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Quantum transitions and dressed unstable states
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We consider the problem of the meaning of quantum unstable states including their dressing. According to
both Dirac and Heitler this problem has not been solved in the usual formulation of quantum mechanics. A
precise definition of excited states is still needed to describe quantum transitions. We use our formulation given
in terms of density matrices outside the Hilbert space. We obtain a dressed unstable state for the Friedrichs
model, which is the simplest model that incorporates both bare and dressed quantum states. The excited
unstable state is derived from the stable states through analytic continuation. It is given by an irreducible
density matrix with broken time symmetry. It can be expressed by a superposition of Gamow density operators.
The main difference from previous studies is that excited states are not factorizable into wave functions. The
dressed unstable state satisfies all the criteria that we can expect: it has a real average energy and a nonvan-
ishing trace. The average energy differs from Green’s function energy by a small effect starting with fourth
order in the coupling constant. Our state decays following a Markovian equation. There are no deviations from
exponential decay neither for short nor for long times, as is the case for the bare state. The dressed state
satisfies an uncertainty relation between energy and lifetime. We can also define dressed photon states and
describe how the energy of the excited state is transmitted to the photons. There is another very important
aspect: deviations from exponential decay would be in contradiction with indiscernibility as one could define,
e.g., old mesons and young mesons according to their lifetime. This problem is solved by showing that
quantum transitions are the result of two processes: a dressing process, discussed in a previous publication, and
a decay process, which is much slower for electrodynamic systems. During the dressing process the unstable
state is prepared. Then the dressed state decays in a purely exponential way. In the Hilbert space the two
processes are not separated. Therefore it is not astonishing that we obtain for the unstable dressed state an
irreducible density matrix outside the Liouville-Hilbert-space. This is a limit of Hilbert space states that are
arbitrarily close to the decaying state. There are experiments that could verify our proposal. A typical one
would be the study of the line shape, which is due to the superposition of the short-time process and the
long-time process. The long-time process taken separately leads to a much sharper line shape, and avoids the
divergence of the fluctuation predicted by the Lorentz line shape.
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I. INTRODUCTION

In particle theory or atomic physics the concepts of b
and dressed stable states are naturally introduced when
HamiltonianH is split into a free partH0 and and interaction
lV. For example, for an isolated atom the bare stable sta
the ground state. If the atom is coupled to an electromagn
field, a new dressed ground state is obtained, correspon
to the atom surrounded by a cloud of virtual photon
Dressed stable states are eigenstates of the Hamiltonian
are related to bare states through a unitary transforma
~we assume the interaction has a suitable form factor
avoids ultraviolet divergences!. The eigenstates ofH can be
obtained by perturbation theory. The transition from bare
dressed ground states has been studied in a recent pape@1#.
Here we consider excited states, which involve lifetimes.

For excited atomic states or unstable particles the si
tion changes dramatically. The usual perturbation expan
of the eigenstates ofH is not applicable due to resonanc
@2,3#. Unstable particles emit decay products. No eigenst
of the Hamiltonian in the Hilbert space can describe t
time-dependent behavior.

For this reason unstable particles and excited states
been regarded as approximate concepts. Unstable state
1050-2947/2001/63~5!/052106~23!/$20.00 63 0521
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often identified with bare states, and are considered to
‘‘approximately stationary.’’ As pointed out by Dirac@4#:
‘‘ . . . The fact that we had to use the word ‘‘approximately
in stating the conditions required for the phenomena of em
sion and absorption to be able to occur shows that th
conditions are not expressible in exact mathematical l
guage. One can give meaning to these phenomena only
reference to a perturbation method. They occur when
unperturbed system~of scatterer plus particle! has stationary
states that are closed. The introduction of the perturba
spoils the stationary property of these states and gives ris
spontaneous emission and its converse absorption.’’

While it is possible to speak about the bare states deri
from the unperturbed HamiltonianH0, the difficulty is to
introduce the dressing, which is necessary to have a con
tent theory that incorporates, for example, the Van der Wa
or Casimir-Polder forces between unstable atoms. In Ref.@5#
Heitler has concluded that it is impossible to distinguish v
tual photons~the dressing! from emitted photons: ‘‘In fact,
no exact definition of an isolated excited atomic state wit
finite lifetime can be given at all.’’ This is true in the usu
quantum mechanics associated to a Hilbert space descrip
but we shall show that this definition can be obtained in
Liouville space associated to functions outside the Hilb
space. The dressed excited state we shall define is a par
©2001 The American Physical Society06-1
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G. ORDONEZ, T. PETROSKY, AND I. PRIGOGINE PHYSICAL REVIEW A63 052106
complete set of states that includes dressed photons as
as correlations.

In experimental situations the initial conditions that c
be prepared belong to the Hilbert space. Therefore a dre
excited state outside the Hilbert space can indeed not exi
isolation. On the other hand in the Hilbert space there
necessarily a Zeno time@6# that leads to deviations from
exponential. Nonexponential behavior, no matter how sm
is in contradiction with indiscernibility. The main purpose
this paper is to lift this contradiction. Our main aim is ther
fore to obtain a dressed unstable state decaying in an e
nential way. An initial condition belonging to the Hilbe
space may then be written as a superposition of this deca
state plus additional components, which are associated
the preparation conditions and are responsible for the Z
effect.

We require the dressed excited states to be a natura
tension of the dressed stable states. In addition we require
following properties:

~1! Dressed unstable states, as well as dressed pho
are generated through a transformation operatorL, starting
from the corresponding bare states. This operator is obta
by analytic continuation of the unitary operatorU that gen-
erates dressed stable states.

~2! The transformationL preserves the trace of the tran
formed density matrices.

~3! The transformationL preserves Hermiticity of density
matrices.

~4! The transformationL is analytic with respect to the
coupling constantl at l50.

~5! The dressed unstable state obeys a Markovian t
evolution corresponding to the irreversible energy trans
from the dressed state to the decay products.

~6! The dressed unstable state has an energy uncert
of the order of the inverse lifetime.

In this paper we shall show that one can construct
stable states that fulfill all these requirements.

In recent years some progress towards the constructio
dressed unstable states has been achieved by consid
analytic continuations of the wave-function space outside
Hilbert space @7,8# leading to Gamow vectors@9#. The
dressed wavefunctions are related to the bare wave func
by a nonunitary transformation@2#.1 The dressed particle
wave functions are eigenstates of the total Hamiltonian, w
complex eigenvalues~the eigenvalues being poles of Green
energy function!. These eigenstates, together with t
dressed photon states, form a complex spectral repres
tion of the Hamiltonian. This representation breaks tim
symmetry, as the particle states decay in a fixed directio
time @2#. The Gamow vector formulation has also been a
plied to second quantization@11,12# with creation and anni-
hilation operators extended outside the usual Fock spac

Still, the decaying states obtained in this way have un
sirable features. They have either a vanishing or a comp

1This is a star-unitary transformation. Star-unitary transforma
tions have been introduced in Ref.@10# and will be defined in Sec
IV in the Liouville-space formulation.
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constant average energy. Since they are eigenstates o
Hamiltonian, their time evolution is independent of th
dressed photon states. They cannot describe the energy t
fer from particle to emitted photons.

These difficulties are avoided if we consider the extens
of density operators~rather than wave functions! outside the
Hilbert space.2 Our unstable state is indeed given by a no
factorizable density operator. Its construction is based on
complex-spectral representation of the Liouville opera
LH[@H,#, whose eigenstates are generally not products
eigenstates of the Hamiltonian@15#. The Liouville operator,
in spite of being Hermitian, can have complex eigenvalu
corresponding to eigenstates outside the Hilbert space. O
applications of this method have been given in Refs.@15–
17#. The idea of extending quantum mechanics on the le
of density operators was introduced by the Brussels sch
led by one of the authors~I.P.! @10,18–20#. This approach
was already applied to the study of unstable particles@21–
25#, but there remained ambiguities, which we can n
overcome.3

In Sec. II we introduce the Friedrichs model@2,3#. This
model is a simplified version of a two-level atom interacti
with a scalar field. In this model the interactions are simp
fied by the dipole approximation and by neglecting virtu
transitions~the so-called ‘‘rotating wave’’ approximation4!.
In the Friedrichs model the discrete state may be either st
or unstable depending on whether the energy of this sta
below or above a certain threshold. An advantage of t
model is that it is exactly solvable, i.e., the eigenstates of
Hamiltonian can be explicitly found for both stable and u
stable cases. This model may also be used as a simple m
of unstable particles, radioactive nuclei, electron wa
guides with resonant cavities@29#, and other systems tha
may be described as a discrete state coupled to a continu

In Sec. III we present the Liouville-space formulation f
the stable case of the Friedrichs model with no decay.
introduce the unitary transformationU in the Liouville space
that relates bare states to dressed stable states. The
point is that we can write this transformation in terms
operators whose analytic continuation to the complex ene
plane can be performed explicitly@15,30#.

