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Quantum transitions and dressed unstable states
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We consider the problem of the meaning of quantum unstable states including their dressing. According to
both Dirac and Heitler this problem has not been solved in the usual formulation of quantum mechanics. A
precise definition of excited states is still needed to describe quantum transitions. We use our formulation given
in terms of density matrices outside the Hilbert space. We obtain a dressed unstable state for the Friedrichs
model, which is the simplest model that incorporates both bare and dressed quantum states. The excited
unstable state is derived from the stable states through analytic continuation. It is given by an irreducible
density matrix with broken time symmetry. It can be expressed by a superposition of Gamow density operators.
The main difference from previous studies is that excited states are not factorizable into wave functions. The
dressed unstable state satisfies all the criteria that we can expect: it has a real average energy and a nonvan-
ishing trace. The average energy differs from Green’s function energy by a small effect starting with fourth
order in the coupling constant. Our state decays following a Markovian equation. There are no deviations from
exponential decay neither for short nor for long times, as is the case for the bare state. The dressed state
satisfies an uncertainty relation between energy and lifetime. We can also define dressed photon states and
describe how the energy of the excited state is transmitted to the photons. There is another very important
aspect: deviations from exponential decay would be in contradiction with indiscernibility as one could define,
e.g., old mesons and young mesons according to their lifetime. This problem is solved by showing that
guantum transitions are the result of two processes: a dressing process, discussed in a previous publication, and
a decay process, which is much slower for electrodynamic systems. During the dressing process the unstable
state is prepared. Then the dressed state decays in a purely exponential way. In the Hilbert space the two
processes are not separated. Therefore it is not astonishing that we obtain for the unstable dressed state an
irreducible density matrix outside the Liouville-Hilbert-space. This is a limit of Hilbert space states that are
arbitrarily close to the decaying state. There are experiments that could verify our proposal. A typical one
would be the study of the line shape, which is due to the superposition of the short-time process and the
long-time process. The long-time process taken separately leads to a much sharper line shape, and avoids the
divergence of the fluctuation predicted by the Lorentz line shape.
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[. INTRODUCTION often identified with bare states, and are considered to be
“approximately stationary.” As pointed out by Diraj}]:
In particle theory or atomic physics the concepts of bare’ - - . The fact that we had to use the word “approximately”

and dressed stable states are naturally introduced when tHeStating the conditions required for the phenomena of emis-

HamiltonianH is split into a free parH, and and interaction SIon and absorption to be able to occur shows that these

\V. For example, for an isolated atom the bare stable state £21ditions are not expressible in exact mathematical lan-

: guage. One can give meaning to these phenomena only with
t_he ground state. If the atom is coupled to an eleCtromagne.t'reference to a perturbation method. They occur when the
field, a new dressed ground state is obtained, correspondi

) rLﬁmerturbed systerfof scatterer plus particjehas stationary
to the atom surrounded by a cloud of virtual phOtonS‘stHates that are closed. The introduction of the perturbation

Dressed stable states are eigenstates of_the Hamiltonian aBfoils the stationary property of these states and gives rise to
are related to bare states through a unitary transformatlogpomameous emission and its converse absorption.”
(we assume the interaction has a suitable form factor that” while it is possible to speak about the bare states derived
avoids ultraviolet divergencgsThe eigenstates dfl can be  from the unperturbed HamiltoniaH,, the difficulty is to
obtained by perturbation theory. The transition from bare tqntroduce the dressing, which is necessary to have a consis-
dressed ground states has been studied in a recent[ddper tent theory that incorporates, for example, the Van der Waals
Here we consider excited states, which involve lifetimes. or Casimir-Polder forces between unstable atoms. In [Bgf.
For excited atomic states or unstable particles the situaHeitler has concluded that it is impossible to distinguish vir-
tion changes dramatically. The usual perturbation expansiotual photons(the dressingfrom emitted photons: “In fact,
of the eigenstates dfl is not applicable due to resonances no exact definition of an isolated excited atomic state with a
[2,3]. Unstable particles emit decay products. No eigenstatefinite lifetime can be given at all.” This is true in the usual
of the Hamiltonian in the Hilbert space can describe thisquantum mechanics associated to a Hilbert space description,
time-dependent behavior. but we shall show that this definition can be obtained in the
For this reason unstable particles and excited states havéouville space associated to functions outside the Hilbert
been regarded as approximate concepts. Unstable states gpace. The dressed excited state we shall define is a part of a
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complete set of states that includes dressed photons as wetnstant average energy. Since they are eigenstates of the
as correlations. Hamiltonian, their time evolution is independent of the

In experimental situations the initial conditions that candressed photon states. They cannot describe the energy trans-
be prepared belong to the Hilbert space. Therefore a dresséer from particle to emitted photons.
excited state outside the Hilbert space can indeed not exist in These difficulties are avoided if we consider the extension
isolation. On the other hand in the Hilbert space there iof density operator§rather than wave functiopn®utside the
necessarily a Zeno timgg] that leads to deviations from Hilbert spac€ Our unstable state is indeed given by a non-
exponential. Nonexponential behavior, no matter how smallfactorizable density operator. Its construction is based on the
is in contradiction with indiscernibility. The main purpose of complex-spectral representation of the Liouville operator
this paper is to lift this contradiction. Our main aim is there-L,=[H,], whose eigenstates are generally not products of
fore to obtain a dressed unstable state decaying in an expeigenstates of the Hamiltonidd5]. The Liouville operator,
nential way. An initial condition belonging to the Hilbert in spite of being Hermitian, can have complex eigenvalues
space may then be written as a superposition of this decayingprresponding to eigenstates outside the Hilbert space. Other
state plus additional components, which are associated withpplications of this method have been given in Rgf&—
the preparation conditions and are responsible for the Zend7]. The idea of extending quantum mechanics on the level
effect. of density operators was introduced by the Brussels school,

We require the dressed excited states to be a natural eled by one of the authord.P.) [10,18—20Q. This approach
tension of the dressed stable states. In addition we require thveas already applied to the study of unstable partifRis—

following properties: 25], but there remained ambiguities, which we can now
(1) Dressed unstable states, as well as dressed photorm/ercome’®
are generated through a transformation operatoistarting In Sec. Il we introduce the Friedrichs mod&,3]. This

from the corresponding bare states. This operator is obtainedodel is a simplified version of a two-level atom interacting
by analytic continuation of the unitary operatdrthat gen-  with a scalar field. In this model the interactions are simpli-

erates dressed stable states. fied by the dipole approximation and by neglecting virtual
(2) The transformation\ preserves the trace of the trans- transitions(the so-called “rotating wave” approximatién
formed density matrices. In the Friedrichs model the discrete state may be either stable
(3) The transformation\ preserves Hermiticity of density or unstable depending on whether the energy of this state is
matrices. below or above a certain threshold. An advantage of this
(4) The transformatiom\ is analytic with respect to the model is that it is exactly solvable, i.e., the eigenstates of the
coupling constank at\A=0. Hamiltonian can be explicitly found for both stable and un-

(5) The dressed unstable state obeys a Markovian timstable cases. This model may also be used as a simple model
evolution corresponding to the irreversible energy transfeof unstable particles, radioactive nuclei, electron wave
from the dressed state to the decay products. guides with resonant cavitig®9], and other systems that

(6) The dressed unstable state has an energy uncertaintyay be described as a discrete state coupled to a continuum.
of the order of the inverse lifetime. In Sec. lll we present the Liouville-space formulation for

In this paper we shall show that one can construct unthe stable case of the Friedrichs model with no decay. We
stable states that fulfill all these requirements. introduce the unitary transformatidsin the Liouville space

In recent years some progress towards the construction dliat relates bare states to dressed stable states. The main
dressed unstable states has been achieved by consideripgint is that we can write this transformation in terms of
analytic continuations of the wave-function space outside theperators whose analytic continuation to the complex energy
Hilbert space[7,8] leading to Gamow vector§9]. The plane can be performed explicit[st5,30.
dressed wavefunctions are related to the bare wave functions In Sec. IV we present the complex spectral representation
by a nonunitary transformation[2].} The dressed particle of L. Using this representation, in Sec. V we consider the
wave functions are eigenstates of the total Hamiltonian, withextensionA of the unitary transformatiold. We use analytic
complex eigenvalue@he eigenvalues being poles of Green’s continuation to obtain a well-defined extension of the unitary
energy function These eigenstates, together with theoperator.
dressed photon states, form a complex spectral representa-In Sec. VI we apply condition$1)—(6) to complete the
tion of the Hamiltonian. This representation breaks time
symmetry, as the particle states decay in a fixed direction of
tlme [2]. The Gamow _vec_tor formulgtlon ha_s also been_ap- 2The space of density operatdthe Liouville spacghas a richer
p!led_ to second quantlzathal,la with creation and anni- g cture than the space of wave functigns,14.
hilation operators extended outside the usual Fock space. 3y Ref. [26] a heuristic construction of unstable states was intro-

_ Still, the decaying states obtained in this way have undegceq by imposing the block diagonality of the evolution operator.
sirable features. They have either a vanishing or a complexpe unstable state given in RE26] coincides up to fourth order in
the coupling constant with the one obtained in this paper. See also
Ref.[27].
This is a star-unitary transformation. Star-unitary transforma- “The model that includes virtual transitions is still solvaf#é8].
tions have been introduced in RE10] and will be defined in Sec. However we shall not consider it here because the essential points
IV in the Liouville-space formulation. of our discussion can be made without virtual transitions.
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extension ofU. As we shall show the\ transformation we with v, ~L°. This gives a consistent volume dependence in
obtain is “star unitary.” In Sec. VIl we enumerate the new the limit L—cc. In this limit the field modes form a con-
properties of the dressed excited state. An interesting result thuum and we have

that the average energy is different from the real part of the

pole of theSmatrix (the so-called Green-function enejgy 2w L

The difference appears at fourth order in the coupling con- T zk: _’J dk, ﬁékvoﬁ (k). (2.9
stant and is proportional to the decay rate of the particle. We

derive the line shape of emission of photons and give then this paper we assume, has a suitable form factor that
explicit formulation of the dressed unstable state and thejliminates ultraviolet divergences.

dressed photon states. The line shape we obtain is generatedThere are several distinct situations depending on the

by the relatively slow decay process. In contrast, the lingajue of the energyw; of the bare particle. Suppose at
shape associated with the bare state is dominated by the fasty the system is in the statd). For \#0 this state will

dressing process. Correspondingly, the energy uncertainty @y olve in time. Then

energy uncertainty of the bare state is much larger, of th@jressed state that represents the bare atom surrounded by a
order or the ultaviolet cutoff of the form factor. cloud of photons. The energy of the dressed state is lower

In this paper we consider global quantities such as thehan the energy of the bare state, and the excess energy is
total energy or trace, which can be obtained from local dengmjtted away by an off-resonance procéss The eigen-

sities by integration. In a subsequent pap@t] we shall  states are analytic in the coupling constank atO0.
discuss local quantities and we shall consider the space-time () For 0< w;, < w?, where

description of the emission process. This will allow us to

identify the virtual photons involved in the dressing of the o UE
bare state and discuss the possibility of experiments where wgzv dk— (2.6
the line shape of the dressed excited state may be observed. e Ok

in the continous limit, the bare state also evolves towards a
dressed stable state, as in the previous case. However the

The Hamiltonian of the Friedrichs model is given [} eigenstates of the Hamiltonian are not analytic in the cou-
pling constant ah =0. This situation has been discussed in

Il. THE FRIEDRICHS MODEL

H=Hy+AV the literature(see, for example, Ref32]) and we shall not
consider it in this paper.
=wq|1)(1] +Ek wiK)(K| (3) Forw,> wg’ the statg1) becomes unstable due to the

resonance interaction and decays obeying an approximately
exponential law, with the emission of photons. At the same
Y Vi([KY(] +|1)(K]), (2.1 timeitalso creates a cloud of virtual photons around the bare
k state[31].

