity, but it is not mandatory. The
evaluated from the variation of matrix element of the Hamil-"élationship betweer ands stems from the Eq(5)

tonian h—eg with the ground statégs(t)) of a perturbed
Hamiltonianh+tO(x) [30]:

1 d?
P(0) =5 lim —>(gs(t)|h—es|gs(t)).

t—0

(39

(39

1 ds
oo /&w— Viexp(—s%/2).

Direct integration gives both the dependencesai x and
vice versa: erf§) =tanh{). Thes(x) function is presented in

We can use the values of these global magnitudes t&ig. 1.
evaluate the convergence as the number of THO states in- In this case the derivative of the functi@fx) can be
cluded in the calculation is increased. With regard to thewritten in terms of thes variable as
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15— — 8——1—— 17—
: ] | Poeschl-Teller T
6_ _— —
E 4_ _:_ 7
n - _=
2_ —
r o 7
-15 1 1 1 L ] L ] L | 1 0
=50 -25 0 25 50
x
FIG. 1. Functions(x) for the Poeschl-Teller Hamiltonian char- _ FIG. 3. Eigenvalues of the Poeschl-Teller Hamiltonian in the
acterized byj=1. THO basis with dimensions ranging frohh=2 to 20.
ds m mension of the THO basis increases, new energy levels ap-
ax 7exp(sz)[1—erf2(s)], (400 pear. On the one hand, many of them lie close to the zero

energy, increasing the level density in the region. On the

facilitating the calculations. This result allows us to write the ©ther hand, new levels explore higher energies.
THO basis in thes coordinate space as The wave functions obtained are orthonorrtede Fig. 4

where we present th&l=5 case and, as expected, with

1 increasing energy they extend to higheranges while the
on"O(x)= —===H,[s(x)]V1-erfZs(x)]. (41) nodes accumulate in the vicinity of the origin. They have the
V2" In] desired asymptotic behavior and their nature allows for a

] ) ) ) straightforward use in calculations.
In Fig. 2 we plot the first five states of the THO basis for ~ once the eigenvalues and eigenfunctions of the Hamil-
=1. In this case the Hamiltonian matrix can be easily comMygnjan are obtained, we proceed to check convergence and
puted from Eq(12) and its diagonalization provides us with ¢|osyre of the truncated basis, calculating the total strength,
eigenvalues and eigenfunctions. According to E8), we  energy weighted sum rule, and polarizability for a typical
obltam one negative eigenvalue at the precise eneggy  |ong-range operatorx) and a short-range orjéhe potential
—z, and in additionN—1 positive eigenvalues correspond- ;,(x)]. The results obtained are presented in Tables | and Il,
ing to the continuum discretization. The resulting energiegegpectively.
for increasing values of thd parameter are depicted in Fig. In Table | we include only eveiN values. The oddN
3, with N ranging from 2 to 20. The appearance of symmetry 1 cases give identical result since the negative parity states
doublets is due to the symmetric form of the potential, whichye the only ones connected to the ground state due to the
provides wave functions with well-defined parity. As the di- antisymmetric nature of the operator. The operatar(x) is

I T T I
=0 T T T T
\ Poeschl-Teller
// \‘. ~ee_ 3
T~ T
N e
llfn (X) \"/
I NA
N
s~
,/ \\\§ n=1
—==C v
\\//
L. L . | . L 1 o Ny 00
-10 -5 0 5 10 -10 -5 0 5 10
X X
FIG. 2. THO basis for the Poeschl-Teller Hamiltonian, from FIG. 4. Eigenstatesn=0 to 4) of the Poeschl-Teller Hamil-
=0 to 4. tonian diagonalized in thBl=5 THO basis.
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TABLE 1. Convergence of the total strengthS{), energy 1 T . . T
weighted sum rule&), and polarizability(P) of the operatox as
a function of the THO basis dimension for the Poeschl-Teller
Hamiltonian. N is the total number of basis states. In this case,
because of the parity selection rule, only odd parity states are con-
nected to the ground state through theperator.

N ST(XIN) EW(XIN) P(XrN)

2 0.81577 0.52709 1.262 54

4 0.822 45 0.500 34 1.42050

6 0.822 467 0.499 99 1.423 44

8 0.500 00 1.42349
10 0.500 00 1.42350

=10 1 . ] . 1 L 1 .

Exact Value 0.8224 67 0.500 00 1.42350 0 10 20 30 40

x

. S ) FIG. 5. Functions(x) for the Morse Hamiltonian characterized
symmetric and thus the situation is the opposite. Consepy j=1.

quently, only oddN values are shown in Table II.