In Sec. IV we present the complex spectral representa
of LH . Using this representation, in Sec. V we consider
extensionL of the unitary transformationU. We use analytic
continuation to obtain a well-defined extension of the unita
operator.

In Sec. VI we apply conditions~1!–~6! to complete the

2The space of density operators~the Liouville space! has a richer
structure than the space of wave functions@13,14#.

3In Ref. @26# a heuristic construction of unstable states was int
duced by imposing the block diagonality of the evolution operat
The unstable state given in Ref.@26# coincides up to fourth order in
the coupling constant with the one obtained in this paper. See
Ref. @27#.

4The model that includes virtual transitions is still solvable@28#.
However we shall not consider it here because the essential p
of our discussion can be made without virtual transitions.
6-2
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QUANTUM TRANSITIONS AND DRESSED UNSTABLE STATES PHYSICAL REVIEW A63 052106
extension ofU. As we shall show theL transformation we
obtain is ‘‘star unitary.’’ In Sec. VII we enumerate the ne
properties of the dressed excited state. An interesting resu
that the average energy is different from the real part of
pole of theS-matrix ~the so-called Green-function energy!.
The difference appears at fourth order in the coupling c
stant and is proportional to the decay rate of the particle.
derive the line shape of emission of photons and give
explicit formulation of the dressed unstable state and
dressed photon states. The line shape we obtain is gene
by the relatively slow decay process. In contrast, the l
shape associated with the bare state is dominated by the
dressing process. Correspondingly, the energy uncertain
our dressed state is of the order of the decay rate, while
energy uncertainty of the bare state is much larger, of
order or the ultaviolet cutoff of the form factor.

In this paper we consider global quantities such as
total energy or trace, which can be obtained from local d
sities by integration. In a subsequent paper@31# we shall
discuss local quantities and we shall consider the space-
description of the emission process. This will allow us
identify the virtual photons involved in the dressing of t
bare state and discuss the possibility of experiments wh
the line shape of the dressed excited state may be obse

II. THE FRIEDRICHS MODEL

The Hamiltonian of the Friedrichs model is given by@2#

H5H01lV

5v1u1&^1u1(
k

vkuk&^ku

1l(
k

Vk~ uk&^1u1u1&^ku!, ~2.1!

where

u1&^1u1(
k

uk&^ku51, ^aua8&5daa8 ~2.2!

for a51 or k, andl is a dimensionless coupling constan
We assume the dispersion relation of the scalar field is gi
by

vk5uku ~2.3!

and Vk is real with the relationVk5V2k . As a convention
we call the quanta of the field ‘‘photons.’’ The stateu1&
represents the atom~or particle! in its bare excited level, and
no photons present, anduk& represents a bare photon of m
mentumk together with the atom in its ground level.

We consider a one-dimensional system enclosed in a
of size L with usual periodic boundary conditions, in th
continous spectrum limit L→`. Extension to three-
dimensional cases is straightforward. We assume that

Vk5S 2p

L D 1/2

vk ~2.4!
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with vk;L0. This gives a consistent volume dependence
the limit L→`. In this limit the field modes form a con
tinuum and we have

2p

L (
k

→E dk,
L

2p
dk,0→d~k!. ~2.5!

In this paper we assumevk has a suitable form factor tha
eliminates ultraviolet divergences.

There are several distinct situations depending on
value of the energyv1 of the bare particle. Suppose att
50 the system is in the stateu1&. For lÞ0 this state will
evolve in time. Then

~1! for v1,0 the stateu1& evolves towards a stabl
dressed state that represents the bare atom surrounded
cloud of photons. The energy of the dressed state is lo
than the energy of the bare state, and the excess ener
emitted away by an off-resonance process@1#. The eigen-
states are analytic in the coupling constant atl50.

~2! For 0,v1,v1
0, where

v1
0[l2E

2`

`

dk
vk

2

vk
~2.6!

in the continous limit, the bare state also evolves toward
dressed stable state, as in the previous case. Howeve
eigenstates of the Hamiltonian are not analytic in the c
pling constant atl50. This situation has been discussed
the literature~see, for example, Ref.@32#! and we shall not
consider it in this paper.

~3! For v1.v1
0 the stateu1& becomes unstable due to th

resonance interaction and decays obeying an approxima
exponential law, with the emission of photons. At the sa
time it also creates a cloud of virtual photons around the b
state@31#.

Since the Hamiltonian is a bilinear form of bra and k
states, it is possible to find exact eigenstates and eigenva
of the total HamiltionianH @2# for both the stable and un
stable cases. Let us briefly summarize the results.

A. Stable case„v1Ë0…

For the stable case we have the eigenstatesuf̄1& anduf̄k&,
which for l→0 reduce tou1& and uk&, respectively,

Huf̄1&5v̄1uf̄1&, Huf̄k&5vkuf̄k&, ~2.7!

where v̄1 is the perturbed energy of the particle. Hereaf
we use bars to distinguish expressions related to the st
case from the ones related to the unstable case.

The eigenstatesuf̄1& and uf̄k& are stationary states, an
they correspond to the dressed stable particle and dre
photons, respectively. Foruf̄1& we have

uf̄1&5N̄1
1/2F u1&1l(

k
uk&c̄kG , ~2.8!

where
6-3
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c̄k[
Vk

v̄12vk

. ~2.9!

N̄1 is a normalization constant given by

N̄1[~11 j̄ !21, j̄[l2(
k

c̄k
2 , ~2.10!

wherej̄ is a real positive number. The dressed energyv̄1 is
the solution of the equation

h~v̄1!50, ~2.11!

where

h~z![z2v12(
k

l2Vk
2

z2vk
. ~2.12!

For uf̄k& we have

uf̄k&5uk&1
lVk

h1~vk!
F u1&1(

l
8

lVl

vk2v l1 i e
u l &G ,

~2.13!

where the prime on the summation sign denotes thatlÞk,
the constante is a positive infinitesimal,e→01, and
h6(vk)[h(vk6 i e). The states with1 i e correspond to the
‘‘in’’ states in scattering theory.5 In the limit L→` the de-
nominators are interpreted as distributions, with the con
tion that the limitL→` is taken first and the limite→01 is
taken later. With this convention we shall use summat
signs@cf. Eq. ~2.5!# unless the integration has to be explicit
displayed. Moreover, we shall not write the ‘‘limit’’ notatio
for e to avoid too heavy notations. We have

uf̄1&^f̄1u1(
k

uf̄k&^f̄ku51,

~2.14!
^f̄auf̄b&5dab for a51 or k.

For sufficiently smalll one can expanduf̄a& aroundl50.
For example to first order inl we have

uf̄1&5u1&2(
k

lVk

vk2v1
uk&1O~l2!. ~2.15!

Since v1,0, the denominatorvk2v1 cannot be zero.
Namely, there are no resonances and the expansion ar
l50 is well defined. This implies that the system is int
grable in the sense of Poincare´ @2#.

The dressing states can be generated from the bare s
by a unitary transformation in the Hilbert space as

uf̄a&5u21ua& for a51 ork, ~2.16!

5We may also define a different set of states with2 i e correspond-
ing to the ‘‘out’’ states.
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u5(
a

ua&^f̄au, u215(
a

uf̄a&^au. ~2.17!

B. Unstable case

For the casev1.0 there appear ‘‘Poincare´ resonances’’
at vk5v1 in the perturbation expansion of the stateuf̄1& in
the continous limit@see Eq.~2.15!#. For the casev1.v1

0 this

state ‘‘disappears’’ and the continous statesuf̄k& alone form
a complete orthonormal set in the limitL→` @3#

(
k

uf̄k&^f̄ku→1. ~2.18!

In other words, there is no dressed unstable state in the
bert space that can be obtained by a unitary transforma
acting on the bare stateu1&. This is consistent with the sta
tionary character of the eigenstates ofH in the Hilbert space,
which cannot represent an unstable state that decays.