Since the Hamiltonian is a bilinear form of bra and ket
states, it is possible to find exact eigenstates and eigenvalues
of the total HamiltionianH [2] for both the stable and un-

|1><1|+§k: [k(k|=1, (a|a')=8,u (2.2) stable cases. Let us briefly summarize the results.

where

. . . . . <
for a=1 ork, and\ is a dimensionless coupling constant. A. Stable case(w,<0)

We assume the dispersion relation of the scalar field is given For the stable case we have the eigensﬂa?@};anﬂgk),
by which for \—0 reduce td1) and|k), respectively,

w=|K]| (2.3 H|$1):;1|$1>, H|$k>:wk|$k>1 2.7

andV, is real with the relation/,=V_,.. As a convention

we call the quanta of the field “photons.” The staf®) where w, is the perturbed energy of the particle. Hereafter

A . we use bars to distinguish expressions related to the stable
represents the atofor particle in its bare excited level, and
case from the ones related to the unstable case.

no photons present, ark) represents a bare photon of mo- , - — ]
mentumk together with the atom in its ground level. The eigenstatefp,) and|¢) are stationary states, and

We consider a one-dimensional system enclosed in a bo'@y correspond to the dressed stable particle and dressed
of size L with usual periodic boundary conditions, in the photons, respectively. For;) we have
continous spectrum limitL—o, Extension to three-
dimensional cases is straightforward. We assume that

277) 1/2

| 1) =N31" : 2.9

DS K,

V=

L Uk (24)

where
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_ v
Cp=—— 2.9

w1~ Wk

ﬁl is a normalization constant given by
Ni=(1+&)7%, =22 2, (2.10
K

where¢ is a real positive number. The dressed enaugyis
the solution of the equation

7(w1)=0, (2.1
where
\2V2
n(Z)EZ—wl—zk Z—wkk (2.12
For | ¢,) we have
_ V, BN/
|¢k>=|k>+m |1>+§|: m“)},
(2.13

where the prime on the summation sign denotes Ik,
the constante is a positive infinitesimal,e—0+, and
7™ (w) = n(w*i€). The states with-i e correspond to the
“in” states in scattering theory.In the limit L—o the de-

nominators are interpreted as distributions, with the condi-

tion that the limitL — < is taken first and the limig—0+ is

taken later. With this convention we shall use summation
signs[cf. Eq.(2.5] unless the integration has to be explicitly
displayed. Moreover, we shall not write the “limit” notation

for e to avoid too heavy notations. We have

| po)( el + EK |d) (bl =1,

o (2.14
(daldpp)=0,p for a=1 or k.

For sufficiently small\ one can expan{ﬂa) around\=0.
For example to first order in we have

k) +O(N2).

AV
K (2.19
Wy

— w1

|$1>:|1>_;

Since w,<0, the denominatorw,—w; cannot be zero.

Namely, there are no resonances and the expansion around
A=0 is well defined. This implies that the system is inte-

grable in the sense of Poincd2].

PHYSICAL REVIEW A3 052106

where

=3 ), wi=Z Bael. @17

B. Unstable case

For the casev,>0 there appear “Poincanesonances”
at o= w4 in the perturbation expansion of the stag) in
the continous limifsee Eq(2.15]. For the cas@;> w‘j this

state “disappears” and the continous stath@ alone form
a complete orthonormal set in the lintit— o [3]

Zk | di){ bl — 1. (2.18

In other words, there is no dressed unstable state in the Hil-
bert space that can be obtained by a unitary transformation
acting on the bare staté). This is consistent with the sta-
tionary character of the eigenstated-bin the Hilbert space,
which cannot represent an unstable state that decays.

The dissapearence bp,) may also be interpreted as the
disappearance of the invariant of motide,){¢4|. The
other invariantd ¢, )( | become nonanalytic at=0, due
to the appearance of the absolute value squared of the factor
[7"(w)] ! in these invariants. The disappearance of one
invariant of motion and the nonanalyticity of the other in-
variants indicates that the system is nonintegrable in the
sense of Poincarg6,33. The stateg¢,) constitute the so-
called “Friedrichs representation[2].

We note that in the continuous spectrum linhit— o
Green’s function] " (»)]~! has a resonance pole on the
lower half-complex plane ab=1z,, i.e.,

+ Zvi
77+(21)221_w1_J —=0, (219
- (Z_ wk)zl
where
Zi=w—iy (2.20

with @, and y real, 2y>0 being the decay rate. Here, we
have used the abbreviated notation

1 1

(z-wpy, (2w 7B

(2.29

to indicate that the propagator is evaluated on the second
Riemann energy sheet af(i.e., z is continued from the up-

The dressing states can be generated from the bare sta% to the lower half-plarieln previous publicationg2] this

by a unitary transformation in the Hilbert space as

|py=u"Ya) for a=1ork, (2.16

SWe may also define a different set of states withe correspond-
ing to the “out” states.

has been referred to as “delayed analytic continuation,” as
we first evaluate the integration on the upper half-plane of
and then substitute=z; on the lower half-plane.

While the resonance pole gives the decaying contributions
of the system, there is no quantum state in the Hilbert space
corresponding to the resonance. However, the states associ-
ated with the resonance poles may be found outside the Hil-
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bert space by analytic continuation of the Hamiltonjary—

PHYSICAL REVIEW &3 052106

pe=|d1)( b1l pa=|d1) (b1l (2.31b

9]. This corresponds to complex spectral representations of

this operator. A detailed analysis can be found in R2f.

Although these factorizable states bring us closer to the defi-

Here we present only the main results. In the complex repnition of a dressed excited state, they still do not satisfy our
resentation ofH the eigenstates are not self-dual, and werequirements stated in the Introduction. For example, the

have distinct right and left eigenstates,
Hlg)=21lb1), (bilH=(b1|z1,
Hlg = o éi),  (bilH=(dlwy,

where the eigenstates form a complete biorthonormal set

(2.223
(2.22h
FEM |6a)(Dal =1, (Palbp)=0.5.  (2.23

Corresponding to the branch of the “in” states HG.13),
the particle eigenstates are given by

|60 =N [1)+1 2 [k, (2.24
(Bal =N (112 oK, (2.25
where
_L_'_ (2.26)
(Z_wk)zl
and
N,=(1+¢&) L, gzxzﬁk c. (2.27)

In contrast to the stable casé,is a complex number. The
states(2.24) and (2.25 are also called “Gamow vectors”
[9].

In the complex spectral representation the photon eigen
states are given by

AV,
| )= |k>+ |1> Zm“)}
(2.28
and[see Eq(2.13)]
(Pl = (bl # (i, (2.29
where
1 1 wy—2Zq (230)

(00 7 (00 (0—2)1,

Using the staté¢,) and its dual we have the following

four possibilites to construct factorizable density operators iryefined real

terms of Gamow vectors

pPa= |$1><¢1|, (2.313

po=b1)(Pl,

statesp, andp, are invariants of motion and hence they are
not good candidates to describe an unstable state that decays.
Furthermore they have a complex expectation valuef the
Hamiltonian® The other density operatofs, and pq decay

for t>0 andt<O, respectively, which is a characteristic of
unstable stategthe choice of eithep, or pq depends on
whether we want a state that decays in the future or in the
past, respective)y However, these states have a vanishing
trace and consequently they have a zero average efigfgy

(b1 1) =(h1|1)=0, (1|H|1)=(hs|H[h1)=0.
(2.32

These are the reasons why we seek the unstable dressed state
in a more general space of density operators, i.e., a general-
ized Liouville space that is spanned by eigenstates with com-
plex eigenvalues of the Liouville-von Neumann operator.

Ill. LIOUVILLE-SPACE FORMULATION FOR THE
STABLE CASE

We first introduce the Liouville space for the stable case
of the Friedrichs modelsee Ref[15] and references therein
for the general formulation The Liouville space is a vector
space formed by the ordinary quantum-mechanical linear op-
erators that act on wave functions. The Liouville-von Neu-
mann superoperatdor “Liouvillian” ) is given by

Ly=[H,]=HX1-1xH, (3.1
where the operatiorx is defined by AXB)p=ApB for
arbitrary linear operator8, B, andp. We use the term “su
peroperator” to emphasize thaét, acts on operators. For
example the density operators evolve according to the Liou-
ville equation

dp

(3.2
Superoperators of the formA B) are called “factorizable
superoperators.”