In the long-range operator case the convergence is veryoming of wide use in polyatomic structure calculations
fast for the three observables computed. Ror4 (three  through the local mode pictuf&3,34. The form of the po-
states in the continuum, only two with the right paritye  tential is
obtain the exact values within a 2/1000 relative error. For the
potential operator, the convergence is also fast although we v(x)=D{[1-exp(—x)]*~1}, (42)
needN =17 (eight states with the right parityn the worst of
the cases, to reach the same relative error as before. It Yéherex=ar, with r the relative coordinate and the in-
remarkable that the polarizability associated to the potentiaferse of the potential range, aftlis the potential depth in
operator converges very rapidly. This indicates that perturthe minimum &=0). D can be written in terms of a param-
bative corrections to the energy of the bound state, due t6terj [35], which is a positive real number, as
changes of the potentials, will be obtained accurately in this

basis. In both cases we should stress the fast convergence D= i1 2 43
obtained, which points out that the discretization performed 2 It 2 (43)
is able to simulate correctly the continuum effects with the
inclusion of few states in the THO basis. The bound wave functions for the Morse potential are writ-
ten as
B. The Morse Hamiltonian q,jv(x):/\[jv eXF(—Z/Z)Zjingjizu(Z), (44)

The Morse potentidl29] is a commonplace to model an-
harmonic vibrations in diatomic molecul€32] and it is be-  wherev is an integer number taking values from 0 up to the
integer part of, j,= (2] —2v)v!/(2j—v)! is a normal-
TABLE II. Convergence of theSy, &, sum rule, andP of the  iZation constantz=(2j +1)exp(-x) is the Morse variable,
operatorv(x) as a function of the THO basis dimension for the and L{P)(z) are the generalized Laguerre polynomials of de-
Poeschl-Teller HamiltoniarN is the total number of basis states. In grees and ordemp. As in the previous case we take: 1. The
this case, because of the parity selection rule, only even parity stat@nly true bound state in this case=0, has energyg=

are connected to the ground state throughutrd operator. —1 and its wave function is
N Sr(v,N) Ew(v,N) P(v,N) P (x)=3 expg —x)exd — 3 exg —x)/2]. (45)
3 0.511992 0.061675 0.0739799 ) ) )
5 0.527 628 0.108 383 0.0740682 Forv=1 there is another state that is not normalizable and
7 0.531714 0.132586 0.0740737 corresponds to a resonance in the continuum at zero energy.
9 0.532 854 0.143 771 0.074 0741 Direct integration in Eq(7) provides the relation between
11 0533187  0.148694 x ands
13 0.533 287 0.150812
15 0533318 0151713 [1+erf(s)]/2=[1+3 exp —x)]exd —3 exg —X)].
17 0.533328 0.152 096 (46)
Exact Value 0.533333 0.152 381 0.0740741 Numerically solving this equation we get tlséx) function

plotted in Fig. 5. The behavior af(x) reflects the potential
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' T on=0 " T - T T T T T T
- /\ Morse
0.5 - N\ n=
; ~—
i
’>_<\ B II \‘ I/\\ n=3
o N ~ \‘ /I N T
Q o < Y, (x) \7\
[ c “ n=2|
1 - ~/
||‘\ //-\\ n=1
W \ -
-0.5F \! i T N7
1 —_—
\l‘\,’ ] ) .  n=0
Y ' ' . L M- 0 5 10
0 5 10 x

FIG. 8. Eigenstatesn=0 to 4) of the Morse Hamiltonian di-

FIG. 6. Basis of THO for the Morse Hamiltonian, from=0 agonalized in th&l=5 THO basis.

to 4.

o rule, and polarizability for the& operator and the potential
asymmetry. Once the(x) function is computed we can de- The results obtained are presented in Tables Ill and IV. In

fine the THO basis following E(5). The result foN=51is  this case we cannot make any symmetry simplification.
depicted in Fig. 6. S ) In Table Il the results for thex operator are presented,
The Hamiltonian d|agona||zat|on in the THO basis pl‘O- Showing a Very fast Convergence for a” the Computed Ob_
vides with eigenvalues and eigenfunctions. We plot in Fig. 7servables. FoN=5 (four states in the continuumve obtain
the energies obtained increasing the dimension of the basjgound 1/1000 maximum relative error. For the potential op-
from N=2 to 20. The bound-state energy lies at its exaclrator(see Table I with N=6 the maximum relative error
value,eg= — 3, while the behavior of the positive eigenval- js around 1/1000. Also, in this case, the convergence of the
ues is similar to the preceding case, excluding the appearangg|arizability associated to the potential operator is very fast.
of parity doublets. Note the different scaling in Figs. 3and 7, As in the Poeschl-Teller potential we should stress the
which shows the different behavior of the Poeschl-Teller anq:ast convergence Obtained, even faster in this case. That sup-

Morse potentials. _ ports the evidence for considering the truncated THO basis
The eigenfunctiongsee Fig. 8 form an orthonormal set.  as a suitable tool for continuum discretization.