The dissapearence ofuf̄1& may also be interpreted as th
disappearance of the invariant of motionuf̄1&^f̄1u. The
other invariantsuf̄k&^f̄ku become nonanalytic atl50, due
to the appearance of the absolute value squared of the fa
@h1(vk)#21 in these invariants. The disappearance of o
invariant of motion and the nonanalyticity of the other i
variants indicates that the system is nonintegrable in
sense of Poincare´ @26,33#. The statesuf̄k& constitute the so-
called ‘‘Friedrichs representation’’@2#.

We note that in the continuous spectrum limitL→`
Green’s function@h1(v)#21 has a resonance pole on th
lower half-complex plane atv5z1, i.e.,

h1~z1!5z12v12E
2`

1`

dk
l2vk

2

~z2vk!z1

1
50, ~2.19!

where

z1[ṽ12 ig ~2.20!

with ṽ1 and g real, 2g.0 being the decay rate. Here, w
have used the abbreviated notation

1

~z2vk!z1

1
[

1

~z2vk!
1 uz5z1

~2.21!

to indicate that the propagator is evaluated on the sec
Riemann energy sheet ofz ~i.e., z is continued from the up-
per to the lower half-plane!. In previous publications@2# this
has been referred to as ‘‘delayed analytic continuation,’’
we first evaluate the integration on the upper half-plane oz
and then substitutez5z1 on the lower half-plane.

While the resonance pole gives the decaying contributi
of the system, there is no quantum state in the Hilbert sp
corresponding to the resonance. However, the states as
ated with the resonance poles may be found outside the
6-4
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QUANTUM TRANSITIONS AND DRESSED UNSTABLE STATES PHYSICAL REVIEW A63 052106
bert space by analytic continuation of the Hamiltonian@2,7–
9#. This corresponds to complex spectral representation
this operator. A detailed analysis can be found in Ref.@2#.
Here we present only the main results. In the complex r
resentation ofH the eigenstates are not self-dual, and
have distinct right and left eigenstates,

Huf1&5z1uf1&, ^f̃1uH5^f̃1uz1 , ~2.22a!

Hufk&5vkufk&, ^f̃kuH5^f̃kuvk , ~2.22b!

where the eigenstates form a complete biorthonormal se

(
a51,k

ufa&^f̃au51, ^f̃aufb&5dab . ~2.23!

Corresponding to the branch of the ‘‘in’’ states Eq.~2.13!,
the particle eigenstates are given by

uf1&5N1
1/2F u1&1l(

k
uk&ckG , ~2.24!

^f̃1u5N1
1/2F ^1u1l(

k
ck^kuG , ~2.25!

where

ck[
Vk

~z2vk!z1

1
~2.26!

and

N1[~11j!21, j[l2(
k

ck
2 . ~2.27!

In contrast to the stable case,j is a complex number. The
states~2.24! and ~2.25! are also called ‘‘Gamow vectors’
@9#.

In the complex spectral representation the photon eig
states are given by

ufk&5uk&1
lVk

hd
1~vk!

F u1&1(
l

8
lVl

vk2v l1 i e
u l &G

~2.28!

and @see Eq.~2.13!#

^f̃ku5^f̄kuÞ^fku, ~2.29!

where

1

hd
1~vk!

[
1

h1~vk!

vk2z1

~vk2z!z1
1

. ~2.30!

Using the stateuf1& and its dual we have the following
four possibilites to construct factorizable density operator
terms of Gamow vectors

ra5uf̃1&^f1u, rb5uf1&^f̃1u, ~2.31a!
05210
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rc5uf1&^f1u, rd5uf̃1&^f̃1u. ~2.31b!

Although these factorizable states bring us closer to the d
nition of a dressed excited state, they still do not satisfy
requirements stated in the Introduction. For example,
statesra andrb are invariants of motion and hence they a
not good candidates to describe an unstable state that de
Furthermore they have a complex expectation valuez1 of the
Hamiltonian.6 The other density operatorsrc and rd decay
for t.0 andt,0, respectively, which is a characteristic
unstable states~the choice of eitherrc or rd depends on
whether we want a state that decays in the future or in
past, respectively!. However, these states have a vanish
trace and consequently they have a zero average energ@2#

^f1uf1&5^f̃1uf̃1&50, ^f1uHuf1&5^f̃1uHuf̃1&50.
~2.32!

These are the reasons why we seek the unstable dressed
in a more general space of density operators, i.e., a gen
ized Liouville space that is spanned by eigenstates with c
plex eigenvalues of the Liouville-von Neumann operator.

III. LIOUVILLE-SPACE FORMULATION FOR THE
STABLE CASE

We first introduce the Liouville space for the stable ca
of the Friedrichs model~see Ref.@15# and references therei
for the general formulation!. The Liouville space is a vecto
space formed by the ordinary quantum-mechanical linear
erators that act on wave functions. The Liouville-von Ne
mann superoperator~or ‘‘Liouvillian’’ ! is given by

LH[@H,#5H31213H, ~3.1!

where the operation3 is defined by (A3B)r5ArB for
arbitrary linear operatorsA, B, andr. We use the term ‘‘su-
peroperator’’ to emphasize thatLH acts on operators. Fo
example, the density operators evolve according to the Li
ville equation

i
]r

]t
5LHr. ~3.2!

Superoperators of the form (A3B) are called ‘‘factorizable
superoperators.’’

Corresponding to the decomposition of the Hamiltoni
in Eq. ~2.1!, we split LH into a free part and an interactio
part,LH5L01lLV . The dyadsua&^bu, which consist of the
eigenvectors of the unperturbed HamiltonianH0 with
H0ua&5vaua&, are eigenstates of the unperturbed Liouv
lian L0. Introducing the notation@15#

6To these density operators we could associate both the w

defined real ‘‘energy’’ ṽ15Re(z1) and the decay rate 2g
52uIm(z1)u at the same time. But this is not satisfactory from t
point of view of the energy-time uncertainty relation. We sh
come back to this uncertainty relation in Sec. VII.
6-5



t

op
m

o

n
, o
rr
p

he
is

-
e

s
o

s

tors

nt

e

e

-

the

l de-

rder
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ua;b&&[ua&^bu5@ ^̂ a;bu#† ~3.3!

we have

L0ua;b&&5~va2vb!ua;b&&. ~3.4!

These dyadic operators form a complete orthonormal se
the Liouville space,

^̂ a8;b8ua;b&&5da8,adb8b , (
a;b

ua;b&&^̂ a;bu51

~3.5!

with the inner product defined by

^̂ AuB&&[Tr~A†B!. ~3.6!

Using this inner product, we can define Hermitian super
erators and unitary superoperators in the usual way. The
trix elements of a linear operator such asA are given by

Aab[^auAub&5 ^̂ a;buA&& ~3.7!

while the matrix elements of a superoperatorS are denoted
by

Sa8b8;ab[^̂ a8;b8uSua;b&&. ~3.8!

For factorizable superoperators we have

~A3B!a8b8;ab5Aa8aBbb8 . ~3.9!

For density matrices the diagonal elements give the pr
ability to find the particle in the stateu1& or the field in a
modeuk&, while the off-diagonal elements give informatio
on the quantum correlations between particle and field
among fields. The interaction changes the state of the co
lations. Hence, in the density-matrix formulation, there a
pears naturally a ‘‘dynamics of correlations’’@18#.

To formulate this more precisely, let us first introduce t
concept of the ‘‘vacuum-of-correlations subspace’’ that
the set of diagonal dyadsua&^au. We then introduce an in
tegerd that specifies the degree of correlation. This is d
fined as the minimum numberd of successive interaction
lLV by which a given dyadic state can reach the vacuum
correlation. For example, the dyadic statesu1&^ku anduk&^1u
corresponding to particle-field correlations haved51, while
the dyadsuk&^k8u corresponding to field-field correlation
haved52. For the Friedrichs modeld52 is the maximum
value of the degree of correlation.

We introduce the projection operatorsP(n),

P(0)[ (
a51,k

ua;a&&^̂ a;au,

P(ab)[ua;b&&^̂ a;bu ~aÞb!, ~3.10!

which are orthogonal and complete@cf. Eq. ~3.5!#:

P(m)P(n)5P(m)dmn , (
n

P(n)51 ~3.11!
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with (n)5(0) or (ab). The projectorP(0) corresponds to
the vacuum of correlations subspace, while the projec
P(k1) and P(1k) correspond to thed51 subspace andP(kk8)

to the d52 subspace. The complement projectorsQ(n) are
defined by

P(n)1Q(n)51. ~3.12!