Corresponding to the decomposition of the Hamiltonian
in Eqg. (2.1), we splitLy into a free part and an interaction
part,Ly=Lo+ ALy . The dyadga){B|, which consist of the
eigenvectors of the unperturbed Hamiltonidth, with
Hola)=w,|a), are eigenstates of the unperturbed Liouvil-
lian Ly. Introducing the notatiofl5]

To these density operators we could associate both the well-
“energy” w;=Re(z;) and the decay rate 2
=2|Im(z;)| at the same time. But this is not satisfactory from the
point of view of the energy-time uncertainty relation. We shall
come back to this uncertainty relation in Sec. VII.
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la; B)=|a)B|=[(a; 8|1 (3.3 with (v)=(0) or (aB). The projectorP(®) corresponds to
the vacuum of correlations subspace, while the projectors
we have Pk and P(¥ correspond to thel=1 subspace ang (k")
to thed=2 subspace. The complement project@¢) are
Lola; B) = (04— wp)| a: B). B4 defined by ’ ’ profeas

These dyadic operators form a complete orthonormal set in

the Liouville space, PM+QM=1. (3.12

. They are orthogonal t&®”, i.e., QP =pQ =0,
(a"sB'la;BY= 041,004 4, ;b le; BY( e Bl =1 and satisfyf Q")]2= Q). The bare projectorB commute
' (3.5) with Ly and they are eigenprojectors log,

with the inner product defined by [PM) Ly]=0, Lo,PM=wpO) (3.13
(A[B)=Tr(A™B). (3.60  wherew® are the eigenvalues
Using this inner product, we can define Hermitian superop- w©=0, W(O‘B)=wa—wﬁ. (3.14

erators and unitary superoperators in the usual way. The ma-

trix elements of a linear operator such/Asre given by The interactiorL, leads to a transition between two different

A= (alA|B)=(a: BIA) (3.7  correlations,
while the matrix elements of a superoperafare denoted (LV)agia’p=Vaa' Op 3~ 6aa’Vpp- (3.19
by
For the interaction in Eg2.1) only one index is changed in
Surprap={a";B'|Sa;B). (3.8) this transition.
. We note that the subspa®® is a degenerate subspace
For factorizable superoperators we have as any statéx; ) has the same eigenvalué®=0. In gen-
eral we may write a degenerate subspace as
(AX B)a’ﬁ’;aB:Aa’aBﬁ’B' . (39) y g p
For density matrices the diagonal elements give the prob- p(V):; Lo (v, (3.16

ability to find the particle in the statel) or the field in a
mode|k), while the off-diagonal elements give information
on the quantum correlations between particle and field, owherej is a degeneracy index. In our case we h&/®
among fields. The interaction changes the state of the corre=% ,_,|0,){0,|, where |0, )=|a;a). The subspaces
lations. Hence, in the density-matrix formulation, there ap-with »#0, being nondegenerate, are simply given By’
pears naturally a “dynamics of correlation$18]. =|v){v|. To simplify the notations we may write the bare
To formulate this more precisely, let us first introduce thedyads ag »;), with the understanding that the ind¢x a
concept of the “vacuum-of-correlations subspace” that isappears only for the=0 subspacé For example, the eigen-
the set of diagonal dyadst)(«|. We then introduce an in- value equation Eq3.4) is written asL|v;)=w|v;).
tegerd that specifies the degree of correlation. This is de- We now turn to the eigenstates bf,. They form the
fined as the minimum numbet of successive interactions basis used to perform the analytic continuation from the
ALy by which a given dyadic state can reach the vacuum oftable case to the unstable case. The eigenstates afie
correlation. For example, the dyadic stafgx(k| and|k)(1|  given by the dyads of dressed statés, , b)) =| ba)( 4.
corresponding to particle-field correlations hale 1, while  \we denote them g 5]
the dyads|k)(k’| corresponding to field-field correlations
haved=2. For the Friedrichs model=2 is the maximum
value of the degree of correlation.

FOY=16uidad,  [FEY=Ibaidp) (a#p).

We introduce the projection operatdp$”, (317
We have
PO= 2 |a;a)(a;al,
Ak LulF/)=oM[F}), (3.18
Ped=[a;B)(a;pl (a*p), (3.19

which are orthogonal and compleftef. Eq. (3.5)]; "In the Friedrichs model, the other subspaces have accidental de-

generacies, such as,— o= w,— o, with | #k andl’#k’. How-
p(rp() = p(M)gMV' 2 pP(M=1 (3.11 ever,.the.se d.egeneraues 7alre.3 negllglple as they give higher-order
v contributions in powers of "~ in the limit L — .
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where W*P=w,—wg, with w,=w, and w¥=0. The where D’=[C]". The superoperato€! is an “off-
eigenstates of.,; form a complete orthonormal set in the diagonal” superoperator, as it describes off-diagonal transi-

Liouville space tions C"=QMCP from the P™) correlation subspace
o L to the Q" subspace. By operatin@”’ on thev correlation
> > IFIVCFII=1 (F[ [F{)=5jj:8,, subspaceP”, this operator creates correlations other than
v ]

(3.19 the v correlation. In particula(_i(o) creates higher correla-
' tions from the vacuum of correlations. For this reason the

Associated with these eigenstates we have the projectos(”) are generally called “creation-of-correlations” superop-

o, eratgrs[15,18:|, or creation operators in short. Conversely,
the D(*) are called destruction operators.
ﬁ(v)zz EGH (3.20 The superoperatox'” is “diagonal,” as it describes a
j . . diagonal transition between states belonging to the same sub-
_ _ _ spaceP(.
which satisfy the relations Using Eq.(3.12 we have
T TT(7) — 77 () — —1p(v) = ) L,
H(M)H()_H(M)5MV' 2 nm=1, (3.21) U -P (P +CY¥) '™,
v _ _ (3.30
N B POIU=[ ] (PM+ D),
(M, L4]=0, IimO®=p®). (3.22 _ o
A—0 The eigenstates df are then written in the form
The bare and dressed dyadic states are related by [F)=(PW+CM)try, (F/I=(f{1(PM+DM),
_ (3.3
| a)(bpl=u"a)(Blu, (3.23

o . . o where |fj”>>5?”)|vj)>. Note that P(V)|EJV))=|fj”>> and
whergu is given in [Eq.(Z.lj). Using the Liouville-space Q(V)|EJ_V>>=E(V)|ny>>_ Hence theQ" component OfEJ-”» is a
notations we write this relation as functional of theP™ component,

| i dp)=U"Ya;B) (3.29 QUIF)=CWPUI[FY). (3.3
or Similarly the for the left eigenstates bf; we have
Y\ -1 — _ _
[Fiy=U"" v, (3.29 (F11QW=(F}|P™DW, (3.33
where U1 is a factorizable unitary superoperator in the — _ ) . .
Liouville space The II(") projectors in Eq(3.27) can also be written in
' terms of the kinetic operators as
U t=utxu (3.26 _ o _
I =PW+ctHaA) (Pt +p), (3.34
that transforms bare dyads into dressed ones. Equiab
together with Eq(3.16) and Eq.(3.20 lead to the similitude Wwhere
relation —
A=Y, (3.39

nM=u-tpty., (3.27) _
From the relatiodI’U ~*=U"1P(") we obtain
The eigenstates df, may be written in terms of “ki-

netic” operators. This will allow us to obtain their analytic AW =pO[(PM) DM (PM - C(M)]~1pk)
continuation in the unstable case. We first decompose the D0 4. SR Lp()
unitary operatot) ~* in two components, =P [P+ D CH] P, (3.36
Y =p»y-1p» While in the stable case the dressed states and the eigen-

states ofL,, are the same, we shall see that in the unstable
case the analytic continuation &f leads to a distinction
between the dressed states and the eigenstates ofor

We have as well the Hermitian conjugate components  this reason it is convenient to introduce the notatjpf)
o =U"!»;)). The dressed particle and dressed photon states
[x"Mt=PMuyp™), are, respectively, given by

3.2
[x1'DM=p"uQ®, (3.29 p2)=U"Ya;a), a=1k (3.37

(3.28
CO=QMy-1pW,
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while the stateé,?“@)zU*la;ﬁ)) with a# B are dressed ©f wave functions, and the eigenvalues are generally com-

correlations. These states satisfy plex, which breaks time symmetf{5]. . _
- As in the stable case we start with the eigenvalue equation
H(V)|;j”>>= |;J_v>>_ (3.3  forLy as follows:

— — v\ _ (V)| v v _ V| 5(v)
The identity|p;))=|F/) holds only in the stable case. For LulFiY=2"IF7),  (FilLu=(Fjlz"”. 4D

the extended states that will be defined in the next section,gOr the unstable case the eigenvalz@%are generally com-
]

we have in .g(.enerdrloj DEIFT)- . —, =y,  Plex numbers. Sincey is Hermitian this is only possible if
The explicit forms of the matrix elements &, D), {he corresponding eigenstates have no Hilbert norm. For this
and x") may be easily constructed frofw,) in Eq. (2.8) reason the eigenvalue problem we consider corresponds to

and|$k> in Eq. (2.13. For example, let us consider the re- an extension ot outside the Hilbert space. In this exten-

lation sion we have(F/|#(F/|, similar to Eq.(2.29.
- _ We assume these eigenstates satisfy the biorthogonality
(asalpr)=(alp1)(¢1|@) and bicompleteness relations

= a; | (PO+CO) x(]1;1))

=(a;a|x9|1,1). (3.39

Then, using Eq(2.8) we obtain

(FIIFEN=6,,6 ;. 2 §J) IFIYFI=1. 4.2

For the Friedrichs model, these relations can be explicitly

verified.

1 \2c2 Similarly to the stable case in E¢3.32 we insist on a

) (1) S . (3.40 functional relation between tr@"*) andP(") components of
X1i1:11 - Xkk11 - : :

1+¢ 1+¢ the eigenstates as
Similarly, we have QWIFM) =[N ury,
a0 Ry ~ ~
(a:Blpr)=(ald1){ 1| B) (FV1QW=(u!IDMINMIY2, 4.3
=(a; BICOX[1;1) where
=~ =~ =N~ 12p() Y
=C510;3;11;(1%);11+; C&Oﬁ):;kk;(ki?n- (3.4 UP) =[NP,

: P Dr=U B PMINIT- 12 4.4
Due to the volume dependence of the interaction in(Bdl) <<UJ| ( J| [Nj™] (4.4
one can easily verify that the last term in the second line ishgN(™ is a normalization constant. This leads to the formal

O(1/L) smaller than the first term. Neglecting the last termeypression for the left and right eigenstates of the Liouvillian
in the limit of L—o, we obtain

F7) =[N Y20 0| u? 4.
e F)=INOT200| 0y, (4.59
(342 (Fyl= (o1 @G TN, (4.5b)
The analytic continuation to the unstable case of the Kiyyhere
netic operator€”) andD(" has already been studiésee,
for example, Refs[10,15,23), and will be summarized in PY=pt+Cc, (4.69
. S D) .
?leg.elc\g.. '\r/hzneén;d/l?-/tlc continuation af*) will be considered B =pW+DO), (4.6b

In summary t_he dressed_ stable_states have been repr&so have the relations
sented by factorizable density matrices, generated by a fac-
torizable unitary superoperator. This is a direct consequence [PW2=®), [OP]2=0) (4.7)
of the factorizablility of the eigenstates of the Liouvillian,
in terms of eigenstates of the Hamiltonian for the stable caseSubstituting Eq(4.53 into the first equation in Eq4.1), we
We have established as well a relation between unitary trangbtain
formations and the operators used in kinetic theory.
Ln@@|up) =20 |u). 8
V. COMPLEX SPECTRAL REPRESENTATIONS OF Ly Multiplying P(*) from the left on both sides of E¢4.8), we
For the unstable case the system admits complex spectraave
representations df in a nonHilbert space. In these repre-
sentations the eigenstates are nonfactorizable into a product 9E:V) |ij>>:Z,(V) |ij>>7 (4.9
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where This is a closed nonlinear equation #¢” , which leads to

H(CV)E P(V)LHcI)(CV)zw(V)P(V)_{_ P(V))\LV(I)S’)P(V) (w(y)_LO)(I)(CV):)\LVq)(CV)_(D(CV))\LV(I)(CV)' (418)

(4.10
s thecollis . iated with th i . Multiplying (w*)—L,) ~* from the left on the both sides of
IS thecollision operatorassociated wi € creation operator ;g equation, and adding a suitable infinitesimalle,,, to

(V) . . _ .y . - . . .
dCi | Ttri]\(/a coII|s;|otnrop1e_Lators are; gt:jerner?lly non r'};'frm't'laniregulanze the denominator, we obtain a nonlinear integral
ssipative operators. 1hese operalors piay a central role Qquation forCDE:V), i.e., the so-called “nonlinear Lippmann-
nonequilibrium situations. For example, the collision opera-

tor associated with the vacuum of correlations 0 leads to Schwinger equation, 15,3
the collision operator in the well-known Pauli master equa- 1
tion for weakly coupled systenj4d5]. Y =Pt 4 > pw

Equation(4.9) shows thafu) is an eigenstate of’ e wr—w—je,,
with thesame eigenvaluessL . This indicates that through ) () (V1)
the extension of  outside the Hilbert space, quantum me- X[ALy@E = PALyPCTIPT. (4.19

chanics can be connect(?)d with dissipative qynam|cs. The nonlinear ternithe second term inside brackgets re-
, The fact th?};” a?d_"c shgre the same elggnvalqes aISOIated to the collision operator through Eg.10. As we have
implies thatd®c” satisfies the intertwining relation withy  seen the collision operators have complex eigenvalues, asso-

and 6 [see Eq/(4.8)], ciated with dissipative effects. The complex eigenvalues are
Y N (v incorporated into the solutions of E@.19 through the non-
Lydg)=0g)og). @1 jinear term.

