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Possibility of tunneling time determination
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We show that it is impossible to determine the time a tunneling particle spends under the barrier. However,
it is possible to determine the asymptotic time, i.e., the time the particle spends in a large area including the
barrier. We propose a model of time measurements. The model provides a procedure for calculation of the
asymptotic tunneling and reflection times. The model also demonstrates the impossibility of the determination
of the time the tunneling particle spends under the barrier. Example$ form and rectangular barrier
illustrate the obtained results.
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I. INTRODUCTION measurement, the momentum of the particle will have a big
uncertainty and the second measurement will be indefinite. If
Tunneling phenomena are inherent in numerous quanturwe want to ask about the time in quantum mechanics, we
systems ranging from atom and condensed matter to quafeed to define the procedure of measurement. We can mea-
tum fields. Therefore, the questions about the tunnelingure the position of the particle only with a finite precision
mechanisms are important. There have been many attempt®d get a distribution of the possible positions. Applying
to define a physical time for tunneling processes since thi§Uch a measurement, we can expect to obtain not a single
question has been raised by Macddl] in 1932. This ques- value of the traversal time but a distribution of times.
tion is still the subject of much controversy since numerous The question ofniow much time the tunneling particle
theories contradict each other in their predictions for “theSPends in the barrier regiois not precise. There are two
tunneling time.” Some of these theories predict that the tundifferent but related questions connected with the tunneling-
neling process is faster than light whereas the others staténe problem[23].
that it should be subluminal. This subject has been covered (i) How much time does the tunneling particle spend un-
in a number of reviewgHauge and Stmeng[2], Olkhovsky ~ der the barrier?

and Recami3], Landauer and Martifi4], and Chiao and (i) At wha_t time does the particle arrive at the point be-
Steinberg[5]). The fact that there is a time related to the hind the barrier?
tunneling process has been observed experimerjGsg4). There have been many attempts to answer these ques-

However, the results of the experiments are ambiguous. tions. However, there are several papers showing that ac-
Many of the theoretical approaches can be divided intording to quantum mechanics the question makes no
three categories. First, one can study evolution of the wav&ense{23—-26. The goal of this paper is to investigate the
packets through the barrier and get the phase time. HoweveP0ssibility to determine the tunneling time using a concrete
the correctness of the definition of this time is highly ques-model of time measurements.
tionable[15]. Another approach is based on the determina- The paper is organized as follows: In Sec. Il we prove that
tion of a set of dynamic paths, i.e., calculation of the time thdt is impossible to determine the time the tunneling particle
different paths spend in the barrier and averaging over the séPends under the barrier. In Sec. IIl we present the procedure
of the paths_ The paths can be found from the Feynman pa@]f time measurement. Th|S procedure |eadS to the dWe” time
integral formalism[16], from the Bohm approacfl7—20, if no distinctions between the tunneled and reflected particles
or from the Wigner distributioi21]. The third class uses a are made. This is shown in Sec. IV. In Sec. V we modify the
physical clock that can be used for determination of the time?roposed procedure of time measurement to make the dis-
elapsed during the tunnelir@;ttiker and Landauer used an tinction be.twee_n tunneled and reflected particles and obtain
Osci”atory barrier[ls], Baz’ Suggested the Larmor time the tunne“ng time. The result of such a procedure Clearly
[22]). shows the impossibility of the determination of the tunneling
The problems rise also from the fact that the arrival timetime. However, it also gives the method of the asymptotic
of a particle to the definite spatial point is a classical concepttime calculation. In Secs. VI and VII we examine the prop-
Its quantum Counterpart iS prob'ematic even for the free parerties of the tunneling and reflection times. In Sec. V”I, we
ticle case. In classical mechanics, for the determination oflerive the formula for asymptotic time. Section IX summa-
the time the particle spends moving along a certain trajectizes our findings.
tory, we have to measure the position of the particle at two
different moments of time. In quantum mechanics this pro-
cedure does not work. From Heisenberg's uncertainty prin-
ciple it follows that we cannot measure the position of a
particle without alteration of its momentum. To determine To answer the question of how much time the tunneling
exactly the arrival time of a particle, one has to measure thearticle spends under the barrier, we need a criterion of the
position of the particle with great precision. Because of theunneling. In this paper we accept the following criterion: the

