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Possibility of tunneling time determination

Julius Ruseckas
Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania

~Received 16 June 2000; published 17 April 2001!

We show that it is impossible to determine the time a tunneling particle spends under the barrier. However,
it is possible to determine the asymptotic time, i.e., the time the particle spends in a large area including the
barrier. We propose a model of time measurements. The model provides a procedure for calculation of the
asymptotic tunneling and reflection times. The model also demonstrates the impossibility of the determination
of the time the tunneling particle spends under the barrier. Examples ford form and rectangular barrier
illustrate the obtained results.
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I. INTRODUCTION

Tunneling phenomena are inherent in numerous quan
systems ranging from atom and condensed matter to q
tum fields. Therefore, the questions about the tunne
mechanisms are important. There have been many atte
to define a physical time for tunneling processes since
question has been raised by MacColl@1# in 1932. This ques-
tion is still the subject of much controversy since numero
theories contradict each other in their predictions for ‘‘t
tunneling time.’’ Some of these theories predict that the t
neling process is faster than light whereas the others s
that it should be subluminal. This subject has been cove
in a number of reviews~Hauge and Sto”vneng@2#, Olkhovsky
and Recami@3#, Landauer and Martin@4#, and Chiao and
Steinberg@5#!. The fact that there is a time related to th
tunneling process has been observed experimentally@6–14#.
However, the results of the experiments are ambiguous.

Many of the theoretical approaches can be divided i
three categories. First, one can study evolution of the w
packets through the barrier and get the phase time. Howe
the correctness of the definition of this time is highly que
tionable@15#. Another approach is based on the determi
tion of a set of dynamic paths, i.e., calculation of the time
different paths spend in the barrier and averaging over the
of the paths. The paths can be found from the Feynman
integral formalism@16#, from the Bohm approach@17–20#,
or from the Wigner distribution@21#. The third class uses
physical clock that can be used for determination of the ti
elapsed during the tunneling~Büttiker and Landauer used a
oscillatory barrier @15#, Baz’ suggested the Larmor tim
@22#!.

The problems rise also from the fact that the arrival tim
of a particle to the definite spatial point is a classical conce
Its quantum counterpart is problematic even for the free p
ticle case. In classical mechanics, for the determination
the time the particle spends moving along a certain tra
tory, we have to measure the position of the particle at t
different moments of time. In quantum mechanics this p
cedure does not work. From Heisenberg’s uncertainty p
ciple it follows that we cannot measure the position of
particle without alteration of its momentum. To determi
exactly the arrival time of a particle, one has to measure
position of the particle with great precision. Because of
1050-2947/2001/63~5!/052107~11!/$20.00 63 0521
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measurement, the momentum of the particle will have a
uncertainty and the second measurement will be indefinite
we want to ask about the time in quantum mechanics,
need to define the procedure of measurement. We can m
sure the position of the particle only with a finite precisio
and get a distribution of the possible positions. Applyi
such a measurement, we can expect to obtain not a si
value of the traversal time but a distribution of times.

The question ofhow much time the tunneling particl
spends in the barrier regionis not precise. There are tw
different but related questions connected with the tunneli
time problem@23#.

~i! How much time does the tunneling particle spend u
der the barrier?

~ii ! At what time does the particle arrive at the point b
hind the barrier?

There have been many attempts to answer these q
tions. However, there are several papers showing that
cording to quantum mechanics the question~i! makes no
sense@23–26#. The goal of this paper is to investigate th
possibility to determine the tunneling time using a concr
model of time measurements.

The paper is organized as follows: In Sec. II we prove t
it is impossible to determine the time the tunneling parti
spends under the barrier. In Sec. III we present the proce
of time measurement. This procedure leads to the dwell t
if no distinctions between the tunneled and reflected partic
are made. This is shown in Sec. IV. In Sec. V we modify t
proposed procedure of time measurement to make the
tinction between tunneled and reflected particles and ob
the tunneling time. The result of such a procedure clea
shows the impossibility of the determination of the tunneli
time. However, it also gives the method of the asympto
time calculation. In Secs. VI and VII we examine the pro
erties of the tunneling and reflection times. In Sec. VIII, w
derive the formula for asymptotic time. Section IX summ
rizes our findings.

II. IMPOSSIBILITY OF THE TUNNELING-TIME
DETERMINATION

To answer the question of how much time the tunnel
particle spends under the barrier, we need a criterion of
tunneling. In this paper we accept the following criterion: t
©2001 The American Physical Society07-1
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particle had tunneled in the case it was in front of the bar
at first and later it was found behind the barrier. We requ
that the mean energy of the particle and the energy un
tainty must be less than the height of the barrier. Follow
this criterion, we introduce an operator corresponding to
‘‘tunneling-flag’’ observable. This operator projects th
wave function onto the subspace of functions localized
hind the barrier

f̂ T~X!5Q~ x̂2X!, ~1!

whereQ is the Heaviside unit step function andX is a point
behind the barrier. We call the operatorf̂ T as the tunneling
flag operator. This operator has two eigenvalues: 0 an
The eigenvalue 0 corresponds to the fact that the particle
not tunneled while the eigenvalue 1 corresponds to the
neled particle.