In order to determine the sign of the infinitesimalg, for
the unstable case, we require that thg’ are analytic at
=0 and that the complex eigenvalueslLgf have imaginary

G(DV)EW(V)F,(V)Jr P(v)q)(Dv))\LVP(V) (4.12 parts with a defini_te sigriso that the c_orresponding eigen-
states decay for either>0 ort<<0). This leads to
associated to the destruction operdbdt). These operators

It can be similarly shown that the statés ("] are left
eigenstates of the collision operators

also share the same eigenvalues with and lead to the €n="e if d,=d,,
intertwining relationd® )L, = 690 | _ (4.20
As in the stable case, we introduce the projectors €n=—€ |if d,<d,,
_ wheree is an infinitesima[20,30,38. Here,d, is the degree
ne=2 [FIyFy. (413 of correlation of theP(*) subspace, which has been defined
) in Sec. lll. Fore>0 the eigenstates will decay fdr>0

These projectors commute with, and are complete and While for <0 they decay fot<0. _ _
orthonormalcf. Eq. (4.2)]. We require that they are analytic For the stable case one can derive nonlinear equations

at \=0 as lim_.,[1?"=P" [see Eq/(3.22]. similar to Eq.(4.19. In this case the imaginary parts of the
Similar to the stable case we can write the projectors ireigenvalues of the collision operator vanish and the nonlin-
the form[10] ear terms lead simply to the energy shift of the particle.
Similar to Eqg.(4.19 one can obtain nonlinear integral
oM =PM+ctHAMN PO+ DM, (4.14  equations for the destruction operators
where OV =P+ POIOUNL,— YL D]
A = p(V)[p(V)+ D(V)c(V)]*lp(V)_ (4.15 1
X > P(")() I (4.21)
Equation(4.13 shows that th&I(*) are not Hermitian opera- #(#) w—w—ie,,
tors, i.e.,

The choice of analytic continuation in EG}.20 leads to a

(TN T£ 1™, (4.16  biorthogonal and bicomplete set of eigenstates f
Recall that we have the relatioB=[C"]" for the
o )
V|_\|’h'Ch.t'.S n contrl?sbt t% t?e sc}akt))lelz case. In fddt) are star stable case. For the unstable case, due to the different ana-
ermimian, as witl be detined below. ) lytic continuation from the stable cagef. Egs.(4.19 and
All the above expressions are still formal, sinb§’ and (4 51)] "these operators are no more related by Hermitian

®{” in Eq. (4.6) are not yet determined. One can find their conjugation. However, we can introduce a different type of

e_xplﬁcit form from the intertwining relatic_)n Ec(.4.1]?. Mul—' conjugation calledstar conjugationdenoted by “*,” which
tlplylng.CD(C") from the left qn the both sides of this relation is obtained by Hermitian Conjugation p|us the Change
and using Eq(4.7) we obtain €,,~€,,. Then we have

CI)E:V)LHQ)E:V): LH(DE:V)- (417) D(V):[C(V)]*, A(V):[A(V)]* (4.22
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and

W =[11"7*, (4.23

i.e., the destruction operator is star-conjugate to the creatio,

operator, andA®™ and II(”) are star-Hermitian operators.

PHYSICAL REVIEW A3 052106

eigenstate oL with a dressed unstable particle sttt
condition(2) in the Introduction.

To end this section we now show that the eigenstates of
the Liouvillian lead to a Markovian time evolution of the
&/Stem. Indeed Eq4.14) together with Eq(4.11) leads to
the relation

Correspondingly, the star conjugation in the eigenstates o

the Liouvillian leads to

(IFrM* =(Fl. (4.24

In Appendix A we give a solution of the nonlinear equa-
tion Eq.(4.19 for the Friedrichs model. For the components

C&Oﬁ);ll we obtain
0 0
C(kk)’;11: C(kg);llc(lk)r;lla (4.253
Cilu=[CR 1] =\cy, (4.25b

where ¢, is defined in Eq.(2.26. This coincides with the

results obtained by de Haan and Henin by an alternative
approach based on the resolvent formulation of the Liouville

operator[30]. Other matrix elements of the creation opera-
tors presented in Ref30] are shown in Appendix B. By a

direct substitution, one can verify these components satisfx

our nonlinear Lippmann—-Schwinger equations.
Expressions for matrix elements B") are obtained by
using the star-Hermiticity relatioD(")=C®*. As the op-
eratorsL, Ly that appear iC(*) andD (") are hermitian, the
star conjugation is obtained by replacing,,= (i€,,)* =
—ie,, and taking the transpose. For example, #fer0 we
haveep,=—€,0 and (€,0)* =ie€,o. This leads to

0 _—
11;aB

(0)
aB;11

D C

(4.26

In Appendix B we give the explicit form of eigenstates of
the collision operators as well asy for the Friedrichs
model. Here we only write the eigenvalues

LulFO)=—2iyF}), LulFR)=0(1/1L)—0,

(4.273
Ly|FePy=2R|FPy, — a+p, (4.27
where
2M=2,—w,
20D = o, — 25, (4.28

!
Z(kk )= WK~ Wy .

The eigenvalues are obtained from EBS8), together with
the explicit forms of the creation operators given in Eq.
(B11). In Eq. (4.27 we have neglected terms of order?!
that vanish in the continuous spectrum lirhi- oo,

Since TrLyp)=Tr(Hp)—Tr(pH)=0 for anyp, for the
eigenstates of ;; we have Tr{F”)=2"Tr(F”)=0. This
means that the eigenstated.qf with nonzero eigenvalue are

e*iLHtH(V):H(V)efiLHt

= (PM+CM)e @ AM(PM+DM).  (4.29
We call the componer®(™p(*)(t) the “privileged" compo-
nent of

p()=MMe " p(0). (4.30
Taking the time derivative of the privileged component and
using Eq.(4.29, we obtain the Markovian kinetic equation
for eachII®™ subspace,

J
iEP(”)p(”)(t)zBEV)P(”)p(”)(t). (4.3)
The decay rates of the processes in each subspace are given
by [Im z](V)| [see Eq(4.9)] which are generally finite nonva-
ishing numbers. Equatio.29 shows that the nonprivi-
leged component is a functional of the privileged component,

(4.32

i.e., the nonprivileged component is driven by the privileged
component. These relations show that the evolution of any
density states in a singlEl(") subspace aréarkov pro-
cesses.

It is well-known that the time evolution of any matrix
element{ a; B|p(t)) of a density matrix in the Hilbert space
obeys a non-Markovian equation with memory effe@is.,
deviations from the exponential decay for short-time scales
associated to the quantum Zeno effgg} and for long-time
scales associated to the long-time th#4]). Due to the com-
pleteness relation ofI”), we see that the non-Markovian
process is represented as a superposition of Markov pro-
cesses in eachH (" subspace,

QW pM(t)y=CcIpM () (1),

(a:Blp0)=2 (apMIp(n). (433

V. THE DRESSED UNSTABLE STATE

We come to our main problem, i.e., to identify the dressed
states for the unstable case. We strictly follow the results
obtained for the stable case in Sec. Ill. Therefore we intro-
duce a nonunitary transformatioh that satisfiedsee Eg.

(3.30]

AP = (PO) 4 C) (),

(5.7
PWIA =[ yM]* (P™+ D),

traceless. Hence, we cannot identify an isolated decayingherey*) are diagonal operators to be determined.
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We identify the dressed unstable particle and photorThis problem appears only in the=0 subspace because of

states, respectively, gsee Eq(3.37)] the degeneracy of the eigenstated gfin this subspace. In
the other subspaces th&” are simply numbers given by
lpoy=A"Ya;a)=(PO+CO)xOa;a)y, a=1k. arbitrary unitary phase factors.
(5.2 Actually, the same problem appears in the stable case in

. . ... the Liouville space formalism. However, this ambiguity has
For the limit Imz;—0 corresponding to the stable case with been removed by using the factorizability of the unitary su-
®1<0, we should havépd)—[po)=U"*a;a). peroperatoiU [see Eqs(3.26 and (3.40]. In contrast, the
To determiney(”) we look for the analytic continuation of factorizable formulation of the unstable states leads to unsat-
the unitary operatod in Eq. (3.30. Therefore we extend the sfactory results as discussed in Sed.ske Eq(2.31)]. The
relation Eq.(3.39 to ambiguity of y(©) is the main difficulty already encountered
(D) — ) )7 in previous work in the study of unstable staf2s].
A= XX (5.3 Let us first show that among the various components

(0) ; 0)
for the diagonal operatoh(”, which is star-Hermitian. The Xe=:s8 there is only one componeniily, that presents the

projection operators in E43.34 now become ambiguity. Indeed, from the refation

IM=A"1pMA. (5.4) <<l;1|AA71|1;1>>:1 (5.11)
Note that from Eq(5.1) we have we have
POAATPMI=pPL), (5.5 D 2(1+¢1,UDOCO|L1y)=1, (512

Equation(5.5) and the summation of Ed5.4) over » show ~ Where we have use i 11]* = x {211 Using Eqs.(4d)25(tg),
that A~ 1 is indeed the inverse operator &f Due to the (4-26,and(2.27), we see that the matrix elementDf®'C

relation (4.22, we have is given by

A"1=A%, (5.6) (LIDOCO Ly =¢+ o+ ge%c (513

i.e., A is a star-unitary operator. Star-unitary operators cor/Nserting this in Eq(5.12 we obtain
respond to the extension of unitarity to dissipative systems

[10]. 0= ! - . (514
We assume the analyticity ¢f at A =0 [condition(4) in W ¥ o1& |1+¢

the Introduction. Then, y*) is also analytic ah=0,
. We have chosen the plus branch of the square root to be
lim x")=p) (5.7 consistent with the stable cafgee Eq(3.40].