They are orthogonal toP(n), i.e., Q(n)P(n)5P(n)Q(n)50,
and satisfy@Q(n)#25Q(n). The bare projectorsP(n) commute
with L0 and they are eigenprojectors ofL0,

@P(n),L0#50, L0P(n)5w(n)P(n), ~3.13!

wherew(n) are the eigenvalues

w(0)50, w(ab)5va2vb . ~3.14!

The interactionLV leads to a transition between two differe
correlations,

~LV!ab;a8b85Vaa8db8b2daa8Vb8b . ~3.15!

For the interaction in Eq.~2.1! only one index is changed in
this transition.

We note that the subspaceP(0) is a degenerate subspac
as any stateua;a&& has the same eigenvaluew(0)50. In gen-
eral we may write a degenerate subspace as

P(n)5(
j

un j&&^̂ n j u, ~3.16!

where j is a degeneracy index. In our case we haveP(0)

5(a51,ku0a&&^̂ 0au, where u0a&&[ua;a&&. The subspaces
with nÞ0, being nondegenerate, are simply given byP(n)

5un&&^̂ nu. To simplify the notations we may write the bar
dyads asun j&&, with the understanding that the indexj 5a
appears only for then50 subspace.7 For example, the eigen
value equation Eq.~3.4! is written asL0un j&&5w(n)un j&&.

We now turn to the eigenstates ofLH . They form the
basis used to perform the analytic continuation from
stable case to the unstable case. The eigenstates ofLH are
given by the dyads of dressed statesuf̄a ,f̄b&&5uf̄a&^f̄bu.
We denote them as@15#

uF̄a
0&&[uf̄a ;f̄a&&, uF̄ab&&[uf̄a ;f̄b&& ~aÞb!.

~3.17!

We have

LHuF̄ j
n&&5v̄ (n)uF̄ j

n&&, ~3.18!

7In the Friedrichs model, the other subspaces have accidenta
generacies, such asvk2vk85v l2v l 8 with lÞk andl 8Þk8. How-
ever, these degeneracies are negligible as they give higher-o
contributions in powers ofL21 in the limit L→`.
6-6
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where w̄(ab)[v̄a2v̄b , with v̄k[vk and w̄(0)[0. The
eigenstates ofLH form a complete orthonormal set in th
Liouville space

(
n

(
j

uF̄ j
n&&^̂ F̄ j

nu51, ^̂ F̄ j 8
n8uF̄ j

n&&5d j j 8dnn8 .

~3.19!

Associated with these eigenstates we have the projec

P̄ (n),

P̄ (n)[(
j

uF̄ j
n&&^̂ F̄ j

nu, ~3.20!

which satisfy the relations

P̄ (m)P̄ (n)5P̄ (m)dmn , (
n

P̄ (n)51, ~3.21!

@P̄ (n),LH#50, lim
l→0

P̄ (n)5P(n). ~3.22!

The bare and dressed dyadic states are related by

uf̄a&^f̄bu5u21ua&^buu, ~3.23!

where u is given in Eq.~2.17!. Using the Liouville-space
notations we write this relation as

uf̄a ;f̄b&&5U21ua;b&& ~3.24!

or

uF̄ j
n&&5U21un j&&, ~3.25!

where U21 is a factorizable unitary superoperator in t
Liouville space,

U215u213u ~3.26!

that transforms bare dyads into dressed ones. Equation~3.25!
together with Eq.~3.16! and Eq.~3.20! lead to the similitude
relation

P̄ (n)5U21P(n)U. ~3.27!

The eigenstates ofLH may be written in terms of ‘‘ki-
netic’’ operators. This will allow us to obtain their analyt
continuation in the unstable case. We first decompose
unitary operatorU21 in two components,

x̄ (n)[P(n)U21P(n),
~3.28!

C̄(n)x̄ (n)[Q(n)U21P(n).

We have as well the Hermitian conjugate components

@ x̄ (n)#†[P(n)UP(n),
~3.29!

@ x̄ (n)#†D̄ (n)[P(n)UQ(n),
05210
rs

he

where D̄ (n)[@C̄(n)#†. The superoperatorC̄(n) is an ‘‘off-
diagonal’’ superoperator, as it describes off-diagonal tran
tions C̄(n)5Q(n)C̄(n)P(n) from theP(n) correlation subspace
to theQ(n) subspace. By operatingC̄(n) on then correlation
subspaceP(n), this operator creates correlations other th
the n correlation. In particularC̄(0) creates higher correla
tions from the vacuum of correlations. For this reason
C̄(n) are generally called ‘‘creation-of-correlations’’ supero
erators@15,18#, or creation operators in short. Converse
the D̄ (n) are called destruction operators.

The superoperatorx̄ (n) is ‘‘diagonal,’’ as it describes a
diagonal transition between states belonging to the same
spaceP(n).

Using Eq.~3.12! we have

U21P(n)5~P(n)1C̄(n)!x̄ (n),
~3.30!

P(n)U5@ x̄ (n)#†~P(n)1D̄ (n)!.

The eigenstates ofLH are then written in the form

uF̄ j
n&&5~P(n)1C̄(n)!u f j

n&&, ^̂ F̄ j
nu5 ^̂ f j

nu~P(n)1D̄ (n)!,
~3.31!

where u f j
n&&[x̄ (n)un j&&. Note that P(n)uF̄ j

n&&5u f j
n&& and

Q(n)uF̄ j
n&&5C̄(n)u f j

n&&. Hence theQ(n) component ofuF̄ j
n&& is a

functional of theP(n) component,

Q(n)uF̄ j
n&&5C̄(n)P(n)uF̄ j

n&&. ~3.32!

Similarly the for the left eigenstates ofLH we have

^̂ F̄ j
nuQ(n)5 ^̂ F̄ j

nuP(n)D̄ (n). ~3.33!

The P̄ (n) projectors in Eq.~3.27! can also be written in
terms of the kinetic operators as

P̄ (n)5~P(n)1C̄(n)!Ā(n)~P(n)1D̄ (n)!, ~3.34!

where

Ā(n)[x̄ (n)@ x̄ (n)#†. ~3.35!

From the relationP̄ (n)U215U21P(n) we obtain

Ā(n)5P(n)@~P(n)1D̄ (n)!~P(n)1C̄(n)!#21P(n)

5P(n)@P(n)1D̄ (n)C̄(n)#21P(n). ~3.36!

While in the stable case the dressed states and the e
states ofLH are the same, we shall see that in the unsta
case the analytic continuation ofU leads to a distinction
between the dressed states and the eigenstates ofLH . For
this reason it is convenient to introduce the notationur̄ j

n&&
[U21un j&&. The dressed particle and dressed photon st
are, respectively, given by

ur̄a
0&&5U21ua;a&&, a51,k ~3.37!
6-7
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while the statesur̄ab&&5U21ua;b&& with aÞb are dressed
correlations. These states satisfy

P̄ (n)ur̄ j
n&&5ur̄ j

n&&. ~3.38!

The identity ur̄ j
n&&5uF̄ j

n&& holds only in the stable case. Fo
the extended states that will be defined in the next sect
we have in generalur j

n&&ÞuF j
n&&.

The explicit forms of the matrix elements ofC̄(n), D̄ (n),
and x̄ (n) may be easily constructed fromuf̄1& in Eq. ~2.8!
and uf̄k& in Eq. ~2.13!. For example, let us consider the r
lation

^̂ a;aur̄1
0&&5^auf̄1&^f̄1ua&

5 ^̂ a;au~P(0)1C̄(0)!x̄ (0)u1;1&&

5 ^̂ a;aux̄ (0)u1,1&&. ~3.39!

Then, using Eq.~2.8! we obtain

x̄11;11
(0) 5

1

11 j̄
, x̄kk;11

(0) 5
l2c̄k

2

11 j̄
. ~3.40!

Similarly, we have

^̂ a;bur̄1
0&&5^auf̄1&^f̄1ub&

5 ^̂ a;buC̄(0)x̄ (0)u1;1&&

5C̄ab;11
(0) x̄11;11

(0) 1(
k

C̄ab;kk
(0) x̄kk;11

(0) . ~3.41!

Due to the volume dependence of the interaction in Eq.~2.4!
one can easily verify that the last term in the second line
O(1/L) smaller than the first term. Neglecting the last te
in the limit of L→`, we obtain

C̄k1;11
(0) 5C̄1k;11

(0) 5l c̄k , C̄kk8;11
(0)

5C̄k1;11
(0) C̄1k8;11

(0) .
~3.42!