We will work with the Heisenberg representation. In th
representation, the tunneling flag operator is

f̃ T~ t,X!5expS i

\
Ĥt D f̂ T~X!expS 2

i

\
Ĥt D . ~2!

To take into account all the tunneled particles, the limit
→1` must be taken. So, the tunneling-flag observable
the Heisenberg picture is represented by the oper
f̃ T(`,X)5 limt→1` f̃ T(t,X). We can obtain an explicit ex
pression for this operator.

The operatorf̃ T(t,X) obeys the equation

i\
]

]t
f̃ T~ t,X!5@ f̃ T~ t,X!,Ĥ#. ~3!

The commutator in Eq.~3! may be expressed as

@ f̃ T~ t,X!,Ĥ#5expS i

\
Ĥt D @ f̂ T~X!,Ĥ#expS 2

i

\
Ĥt D .

If the Hamiltonian has the formĤ5@1/2M # p̂21V( x̂), then
the commutator takes the form

@ f̂ T~X!,Ĥ#5 i\ Ĵ~X!, ~4!

whereĴ(X) is the probability flux operator,

Ĵ~x!5
1

2M
~ ux&^xu p̂1 p̂ux&^xu!. ~5!

Therefore, we have an equation for the commutator

@ f̃ T~ t,X!,Ĥ#5 i\ J̃~X,t !. ~6!

The initial condition for the functionf ( t̃ ,X) may be defined
as

f̃ T~ t50,X!5 f̂ T~X!.

From Eqs.~3! and ~6! we obtain the equation for the evolu
tion of the tunneling flag operator
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i\
]

]t
f̃ T~ t,X!5 i\ J̃~X,t !. ~7!

From Eq.~7! and the initial condition, an explicit expressio
for the tunneling flag operator follows:

f̃ T~ t,X!5 f̂ T~X!1E
0

t

dt1J̃~X,t1!. ~8!

In the question of how much time the tunneling partic
spends under the barrier, we ask about the particles, w
we know with certainty have tunneled. In addition, we wa
to have some information about the location of the partic
However, does quantum mechanics allow us to have the
formation about the tunneling and location simultaneous
A projection operator

D̂~G!5E
G
dxux&^xu, ~9!

where ux& is the eigenfunction of the coordinate operat
which represents the probability for the particle to be in t
regionG. In Heisenberg’s representation this operator ta
the form

D̃~G,t !5expS i

\
Ĥt D D̂~G!expS 2

i

\
Ĥt D . ~10!

From Eqs.~5!, ~8!, and~10! we see that the operatorsD̃(G,t)
and f̃ T(`,X), in general, do not commute. This means th
we cannot simultaneously have the information about
tunneling and location of the particle. If we know with ce
tainty that the particle has tunneled then we can say noth
about its location in the past and if we know something ab
the location of the particle, we cannot determine definit
whether the particle will tunnel. Therefore, the question
how much time does the tunneling particle spends under
barrier cannot be answered, in principle, if the question is
posed that its precise definition requires the existence of
joint probability that the particle is found inG at time t and
whether or not it is found on the right side of the barrier a
sufficiently later time. A similar analysis has been perform
in Ref. @26#. It has been shown that due to noncommutabil
of operators, there exists no unique decomposition of
dwell time.

This conclusion is, however, not only negative. We kno
that *2`

1`dxux&^xu51 and@1,f̃ T(`,X)#50. Therefore, if the
regionG is large enough, one has a possibility to answer
question about the tunneling time.

From the fact that the operatorsD̃(G,t) and f̃ T(`,X) do
not commute we can predict that the measurement of
tunneling time will yield a value dependent on the particu
detection scheme. The detector is made so that it yields s
value. But if we try to measure noncommuting observab
the measured values depend on the interaction between
detector and the measured system. So, in the definition o
Larmor time there is a dependence on the type of bound
attributed to the magnetic-field region@3#.
7-2
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III. THE MODEL OF THE TIME MEASUREMENT

We consider a model for the tunneling time measurem
which is somewhat similar to the ‘‘gedanken’’ experime
used to obtain the Larmor time, but it is simpler and mo
transparent. This model had been proposed by Stein
@27#, however, it was treated in a nonstandard way, introd
ing complex probabilities. Here we use only the formalis
of the standard quantum mechanics.

Our system consists of particleP and several detectorsD.
Each detector interacts with the particle only in the narr
region of space. The configuration of the system is show
Fig. 1. When the interaction of the particle with the detect
is weak, the detectors do not influence the state of the
ticle. Therefore, we can analyze the action of detectors s
rately.