A—0 We also have
and we have Xk = Sk +O(L72), (5.19
J'L“OA: 1. (5.8 which is proved by noting that the perturbation expansion of

A©) for the Friedrichs model is given by
We now focus on thes=0 subspace. A brief comment on

. _ 0 0
the dressed states for#0 is made at the end of Sec. VI. AQ=pPOL N ZAD+NAPE (5.19
From the relationA “*P(©=T11(YA ! we conclude that the o o
states|p%)) are entirely in thdI(®) subspace Absence of odd order terms in this expansion is a conse-
“ quence of the Friedrichs Hamiltonig&qg. (2.1)]. In the per-
1‘[(0)|p2)>:|p3>>, a=1k. (5.9 turbation expansion, the transitidxﬁ(?k,k, between the two

stategk;k) and|k’;k’') comes from successive interactions

Therefore, the time evolution of the unstable states obeys i Eq.(3.15. As we have seen there, in each interaction only
Markovian process with a finite decay rgt®ndition(5); see  one index can change, as, elds=1, or 1=k. Therefore, to
Eq. (4.3D]. achieve the transition between the two stalek) and

The “kinetic” operatorsC(®), D, andA(®, as well as  |k’;k’)) we need at least four interactions\()* which is
11, have already been defined the previous section. Howproportional toL ~2 [see Eq(2.4)]. Combining this fact with
ever fory(%) there still remains an ambiguity. Indeed, for any the star-Hermiticity relation
x© we can associate the operatgf’= x(Qo(® that also
satisfies Eq(5.3). Here,o(® is an arbitrary star-unitary op- (x
erator in theP(®) subspace,

0 _ (0
( )*)aa;BB_X(ﬁﬁg;aa (517)

and with Eq.(5.3 we obtain the resul5.15).
[(O]* (0= p(O), (5.10 Furthermore, the relatio(6.3) with Eq. (5.17) leads to
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0 0 0 0 i iti i
X(ll);kk: A(kk?ll_ X(kk?ll)((ll);llv (5.18 Because is a cc_)r_nplex number., it is necessary to introduce
one more condition to determine it. Here, we use the last
where we have again neglected? order terms. This equa- condition (6) on the mean energy fluctuatiohE; that is
tion shows that ify{%y; is known, theny{9, is automati-  defined as usual by
cally determined, ag\{y;; is known. 5 5 0 012 iiar 0 o 12
From condition (2) on the trace conservation of the (AE1)*=Tr(H%p1)—[Tr(Hp1)]*={Hp1)—[(H|p1)]"
dressed unstable particle state we have (6.6)

Tr(p9)=1. (519  From Eq.(5.2 we have

This leads to a restriction on the form ff;, as
|P8>>:|1;1>>X(1%),11+2k |k;k>>X(k(|)<?11+§k: [|k?1>>c(k(i);11
X(l(i);ll+ Ekl X(k(l)gllz 1. (5.20
, 0
+|1;k>>C(kg);1ﬂX(1%);11+2/ |k,k;>>c(kk)f;11)((1%);11a
In summary we have already used conditiohs (2), and k.k

(4) and(5) stated in the Introduction to come to this stage. In (6.7)

Sec. VI we shall determing{Y, ;. o o .
' where the prime in the last summation indicates the restric-

VI. DETERMINATION OF x&.., tion k#k’. To obtain this expression, we have neglected
’ terms of the form=,C'%). . x(¥1;, which areL™* smaller
In order to obtain the form of{y);;, We now use the than the other terms. Substituting the explicit expressions
remaining conditiong3) and(6). By a direct calculation, one (4.25, (5.14), and(6.4) into Eq. (6.7), we get
can see that conditiof8) on the preservation of the hermi-

ticity leads to the relation o1 _ ) _ 2
o . P9 = gy | 111D +A 2 [kkp(egr +ec)
(A )aﬁ;a’ﬁ’:(A ),Ba;ﬁ’a’ : (6.9
This relation was introduced previously in RELO]. It ex- +0 2 ([Ki1)cet|1;k)es®)
presses the “adjoint” symmetry of. It leads to :
Xﬁ?(?fic':)((ki;)n’ (6.2) +)\22'|k;k’>>ckcﬁ}c' . 6.9

k.k

i 0) e (0)
i.e, xiil14 IS real. Let us now rewritg}.’,, for the stable case ) . .
[cf )%3'1(13 401 Ridi11 This expression shows thi?) consists of the bare state

|1;1) plus a dressing. Using E€.1), Eq. (6.9) leads to

— \2c? — —
XkK11 1+¢ X1z ko (6.3 <<H|p2>>:—|1+§| wy+\2 Ek wi(cir+c.c)

which is also real. The analytic continuationﬁﬁ);llis writ-
ten in Eq.(5.14), while the analytic continuation oEﬁ is
eithercﬁ or its complex conjugatbcompare Eqgs(3.42 and
(4.25]. Taking into account the conditiai6.2) we are led to (H? 0»:
the expression P17 g

H‘sz Vi(cetc.c)l, (6.93

w3+, wi(cir+c.c)+AEL,
k

)\2
o) _ 2
X1~ [T 1 g (reitc.c), (6.4 +2A2 Ek Vi(w1+ o) (Cce+c.c)

wherer is a complex constant to be determined, with the ey e
boundary value = 1/2 in the stable case. As we shall see this +A Y Ve, } , (6.9b
constant plays an important role in the time-energy uncer- kK’
tainty relation. Of course one could always add to Eg4) where
nonanalytic quantities that vanish in the stable case. How-
ever, this would be contrary to the main assumptions of this ,\ M2
paper[see property1)]. AEbare57\( Zk Vk) (6.10
Substituting Eq(6.4) into the relation(5.20), we obtain
is the energy fluctuation of the bare excited state. Both ex-
1+ré+ cc._ (6.5) pressions in Eq6.9) are real. This is a consequence of con-
|1+ ¢] ' dition (3). From " (z;)=0 in Eq.(2.19, we have
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A2 V=2~ ;. (6.113
k

Sincec, is a function ofz;=w;—iy [cf. Eq. (2.26)], this
relation implicitly determineso; and y. An iterative use of

Eq. (6.119 leads to the relationgéthe proofs are given in
Appendix Q

A2 wci=z(6— 1)+ (6.11b
k
and
>\2; Vio=21(2,— w1) —AEZ,,  (6.123
22 wiCi=—22,(2,— w) + 226+ AEZ,..  (6.12D

Substituting Eqs(6.11) into Eq.(6.99 and using Eq(6.5),
we obtain

(H|p)=w,+ s, + ﬁ(wl—;l)(r +roe—1),
(6.13
where
52[)15—|—7[r(§— 1)—c.cl. (6.14
[1+¢]

Similary, substituting Eq96.12 into Eq. (6.9b, we obtain

(H2lp2)=

|1+§|[|z1|2+<[z1(r§—r+r°°>

AEZ,J.
(6.15

+ w1z (r—=r%%]+c.c)+(r+r¢—1)

PHYSICAL REVIEW &3 052106

Using polar coordinates#&=|1+ £|exp(a) we have

ot g ial2 (6.18
2 cogal2)
and Eq.(6.4) takes the form
(0) 1 )\2 2 i
Xkk11=5 |1T§|[(Ck+ c.c)—i(cg—c.citana/2)].
(6.19

In the stable case witlh; <0 we have Inz;—0, a—0 and
we recover Eq(6.3).

As mentioned below Eq2.6) the system may also be-
come stable when the couplingis relatively strong. In this
case we again have Im|=0 anda=0.

It is interesting to see the relation of our unstable dressed
particle state to the Gamow vectors discussed in Sec. Il. The

Gamow vector dyadp; ; ¢1), |$1; ¢1) and| ;) have
the following matrix elements:

(5Ll b2 =L 13 0) =M

(kik'[p1; )= (6.20

1 C.C.
g o

~ 1
(Lbs;da)= (Kl drida) = TN ek,

1+g'

(a0l dri i) =(a;aldri i)

Comparing these matrix elements with the matrix elements
of [p9) in Eq. (6.8 and noting that/|1+ & =r®%/(1+ ¢)
we obtain the relation

1p)=QO b1 1)+ POLre ;b)) +r[dy;dr)].
(6.21)

The termAE,eis Of the order of the ultraviolet cutoff of the
interaction and is generally much larger than the decay ratghis shows that the dressed particle state can only be ex-
2vy. This term would destroy the time-energy uncertaintypressed as a superposition of dyads of Gamow vectors. The
relation, i.e., it would lead tAE;~AE,instead ofAE;  dressed photons are also given by a superposition of dyads,
~v [see Eq.(7.19]. Hence, to satisfy conditiori6), we  as will be shown in Eq(7.7). We shall study the time de-
chooser that eliminates this term in E¢6.15), i.e., pendence of these states later.

Through the A transformation we can define general
dressed statelp;)) and their duals as

lo=A" ), (ol=(rla=(pi))*. (6.22

For v=aB+#0 these are dressed correlations. Similar to Eq.
&5.9) we have

r+rét=1.

(6.16

As a result, the last term in E@6.13 also vanishes. Notice
that a statgp?)’ that would differ from|p?) by a small
changer —r' with r’ +(r")“%#1 would have a small varia-
tion in the average enerd¥eq. (6.13], but it would have a
considerably larger change in the energy fluctuation, due t
the termAE, .

Combining Eq.(6.16 with Eqg. (6.5, we determine the
complex constant as

1P| pB)=|pF)). (6.23
From the completeness and orthogonality relations of the
unperturbed statels;)), one can conclude that the dressed
states also form a bicomplete and biorthogonal basis in the
Liouville space

[1+&-1-(£+&59/2
2 é‘; gCC.

(6.17
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WFHI=1 (GHion)= )
Ej e pi1=1. (pflp[h=0,.0;,  (6.24 b= xiR 11— Q(TillX(ﬁ);n- (7.9
11;11

and Eq.(6.22 leads to Substituting the explicit forms of the matrix elements pre-

sented in Eq95.14), (6.4), and(B14) into Eq.(7.4), we have

A=2 )(pil AT=2 1pN(l (6:29 2
' ' bk:—|1+ 7 [(rc2+c.c)—cycl®
The construction of the dressed particle state is now com-
pleted. Section VIl is devoted to some interesting properties 1 A\? y
of the states we have introduced. =3 m[(Ck—C-C-) —i(cg—c.c)tana/2)].
VII. SOME PROPERTIES OF THE DRESSED STATES (7.9
A. Nonfactorizability Using Eq.(5.20 one can see these coefficients satisfy the

. on - ) ) relation
The dressed particle statg;)) is not factorizable into a

product of wave functiongsee Eq(6.21)]. This is welcome,
since as discussed in Sec. Il, factorizable density matrices are > b=1. (7.6
not adequate to identify the dresssed unstable state.
The dressed photon states are also given by a superposi-
B. Hilbert norm of the unstable state tion of eigenstates of,, in the I1(®) subspace. From Eq.