They are not symmetric, as expected, but as in the previous
case, they both increase the number of nodes in the region
around the origin and explore highéx| values asn in-
creases. Positive valuesfre explored much more rapidly In this paper a THO basis has been introduced to produce
as a function ofh than the negative ones. appropriate normalizable states for discretizing the con-
With the obtained eigenvalues and eigenfunctions, weinuum. This is a fundamental problem in quantum mechan-
again check the convergence and closure of the truncatdds and is especially relevant when treating weakly bound
basis calculating the total strength, energy weighted sumsystems. The THO basis used in this paper is obtained by a
local scale transformatiofLST) that converts the ground

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

T 1 state of the system into the harmonic-oscillatdO) ground
- state. Thus the only previous requirement to apply this for-
150-  Morse =]
—_— TABLE lll. Convergence of thesy, &y sum rule, andP of the
_ operatorx as a function of the THO basis dimension for the Morse
100- _ - Hamiltonian.N is the total number of basis states.
E T N Sr(x,N) Ew(x,N) P(x,N)
- - 7 2 1.082 07 0.59344 0.658 937
3 1.10099 0.500 68 0.894 608
4 1.10167 0.500 04 0.950 650
5 1.10168 0.500 00 0.960174
6 0.961193
7 0.961 235
8 0.961 235
FIG. 7. Eigenvalues of the Morse Hamiltonian in the THO basis  Exact Value 1.10168 0.500 00 0.961 237

with dimensions ranging from=2 to 20.
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TABLE IV. Convergence of theS;, &y sum rule, andP of the The use of THO wave functions in practical calculations
operatorv(x) as a function of the THO basis dimension for the involves increasing the numbat of states considered in the
Morse HamiltonianN is the total number of basis states. calculation until convergence is achieved. In this sense, the

THO basis has an advantage over the use of a box to calcu-

N Sr(v,N) Ew(v,N) P(v,N) late continuum effects, because, in this case, one has to deal

5 0.575 235 0120856 00134195 with two continuu_m parameters, which are the rgdius of the

3 0.660 899 0.178 806 0.093 6744 _qu, and the maximum energy of the states considered. Thus,

1 0.740 342 0.689 425 0.093 7489 it is much harder to demqnstrate convergence 'when there are

: : ' two parameters to vary, instead of just one discrete param-

5 0.749 840 0.919 480 0.093 7500 eter.

6 0.749 996 0.938 555 The CDCC calculations have similar convergence prob-

7 0.750000  0.937510 lems. The bins describing continuum discretization are such

8 0.937500 that when expressed in terms of the coordinates, they vanish

at distances of the order of Ak. A practical CDCC calcu-
lation requires to fix the maximurk value considered and
the interval Ak of the bins, so that the number of bins is
malism is to know(either analytically or numericallythe ~ 91ven by N=Kya,/Ak. Here, also to demonstrate conver-
§ence, one has to deal with two parameters. In addition, the

Exact Value 0.750 000 0.937 500 0.093 7500

ground state of the system. This defines the LST and allow DCG hod . ve the Sat ion f
to generate all the states in the THO basis by transformin met odrequires to S0 ve the rger equatlon. or
Il the energies in the continuum. In our case, there is only

the HO wave functions. The states in the THO basis ar d heck dit] |
discrete, normalizable, and have exponentially decreasing"€ dIScrete parameter to check convergence and it Is only
equired to solve the Schidmger equation for the ground

asymptotic behavior. Although the basis is infinite, it is pos-
sible to get good approximations to the exact results wheftate-

calculating observables of interest by truncating the basis to 'The THO basis also has some similarities with the Stur-

few states in the continuum region. In the calculations preMian basis. In both cases the basis is discrete and normaliz-

sented in this paper, truncating just to 7 or 8 states in th

continuum gives the exact results within around one per mi X ) - ; X X
requires solving the Schadinger equation for increasing val-

relative error in the worst of the cases. . AT
In this paper we have presented the formalism for one!€S of the potential depth, obtaining in this way wave func-

dimensional potentials and we have chosen the case of ju Pns_wnh the same energy, but more nodes. Thes_e wave
one bound state. However we have performed calculation nCt_'OHS_ are not o_rthogonal, as they corr_esp_ond to different
for several bound states and the same kind of results a%(amlltonlans. Besides, the Sturmian basis gives an accurate

obtained. The THO basis converge very rapidly to the exac escription of the intgrior of the poten_tial, but it converges
energies of the bound eigenstates while states in the cof<"Y Sfiowwh to gescrlbe I:;rge sep%aratmns.l Thusl, t?}‘nﬁ. ;Hr?
tinuum lie close to zero energy, increasing the level densit)Pf”ls'S ast €a vantage that one has to solve on yt_e- cnro
in that region, and few of them explore higher-energy re_dmger equation for the grqur_wd state_, the wave functions are

orthogonal, and the description of distances beyond the po-

ble, and the wave functions have the same asymptotic be-
avior as the ground state. However, the Sturmian basis

gions. ) .
The formalism presented here can be of use whenevéfntial range seems to be satisfactory.
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