II. IMPOSSIBILITY OF THE TUNNELING-TIME
DETERMINATION
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particle had tunneled in the case it was in front of the barrier e _

at first and later it was found behind the barrier. We require i —Fr(t,X)=1AI(X,0). (7)
that the mean energy of the particle and the energy uncer-

tainty must be less than the height of the barrier. Followingerom Eq.(7) and the initial condition, an explicit expression
this criterion, we introduce an operator corresponding to thgqr the tunneling flag operator follows:

“tunneling-flag” observable. This operator projects the

wave function onto the subspace of functions localized be- - . t
hind the barrier fr(t,X)=f+(X)+ fodtl\](X,tl)- (8

fr(X)=0(x=X), 1) In the question of how much time the tunneling particle

. - . . . spends under the barrier, we ask about the particles, which
where0 is the Heaviside unit step function adis a point . : "

i ) - ) we know with certainty have tunneled. In addition, we want
behind the barrier. We call the operafigr as the tunneling - (5 have some information about the location of the particle.
flag operator. This operator has two eigenvalues: 0 and }4yowever, does quantum mechanics allow us to have the in-

The eigenvalue O corresponds to the fact that the particle hagmation about the tunneling and location simultaneously?
not tunneled while the eigenvalue 1 corresponds to the tuna projection operator

neled particle.

We will work with the Heisenberg representation. In this .
representation, the tunneling flag operator is D)= deX|X><X|’ 9
7T(t,X)=ex;J<;i—F|t)fT(X)ex;<—;L—I:H). (2)  where|x) is the eigenfunction of the coordinate operator
which represents the probability for the particle to be in the

To take into account all the tunneled patrticles, the limit {ﬁgl?c?rrrn. In Heisenberg’s representation this operator takes

— +0o must be taken. So, the tunneling-flag observable in

the Heisenberg picture is represented by the operator B i\ i
Fr(0,X)=lim,_ ;.. f+(t,X). We can obtain an explicit ex- D(I‘,t)zex;{gHt)D(F)exp( - Ht). (10
pression for this operator.
The operatorf(t,X) obeys the equation From Eqs(5), (8), and(10) we see that the operatdT,t)
9o ~ . andf(=,X), in general, do not commute. This means that
ithT(t,X)z[fT(t,X),H]. (3) we cannot simultaneously have the information about the

tunneling and location of the particle. If we know with cer-

tainty that the particle has tunneled then we can say nothing

about its location in the past and if we know something about
) the location of the particle, we cannot determine definitely

The commutator in Eq3) may be expressed as

whether the particle will tunnel. Therefore, the question of
how much time does the tunneling particle spends under the
barrier cannot be answered, in principle, if the question is so
posed that its precise definition requires the existence of the
joint probability that the particle is found iR at timet and

2 LT whether or not it is found on the right side of the barrier at a
[Fr(X),H]=173(X), @ sufficiently later time. A similar analysis has been performed
in Ref.[26]. It has been shown that due to noncommutability
of operators, there exists no unique decomposition of the
dwell time.

[TT(t,X),I:|]=exp(;i—li|t)[fT(X),I:|]exp< - ;—Ht

If the Hamiltonian has the fornfl =[1/2M ]p?+ V(X), then
the commutator takes the form

whereJ(X) is the probability flux operator,

I(x)= %(|x><x|ﬁ+ pIX)(x|). (5) This conclusion is, howe~ver, not only negative. We know
that [ *Zdx|x)(x|=1 and[1,f{(,X)]=0. Therefore, if the
Therefore, we have an equation for the commutator regionI’ is large enough, one has a possibility to answer the
question about the tunneling time.
[T+(t,X),H]=iAI(X,1). (6) From the fact that the operatoBI',t) andf(,X) do

not commute we can predict that the measurement of the
The initial condition for the functiori(t,X) may be defined tunneling time will yield a value dependent on the particular
as detection scheme. The detector is made so that it yields some

value. But if we try to measure noncommuting observables,

T (t=0X)=Fr(X). the measured values depend on the interaction between the

detector and the measured system. So, in the definition of the
From Egs.(3) and (6) we obtain the equation for the evolu- Larmor time there is a dependence on the type of boundary
tion of the tunneling flag operator attributed to the magnetic-field regi¢8].
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x

D D (xp)=|%p)(Xp| = 8(X—Xp). (13)