First of all we consider the interaction of the particle wi
one detector. The Hamiltonian of the system is

Ĥ5ĤP1ĤD1ĤI , ~11!

whereĤP5@1/2M # p̂21V( x̂) is the Hamiltonian of the par
ticle, ĤD is the detector’s Hamiltonian and

ĤI5gq̂D̂~xD! ~12!

represents the interaction between the particle and the d
tor. The operatorq̂ acts in the Hilbert space of the detecto
We require a continuous spectrum of the operatorq̂. For
simplicity, we can consider this operator as the coordinate
the detector. The operatorD̂(xD) acts in the Hilbert space o
the particle. In the coordinate representation it is nonvan
ing only in the small region around the pointxD . In an ideal
case the operatorD̂(xD) may be expressed asd function of
the particle coordinate,

FIG. 1. The configuration of the measurements of the tunne
time. The particleP is tunneling along thex coordinate and it is
interacting with detectorsD. The barrier is represented by the rec
angle. The interaction with the definite detector occurs only in
narrow region limited by the horizontal lines. The changes in
momenta of the detectors are represented by arrows.
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D̂~xD![uxD&^xDu5d~ x̂2xD!. ~13!

Parameterg in Eq. ~12! characterizes the strength of th
interaction. A very small parameterg ensures the undistur
bance of the particle’s motion.

The Hamiltonian~12! with D̂ given by Eq.~13! represents
the constant force acting on the detectorD when the particle
is very close to the pointxD . This force results in the chang
of the detector’s momentum. From the classical point
view, the change of the momentum is proportional to t
time the particle spends in the region aroundxD and the
coefficient of proportionality is equal to the force acting o
the detector. In the ordinary quantum mechanics there is
general method of the time determination. If we want
define such a method, we have to make additional assu
tions about the time. It is natural to extend the classi
method of the time determination into the quantum mech
ics too. Therefore we assume that the change of the m
momentum of the detector is proportional to the time t
constant force acts on the detector and that the time the
ticle spends in the detector’s region is the same as the
the force acts on the detector.

We can replace thed function by the narrow rectangle o
width L and height 1/L. From Eq.~12! it follows that the
force acting on the detector when the particle is in the reg
aroundxD is 2g1/L. The time the particle spends in th
region aroundxD equals to (2g@1/L#)21(^pq(t)&2^pq&),
wherepq is the momentum of the detector conjugated to
coordinateq while ^pq& and ^pq(t)& are the mean initial
momentum and momentum after timet, respectively. The
time the particle spends until time momentt in the unit-
length region is

t~ t !52
1

g
~^pq~ t !&2^pq&!. ~14!

To find the time the particle spends in the region of the fin
length, we have to add the times spent in the regions
lengthL. WhenL→0 we obtain an integral.

The evolution operator is

Û~ t !5expF2
i

\
~ĤP1ĤD1ĤI !t G . ~15!

In the momentt50 the density matrix of the whole system
r̂(0)5 r̂P(0)^ r̂D(0), wherer̂P(0) is the density matrix of
the particle andr̂D(0)5uF&^Fu is the density matrix of the
detector withuF& being the normalized vector in the Hilbe
space of the detector. After the interaction, the dens
matrix of the detector is r̂D(t)5TrP$Û(t)( r̂P(0)
^ uF&^Fu)Û1(t)%. In the moment t50 it must be
^xurP(0)ux8&Þ0 only whenx,0 andx8,0.

Further, for simplicity we will neglect the Hamiltonian o
the detector. The evolution operator then approximat
equals the operatorÛ(t,gq̂) where

Û~ t,a!5expF2
i

\ S 1

2M
p̂21V~ x̂!1aD̂~xD! D t G . ~16!

g

e
e

7-3



th
il
a

-

to

re

o

rd

les
the

ell-
we
sion

ver
age
he

the
n-
p-

l-
e

i.e.,

f
led

JULIUS RUSECKAS PHYSICAL REVIEW A 63 052107
After such assumptions from our model we can obtain
time the particle spends in the definite space region. Sim
calculations were done for detector’s position rather th
momentum by Iannaccone@28#.

IV. MEASUREMENT OF THE DWELL TIME

We expand the operatorÛ(t,gq̂) into the series of the
parameterg assuming thatg is small. Introducing the opera
tor D̂(xD) in the interaction representation

D̃~xD ,t !5expS i

\
ĤPt D D̂~xD!expS 2

i

\
ĤPt D , ~17!

we obtain the first-order approximation for the opera
Û(t,gq̂),

Û~ t,gq̂!'expS 2
i

\
ĤPt D S 11

gq̂

i\ E0

t

dt1D̃~xD ,t1!D .

~18!

For shortening the notation we introduce an operator

F̂~xD ,t ![E
0

t

dt1D̃~xD ,t1! ~19!

and the equation for the evolution operatorÛ(t,gq̂) is ex-
pressed as

Û~ t,gq̂!'expS 2
i

\
ĤPt D S 11

gq̂

i\
F̂~xD ,t ! D . ~20!