The analytic continuation to the unstable case of the
netic operatorsC̄(n) and D̄ (n) has already been studied~see,
for example, Refs.@10,15,22#!, and will be summarized in
Sec. IV. The analytic continuation ofx̄ (n) will be considered
in Secs. V and VI.

In summary the dressed stable states have been re
sented by factorizable density matrices, generated by a
torizable unitary superoperator. This is a direct conseque
of the factorizablility of the eigenstates of the LiouvillianLH
in terms of eigenstates of the Hamiltonian for the stable ca
We have established as well a relation between unitary tr
formations and the operators used in kinetic theory.

IV. COMPLEX SPECTRAL REPRESENTATIONS OF L H

For the unstable case the system admits complex spe
representations ofLH in a nonHilbert space. In these repr
sentations the eigenstates are nonfactorizable into a pro
05210
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of wave functions, and the eigenvalues are generally co
plex, which breaks time symmetry@15#.

As in the stable case we start with the eigenvalue equa
for LH as follows:

LHuF j
n&&5zj

(n)uF j
n&&, ^̂ F̃ j

nuLH5 ^̂ F̃ j
nuzj

(n) . ~4.1!

For the unstable case the eigenvalueszj
(n) are generally com-

plex numbers. SinceLH is Hermitian this is only possible if
the corresponding eigenstates have no Hilbert norm. For
reason the eigenvalue problem we consider correspond
an extension ofLH outside the Hilbert space. In this exten
sion we havê^F̃ j

nuÞ^̂ F j
nu, similar to Eq.~2.29!.

We assume these eigenstates satisfy the biorthogon
and bicompleteness relations

^̂ F̃ i
nuF j

m&&5dn,md i , j , (
n

(
j

uF j
n&&^̂ F̃ j

nu51. ~4.2!

For the Friedrichs model, these relations can be explic
verified.

Similarly to the stable case in Eq.~3.32! we insist on a
functional relation between theQ(n) andP(n) components of
the eigenstates as

Q(n)uF j
n&&5@Nj

(n)#1/2C(n)uuj
n&&,

^̂ F̃ j
nuQ(n)5 ^̂ ṽ j

nuD (n)@Nj
(n)#1/2, ~4.3!

where

uuj
n&&[@Nj

(n)#21/2P(n)uF j
n&&,

^̂ ṽ j
nu[^̂ F̃ j

nuP(n)@Nj
(n)#21/2 ~4.4!

andNj
(n) is a normalization constant. This leads to the form

expression for the left and right eigenstates of the Liouvilli

uF j
n&&5@Nj

(n)#1/2FC
(n)uuj

n&&, ~4.5a!

^̂ F̃ j
nu5 ^̂ ṽ j

nuFD
(n)@Nj

(n)#1/2, ~4.5b!

where

FC
(n)[P(n)1C(n), ~4.6a!

FD
(n)[P(n)1D (n). ~4.6b!

We have the relations

@FC
(n)#25FC

(n) , @FD
(n)#25FD

(n) . ~4.7!

Substituting Eq.~4.5a! into the first equation in Eq.~4.1!, we
obtain

LHFC
(n)uuj

n&&5zj
(n)FC

(n)uuj
n&&. ~4.8!

Multiplying P(n) from the left on both sides of Eq.~4.8!, we
have

uC
(n)uuj

n&&5zj
(n)uuj

n&&, ~4.9!
6-8
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where

uC
(n)[P(n)LHFC

(n)5w(n)P(n)1P(n)lLVFC
(n)P(n)

~4.10!

is thecollision operatorassociated with the creation operat
C(n). The collision operators are generally non-Hermiti
dissipative operators. These operators play a central ro
nonequilibrium situations. For example, the collision ope
tor associated with the vacuum of correlationsn50 leads to
the collision operator in the well-known Pauli master equ
tion for weakly coupled systems@15#.

Equation~4.9! shows thatuuj
n&& is an eigenstate ofuC

(n) ,
with thesame eigenvaluesasLH . This indicates that through
the extension ofLH outside the Hilbert space, quantum m
chanics can be connected with dissipative dynamics.

The fact thatLH anduC
(n) share the same eigenvalues a

implies thatFC
(n) satisfies the intertwining relation withLH

anduC
(n) @see Eq.~4.8!#,

LHFC
(n)5FC

(n)uC
(n) . ~4.11!

It can be similarly shown that the states^̂ ṽ j
(n)u are left

eigenstates of the collision operators

uD
(n)[w(n)P(n)1P(n)FD

(n)lLVP(n) ~4.12!

associated to the destruction operatorD (n). These operators
also share the same eigenvalues withLH and lead to the
intertwining relationFD

(n)LH5uD
(n)FD

(n) .
As in the stable case, we introduce the projectors

P (n)5(
j

uF j
n&&^̂ F̃ j

nu. ~4.13!

These projectors commute withLH and are complete an
orthonormal@cf. Eq. ~4.2!#. We require that they are analyti
at l50 as liml→0P (n)5P(n) @see Eq.~3.22!#.

Similar to the stable case we can write the projectors
the form @10#

P (n)5~P(n)1C(n)!A(n)~P(n)1D (n)!, ~4.14!

where

A(n)5P(n)@P(n)1D (n)C(n)#21P(n). ~4.15!

Equation~4.13! shows that theP (n) are not Hermitian opera
tors, i.e.,

~P (n)!†ÞP (n), ~4.16!

which is in contrast to the stable case. In fact,P (n) are star
Hermitian, as will be defined below.

All the above expressions are still formal, sinceFC
(n) and

FD
(n) in Eq. ~4.6! are not yet determined. One can find the

explicit form from the intertwining relation Eq.~4.11!. Mul-
tiplying FC

(n) from the left on the both sides of this relatio
and using Eq.~4.7! we obtain

FC
(n)LHFC

(n)5LHFC
(n) . ~4.17!
05210
in
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This is a closed nonlinear equation forFC
(n) , which leads to

~v (n)2L0!FC
(n)5lLVFC

(n)2FC
(n)lLVFC

(n) . ~4.18!

Multiplying (v (n)2L0)21 from the left on the both sides o
this equation, and adding a suitable infinitesimal2 i emn to
regularize the denominator, we obtain a nonlinear integ
equation forFC

(n) , i.e., the so-called ‘‘nonlinear Lippmann
Schwinger equation,’’@15,35#

FC
(n)5P(n)1 (

m(Þn)
P(m)

21

w(m)2w(n)2 i emn

3@lLVFC
(n)2FC

(n)lLVFC
(n)#P(n). ~4.19!

The nonlinear term~the second term inside brackets! is re-
lated to the collision operator through Eq.~4.10!. As we have
seen the collision operators have complex eigenvalues, a
ciated with dissipative effects. The complex eigenvalues
incorporated into the solutions of Eq.~4.19! through the non-
linear term.

In order to determine the sign of the infinitesimalsemn for
the unstable case, we require that theFC

(n) are analytic atl
50 and that the complex eigenvalues ofLH have imaginary
parts with a definite sign~so that the corresponding eigen
states decay for eithert.0 or t,0). This leads to

emn51e if dm>dn ,
~4.20!

emn52e if dm,dn ,

wheree is an infinitesimal@20,30,36#. Here,dn is the degree
of correlation of theP(n) subspace, which has been defin
in Sec. III. For e.0 the eigenstates will decay fort.0
while for e,0 they decay fort,0.

For the stable case one can derive nonlinear equat
similar to Eq.~4.19!. In this case the imaginary parts of th
eigenvalues of the collision operator vanish and the non
ear terms lead simply to the energy shift of the particle.

Similar to Eq. ~4.19! one can obtain nonlinear integra
equations for the destruction operators

FD
(n)5P(n)1P(n)@FD

(n)lLV2FD
(n)lLVFD

(n)#

3 (
m(Þn)

P(m)
1

w(n)2w(m)2 i enm

. ~4.21!

The choice of analytic continuation in Eq.~4.20! leads to a
biorthogonal and bicomplete set of eigenstates ofLH .

Recall that we have the relationD̄ (n)5@C̄(n)#† for the
stable case. For the unstable case, due to the different
lytic continuation from the stable case@cf. Eqs. ~4.19! and
~4.21!#, these operators are no more related by Hermit
conjugation. However, we can introduce a different type
conjugation calledstar conjugationdenoted by ‘‘*, ’’ which
is obtained by Hermitian conjugation plus the chan
emn⇒enm . Then we have

D (n)5@C(n)#* , A(n)5@A(n)#* ~4.22!
6-9
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and

P (n)5@P (n)#* , ~4.23!

i.e., the destruction operator is star-conjugate to the crea
operator, andA(n) and P (n) are star-Hermitian operators
Correspondingly, the star conjugation in the eigenstate
the Liouvillian leads to

~ uF j
n&&!* 5 ^̂ F̃ j

nu. ~4.24!