. ~O 0 _ .
The unstable dressed state lies outside the Hilbert spact-19 and the relatior(p|p ) =0 we find these states as
Indeed, as shown in Appendix D the Hilbert norm vanishes
PP |02 =F) — by F). @7

0] O\ _
(pilpa)=0. 7.9 Note that, from the relations TEQ)=0, Tr(F))=1 as well

0y _ 0y _
Neverthelessp?) belongs to the trace clafq. (5.19]and @S TrHF1)=0 and TrHF,) = w,, [see Eq(B18)] we have
one can calculate the expectation value of a given observable 0y_ _

for the unstable dressed state. The sthif$ also belong to Trpo) =1 for a=1k
the trace class and in contrast i) they have a nonvan- o o
ishing Hilbert norm(see Appendix R Tr(Hpy) = Ek: kar(Hpk)=§k) bywy. (7.8

C. Dressed states vs eigenstates bf;

As mentioned in Eq(5.10, o™ (hencex(")) for v#0 is
just a number. Combining this fact with Eqé.1) and

D. Time evolution and line shape

The time evolution of the dressed states is giver{dse

(4.58, we see that Eq. (4.27]
- @ —iz(@By «
[p“P)=|F*F) for a#p, (7.2 e Hp Py =e" T pF)  for axp (7.9
i.e., each dressed correlation is an eigenstate of the Liouvind
lian Ly .
However, this is not the case for=0, due to the multi- e*‘LHt|p2))=e*27t|Fg>>+zk by F2)

plicity of the eigenstates df ,, belonging to thelTI®) sub-
space. Indeed, as indicated in Eg.273, the eigenstates

|F2) have all the same eigenvalue zero. Since the e =e 2 p%)+(1-e" 2D |p)by, (7.103
belongs to this subspace, it can be written as the linear su- k
perposition

e hi|ppy = |P(k)>>+(1_e_27t)bk[ Ip?»—ZI |p|°>>b|} :
[p2) =balFI) + 25 bilFi). (7.3 (7.10b

] o ) The dressed particle state has strictly exponential decay. This
One can find the coefficient, as follows. First we note that a5 suggested since long in REE9]. Memory effects(de-
in order to obtain finite expectation values of arbitrary ob-yiations from exponential decayvould need a distinction
servables in the continous limit the coefficiebfsmust be of  petween young and old particles and destroy indiscernibility.
order 1L. From the relation Q©|p?)=Q®| ;1) From Eq.(7.8) one can verify that the Markovian equa-
=QO|FY) [cf. Egs.(6.21) and (B18)] we find thatb;=1  tions [Eq. (7.10] preserve the trace and energy. The time
+0O(1/L). Taking the diagonal(k;k| component on both evolution of the dressed particle state gives rise to dressed
sides of Eq(7.3) we then obtairicf. Egs.(B4) and (B9)] photons, as shown in E¢7.103,
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<<;E|e—iLHt|pg>>:(1_e—27t)bk_ (7.12) where we have approximated the integration by extending
the lower bound of the integration oves to — in Eq.

This approacheb, in the asymptotic limitt— +c. There-  (7.17) to obtain the last equality.
fore, b, may be interpreted as the line shape of dressed pho- Our line shape has a well-defined mean deviation of the
tons emitted from the dressed unstable state. The relatiofnergy. Indeed, we obtain from E(.19 that
(7.6) is consistent with this interpretation. In the weak- L opie L (i )
coupling case\<1 (which leads toy/w;<1) we may ne- (AE)?= _J wﬁbkdk—(—J wkbkdk)
glecta~O(A\?) andé~0O(\?) in Eq. (7.5 to obtain 2m ) - 27 ) -

1 =\*y5+0(\), (7.19
bkmz()\ck—c.c.)2 _
which leads to
2\ /2
MR 1 _ (AE)At=1+0(\?), (7.19
2 | [z-wd;, [2= ol e

where At=1/(2y) is the lifetime of the unstable particle.

2.2 2 Therefore, our line shape satisfies the energy-time “uncer-
21 2Nvyy . e
-0 - —. (7.12  tainty relation.
([z=wily[z— wk]zi-c-) It is interesting to compare our line shage/Zs)by with

the Lorentzian given by
For w;>y we have, under integration with a test function

2
(). bkz(z_”) L M (7.20

L /27 (oy—w1)?+ N5
_ f* fwy)
= ([2— oS [2— o] ec)? which also approache§( w,— w1)/2 in the limitA\—0. The
! 4 Lorentzian line shape gives the distribution of photon ener-
gies emitted by thebare unstable statél;1)). While the
* f(wy) : NG .
mf dk , (7.13 Lorentzian distribution gives the same average energy as Eq.
—o ([z3— o[ 25%— wi])? (7.17, the mean deviation of energy diverges. This diver-

_ o gence, associated with the approximate Lorentzian line
where we have negle_cted the branch-point COﬂtI’IbUtIOh.at shape, corresponds to the exact energy fluctuatigg,,. for
=0. Using Eq.(7.13 in Eq. (7.12 we may then approxi- the bare state. This is an invariant of motion and also corre-

mate sponds to the exact mean deviation of energy of emitted
) photons. As mentioned below E.15, AEy,. is much
27 2N\%vgy? larger than the decay rate.
by~— (7.149

The difference between our line shape and the Lorentzian
line shape may be understood as follows. As is well know,
the time evolution of the bare state involves an initial fast
dressing process associated with the quantum Zeno effect.
This process occurs during a short-time scdlg .

L [(wx—o1)2+92?

This distribution has a sharp peakat= w; with a width y.
Hence, we can further approximate as

2\ 1 (\2y,)3 ~(AEpad L. The survival probgbilityg1|-e?<p(—th)|1>|2 of
'l bl b= ~ > 1 23 (7.19 the bare state decreasestasiuring this initial period. The
T [(ox—w01)"+ N3] observation of the large energy fluctuatiaf, . in the ex-

act Friedrichs solution therefore is a manifestation of this

short-time Zeno effect. We obtain the time-energy uncer-

toe tainty relationAE,, dshorr-1. On the other hand, the time

)\2y2577)\2j dkvﬁﬁ(wk—wl)ZZm\Zvi . scale associated with the dressed state is the relaxation time
o ' (2y) 1, which is much longer thaty,,. For this is reason

(7.16 our true dressed state generates a line shape narrower than
the Lorentzian shape.
In Fig. 1 we show plots of our line shapé&/Rw)b, and

where\ 2y, is the lowest-order approximation gfgiven by

Our line shape I(/27)b, approachess(wy— w1)/2 in the
limit N\—0, which is consistent with the lowest-order ap- ; S L :
proximation in thex expansion. of the Lorentzian distribution L(/27)b, as a function

— ; ~ON\2n —

From Eq.(7.15 the average energy of the emitted dressecl(ff w=k>0. In the figure we put 2=~2\"y, ] 0'1~ and
photons is given by w;=1. The two line shapes cross at the poikts w,=
+y. For |k—w;/<y we haveAb,=b,—bL>0, i.e., the
dressed particle is more likely to emit resonant photons. On
the other hand, fofk—w,|>y, the dressed state emits less
(7.17 off-resonance photons than the bare state. This difference

L + o0 L [+ -
)= 5= | obiak= = [ T, do=3,+ 000,
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which can be seen by using E..7) with Egs.(2.32 and
(B18).

The result§Eqgs.(7.103, (7.18), (7.22), and(7.24)] offer
a consistent picture of the transformation process of the en-
ergy fluctuation of the dressed unstable particle to the line
shape of the dressed photons. Indeed, in this process the
energy fluctuation of the system is preserved, as it should be.

F. Energy shift
Because of the relatiof6.16), the expectation value of
the energy for the unstable particle deviates from Green'’s
function energyw, by dw, [see Eqs(6.13 and(6.14)]. This
deviation depends on the decay ratg 2nd vanishes in the
FIG. 1. The line shapes of(2m)b, (solid) and the Lorentzian Stable case. Expandingw, in the perturbation series of
distribution (L/27)bt (dashedl with 2\2y,=0.1 anda,=1. The ~ and taking the continous limit, we obtain

0 0.5 .5 2

momentumk is measured in units of;, with =1 andc=1; 3 3iNty, [+ 1

(L/27)by is measured in units ab; . owy=— 2 f dl v|2 m—c.c. +0O(\®).
. 1

may be attributed to the existence of virtual photons involved (7.29

in the dressing process of the bare state, which are absent e gifference between the average energy of the unstable
the dressed state. Therefore, if these virtual photons can be,icle and Green’s function energy thus starts at fourth or-
separated experimentally, the line shape generated by the in ). Up to this order, this result as well as the uncer-
remaining photons should be close to our line shiapeThis 4ty relation[Eq. (7.23] coincide with the results obtained

will be further discussed in Ref31]. in Ref.[26] based on a perturbative approach to construct the
To be consistent with dynamics, we expect that the energy transformation.

fluctuation associated with the dressed unstable pafjéje
should satisfy an energy-time uncertainty relation similar oy
Eqg. (7.19. In the next paragraph, we shall show indeed thistW
is the case.

One can estimate order of magnitude &b, using the
m factor for the hydrogen atom with the transition be-
een 2 and 1s states, which is given in Ref37],

i w1/2

—_— 2
[1+ (w/M)?]? (729

E. Energy fluctuation in the dressed unstable state U,
By substituting Eqs(6.13 and(6.15 with Eq.(6.16) into
Eq. (6.6), we have for the energy fluctuation of the dressedin this form factor the three dimensionality of the atom is
unstable particle state already taken into accoufittor the hydrogen atom

w,~1.6x 10 rad/s (7.27

2 -
(AEy)?=92 m—l) —(dwy)?

is the frequency difference between the &nd 1s states, and
2y -~
+ ——(w;—wq)(r—r%°). (7.22 3
[1+g 7 M= 5—~8.5<10° rads (7.29
0
Note thaté is of order\? [see Eq.(2.27]. Expanding the _ _ .
right-hand side in the perturbation seriesaf the second is @ natural cutoff frequency determined by the Bohr radius

term (6w,)? is of order\® [see Eq.(6.14], while the last 2o- The coupling constark is given by

term is of orden\®. Thus, we obtain 2\ 112/ 9\ 972
312 —4
=|— = ~0.8X 10 7.2
(AE1)2=N4)2+O()5). (7.22 (77 (3) “« (7.29
Similar to Eq.(7.18) this leads to with the fine-structure constant.