The density matrix of the detector in the coordinate rep
sentation in the first-order approximation then is

^qurD~ t !uq8&5^quF&^Fuq8&Tr$Û~ t,gq!r̂P~0!Û†~ t,gq8!%

5^quF&^Fuq8&S 11
gq

i\
^F̂~xD ,t !&

2
gq8

i\
^F̂~xD ,t !& D

'^quexpF2
i

\
g^F̂~xD ,t !&q̂G uF&

3^FuexpF i

\
g^F̂~xD ,t !&q̂G uq8&.

The average momentum of the detector after timet is ^pq&
2g^F̂(xD ,t)&, where ^pq&5^Fu p̂quF& and ^F̂(xD ,t)&
5Tr$F̂(xD ,t) r̂P(0)%. From Eq.~14! we obtain the time the
particle spends in the unit-length region between time m
mentumt50 andt

tDw~x,t !5^F̂~x,t !&. ~21!

The time spent in the space region restricted by the coo
natesx1 andx2 is
05210
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tDw~x2 ,x1!5E
x1

x2
dx tDw~x,t→`!5E

x1

x2
dxE

0

`

r~x,t !dt.

~22!

This is a well-known expression for the dwell time@3#. The
dwell time is the average over entire ensemble of partic
regardless they are tunneled or not. The expression for
dwell time obtained in our model is the same as the w
known expression obtained by other authors. Therefore,
can expect that our model can yield a reasonable expres
for the tunneling time as well.

V. CONDITIONAL PROBABILITIES
AND THE TUNNELING TIME

Having seen that our model gives the time averaged o
the entire ensemble of particles, let us now take the aver
only over the subensemble of the tunneled particles. T
joint probability that the particle has tunneledand the detec-
tor has the momentumpq at the time momentt is
W( f T ,pq ;t)5Tr$ f̂ T(X)upq&^pqur̂(t)%, where upq& is the
eigenfunction of the momentum operatorp̂q and the tunnel-
ing flag operatorf̂ T(X) is defined by Eq.~1!. In quantum
mechanics such a probability does not always exist. If
joint probability does not exist then the concept of the co
ditional probability is meaningless. But in our case the o
eratorsf̂ T(X) andupq&^pqu commute, therefore, the probabi
ity W( f T ,pq ;t) exists. The conditional probability that th
momentum of the detector ispq provided that the particle
has tunneled is given according to the Bayes’s theorem,

W~pq ;tu f T!5
W~ f T ,pq ;t !

W~ f T ;t !
, ~23!

where W( f T ;t)5Tr$ f̂ T(X) r̂(t)% is the probability that the
particle has tunneled until timet. The average momentum o
the detector with the condition that the particle has tunne
is

^pq~ t !&5E pqdpqW~pq ;tu f T!

or

^pq~ t !&5
1

W~ f T ;t !
Tr$ f̂ T~X! p̂qr̂~ t !%. ~24!

In the first-order approximation the probabilityW( f T ;t)
is given by the equation

W~ f T ;t !'^ f̃ T~ t,X!&1
g

i\
^q&^@ f̃ T~ t,X!,F̂~xD ,t !#&.

~25!

The expression Tr$ f̂ T(X) p̂qr̂(t)% in Eq. ~24!in the first-order
approximation reads
7-4
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Tr$ f̂ T~X! p̂qr̂~ t !%'^pq&^ f̃ T~ t,X!&1
g

i\
@^ f̃ T~ t,X!F̂~xD ,t !&

3^ p̂qq̂&2^q̂p̂q&^F̂~xD ,t ! f̃ T~ t,X!&#.

Using the commutator@ q̂,p̂q#5 i\ from Eqs.~14! and ~24!
we obtain the time the tunneled particle spends in the u
length region aroundx until time t

t~x,t !5
1

2^ f̃ T~ t,X!&
^ f̃ T~ t,X!F̂~x,t !1F̂~x,t ! f̃ T~ t,X!&

1
1

i\^ f̃ T~ t,X!&
~^q&^pq&2Rê q̂p̂q&!

3^@ f̃ T~ t,X!,F̂~x,t !#&. ~26!

The obtained expression~26! for the tunneling time is rea
contrary to the complex-time approach. It should be no
that this expression even in the limit of the very weak m
surement depends on the particular detector. This yields f
the impossibility of the determination of the tunneling tim
If the commutator@ f̃ T(t,X),F̂(x,t)# is zero, the time has a
precise value. If the commutator is not zero, only the integ
of this expression over a large region has the meaning o
asymptotic time related to the large region as we will see
Sec. VIII.