In Appendix A we give a solution of the nonlinear equ
tion Eq.~4.19! for the Friedrichs model. For the componen
Cab;11

(0) we obtain

Ckk8;11
(0)

5Ck1;11
(0) C1k8;11

(0) , ~4.25a!

Ck1;11
(0) 5@C1k;11

(0) #c.c.5lck , ~4.25b!

where ck is defined in Eq.~2.26!. This coincides with the
results obtained by de Haan and Henin by an alterna
approach based on the resolvent formulation of the Liouv
operator@30#. Other matrix elements of the creation oper
tors presented in Ref.@30# are shown in Appendix B. By a
direct substitution, one can verify these components sat
our nonlinear Lippmann–Schwinger equations.

Expressions for matrix elements ofD (n) are obtained by
using the star-Hermiticity relationD (n)5C(n)* . As the op-
eratorsL0 , LV that appear inC(n) andD (n) are hermitian, the
star conjugation is obtained by replacingi emn⇒( i emn)* 5
2 i enm and taking the transpose. For example, forn50 we
havee0m52em0 and (i em0)* 5 i em0. This leads to

D11;ab
(0) 5Cab;11

(0) . ~4.26!

In Appendix B we give the explicit form of eigenstates
the collision operators as well asLH for the Friedrichs
model. Here we only write the eigenvalues

LHuF1
0&&522iguF1

0&&, LHuFk
0&&5O~1/L !→0,

~4.27a!

LHuFab&&5z(ab)uFab&&, aÞb, ~4.27b!

where

z(1k)5z12vk ,

z(k1)5vk2z1
c.c., ~4.28!

z(kk8)5vk2vk8 .

The eigenvalues are obtained from Eq.~B8!, together with
the explicit forms of the creation operators given in E
~B11!. In Eq. ~4.27! we have neglected terms of orderL21

that vanish in the continuous spectrum limitL→`.
Since Tr(LHr)5Tr(Hr)2Tr(rH)50 for anyr, for the

eigenstates ofLH we have Tr(LHFa
n )5za

(n)Tr(Fa
n )50. This

means that the eigenstates ofLH with nonzero eigenvalue ar
traceless. Hence, we cannot identify an isolated deca
05210
on

of

e
e
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g

eigenstate ofLH with a dressed unstable particle state@cf.
condition ~2! in the Introduction#.

To end this section we now show that the eigenstates
the Liouvillian lead to a Markovian time evolution of th
system. Indeed Eq.~4.14! together with Eq.~4.11! leads to
the relation

e2 iL HtP (n)5P (n)e2 iL Ht

5~P(n)1C(n)!e2 iuC
(n)tA(n)~P(n)1D (n)!. ~4.29!

We call the componentP(n)r (n)(t) the ‘‘privileged‘‘ compo-
nent of

r (n)~ t ![P (n)e2 iL Htr~0!. ~4.30!

Taking the time derivative of the privileged component a
using Eq.~4.29!, we obtain the Markovian kinetic equatio
for eachP (n) subspace,

i
]

]t
P(n)r (n)~ t !5uC

(n)P(n)r (n)~ t !. ~4.31!

The decay rates of the processes in each subspace are
by uIm zj

(n)u @see Eq.~4.9!# which are generally finite nonva
nishing numbers. Equation~4.29! shows that the nonprivi-
leged component is a functional of the privileged compone

Q(n)r (n)~ t !5C(n)P(n)r (n)~ t !, ~4.32!

i.e., the nonprivileged component is driven by the privileg
component. These relations show that the evolution of
density states in a singleP (n) subspace areMarkov pro-
cesses.

It is well-known that the time evolution of any matri
element̂^a;bur(t)&& of a density matrix in the Hilbert spac
obeys a non-Markovian equation with memory effects~i.e.,
deviations from the exponential decay for short-time sca
associated to the quantum Zeno effect@6#, and for long-time
scales associated to the long-time tails@34#!. Due to the com-
pleteness relation ofP (n), we see that the non-Markovia
process is represented as a superposition of Markov
cesses in eachP (n) subspace,

^̂ a;bur~ t !&&5(
n

^̂ a;buP (n)ur~ t !&&. ~4.33!

V. THE DRESSED UNSTABLE STATE

We come to our main problem, i.e., to identify the dress
states for the unstable case. We strictly follow the resu
obtained for the stable case in Sec. III. Therefore we int
duce a nonunitary transformationL that satisfies@see Eq.
~3.30!#

L21P(n)5~P(n)1C(n)!x (n),
~5.1!

P(n)L5@x (n)#* ~P(n)1D (n)!,

wherex (n) are diagonal operators to be determined.
6-10
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We identify the dressed unstable particle and pho
states, respectively, as@see Eq.~3.37!#

ura
0&&[L21ua;a&&5~P(0)1C(0)!x (0)ua;a&&, a51,k.

~5.2!

For the limit Imz1→0 corresponding to the stable case w
v1,0, we should haveura

0&&→ur̄a
0&&5U21ua;a&&.

To determinex (n) we look for the analytic continuation o
the unitary operatorU in Eq. ~3.30!. Therefore we extend the
relation Eq.~3.35! to

A(n)5x (n)@x (n)#* ~5.3!

for the diagonal operatorA(n), which is star-Hermitian. The
projection operators in Eq.~3.34! now become

P (n)5L21P(n)L. ~5.4!

Note that from Eq.~5.1! we have

P(n)LL21P(n)5P(n). ~5.5!

Equation~5.5! and the summation of Eq.~5.4! over n show
that L21 is indeed the inverse operator ofL. Due to the
relation ~4.22!, we have

L215L* , ~5.6!

i.e., L is a star-unitary operator. Star-unitary operators c
respond to the extension of unitarity to dissipative syste
@10#.

We assume the analyticity ofL at l50 @condition~4! in
the Introduction#. Then,x (n) is also analytic atl50,

lim
l→0

x (n)5P(n) ~5.7!

and we have

lim
l→0

L51. ~5.8!

We now focus on then50 subspace. A brief comment o
the dressed states fornÞ0 is made at the end of Sec. V
From the relationL21P(0)5P (0)L21 we conclude that the
statesura

0&& are entirely in theP (0) subspace

P (0)ura
0&&5ura

0&&, a51,k. ~5.9!

Therefore, the time evolution of the unstable states obe
Markovian process with a finite decay rate@condition~5!; see
Eq. ~4.31!#.

The ‘‘kinetic’’ operatorsC(0), D (0), andA(0), as well as
P (0), have already been defined the previous section. H
ever forx (0) there still remains an ambiguity. Indeed, for a
x (0) we can associate the operatorxs

(0)[x (0)s (0) that also
satisfies Eq.~5.3!. Here,s (0) is an arbitrary star-unitary op
erator in theP(0) subspace,

@s (0)#* s (0)5P(0). ~5.10!
05210
n
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s
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This problem appears only in then50 subspace because o
the degeneracy of the eigenstates ofL0 in this subspace. In
the other subspaces thes (n) are simply numbers given by
arbitrary unitary phase factors.

Actually, the same problem appears in the stable cas
the Liouville space formalism. However, this ambiguity h
been removed by using the factorizability of the unitary s
peroperatorU @see Eqs.~3.26! and ~3.40!#. In contrast, the
factorizable formulation of the unstable states leads to un
isfactory results as discussed in Sec. II@see Eq.~2.31!#. The
ambiguity ofx (0) is the main difficulty already encountere
in previous work in the study of unstable states@25#.

Let us first show that among the various compone
xaa;bb

(0) there is only one componentxkk;11
(0) that presents the

ambiguity. Indeed, from the relation

^̂ 1;1uLL21u1;1&&51 ~5.11!

we have

@x11;11
(0) #2~11 ^̂ 1,1uD (0)C(0)u1,1&&!51, ~5.12!

where we have used@x11;11
(0) #* 5x11;11

(0) . Using Eqs.~4.25b!,
~4.26!, and~2.27!, we see that the matrix element ofD (0)C(0)

is given by

^̂ 1,1uD (0)C(0)u1,1&&5j1jc.c.1jjc.c.. ~5.13!

Inserting this in Eq.~5.12! we obtain

x11;11
(0) 5

1

A~11j!~11jc.c.!
5

1

u11ju
. ~5.14!