Parametery in Eq. (12) characterizes the strength of the
interaction. A very small parameter ensures the undistur-
bance of the particle’s motion.
The Hamiltonian(12) with D given by Eq.(13) represents
the constant force acting on the detedbowhen the particle
is very close to the pointy . This force results in the change
of the detector's momentum. From the classical point of
view, the change of the momentum is proportional to the
time the particle spends in the region arouxgl and the
coefficient of proportionality is equal to the force acting on
the detector. In the ordinary quantum mechanics there is no
general method of the time determination. If we want to
define such a method, we have to make additional assump-
tions about the time. It is natural to extend the classical
method of the time determination into the quantum mechan-
FIG. 1. The configuration of the measurements of the tunnelingcs too. Therefore we assume that the change of the mean
time. The particleP is tunneling along thex coordinate and it is momentum of the detector is proportional to the time the
interacting with detectorB. The barrier is represented by the rect- constant force acts on the detector and that the time the par-
angle. The interaction with the definite detector occurs only in theticle spends in the detector’s region is the same as the time
narrow region limited by the horizontal lines. The changes in thethe force acts on the detector.
momenta of the detectors are represented by arrows. We can replace thé function by the narrow rectangle of
width L and height 1.. From Eq.(12) it follows that the
force acting on the detector when the particle is in the region

We consider a model for the tunneling time measuremeng@roundxp is —y1/L. The time the particle spends in the
which is somewhat similar to the “gedanken” experiment 'egion aroundxp equals to - y[1/L]) ~*((p4(t)) —(pq)).
used to obtain the Larmor time, but it is simpler and morewherep, is the momentum of the detector conjugated to the
transparent. This model had been proposed by Steinbegpordinateq while (py) and (pq(t)) are the mean initial
[27], however, it was treated in a nonstandard way, introducmomentum and momentum after tinierespectively. The
ing complex probabilities. Here we use only the formalismtime the particle spends until time momenin the unit-

Ill. THE MODEL OF THE TIME MEASUREMENT

of the standard quantum mechanics. length region is

Our system consists of partickeand several detecto3. 1
anh detector interacts w_|th th(_a particle only in t.he narrow (1) == =((Pq(t)) —(Pg))- (14)
region of space. The configuration of the system is shown in Y

Fig. 1. When the interaction of the particle with the detectors _ ) _ ) .
is weak, the detectors do not influence the state of the parC find the time the particle spends in the region of the finite
ticle. Therefore, we can analyze the action of detectors seps€ndth, we have to add the times spent in the regions of
rately. lengthL. WhenL—0 we obtain an integral.
First of all we consider the interaction of the particle with ~ 1he évolution operator is
one detector. The Hamiltonian of the system is i
o U(t)zexp[——(ﬂ +Hp+H)t|. (15)
A=Ap+FAp+A,, (12) pe R P

whereHp=[1/2M]p3+V(X) is the Hamiltonian of the par- IAn the rpomentA=0 the densi'Ey matrix of the whole system is
p(0)=pp(0)®pp(0), wherepp(0) is the density matrix of
the particle anghp(0)=|®)(®| is the density matrix of the
H,=ygD(xp) (12)  detector with|®) being the normalized vector in the Hilbert

. _ _ space of the detector. After the interaction, the density
represents the m}eractpn betwgen the particle and the detefiatrix  of the detector is po(t)=Tre{0 (1) (pp(0)
tor. The operatoq acts in the Hilbert space of theAdetector. ®|<I>)(<D|)0+(t)}. In the momentt=0 it must be
We require a continuous spectrum of the operajoior $x|pp(0)|x’)¢0 only whenx<0 andx’<0.
simplicity, we can consider this operator as the coordinate of Further, for simplicity we will neglect the Hamiltonian of
the detector. The operatBr(xp) acts in the Hilbert space of the detector. The evolution operator then approximately
the particle. In the coordinate representation it is nonvanishequals the operatdy(t, yq) where
ing only in the small region around the poi . In an ideal
case the operatdd (xp) may be expressed asfunction of ~ _ i1 ~5 - A
the particlepcoordir(1a?e), ! P Uit a) —ex;{ a %(m VO +aDixp)

ticle, Hp, is the detector's Hamiltonian and

t]. (16)
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After such assumptions from our model we can obtain the
time the particle spends in the definite space region. Similar t®
calculations were done for detector’s position rather than

momentum by lannaccon@8g].