Equation~26! can be rewritten as a sum of two terms, t
first term being independent of the detector and the sec
dependent, i.e.,

t~x,t !5tTun~x,t !1
2

\
~^q&^pq&2Rê q̂p̂q&!tcorr

Tun~x,t !,

~27!

where

tTun~x,t !5
1

2^ f̃ T~ t,X!&
^ f̃ T~ t,X!F̂~x,t !1F̂~x,t ! f̃ T~ t,X!&,

~28a!

tcorr
Tun~x,t !5

1

2 i ^ f̃ T~ t,X!&
^@ f̃ T~ t,X!,F̂~x,t !#&. ~28b!

The quantitiestTun(x,t) andtcorr
Tun(x,t) do not depend on the

detector.
In order to separate the tunneled and reflected particles

have to take the limitt→`. Otherwise, the particles tha
tunnel after the timet would not contribute to the calculation
So we introduce operators

F̂~x!5E
0

`

dt1D̃~x,t1!, ~29a!

N̂~x!5E
0

`

dt1J̃~x,t1!. ~29b!
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From Eq.~8! it follows that the operatorf̃ T(`,X) is equal to

f̂ T(X)1N̂(X). As long as the particle is initially before th
barrier

f̂ T~X!r̂P~0!5 r̂P~0! f̂ T~X!50.

In the limit t→` we have

tTun~x!5
1

2^N̂~X!&
^N̂~X!F̂~x!1F̂~x!N̂~X!&, ~30a!

tcorr
Tun~x!5

1

2i ^N̂~X!&
^@N̂~X!,F̂~x!#&. ~30b!

Let us define an ‘‘asymptotic time’’ as the integral o
t(x,`) over a wide region containing the barrier. Since t
integral oftcorr

Tun(x) is very small compared to that oftTun(x)
as we will see later, the asymptotic time is effectively t
integral oftTun(x) only. This allows us to identifytTun(x) as
‘‘the density of the tunneling time.’’

In many cases for the simplification of mathematics, it
common to write the integrals over time as the integrals fr
2` to 1`. In our model we cannot, without additiona
assumptions, integrate in Eqs.~29! from 2` because the
negative time means the motion of the particles to the ini
position. If some particle in the initial wave packet had neg
tive momenta then in the limitt→2` it was behind the
barrier and contributed to the tunneling time.

VI. PROPERTIES OF THE TUNNELING TIME

As it has been mentioned above, the question of h
much time a tunneling particle spends under the barrier
no exact answer. We can determine only the time the tun
ing particle spends in a large region containing the barrier
our model this time is expressed as an integral of quan
~30a! over the region. In order to determine the properties
this integral it is useful to determine properties of the in
grand.

To be able to expand the range of integration over time
2`, it is necessary to have the initial wave packet far to
left from the points under the investigation and this wa
packet must consist only of the waves moving in the posit
direction.

It is convenient to make calculations in the energy rep
sentation. Eigenfunctions of the HamiltonianĤP are uE,a&,
wherea561. The sign ‘‘1 ’’ or ‘‘ 2 ’’ corresponds to the
positive or negative initial direction of the wave, respe
tively. Outside the barrier these eigenfunctions are
7-5



^xuE,1&5

A M

2p\pE
H expS i

\
pExD 1r ~E!expS 2

i

\
pExD J , x,0

M i
~31a!
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5A
2p\pE

t~E!expS
\

pExD , x.L,

^xuE,2&55
M

2p\pE
t~E!expS 2

i

\
pExD , x,0

M

2p\pE
H expS 2

i

\
pExD2

t~E!

t* ~E!
r * ~E!expS i

\
pExD J , x.L,

~31b!
li-

no

he

n-
wheret(E) and r (E) are transmission and reflection amp
tudes, respectively,

pE5A2ME, ~32!

the barrier is in the region betweenx50 andx5L andM is
the mass of the particle. These eigenfunctions are ortho
mal, i.e.,

^E,auE8,a8&5da,a8d~E2E8!. ~33!

The evolution operator is

ÛP~ t !5(
a

E
0

`

dEuE,a&^E,auexpS 2
i

\
EtD .

The operatorF̂(x) is given by the equation

F̂~x!5E
2`

`

dt1 (
a,a8

E E dE dE8uE,a&^E,aux&

3^xuE8,a8&^E8,a8uexpS i

\
~E2E8!t1D ,

where the integral over the time is 2p\d(E2E8) and, there-
fore,

F̂~x!52p\ (
a,a8

E dEuE,a&^E,aux&^xuE,a8&^E,a8u.

In an analogous way

N̂~x!52p\ (
a,a8

E dEuE,a&^E,auĴ~x!uE,a8&^E,a8u.

We consider the initial wave packet consisting only of t
waves moving in the positive direction. Then we have
05210
r-

^N̂~x!&52p\E dE^uE,1&^E,1uĴ~x!uE,1&^E,1u&,

^F̂~x!N̂~X!&54p2\2(
a

E dE^uE,1&^E,1ux&^xuE,a&

3^E,auĴ~X!uE,1&^E,1u&.