. 5 The detailed calculation is presented in Appendix E, and
AE At=5+0(\). (7.23 we present here only the result. We hawe;>0 and

Therefore, the energy-time uncertainty relation is also satis- 3720
fied for the dressed unstable particle. Swi~\* 1

~0.6X10 X w;. (7.30

The energy fluctuatiod E, associated to a dressed pho- 2
ton mode vanishes in the continuous spectrum limit o,
2_ 2| .0 0\ 72
(AEY*=(H?[p) —[{H]pi)1°—0, (7.24 8The factori does not play a role in the order estimation.
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Moreover, expanding Green’s function energy in the perturof the system, the discrete state can be either stable or un-

bation series,

0= 0t NS+ N 0S+ ... (7.31
we haver*©$<0 and
57M
MoS~—2* [IN(M/w;)—1]. (7.32

32

Because of the facta¥l, this is much larger thadw;, and
we obtain

5(1)1

7\440‘(13

~—0.9x10 2. (7.33

So our energy shift is about 1% of the! contribution to
Green'’s function energy.

G. Asymptotic evolution of the dressed photons

It is interesting to compare the asymptotic time evolution
of the dressed photons with the asymptotic evolution of th

bare photons. The latter is given by the IMo states of
Smatrix theory,

lim e+iHote—th|k>: |’(Zk>
t—+o

(7.39

In the Liouville space we have lim_.e "“H!k;k)
=i di)-

On the other hand Eqg7.10bh and (7.7) lead to the
asymptotic time evolution of the dressed photon mdqié»
as

lim e~ o)y = [FR) = b b, (7.39

t—+o

stable. For the stable case it is straightforward to obtain a
dressed discrete state, which corresponds to a stable particle
or the ground state of an atom. This state is obtained by a
diagonalization of the Hamiltonian in the Hilbert space.

On the other hand for the unstable case there appear dif-
ficulties. An unstable particle is expected to have several
properties analogous to the properties of a stable pattele
Sec. ). As we have seen, for the Friedrichs model there are
two known representations of the Hamiltonian in the un-
stable case. In the Friedrichs representation the photon eigen-
states form a complete set and there is no state representing
the dressed unstable particle. In the complex representation
the factorizable density operators lead to either a complex or
a vanishing energysee Sec. )land have other features that
are not what we expect from an unstable patrticle.

An alternative approach to solve this problem is to per-
form analytic continuation directly in the Liouville space of
density matriceg§15] (see also Ref[13]). This leads to a
nonfactorizable complex-spectral representatidithe Liou-
ville operator extended outside the Hilbert space. The eigen-
states ofL, are generally not products of eigenstates of the
fHamiltonian and they break time symmetry. Using this rep-
resentation we have constructed a star unitary transformation
A that maps bare states to dressed states. This transformation
is star-unitary, which is an extension of unitarity to unstable
systems.

We have seen that the unstable state satisfies an uncer-
tainty relation between lifetime and energy. The expectation
value of the energy has a deviation compared with Green’s
function energy. These two effects are related to the fact that
the unstable state is not an eigenstate of the evolution opera-
tor Ly, and there is an energy transfer from dressed particles
to dressed photons. In this way we can avoid the “Hamil-
tonian dilemma’[19], which would occur if the definition of
dressed unstable particles was given in terms of eigenstates
of a diagonalized Hamiltonian. We would then obtain non-

where we have used ECBlg) to get the last equa”ty_ Thus interacting units. In the Liouville Space we have a different
for t—oo (the Smatrix regimé one cannot asymptotically Possibility. We can d_efine dressed unstable particles and
distinguish the evolution of dressed photons from the evoludressed photons that interact.

tion of bare photons.

We have obtained, as well, a new line shape of photon

However for finite time scales, e.g., during the scatteringgmission[see Eq.(7.15], associated with the dressed par-
process of a large wave packet, one can see the differené€le. This line shape gives an energy fluctuation of the order

between the evolution of bare and dressed phofses Eq.
(7.100]. Scattering for finite time scaléduring the collision

of the decay rate. In contrast, the line shape associated with
the bare particle gives a much larger energy fluctuation. This

proces$has been studied in Re[ﬁ_6138] There, it has been Mmay be understood from the fact that the bare state under-
shown that there also appear differences between th@oes a rapid dressing process during the quantum Zeno pe-
asymptotic time evolution Corresponding to tBenatrix re- riod associated with memory effects. This fast process is
gime and the time evolution during the scattering procesg:esponsible for the large energy fluctuation, in accordance to
This distinction is important in many-particle systefspe- the energy-time uncertainty relation. After a short time the
cially in dense systemss the particles keep colliding all the particle starts to decay. This is a slower process associated

time, which is not taken into account in tf@matrix ap- with our new line shape. For a given initial condition we can
proach. substract our line shape from the observed line shape. In this

sense we distinguish photons involving the dressing and pho-
tons emitted by the unstable particle.
In this paper we have considered global quantities such as
Let us summarize our results. We have introduced dressetie total energy and probability, which lie in th&® sub-
states in the Friedrichs model, which consists of a discretepace[see Eq.(7.8)]. In the subsequent papg31] we shall
state coupled to a continuum. Depending on the parameter®nsider local quantities such as the probability or energy

VIIl. CONCLUDING REMARKS
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densities. We shall discuss the role of the dressed states {1 259 we obtainCy,/..;=CS% ... Then Eq.(A1) can be
. . P . 1k’;11 k’1;11° q.

the local evolution. We shall discuss also the possibility of ,itten as

preparing initial conditions belonging to the Hilbert space

that can approximate the dressed unstable state we have con-

structed in this paper. ce.
Quantum theory started from the Einstein-Bohr concept Ckl;llzie_wk1 Vk‘% Vi Cry;11Cp0 111

of quantum transitions. It is interesting that there are still

aspects of quantum transitions that are worth discussing. ce
_Ckl;llz Vie(Crr1;11=Copg) |- (A4)
k/
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Substituting Eq(4.25b in this equation we get in the conti-

APPENDIX A: INTEGRAL EQUATIONS FOR THE nous limit

CREATION OPERATOR

In this appendix we give a solution of the nonlinear _ szﬁ
Lippmann-Schwinger equatidieq. (4.19] for the Friedrichs 21_“’1+f dk(z_ o)l
model. This equation leads to a set of nonlinear integral 2
equations for the various matrix elements @f". As an
example we consider the matrix elements fo+0 in EQ.  This is simply the equatiom ™ (z,) =0, which is satisfied by
(4.25. For brevity we omit here the (0) superscript. Equa-the definition of the complex pote,. This demonstrates that
tion (4.19 leads to the set of equations Eq.(4.25 is indeed a solution of EqA1). Similarly one can

show that Eq.(4.25 satisfies Eq.(A3). The solution Eq.

(4.295 coincides with the solution obtained by de Haan and
Ckl:ll:m Vk—% Vi Cuier;11 Henin[30]. The solutions for the other components including

the v#0 subspaces are presented in Sec. 3 of Appendix B.

(A6)

_Ck1;112 Vk/(Ck’l;ll_Clk/;ll)}; (A1)
K’ APPENDIX B: ON THE NONFACTORIZABLE
REPRESENTATION OF L

Clk;11: :

m{ —V,+ 2 Vi Crie 11 In this Appendix we present the eigenstates gffor the
k!

Friedrichs model. The eigenstates are presented in Subsec-
tion 5. Before reaching the final form of the eigenstates we
need some preparations, which are presented in Subsections
+Ciic11> Vi (Cowrin— Ck’l:ll)}a A2 7 prep P

k! .

1. Eigenstates of the collision operators

A
C/- :—VC/ _V/C . . .
kk7;11 iE—Wkk'[ k=1knal s Vki k11 As a first step to obtain the eigenstated gfwe solve the
eigenvalue problem of the collision operators. Since the col-
(A3) lision operatorsg!?) are non-Hermitian, their left eigenstates

are not necessarily the same as the right eigenstates. We
denote the left eigenstates k3(}7|j”|. Assuming biorthogonal-

Now we show that Eq(4.25 is a solution of this set of ity and bicompleteness of the left and right eigenstates we
equations. Comparing E¢A1) and Eq.(A2) and using Eq. have

- Ckk’;llzl Vi(Ci1:11—Cui1n)
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qurlufy=35,.,.8; glur»«ﬂ,-”l:P‘”. (B

Similarly the right and left eigenstates eﬁ;’) are denoted by

29 and((v” /|, respectively, and are assumed to form a com-

plete biorthonormal set.

For ther=0 subspace we have the eigenvalue equation

oD ud)=20|ud). (B2)

Since the stategi®) belong to theP(®) subspace, their gen-

eral form is a linear superposition of the statésl) and
|k;k). Noting the volume dependencies

021 L% 0 O~ 6~ (BY)
as well as the relat|0|6)kk Kk = Okk! Hkk wt O(1/L?), where
we have abbreviated®=6?) | we obtain the following so-

lutions by neglecting terms of higher orderlin %,

(0)
Okic11

uh=11;1)+ 2 Jo Kiky for 27— 6,
ll 11
(B4)
ag.(i)l.)kk 0
[udy=k; k) — 0 —=1;1) for zZP=0(1/1L)—0.
011 11
(B5)

As will be shown in Eq(B14a we havez{")= —2iy.
The left eigenstates are similarly found to be given by

11 kk

(@=(2+ 3 75K,
11 11
~0 011
(@)= (ki ~ (1 (86)
11 11

From the second relation in E¢B1), we obtain the in-
verse relations

kk 11,

[1;1)=[ud) - E 510 uR),
11 11
0(l%)kk
|k k»_ egg)ll| 1>>+|uk>> (B7a)
(Lia=(@-3 ié)kk«”u
ll 11
9(kcl)()11
«k'k|: agg)ll« l|+«uk| (B7b)

PHYSICAL REVIEW &3 052106

The eigenstately?)) and (v°| of the collision operator
associated with the destruction operator are given by the

expressions (B4)—(B6) with the replacement GW 8
=09 e -
For the other subspaces the collision operators are simply

numbers since the subspaces are one dimensional. Then, we
have fora# B:

ufh=la;B),  (ul=(aBl,

2P =(a; 8105 P) | o; BY. (B8)

2. Matrix elements of the right eigenstates ot

We shall mainly consider the right eigenstatesLgf.
Similar considerations apply to the left eigenstates.

From the general expression for the right eigenstites
Eq. (4.53], we get

(@ alFd)=ND(a;alul®),
(@ BIFDY= NP a; BICO|u)= INCL) 1,
(aialFR)= VNP a;alup),
(@ BIFY= IND(a; BICO|uR)

6k
N —C 01 —5=+CO

afB;11 0(0) (Bg)
11;11
and fora# B:
(a; BIF*F) = NP,
(a'B/|FP)=NEPCER . (B1O)

3. Matrix elements of C*

We have presented the explicit forms of two matrix ele-
ments of the creation operator fe=0 in the text[see Eq.
(4.25]. Other matrix elements including other subspaces
have been presented in REB0]. One can verify by a direct
substitution that the expressions presented in (B3| sat-
isfy the nonlinear Lippmann-Schwinger equation. For the
reader’'s convenience we shall present all these matrix ele-
ments in this section. In these elements there are two classes:
one consists of the elements that are factorizable in terms of
the complex eigenstates of the Hamiltonian presented in Sec.
II, and the other consists of nonfactorizable elements.