IV. MEASUREMENT OF THE DWELL TIME

We expand the operatdy(t,yq) into the series of the

parametery assuming thay is small. Introducing the opera-

tor D(xp) in the interaction representation

D(xp ,t)=exy{%—l3| pt f)(xD)ex;{ — ili_ﬂ pt>, (17)

we obtain the first-order approximation for the operator

U(t,ya),

.
(1+ .7—qf dtlD(xD,tl)).
ih 0

(18)

~ - i
U(t,yq)wexp{ - ngt
For shortening the notation we introduce an operator

~ t ~
F(XD-t)EjodtlD(xD:tl) (19)

and the equation for the evolution operatoft,yq) is ex-
pressed as

1+ %ﬁ(xD ,t)). (20)

- - i
U(t,yq)wexy{ - ngt

The density matrix of the detector in the coordinate repre-

sentation in the first-order approximation then is
(alpo(t]a’)=(al®@)(@|a")Tr{O(t,ya)pp(0)U'(t,¥q")}
, Y4 -
=(dl®)(®|q >(1+W<F<xD,t>>

?’

M Eixo.)
~<q|exp{—%y<ﬁ<xmt>>a}|¢>

la").

><<<I>|exp[,';v<ﬁ<xD,t>>a

The average momentum of the detector after tinie(p,)

~¥(F(xp,1)), where (pg)=(®[p|®) and (F(xp,t))
=TH{F(xp,t)pp(0)}. From Eq.(14) we obtain the time the

particle spends in the unit-length region between time mo-

mentumt=0 andt

P, =(F(x,1)). (22)

PHYSICAL REVIEW A 63 052107

(X, Xy) = J:zdx POW(x t— o) = szde:p(x,t)dt.
1 1 22

This is a well-known expression for the dwell tirh@]. The
dwell time is the average over entire ensemble of particles
regardless they are tunneled or not. The expression for the
dwell time obtained in our model is the same as the well-
known expression obtained by other authors. Therefore, we
can expect that our model can yield a reasonable expression
for the tunneling time as well.

V. CONDITIONAL PROBABILITIES
AND THE TUNNELING TIME

Having seen that our model gives the time averaged over
the entire ensemble of particles, let us now take the average
only over the subensemble of the tunneled particles. The
joint probability that the particle has tunneladdthe detec-
tor has the momentunp, at the time momentt is

W(fr,pq;t)=Tr{T(X)|pa)(Pelp(1)}, where [pg) is the
eigenfunction of the momentum operafmy and the tunnel-

ing flag operatorf+(X) is defined by Eq(1). In quantum
mechanics such a probability does not always exist. If the
joint probability does not exist then the concept of the con-
ditional probability is meaningless. But in our case the op-
eratorsf(X) and|pg)(pql commute, therefore, the probabil-
ity W(fr,pq;t) exists. The conditional probability that the
momentum of the detector ig, provided that the particle
has tunneled is given according to the Bayes'’s theorem, i.e.,

W(fT qu ;t)

W(pqtlfr) = =5

(23

where W(f1;t)=Tr{f{(X)p(t)} is the probability that the
particle has tunneled until timee The average momentum of
the detector with the condition that the particle has tunneled
is

<pq(t)>: f pqd qu( Pq ;t| fr)

Tf{fT(X)pqp(t)} (24

1
{Pa(t) = Wi, -

In the first-order approximation the probability/(f;t)
is given by the equation

([ Tr(t,X),F(xp,0)1).
(25)

W(fri)=(Fr(t,0) +

The time spent in the space region restricted by the coordifhe expression '{fT(X) f)qf)(t)} in Eq. (24)in the first-order

natesx; andx, is

approximation reads
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THE OO ()}~ X))+ v F(X0OF 0 From Eq.(8) it follows that the operatof(c,X) is equal to
({r(X)Pap (D}~ (pg)(Fr(6,X)) + Zo [{T+(LX)F(xp, 1)) f+(X) +N(X). As long as the particle is initially before the

n A U ~ barrier
X{(Paa) — (AP {F (Xp ,t) Fr(t,X))].

Using the commutatofq,p,]=i#% from Egs.(14) and (24) 2 ot A E s
we obtain the time the tunneled particle spends in the unit- F1(X)pp(0)=pp(0)f7(X)=0.
length region around until time t

In the limit t— o we have

= TF , = y = y :F y
7(X,t) 2<f-|-(t,X)>< T(6,X)F(x,t) +F(x, 1) f1(t,X)) .
Tun(x) = ———(N(X)F(x)+ F(x)N(X)), (308
= ((q)(py)~Re(aPy)) BT >
Iﬁ<fT(t1X)> ! !