From the conditionX.L it follows

^N̂~X!&5E dE^uE,1&ut~E!u2^E,1u&. ~34!

For x,0 we obtain the following expressions for the qua
tities tTun(x) andtcorr

Tun(x):

tTun~x!5
M

^N̂~X!&
E dE^uE,1&

1

2pE
ut~E!u2

3H 21r ~E!expS 22
i

\
pExD

1r * ~E!expS 2
i

\
pExD J ^E,1u&, ~35a!

tcorr
Tun~x!5

M

2^N̂~X!&
E dE^uE,1&

1

ipE
ut~E!u2

3H r ~E!expS 22
i

\
pExD2r * ~E!expS 2

i

\
pExD J

3^E,1u&. ~35b!

For x.L these expressions take the form
7-6
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tTun~x!5
M

^N̂~X!&
E dE^uE,1&

1

2pE
ut~E!u2

3F22
t~E!

t* ~E!
r * ~E!expS 2

i

\
pExD2

t* ~E!

t~E!
r ~E!

3expS 22
i

\
pExD G ^E,1u&, ~36a!

tcorr
Tun~x!5

M

2^N̂~X!&
E dE^uE,1&

i

pE
ut~E!u2

3F t~E!

t* ~E!
r * ~E!expS 2

i

\
pExD

2
t* ~E!

t~E!
r ~E!expS 22

i

\
pExD G ^E,1u&.

~36b!

We illustrate the obtained formulas for thed-function bar-
rier

V~x!5Vd~x!

and for the rectangular barrier. The incident wave packe
Gaussian and it is localized far to the left from the barrie

In Figs. 2 and 3, we see interferencelike oscillations n
the barrier. Oscillations are not only in front of the barri
but also behind the barrier. Whenx is far from the barrier the
‘‘time density’’ tends to a value close to 1. This is in agre
ment with classical mechanics because in the chosen u
the mean velocity of the particle is 1. In Fig. 3, anoth
property of tunneling time density is seen: it is almost zero

FIG. 2. The asymptotic time density ford-function barrier with
the parameterV52. The barrier is located at the pointx50. The
units are such that\51 andM51 and the average momentum
the Gaussian wave packet,^p&51. In these units, length and tim
are dimensionless. The width of the wave packet in the momen
space,s50.001.
05210
is
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the barrier region. This explains the Hartmann and Fletc
effect @29,30#: for opaque barriers the effective tunneling v
locity is very large.

VII. THE REFLECTION TIME

We can easily adapt our model for the reflection too. F
doing this, we should replace the tunneling-flag operatorf̂ T
by the reflection flag operator

f̂ R512 f̂ T . ~37!

Replacingf̂ T by f̂ R in Eqs.~30!, we obtain the equality

^ f̃ R~ t5`,X!&tRefl~x!5tDw~x!2^ f̃ T~ t5`,X!&tTun~x!.
~38!

We see that in our model the important condition

tDw5TtTun1RtRefl, ~39!

whereT andR are transmission and reflection probabilitie
respectively, is satisfied automatically.

If the wave packet consists of only the waves moving
the positive direction, the density of dwell time is

tDw~x!52p\E dE^uE,1&^E,1ux&^xuE,1&^E,1u&.

~40!

For x,0 we have

tDw~x!5ME dE^uE,1&
1

pE

3H 11ur ~E!u21r ~E!expS 22
i

\
pExD

1r * ~E!expS 2
i

\
pExD J ^E,1u& ~41!

m

FIG. 3. The asymptotic time density for rectangular barrier. T
barrier is localized between the pointsx50 andx55 and the height
of the barrier isV052. The used units and parameters of the init
wave packet are the same as in Fig. 2.
7-7
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and for the reflection time we obtain the time density

tRefl~x!5
M

12^N̂~X!&
E dE^uE,1&

1

pE
F2ur ~E!u2

1
1

2
~11ur ~E!u2!r ~E!expS 22

i

\
pExD

1r * ~E!expS 2
i

\
pExD G^E,1u&. ~42!

For x.L the density of the dwell time is

tDw~x!5ME dE^uE,1&
1

pE
ut~E!u2^E,1u& ~43!

and the ‘‘density of the reflection time’’ may be expressed

tRefl~x!5
M

2 E dE^uE,1&
1

pE
ut~E!u2

3H t~E!

t* ~E!
r * ~E!expS 2

i

\
pExD1

t* ~E!

t~E!
r ~E!

3expS 22
i

\
pExD J ^E,1u&. ~44!