The factorizable elements are

aﬁ 11_|N1| 1<<CV Bld1: 1),
CO =151 B B,
CH=NT V(1,1 1 i),

CO =NT Y% @: Bl b1 i)

a# 3,

a# S,
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2Vk

aB;l
’ 0\ = 2i T (@ol2 (B140
C = (L1 s b)), (B11)
(kk") 0(0) )\ZV (;_C C) (8140)
Coprw=(:Bloci b)), a#B. kiokk ™ Tk M (w) )
The nonfactorizable elements are associated with the compo- 9(13?« =012, (B148

nents diagonal in momentum representation, sudtkase.,

00 where we have neglectdd 2 order terms.
113kk
(1?)kk (L5l ¢k>>+01| 1170y
01111 4. Normalization constants
c@  =1ct9, je<, The normalization constants are given by the relation
1 h= Ciiikk
FIF2)=1. B15
N (GHLY (819
Kii1k= 5 — o .
1 %k This leads to
2\/2 ~
STUA (I o i [N =(|(PP+DMICH)[ul).  (B1)
' 7g (@) Zl_wk\_wl_wk"’"e (z—w,);’l
(B12) Using the biorthogonality relation of the eigenstatesHof
[see Eq(2.23] we obtain
) ANV AV
Kk k k -
I(<k;k?<’: - s N{=|N,|?=|1+¢ 2,
74 (wk/) wk/—(uk-i-le
N©O=1
2 k ]
k) _ N2V Vi A2V B17)
T g (00) 74 (@) oo —ie N =[NODee=N = (1+¢) 2,
« r 1 N(KK) =1
wk/—w|—i6 wk_w|+|6,
5. Explicit forms of the eigenstates ofL
nyiﬁ)ﬁ’ [C(‘B B a r]cc i}

Using Eqgs.(B9), (B10), (B11), and(B17) and neglecting
For the destruction operators we present only the matrixerms of higher orders in IL/we can write the right eigen-
elements that are used to determine the normalization corgtates ofLy, as follows:
stantsN{") in this paper. These are o
[FI)=]d1; 1),

IF)=|d; b, (B8

D(l(i);aB:|Nl|7l<<al;&l|a;:8>>!

o [FX Y= w; bicr ).
D(lkaﬁ Ny Y21 dil @i B,
Hence, the eigenstates in thee 0 andv=kk’ subspaces are
<klf ) <<¢k ¢k,|a BY, factorizable in terms of the complex eigenstates of the
P af Hamiltonian. In contrast, the eigenstates associated with the
which are again factorizable in terms of the complex eigen¥= 1k,k1 subspaces are not factorizable and are given by
states of the Hamiltonian. Similar to E@12) the elements

associated with the&kk components are not factorizable.

(B19)
(B13)

a# S,

1ky — . .
Since these give negligible contributions of ordler* to the IF >>_|¢1’¢">>_§|: kD, (B20)
normalization constants{”’, we shall not present their ex-
plicit forms. Readers interested in these forms should consult ||:k1>>:[||:1k»]‘r, (B21)
Ref. [30].
The matrix elements oﬂg’) are obtained from the relation where

69 =\POL,C®, which leads to o

002y 20, 8143 f(kD=C1i1 1; bich) — NTZC(H, (B22)

©) o 2. ce The appearance of the functidi{k,l) is a direct conse-
Oric11= — 21 YACC T, (B14b)  quence of the nonfactorizability of the creation operator
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C(*) [cf. Eq. (B12)], in terms of eigenstates ¢1.° In the

stable case it can be verified thigtk,l)—0 and hence we

recover the factorizable eigenstatesLgf.
For the left eigenstates we have

(Fl=(or:d1l, (FRl=(or% 5%, (B2
(FH =i =2 (1[F (D), (B24)
(F =[(F™", (B25)
(FY = o (B26)
where

Tk D=(b1;dull; kil - (B27)

We note that
(b1 blHY#0, (B28)

which is a consequence 6| $,)#0 [see Eq.(2.29]. In

contrast, by a direct calculation and using the explicit form

N N2V2
N

Zl_wk{ ©on (o)
1 1

X — —
w—wg—le

1k) _
D(lk;l)l -

(o=

) e

one can show that our nonfactorizable eigenstate satisfies

(FEHY=0. (B30)

APPENDIX C: RELATIONS USED IN SECTION VI

In this appendix we derive the relation$.11h and
(6.12. Using Eq.(6.113, we obtain Eq(6.11b,

A ci=z
2 WKLy 12 ¥ [(2—w0). ]2
AVZ
+> ———(w—21)

T [z w;,
=21~ (21~ w1). (Cy

Similarly, for Eq.(6.123 we have

°In contrast tof (k,1), the difference(l;1| dy; b ) — C”kik), van-
ishes in the sense of distributions. This is the reason why(ELp)
is factorizable.

PHYSICAL REVIEW &3 052106

AV2 AV2
22 ViwyCy= 212 + — ;)
kK (z— wk) 3 (Z_wk)zl
=z1(zl—w1)—; A2V2, (C2)

which leads to Eq(6.12D,

AV2
xzz wici=, [(wx—21) (@t 2y) + 23]

K [(Z_wk);;]z
:_Zl)\zzk Vka_)\ZEK kakck‘l‘ZEg

k

APPENDIX D: HILBERT NORM OF THE DRESSED
STATES

In this Appendix we prove Eq.7.1), i.e., that the Hilbert
norm of | p?) vanishes. The Hilbert norm is given by

(P =(1;1x"(P+ChH(P+C)x|1;1), (D)

where we have omitted the (0) superscripts in the creation
operator for brevity. Neglecting terms of order ! we ob-
tain

(p3lpN= (XT)11;11( P+ CTC)11;11X11;11

=|x12:14%[1+(CTC) 11,44 (D2)
The matrix eIement(()TC)ll;ll can be evaluated as
(CTC)y1.11= Ek { Ci1:11Ck1 11+ Crke11Clics
+ kz Ckk';llcﬁkcf;n}
=\23) 20,(c)°
(D3)

A1 0 (€% C(Cr)°S,
k K’

where we used the relations for the matrix elementCof
given in Eq.(4.25. Sincecy is a distribution with delayed
analytic continuation, the integral of the produgi(c,)®*
has to be carefully evaluatgdee Refs[2,30]). Taking the
continous limit we have
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2 Azck(ck)c.c._’J dk
k = (o~

(D4)

where we have used the relation in Eg.19 to get the last
equality. Substituting this value in ED3), we obtain our
desired resulfEq. (7.1)]. This indicates that the stag?) is
not an element in the Hilbert space.

In contrast for|p2) we have

lk;k)=1+0(1/L),
(DY)

CpRlpRy = (kK xT(P+CTC)x

where we have used E¢5.15 and (k;k|CTC|k;k)~ 1/L.
This shows thatp?) belongs to the Hilbert space.

APPENDIX E: ORDER ESTIMATION OF éw,

PHYSICAL REVIEW A3 052106

! +
—————+c.cC.
(w1—wt+ie)

G
w o]
wf: - TZJO dw|vw|2

f dolo,

C.C.

—Z
w+ie)

w3 ﬁ_wl_ Y2 jzzl (E3

From the expression corresponding to Ef16 we have
Y2=Twy. (E4

From the expression corresponding to Ef25 we have

~ 3)\4’}/2 (9’)/2 3)\4 2

5&)1%70—‘01—77T w1 . (E5)

This leads to the estimation in E(.30.
Performing the integration in EQE2) with the form fac-
tor [Eq. (7.26)], we obtain

M

-

where we have neglected terms of order/M<1. Substi-
tuting Eq.(E6) into Eq. (E3) we obtain

!

57M

32 (EO

wgwwlln(

4571'M
32

m
—|—=1.
w3

Mo§~—\ (E7)

In this Appendix we evaluate the frequency shift given in These results give the order estimation presented in Sec. VII.

Egs.(7.30 and(7.32. Since the three dimensionality of the

atom has been already taken into account in the Hamiltonian APPENDIX F: OTHER POSSIBILITIES OF DRESSED

discussed by Facchi and Pascazio in R&7], we shall use

UNSTABLE STATE

their Hamiltonian to evaluate the frequency shift, instead of

our Hamiltonian[Eq. (2.2)]. In the continous limit one can
obtain their Hamiltonian replacing, by o and the wave-
vector integrationf *2dk by the energy integratiofi; “dw
as

H=w,|1)(1]+ j:dw o|o){o|

[ Cdwvgopu+ine). €

In this Appendix we comment on other possible choices
of the star-unitary transformation. As we shall see, these
choices lead to unsatisfactory definitions of the dressed un-
stable state.

In Ref.[15] we have introduced the star-unitary operator
A defined by

ACZEV 2 PERYGHE (F1a

=3 3 I

(F1b

We have incorporated the sum over spin and orbital angulain contrast to Eq.6.25, this transformation connects the

momenta indices into the interaction.

eigenstates of the Liouvillian to the eigenstates of the colli-

Then, we have for the Green function energy in Eq.sion operator. In other words, we have a similitude relation

(7.32),

+c C. (E2)

R Pr:

and

betweenL, and 6’ through this transformation,
AcLyAct=0c, (F2)

where

0= 6. (F3)
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For the stable case this transformation is reduced to a unitamigenstates of.,; with zero eigenvalue. Thereforf,) is
transformation. Hence, one could consider the possibility ohot a suitable choice of the dressed unstable particle.

identifying the dressed states as

. o
ry=ActL; 1) =|FH-> |FE>>T*
k 01111

(F4)

where we have used E@B6) to obtain the last equality.

However, this quantity does not satisfy our basic condition

(1) in the Introduction. Indeed, using Eqd143a, (B14b),

and (B18), one can see that this state reduces in the stabl

limit Im z;—0 with »;<<0 to

o o )\2 2
=110 -3 [bibdy—y5z-

Hence |r9) does not reduce to the dressed stable stat

Another possibility to construct is that we choosg{$);,
in such a way that the average energy of the dressed unstable

particle is the same as Green’s function enetgy This
alternative condition leads to a different value rofn Eq.
(6.4) as|cf. Eq.(6.17]

r= qg_T_[qdl-F &—1)—(0,— w) &,

(F6)

e
where

q=w;— w1 —iy(£°—1). (F7)

However, since this leads to an energy fluctuation of the
dressed particle that is not of the order of the inverse life-

fime, this choice is inadequate to identify the dressed un-

|$1 ;El», but reduces to a superposition of degenerate stablstable particle.
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