X([Tr(t,X),F(x,)]). (26) . 1 N

. . o Teorl X) = ——=———([N(X),F(x)]). (30b)

The obtained expressiof26) for the tunneling time is real 2i(N(X))

contrary to the complex-time approach. It should be noted
that this expression even in the limit of the very weak mea-
surement depends on the particular detector. This yields from Let us define an “asymptotic time” as the integral of
the impossibility of the determination of the tunneling time. 7(x,) over a wide region containing the barrier. Since the
If the commutatof T(t,X),F(x,t)] is zero, the time has a integral of r.on(x) is very small compared to that ef“"(x)
precise value. If the commutator is not zero, only the integrahs we will see later, the asymptotic time is effectively the
of this expression over a large region has the meaning of aimtegral of 7"""(x) only. This allows us to identify™""(x) as
asymptotic time related to the large region as we will see in‘the density of the tunneling time.”
Sec. VIII. In many cases for the simplification of mathematics, it is
Equation(26) can be rewritten as a sum of two terms, the common to write the integrals over time as the integrals from
first term being independent of the detector and the second . tg +«. In our model we cannot, without additional
dependent, i.e., assumptions, integrate in EqR9) from — because the
> negative time means the motion of the particles to the initial
7(X,t)=77(x,t) + g((qqu)— Re(qpq»igr“l()(,t), posmon. If some partllcle in the.mltlal wave packet had nega-
tive momenta then in the limit— — it was behind the
@7 barrier and contributed to the tunneling time.

where

~ . ~ ~ VI. PROPERTIES OF THE TUNNELING TIME
(F1(t,X)F(x,t) + F(x,t) f(t,X)),

(283

0= 2(F4(t,X
{Fr(t.X)) As it has been mentioned above, the question of how
much time a tunneling particle spends under the barrier has
1 no exact answer. We can determine only the time the tunnel-
Teon(X,t) = —=———([T+(t,X),F(x,)]). (280  ing particle spends in a large region containing the barrier. In
2i(f(t,X)) our model this time is expressed as an integral of quantity

e Tun Tun (303 over the region. In order to determine the properties of

The quantitiesr ™(x,t) and 7¢or(x,t) do not depend on the s integral it is useful to determine properties of the inte-

detector.
. grand.

In order to separate the tunneled and reflected particles We T4 pe aple to expand the range of integration over time to
have to take the limit—o. Otherwise, the particles that _ . 't js necessary to have the initial wave packet far to the
tunnel after the timéwould not contribute to the calculation. |oft from the points under the investigation and this wave
So we introduce operators packet must consist only of the waves moving in the positive

w direction.
ﬁ(x):f dt;D(x,ty), (293 It is convenient to make calculations in 'Ehe energy repre-
0 sentation. Eigenfunctions of the Hamiltoniahpy are|E, a),
. wherea==*1. The sign “+” or *“ —" corresponds to the
N(x)=j dt,J(x,ty). (29b) positive or_negative in_itial directi_on of th(_e wave, respec-
0 tively. Outside the barrier these eigenfunctions are
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[ ™M i
exp —pPeX
2mhpe 5

+r(E)exp( _ili_pEXH’ x<0

(X[E,+)= (313
[ M r{i
t(E — , X>L,
21-rhpE( Jexp 7 Pex ). X
i
2whpEt(E)eXF<_ﬁpEx)’ x<0
KE-)={ i I L (31b)
PP expg — 5 PeX _t*(E)r (E)ex 7 PEX| [ x>L,
|
wheret(E) andr(E) are transmission and reflection ampli- . .
tudes, respectively, (N(X)>:2Wﬁf dE(|E, + XE,+[I(X)|E,+ }(E, + ),

Pe=V2ME, (32
F(X)N(X))=472h? de E,+)E,+ E,
the barrier is in the region betweers 0 andx=L andM is (FOONCX)) =4 g { A HXE.a)

the mass of the particle. These eigenfunctions are orthonor- ~
mal, i.e., X(E,a|I(X)|E, +WE,+]).

(E,a|E",a')=05, . 0(E—E"). (33 . )
' From the conditionX>L it follows

The evolution operator is

- i (N(X))= | dE(|E, +)|t(E)|(E, +]). (39
Op(t)zg fodE|E,a>(E,a|ex;(—%Et). f

For x<0 we obtain the following expressions for the quan-

The operatof~(x) is given by the equation tities 77U"(x) and 71u"(x):
ﬁ(x)=f dt; >, f de dE'|E,a)(E,a|X) M 1
—w a,a’ 7_Tun(x): _ de<|E,+>2—|t(E)|2
(N(X)) Pe

x<x|E’,a’>(E’,a’|ex%fiL—(E—E’)tl),

i
x[2+ r(E)ex;{ —ngEx
where the integral over the time is72 S(E—E') and, there- i
fore, +r*(E)ex;{2ngx)]<E,+|>, (353

F(x)=2mh 2, f dE|E,a)(E,a|x)(X|E,a’}(E,a'|.