We illustrate the properties of the reflection time for t
same barriers. The incident wave packet is Gaussian and
localized far to the left from the barrier. In Figs. 4 and 5, w
also see the interferencelike oscillations at both sides of
barrier. As far as for the rectangular barrier the time den
is very small, the part behind the barrier is presented in F
6. Behind the barrier, the time density in certain places
comes negative. This is because the quantitytRefl(x) is not
positive definite. Nonpositivity is the direct consequence
noncommutativity of operators in Eqs.~30!. There is nothing
strange in the negativity oftRefl(x) because this quantity
itself has no physical meaning. Only the integral over
large region has the meaning of time. Whenx is far to the left

FIG. 4. Reflection time density for the same conditions as
Fig. 2.
05210
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from the barrier the time density tends to a value close t
and whenx is far to the right from the barrier the time den
sity tends to 0. This is in agreement with classical mechan
because in the chosen units, the velocity of the particle
and the reflected particle crosses the area before the ba
two times.

VIII. THE ASYMPTOTIC TIME

As mentioned above, we can determine only the time t
the tunneling particle spends in a large region containing
barrier, i.e., the asymptotic time. In our model this time
expressed as an integral of quantity~30a! over this region.
We can do the integration explicitly.

The continuity equation yields

]

]t
D̃~xD ,t !1

]

]xD
J̃~xD ,t !50. ~45!

The integration in Eq.~19! can be performed by parts

n FIG. 5. Reflection time density for the same conditions as
Fig. 3.

FIG. 6. Reflection time density for a rectangular barrier in t
area behind the barrier. The parameters and the initial condit
are the same as in Fig. 3
7-8
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E
0

t

dt1D̃~xD ,t1!5tD̃~xD ,t !1
]

]xE0

t

t1dt1J̃~xD ,t1!.

If the density matrixr̂P(0) represents localized particle the
limt→`@D̃(x,t) r̂P(0)#50. The operatorD̃(x,t) in all ex-
pressions under consideration is multiplied byr̂P(0). There-
fore we can write an effective equality

E
0

`

dt1D̃~xD ,t1!5
]

]xE0

`

t1dt1J̃~xD ,t1!. ~46!

We introduce the operator

T̂~x!5E
0

`

t1dt1J̃~x,t1!. ~47!

We consider the asymptotic time, i.e., the time the part
spends between pointsx1 andx2 whenx1→2`, x2→1`,

tTun~x2 ,x1!5E
x1

x2
dx tTun~x!.

After the integration we have

tTun~x2 ,x1!5tTun~x2!2tTun~x1!, ~48!

where

tTun~x!5
1

2^N̂~x!&
^N̂~x!T̂~x!1T̂~x!N̂~x!&. ~49!

If we assume that the initial wave packet is far to the l
from the points under investigation and consists only of
waves moving in the positive direction, then Eq.~48! may be
simplified.

In the energy representation

T̂~x!5E
2`

`

t1dt1 (
a,a8

E E dE dE8uE,a&

3^E,auĴ~x!uE8,a8&^E8,a8u

3expS i

\
~E2E8!t1D .

The integral over time is equal to 2ip\2(]/]E8)d(E2E8)
and we obtain

T̂~x!52 i\2p\ (
a,a8

E dEuE,a&

3S ]

]E8
^E,auĴ~x!uE8,a8&uE85E^E,a8u

1^E,auĴ~x!uE,a8&
]

]E
^E,a8u D ,
05210
e

t
e

^N̂~X!T̂~x!&52 i\4p2\2(
a

E dE

3^CuE,1&^E,1uĴ~X!uE,a&

3S ]

]E8
^E,auĴ~x!uE8,1&U

E85E

1^E,auĴ~x!uE,1&
]

]ED ^E,1uC&.

Substituting expressions for the matrix elements of the pr
ability flux operator we obtain the equation

^N̂~X!T̂~x!&5E dE^CuE,1&t* ~E!
\

i

]

]E
t~E!^E,1uC&

1MxE dE^CuE,1&
1

pE
ut~E!u2^E,1uC&

1 i\
M

2 E dE^CuE,1&

3
1

pE
2

r * ~E!t2~E!expS 2
i

\
pExD ^E,1uC&.

Whenx→1`, the last term vanishes and we have

^N̂~X!T̂~x!&5E dE^CuE,1&t* ~E!
\

i

]

]E
t~E!^E,1uC&

1MxE dE^CuE,1&
1

pE
ut~E!u2^E,1uC&,

x→1`. ~50!

This expression is equal tôT̂(x)&,

^N̂~X!T̂~x!&→^T̂~x!&, x→1`. ~51!

When the point with coordinatex is in front of the barrier,
we obtain an equality

^N̂~X!T̂~x!&52 i\E dE^CuE,1&ut~E!u2F i

\

M

pE
x

2
M

2pE
2

r ~E!expS 2
i

\
2pExD1

]

]EG ^E,1uC&.

When uxu is large, the second term vanishes and we hav

^N̂~X!T̂~x!&→MxE dE^CuE,1&
1

pE
ut~E!u2^E,1uC&

1E dE^CuE,1&ut~E!u2
\

i

]

]E
^E,1uC&.