We have chosen the plus branch of the square root to
consistent with the stable case@see Eq.~3.40!#.

We also have

xkk;k8k8
(0)

5dk,k81O~L22!, ~5.15!

which is proved by noting that the perturbation expansion
A(0) for the Friedrichs model is given by

A(0)5P(0)1l2A2
(0)1l4A4

(0)1 . . . . ~5.16!

Absence of odd order terms in this expansion is a con
quence of the Friedrichs Hamiltonian@Eq. ~2.1!#. In the per-
turbation expansion, the transitionAkk;k8k8

(0) between the two
statesuk;k&& anduk8;k8&& comes from successive interaction
in Eq. ~3.15!. As we have seen there, in each interaction o
one index can change, as, e.g.,k8⇒1, or 1⇒k. Therefore, to
achieve the transition between the two statesuk;k&& and
uk8;k8&& we need at least four interactions (lV)4 which is
proportional toL22 @see Eq.~2.4!#. Combining this fact with
the star-Hermiticity relation

~x (0)* !aa;bb5xbb;aa
(0) ~5.17!

and with Eq.~5.3! we obtain the result~5.15!.
Furthermore, the relation~5.3! with Eq. ~5.17! leads to
6-11
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x11;kk
(0) 5Akk;11

(0) 2xkk;11
(0) x11;11

(0) , ~5.18!

where we have again neglectedL22 order terms. This equa
tion shows that ifxkk;11

(0) is known, thenx11;kk
(0) is automati-

cally determined, asAkk;11
(0) is known.

From condition ~2! on the trace conservation of th
dressed unstable particle state we have

Tr~r1
0!51. ~5.19!

This leads to a restriction on the form ofxkk;11
(0) as

x11;11
(0) 1(

k
xkk;11

(0) 51. ~5.20!

In summary we have already used conditions~1!, ~2!, and
~4! and~5! stated in the Introduction to come to this stage.
Sec. VI we shall determinexkk;11

(0) .

VI. DETERMINATION OF xKK;11
„0…

In order to obtain the form ofxkk;11
(0) , we now use the

remaining conditions~3! and~6!. By a direct calculation, one
can see that condition~3! on the preservation of the herm
ticity leads to the relation

~L21!ab;a8b8
c.c.

5~L21!ba;b8a8 . ~6.1!

This relation was introduced previously in Ref.@10#. It ex-
presses the ‘‘adjoint’’ symmetry ofL. It leads to

xkk;11
(0)c.c.5xkk;11

(0) , ~6.2!

i.e, xkk;11
(0) is real. Let us now rewritex̄kk;11

(0) for the stable case
@cf. Eq. ~3.40!#,

x̄kk;11
(0) 5

l2c̄k
2

11 j̄
5x̄11;11

(0) l2c̄k
2 , ~6.3!

which is also real. The analytic continuation ofx̄11;11
(0) is writ-

ten in Eq. ~5.14!, while the analytic continuation ofc̄k
2 is

eitherck
2 or its complex conjugate@compare Eqs.~3.42! and

~4.25!#. Taking into account the condition~6.2! we are led to
the expression

xkk;11
(0) 5

l2

u11ju ~rck
21c.c.!, ~6.4!

where r is a complex constant to be determined, with t
boundary valuer 51/2 in the stable case. As we shall see t
constant plays an important role in the time-energy unc
tainty relation. Of course one could always add to Eq.~6.4!
nonanalytic quantities that vanish in the stable case. H
ever, this would be contrary to the main assumptions of
paper@see property~1!#.

Substituting Eq.~6.4! into the relation~5.20!, we obtain

11r j1 c.c.

u11ju
51. ~6.5!
05210
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Becauser is a complex number, it is necessary to introdu
one more condition to determine it. Here, we use the
condition ~6! on the mean energy fluctuationDE1 that is
defined as usual by

~DE1!2[Tr~H2r1
0!2@Tr~Hr1

0!#25 ^̂ H2ur1
0&&2@ ^̂ Hur1

0&&#2.

~6.6!

From Eq.~5.2! we have

ur1
0&&5u1;1&&x11,11

(0) 1(
k

uk;k&&xkk;11
(0) 1(

k
@ uk;1&&Ck1;11

(0)

1u1;k&&Ck1;11
(0) #x11;11

(0) 1( 8
k,k8

uk,k;&&Ckk8;11
(0) x11;11

(0) ,

~6.7!

where the prime in the last summation indicates the rest
tion kÞk8. To obtain this expression, we have neglect
terms of the form(kCab;kk

(0) xkk;11
(0) , which areL21 smaller

than the other terms. Substituting the explicit expressi
~4.25!, ~5.14!, and~6.4! into Eq. ~6.7!, we get

ur1
0&&5

1

u11ju F u1;1&&1l2(
k

uk;k&&~ck
2r 1c.c.!

1l(
k

~ uk;1&&ck1u1;k&&ck
c.c.!

1l2(
k,k8

8uk;k8&&ckck8
c.c.G . ~6.8!

This expression shows thatur1
0&& consists of the bare stat

u1;1&& plus a dressing. Using Eq.~2.1!, Eq. ~6.8! leads to

^̂ Hur1
0&&5

1

u11ju Fv11l2(
k

vk~ck
2r 1c.c.!

1l2(
k

Vk~ck1c.c.!G , ~6.9a!

^̂ H2ur1
0&&5

1

u11juF v1
21l2(

k
vk

2~ck
2r 1c.c.!1DEbare

2

1l2(
k

Vk~v11vk!~ck1c.c.!

1l4( 8
k,k8

VkVk8ckck8
c.c.G , ~6.9b!

where

DEbare[lS (
k

Vk
2D 1/2

~6.10!

is the energy fluctuation of the bare excited state. Both
pressions in Eq.~6.9! are real. This is a consequence of co
dition ~3!. Fromh1(z1)50 in Eq. ~2.19!, we have
6-12
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l2(
k

Vkck5z12v1 . ~6.11a!

Since ck is a function ofz15ṽ12 ig @cf. Eq. ~2.26!#, this
relation implicitly determinesṽ1 andg. An iterative use of
Eq. ~6.11a! leads to the relations~the proofs are given in
Appendix C!

l2(
k

vkck
25z1~j21!1v1 ~6.11b!

and

l2(
k

Vkvkck5z1~z12v1!2DEbare
2 , ~6.12a!

l2(
k

vk
2ck

2522z1~z12v1!1z1
2j1DEbare

2 . ~6.12b!

Substituting Eqs.~6.11! into Eq. ~6.9a! and using Eq.~6.5!,
we obtain

^̂ Hur1
0&&5ṽ11dṽ11

1

u11ju~
v12ṽ1!~r 1r c.c.21!,

~6.13!

where

dṽ1[2
ig

u11ju @r ~j21!2c.c.#. ~6.14!

Similary, substituting Eqs.~6.12! into Eq. ~6.9b!, we obtain

^̂ H2ur1
0&&5

1

u11ju@
uz1u21~@z1

2~r j2r 1r c.c.!

1v1z1~r 2r c.c.!#1c.c.!1~r 1r c.c.21!DEbare
2 #.

~6.15!

The termDEbareis of the order of the ultraviolet cutoff of the
interaction and is generally much larger than the decay
2g. This term would destroy the time-energy uncertain
relation, i.e., it would lead toDE1;DEbare instead ofDE1
;g @see Eq.~7.19!#. Hence, to satisfy condition~6!, we
chooser that eliminates this term in Eq.~6.15!, i.e.,

r 1r c.c.51. ~6.16!

As a result, the last term in Eq.~6.13! also vanishes. Notice
that a stateur1

0&&8 that would differ from ur1
0&& by a small

changer→r 8 with r 81(r 8)c.c.Þ1 would have a small varia
tion in the average energy@Eq. ~6.13!#, but it would have a
considerably larger change in the energy fluctuation, du
the termDEbare.

Combining Eq.~6.16! with Eq. ~6.5!, we determine the
complex constantr as

r 5
1

2
1

u11ju212~j1jc.c.!/2

j2jc.c.
. ~6.17!
05210
te

to

Using polar coordinates 11j5u11juexp(ia) we have

r 5
1

2 cos~a/2!
e2 ia/2 ~6.18!

and Eq.~6.4! takes the form

xkk;11
(0) 5

1

2

l2

u11ju@~
ck

21c.c.!2 i ~ck
22c.c.!tan~a/2!#.

~6.19!