1
Tun _ 2
Teon X) = —= JdE E,+)—|t(E)
COTI’( 2<N(X)> <| >|pE| ( |
In an analogous way
i i
X{r(E)exp — 25 pex | —r*(E)exp 25 peX
N N h h
N(x) =27k D, fdE|E,a)(E,a|J(X)|E,a’><E,a’|.
a,a’ X<E,+|>. (35b
We consider the initial wave packet consisting only of the
waves moving in the positive direction. Then we have For x>L these expressions take the form
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FIG. 2. The asymptotic time density férfunction barrier with

et ’ FIG. 3. The asymptotic time density for rectangular barrier. The
the parametef)=2. The barrier is located at the poixt0. The

barrier is localized between the points 0 andx=5 and the height

units are such that=1 andM =1 and the average momentum of ¢ the parrier isv,=2. The used units and parameters of the initial
the Gaussian wave packép)=1. In these units, length and time ;o o packet are the same as in Fig. 2.

are dimensionless. The width of the wave packet in the momentum

space,s=0.001. the barrier region. This explains the Hartmann and Fletcher

effect[29,30: for opaque barriers the effective tunneling ve-
locity is very large.

= s | OE(E e
)> VIl. THE REFLECTION TIME
2_ t(E) r*(E)ex;{ 2i_ pEX) _ t(E) r(E) We can easily adapt our model for the reflection too. For
t*(E h t(E) doing this, we should replace the tunneling-flag operétor
) by the reflection flag operator
i
Xexp{—Z%pEx) <E,+|>, (363 %Rzl_%T- 37)
Replacingf; by fg in Egs.(30), we obtain the equality
Tun, 2
= dE(|E,+)—|t(E % =
Teont )= 2(N(X))j (1B ) ME (Fr(t=22,X)) 77x) = 7200 — (Fr(t=o2,X)) 7).
(38)
tE) — (E)exp( 2|_ DEX) We see that in our model the important condition
t* E)
( ’TDW: TTTun_|_ RTReﬂ, (39)
t*(E) [ . _ -
- Wr(E)ex —2% pex | [(E,+|). whereT andR are transmission and reflection probabilities,
respectively, is satisfied automatically.
(36b) If the wave packet consists of only the waves moving in
the positive direction, the density of dwell time is
We illustrate the obtained formulas for tefunction bar-
rier TDW(X):ZWﬁj dE(|E, + )(E,+ |X)(X|E, + }(E,+|).
V(X)=Q5(x) (40
For x<0 we have
and for the rectangular barrier. The incident wave packet is
Gaussian and it is localized far to the left from the barrier. owi =M | dE(IE. + 1
In Figs. 2 and 3, we see interferencelike oscillations near T X)= (IE, >IOE
the barrier. Oscillations are not only in front of the barrier )
but also behind the barrier. Whans far from the barrier the 2 L
“time density” tends to a value close to 1. This is in agree- X LI +r(E)ex;{ zﬁ pEX)
ment with classical mechanics because in the chosen units )
the mean velocity of_the particlg is 1. Ir_1 .Fig. 3, anothe_r +r*(E)exp< ZI—DEX) (E,+|) (41)
property of tunneling time density is seen: it is almost zero in
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5 45

Refl

FIG. 5. Reflection time density for the same conditions as in

FIG. 4. Reflection time density for the same conditions as inFig 3

Fig. 2.

from the barrier the time density tends to a value close to 2
and whenx is far to the right from the barrier the time den-
1 sity tends to 0. This is in agreement with classical mechanics
f dE(|E,+>—[2|r(E)|2 because in the chosen units, the velocity of the particle is 1
Pe and the reflected particle crosses the area before the barrier
two times.

and for the reflection time we obtain the time density

7_Refl — _
= T /x)

1 [
+ §(1+|r(E)|2)r(E)ex;{ —zngx)
VIIl. THE ASYMPTOTIC TIME

(E,+]). (42) As mentioned above, we can determine only the time that
the tunneling particle spends in a large region containing the
barrier, i.e., the asymptotic time. In our model this time is
expressed as an integral of quanti80a over this region.