~52!
7-9



is
ar

t
r-
m
v

th
is

e

to
et.

g

gion

t is

nd

JULIUS RUSECKAS PHYSICAL REVIEW A 63 052107
The imaginary part of expression~52! is not zero. This
means that for determination of the asymptotic time it
insufficient to integrate only in the region containing the b
rier. For quasimonochromatic wave packets, from Eqs.~47!,
~48!, ~49!, ~50! and ~52! we obtain limits

tTun~x2 ,x1!→tT
Ph1

1

pE
M ~x22x1!, ~53a!

tcorr
Tun~x2 ,x1!→2tT

Im , ~53b!

where

tT
Ph5\

d

dE
$argt~E!% ~54!

is the phase time and

tT
Im5\

d

dE
~ lnut~E!u! ~55!

is the imaginary part of the complex time.
In order to take the limitx→2` we have to perform

more exact calculations. We cannot extend the range of
integration over the time to2` because this extension co
responds to the initial wave packet being infinitely far fro
the barrier. We can extend the range of the integration o
the time to2` only for calculation ofN̂(X). For x,0, we
obtain the following equality

^N̂~X!T̂~x!&5
1

4pMi E0

`

tdt

3S I 1* ~x,t !
]

]x
I 2~x,t !2I 2~x,t !

]

]x
I 1* ~x,t ! D ,

~56!

where

I 1~x,t !5E dE
1

ApE

ut~E!u2expS i

\
~pEx2Et! D ^E,1uC&,

~57!

I 2~x,t !5E dE
1

ApE
H expS i

\
pExD

1r ~E!expS 2
i

\
pExD J expS 2

i

\
EtD ^E,1uC&.

~58!

I 1(x,t) is equal to the wave function in the pointx at the time
momentt when the propagation is in the free space and
initial wave function in the energy representation
ut(E)u2^E,1uC&. Whent>0 andx→2`, thenI 1(x,t)→0.
That is why the initial wave packet contains only the wav
moving in the positive direction. ThereforêN̂(X)T̂(x)&
→0 when x→2`. From this analysis it follows that the
05210
-

he

er

e

s

region in which the asymptotic time is determined has
contain not only the barrier but also the initial wave pack

In such a case from Eqs.~48! and~49! we obtain expres-
sion for the asymptotic time

tTun~x2 ,x1→2`!5
1

^N̂~X!&
E dE^CuE,1&t* ~E!

3S M

pE
x22 i\

]

]ED t~E!^E,1uC&.

~59!

From Eq.~51! it follows that

tTun~x2 ,x1→2`!5
1

^N̂~X!&
^T̂~x2!&, ~60!

whereT̂(x2) is defined as the probability flux integral~47!.
Equations~59! and ~60! give the same value for tunnelin
time as an approach in Refs.@31,32#

The integral of quantitytcorr
Tun(x) over a large region is

zero. We have seen that it is not enough to choose the re

FIG. 7. The quantitytcorr
Tun(x) for d-function barrier with the

parameters and initial conditions as in Fig. 2. The initial packe
shown as the dashed line.

FIG. 8. Tunneling time density for the same conditions a
parameters as in Fig. 7.
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around the barrier—this region has to include also the ini
wave-packet location. We illustrate this fact by numeric
calculations.

The quantitytcorr
Tun(x) for d-function barrier is represente

in Fig. 7. We see thattcorr
Tun(x) is not equal to zero not only in

the region around the barrier but also it is not zero in
location of the initial wave packet. For comparison, t
quantity tTun(x) for the same conditions is represented
Fig. 8.

IX. CONCLUSION

We have shown that it is impossible to determine the ti
a tunneling particle spends under the barrier because
knowledge about the location of the particle is incompati
with the knowledge whether the particle will tunnel or no
This is because the corresponding operators, given by
~2! and ~10!, do not commute. However, it is possible
speak about the asymptotic time, i.e., the time the part
spends in a large region.

In order to illustrate these facts, to obtain an expressio
the asymptotic time and to investigate its behavior, we c
sider a procedure of time measurement, proposed by S
t,

ys

.

a,

05210
l
l

e

e
he
e

s.

le

of
-

in-

berg@27#. This procedure shows clearly the consequence
noncommutativity of the operators and the possibility of d
termination of the asymptotic time. Our model also reve
the Hartmann and Fletcher effect, i.e., for opaque barriers
effective velocity is very large because the contribution
the barrier region to the time is almost zero. We cannot
termine whether this velocity can be larger thanc because for
this purpose one has to use a relativistic equation~e.g., the
Dirac equation!.

Due to noncommutativity of operators~2! and ~10!, the
outcome of measurements depends on a particular dete
even in an ideal case. This makes the measurement o
tunneling time difficult for opaque barriers because the t
neling time is very short and the term depending on
detector increases linearly with the barrier width. This te
vanishes when the time spent in a large region including
initial-packet location is measured.
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