+r*(E)exp{ Z%pEx)

For x>L the density of the dwell time is

1 We can do the integration explicitly.
PY(x) = Mf dE<|E,+)p—|t(E)|2<E,+ Y (43 The continuity equation yields
E
. . o d J ~
and the “density of the reflection time” may be expressed as TB(xp 1)+ —J(xp 1) =0. (45)
ot IXp
2Rl = . [ dE(IE,+) - [(E)?
2 " pe The integration in Eq(19) can be performed by parts
y t(E) “(E) [{Zi +t*(E) (E) 1.0x10°
— exp 2 peX r I
t*(E) 7 PP T H(E)
i 5.0x10° |
Xexp(—Z%pEx)]<E,+|>. (44 \
TReﬂ 00 PN
We illustrate the properties of the reflection time for the : \/
same barriers. The incident wave packet is Gaussian and it i N
localized far to the left from the barrier. In Figs. 4 and 5, we ~ *®'[
also see the interferencelike oscillations at both sides of the
barrier. As far as for the rectangular barrier the time density . .«[
is very small, the part behind the barrier is presented in Fig. [
6. Behind the barrier, the time density in certain places be- i
comes negative. This is because the quant®§f(x) is not -1.5x10° L L L
L. .. e . . . 5.0 75 10.0 12.5 15.0
positive definite. Nonpositivity is the direct consequence of X

noncommutativity of operators in Eg®R0). There is nothing
strange in the negativity o#"®(x) because this quantity FIG. 6. Reflection time density for a rectangular barrier in the
itself has no physical meaning. Only the integral over thearea behind the barrier. The parameters and the initial conditions
large region has the meaning of time. Wheis far to the left  are the same as in Fig. 3
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Jtdtlﬁ(xD 1) =tD(xp,t)+ ifttldt[j(xo ). (N(X)T(x))=—ihdm?h2Y, f dE
0 X 0 o

If the density matrixop(0) represents localized particle then X(W|E,+)(E,+[I(X)[E,a)

lim, ...[D(x,t)pp(0)]=0. The operatoD(x,t) in all ex- P A
pressions under consideration is multiplieddgy(0). There- X E<E,Q|J(X)|E’v+>
fore we can write an effective equality

E'=E

(E,+|W).

d
® J (= ~ 3 —
| Bt =2 [ “tdtIoo .t e HEaNOIE+) 52

Substituting expressions for the matrix elements of the prob-

We introduce the operator it ) ;
ability flux operator we obtain the equation

T0= | tdtIoxty). 4 A hod
(x) fo 1t (xty) “7 (N(X)T(x))zjdE(\If|E,+>t*(E)i—Et(E)(E,H‘I’)
We consider the asymptotic time, i.e., the time the particle 1 5
spends between pointg andx, whenx;— —o, X,— +%, +fo dE<‘1’|E,+>E|t(E)| (E,+[¥)
X M
tT””(xz,x1)=f dx 77(x). +ih?J dE(V|E,+)
X1

After the integration we have (E,+|W).

1 i
2
xFr*(E)t (E)ex;{ ngEx
tTun(X2 ,Xl):tTun(Xz)_tTun(Xl), (48) E

Whenx— +c, the last term vanishes and we have
where

. hoo
(N(X)T(x)}zf dE(W[E, +)t* (E)7 S=t(E)NE, +|¥)

() = ———(R0T0+ TOOR). (49
2(N(x)) 1

+MXJ dE(V|E,+)—|t(E)|%E,+|¥),

If we assume that the initial wave packet is far to the left Pe

from the points under investigation and consists only of the

waves moving in the positive direction, then E48) may be

simplified.

In the energy representation

'AI'(x)=J’:tldt12’ deE dE'|E,a)

X(E,a|I(X)|E',a'}E',a'|

X— + 00, (50)
This expression is equal {d(x)),
(NOOTx)=(T(x)), x> F2e. (51)

When the point with coordinateis in front of the barrier,
we obtain an equality

. NN , [
Xexp{%(E—E’)tl : <N(X)T(X))=—IﬁJdE(‘If|E,+>|t(E)|2 7 e
[ ime i j ' ' M [ d
The integral over time is equal toi 2%2(9/JE') S(E—E’) - — ((E [{_ —2 +—UE +|w
and we obtain Er( Jexp — 72pex |+ —= [(E, +[W).

~ When|x| is large, the second term vanishes and we have
F(x)=—ih2mh S, de|E,a> x| is farg

(ROOTO0)—Mx [ AECPIE, ) B 2(E, + )
E
X

J o
—(E,aJ(X)|[E",a")|e —e(E,a'|
JE Zﬁ J
) 5 +de<W|E,+>|t(E)| I—£<E,+|\If>
+<E,a|J(X)|E,a’>(9—E<E,a’|>, (52)
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The imaginary part of expressiofb2) is not zero. This osk N
means that for determination of the asymptotic time it is SN
insufficient to integrate only in the region containing the bar- o4F N
rier. For quasimonochromatic wave packets, from E4#g), o3k Y
(48), (49), (50) and(52) we obtain limits o2k
1 ol o f ," ‘\
(X5, Xq) =7+ —M (X, = X)), (533 . -7 oA /
pE 0.0 = \V, V
Tun, Im 01F
toon(X2,X1) — —t37, (53b) 02
where -03f
-60 -&I':O -:10 -:;0 -2IO -1I0 0
= ﬁ—{argt(E)} (54) x
FIG. 7. The quantityrian(x) for &-function barrier with the
is the phase time and parameters and initial conditions as in Fig. 2. The initial packet is
shown as the dashed line.
—h—(ln|t(E)|) (55 region in which the asymptotic time is determined has to

contain not only the barrier but also the initial wave packet.
In such a case from Eg&8) and(49) we obtain expres-

is the imaginary part of the complex time. sion for the asymptotic time

In order to take the limix— —c we have to perform
more exact calculations. We cannot extend the range of the
integration over the time te-« because this extension cor- t™"(x,,x;— — %)=

jdE(\If|E +)t*(E

responds to the initial wave packet being infinitely far from (N(X))
the barrier. We can extend the range of the integration over M 5
the time to— only for calculation ofN(X). Forx<0, we X _Xz_iﬁ_>t(E)<E,+|\y>'
obtain the following equality Pe JE
(59
. ~ 1 .
— From Eq.(5)) it follows that
(N(X)T(x))= ypvE tdt
tT(xg X — — o) = (T(x2)), (60)

Jd S
X I’l‘(x,t)alz(x,t) 2(xt) I(xt)) (N(X))

(56) Where'T’(xz) is defined as the probability flux integréd?).
Equations(59) and (60) give the same value for tunneling
where time as an approach in Ref81,32

The integral of quantityr_on(X) over a large region is

1 5 i zero. We have seen that it is not enough to choose the region
Il(x,t):f dE—=|t(E)|°exp —(pex—Et) [(E,+|V),
Jpe h
(57)
12
[
lo(X,t)= de—[ %ngx 1o
. . 0 y
| | TTun
+r(E)ex — 7 Pex|fexp — 7 Et (E,+|W). ook
(58) 04
I,(x,t) is equal to the wave function in the poiat the time o2k
momentt when the propagation is in the free space and the
initial wave function in the energy representation is 00 L

[t(E)|XE,+|¥). Whent=0 andx— — o, thenl(x,t)—0.
That is why the initial wave packet contains only the waves X

moving in the positive direction. ThereforegN(X)T(x)) FIG. 8. Tunneling time density for the same conditions and
—0 whenx— —. From this analysis it follows that the parameters as in Fig. 7.
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around the barrier—this region has to include also the initiaberg[27]. This procedure shows clearly the consequences of
wave-packet location. We illustrate this fact by numericalnoncommutativity of the operators and the possibility of de-
calculations. termination of the asymptotic time. Our model also reveals
The quantityrl%(x) for s-function barrier is represented the Hartmann and Fletcher effect, i.e., for opaque barriers the

cor

in Fig. 7. We see that]"(x) is not equal to zero not only in  effective velocity is very large because the contribution of

the region around the barrier but also it is not zero in thethe barrier region to the time is almost zero. We cannot de-
location of the initial wave packet_ For Comparison, thetermine whether this VelOCIty can be Iarger tledmecause for

quantity 77""(x) for the same conditions is represented inthis purpose one has to use a relativistic equateg., the
Fig. 8. Dirac equation
Due to noncommutativity of operatof®) and (10), the
outcome of measurements depends on a particular detector
even in an ideal case. This makes the measurement of the
We have shown that it is impossible to determine the timetunneling time difficult for opaque barriers because the tun-
a tunneling particle spends under the barrier because theeling time is very short and the term depending on the
knowledge about the location of the particle is incompatibledetector increases linearly with the barrier width. This term
with the knowledge whether the particle will tunnel or not. vanishes when the time spent in a large region including the
This is because the corresponding operators, given by Eqgmitial-packet location is measured.
(2) and (10), do not commute. However, it is possible to
speak about the asymptotic time, i.e., the time the particle

IX. CONCLUSION
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