In the stable case withv1,0 we have Imz1→0, a→0 and
we recover Eq.~6.3!.

As mentioned below Eq.~2.6! the system may also be
come stable when the couplingl is relatively strong. In this
case we again have Imz150 anda50.

It is interesting to see the relation of our unstable dres
particle state to the Gamow vectors discussed in Sec. II.
Gamow vector dyadsuf1 ;f1&&, uf̃1 ;f1&& anduf1 ;f̃1&& have
the following matrix elements:

^̂ k;1uf1 ;f1&&5 ^̂ 1;kuf1 ;f1&&
c.c.5

1

u11ju
lck ,

^̂ k;k8uf1 ;f1&&5
1

u11ju
l2ckck8

c.c., ~6.20!

^̂ 1;1uf1 ;f̃1&&5
1

11j
; ^̂ k;kuf1 ;f̃1&&5

1

11j
l2ck

2 ,

^̂ a;auf̃1 ;f1&&5 ^̂ a;auf1 ;f̃1&&
c.c..

Comparing these matrix elements with the matrix eleme
of ur1

0&& in Eq. ~6.8! and noting thatr /u11ju5r c.c./(11j)
we obtain the relation

ur1
0&&5Q(0)uf1 ;f1&&1P(0)@r c.c.uf1 ;f̃1&&1r uf̃1 ;f1&&#.

~6.21!

This shows that the dressed particle state can only be
pressed as a superposition of dyads of Gamow vectors.
dressed photons are also given by a superposition of dy
as will be shown in Eq.~7.7!. We shall study the time de
pendence of these states later.

Through theL transformation we can define gener
dressed statesur j

n&& and their duals as

ur j
n&&[L21un j&&, ^̂ r̃ j

nu[^̂ n j uL5~ ur j
n&&!* . ~6.22!

For n5abÞ0 these are dressed correlations. Similar to E
~5.9! we have

P (ab)urab&&5urab&&. ~6.23!

From the completeness and orthogonality relations of
unperturbed statesun j&&, one can conclude that the dress
states also form a bicomplete and biorthogonal basis in
Liouville space
6-13
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(
n, j

ur j
n&&^̂ r̃ j

nu51, ^̂ r̃ i
mur j

n&&5dmnd i j , ~6.24!

and Eq.~6.22! leads to

L5(
n, j

un j&&^̂ r̃ j
nu, L215(

n, j
ur j

n&&^̂ n j u. ~6.25!

The construction of the dressed particle state is now c
pleted. Section VII is devoted to some interesting proper
of the states we have introduced.

VII. SOME PROPERTIES OF THE DRESSED STATES

A. Nonfactorizability

The dressed particle stateur1
0&& is not factorizable into a

product of wave functions@see Eq.~6.21!#. This is welcome,
since as discussed in Sec. II, factorizable density matrices
not adequate to identify the dresssed unstable state.

B. Hilbert norm of the unstable state

The unstable dressed state lies outside the Hilbert sp
Indeed, as shown in Appendix D the Hilbert norm vanish

^̂ r1
0ur1

0&&50. ~7.1!

Nevertheless,ur1
0&& belongs to the trace class@Eq. ~5.19!# and

one can calculate the expectation value of a given observ
for the unstable dressed state. The statesurk

0&& also belong to
the trace class and in contrast tour1

0&& they have a nonvan
ishing Hilbert norm~see Appendix D!.

C. Dressed states vs eigenstates ofL H

As mentioned in Eq.~5.10!, s (n) ~hencex (n)) for nÞ0 is
just a number. Combining this fact with Eqs.~5.1! and
~4.5a!, we see that

urab&&5uFab&& for aÞb, ~7.2!

i.e., each dressed correlation is an eigenstate of the Liou
lian LH .

However, this is not the case forn50, due to the multi-
plicity of the eigenstates ofLH belonging to theP (0) sub-
space. Indeed, as indicated in Eq.~4.27a!, the eigenstates
uFk

0&& have all the same eigenvalue zero. Since the stateur1
0&&

belongs to this subspace, it can be written as the linear
perposition

ur1
0&&5b1uF1

0&&1(
k

bkuFk
0&&. ~7.3!

One can find the coefficientsba as follows. First we note tha
in order to obtain finite expectation values of arbitrary o
servables in the continous limit the coefficientsbk must be of
order 1/L. From the relation Q(0)ur1

0&&5Q(0)uf1 ;f1&&
5Q(0)uF1

0&& @cf. Eqs. ~6.21! and ~B18!# we find thatb151
1O(1/L). Taking the diagonal̂^k;ku component on both
sides of Eq.~7.3! we then obtain@cf. Eqs.~B4! and ~B9!#
05210
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bk5xkk;11
(0) 2

ukk;11
(0)

u11;11
(0)

x11;11
(0) . ~7.4!

Substituting the explicit forms of the matrix elements pr
sented in Eqs.~5.14!, ~6.4!, and~B14! into Eq.~7.4!, we have

bk5
l2

u11ju @~rck
21c.c.!2ckck

c.c.#

5
1

2

l2

u11ju@~
ck2c.c.!22 i ~ck

22c.c.!tan~a/2!#.

~7.5!

Using Eq. ~5.20! one can see these coefficients satisfy
relation

(
k

bk51. ~7.6!

The dressed photon states are also given by a super
tion of eigenstates ofLH in the P (0) subspace. From Eq
~5.15! and the relation̂^r̃1

0urk
0&&50 we find these states as

urk
0&&5uFk

0&&2bkuF1
0&&. ~7.7!

Note that, from the relations Tr(F1
0)50, Tr(Fk

0)51 as well
as Tr(HF1

0)50 and Tr(HFk
0)5vk , @see Eq.~B18!# we have

Tr~ra
0 !51 for a51,k,

Tr~Hr1
0!5(

k
bkTr~Hrk

0!5(
k

bkvk . ~7.8!

D. Time evolution and line shape

The time evolution of the dressed states is given by@see
Eq. ~4.27!#

e2 iL Hturab&&5e2 iz(ab)turab&& for aÞb ~7.9!

and

e2 iL Htur1
0&&5e22gtuF1

0&&1(
k

bkuFk
0&&

5e22gtur1
0&&1~12e22gt!(

k
urk

0&&bk , ~7.10a!

e2 iL Hturk
0&&5urk

0&&1~12e22gt!bkF ur1
0&&2(

l
ur l

0&&bl G .

~7.10b!

The dressed particle state has strictly exponential decay.
was suggested since long in Ref.@19#. Memory effects~de-
viations from exponential decay! would need a distinction
between young and old particles and destroy indiscernibil

From Eq.~7.8! one can verify that the Markovian equa
tions @Eq. ~7.10!# preserve the trace and energy. The tim
evolution of the dressed particle state gives rise to dres
photons, as shown in Eq.~7.10a!,
6-14
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^̂ r̃k
0ue2 iL Htur1

0&&5~12e22gt!bk . ~7.11!

This approachesbk in the asymptotic limitt→1`. There-
fore, bk may be interpreted as the line shape of dressed p
tons emitted from the dressed unstable state. The rela
~7.6! is consistent with this interpretation. In the wea
coupling casel!1 ~which leads tog/ṽ1!1) we may ne-
glect a;O(l2) andj;O(l2) in Eq. ~7.5! to obtain

bk'
1

2
~lck2c.c.!2

5
l2Vk

2

2 S 1

@z2vk#z1

1
2

1

@z2vk#z
1
c.c.

2 D 2

52
2p

L

2l2vk
2g2

~@z2vk#z1

1@z2vk#z
1
c.c.

2
!2

. ~7.12!

For ṽ1@g we have, under integration with a test functio
f (vk),

2E
2`

`

dk
f ~vk!

~@z2vk#z1

1@z2vk#z
1
c.c.

2
!2

'E
2`

`

dk
f ~vk!

~@z12vk#@z1
c.c.2vk# !2

, ~7.13!

where we have neglected the branch-point contribution ak
50. Using Eq.~7.13! in Eq. ~7.12! we may then approxi-
mate

bk'
2p

L

2l2vk
2g2

@~vk2ṽ1!21g2#2
. ~7.14!

This distribution has a sharp peak atvk5ṽ1 with a widthg.
Hence, we can further approximatebk as

bk'S 2p

L D 1

p

~l2g2!3

@~vk2ṽ1!21l4g2
2#2

, ~7.15!

wherel2g2 is the lowest-order approximation ofg given by

l2g2[pl2E
2`

1`

dk vk
2d~vk2v1!52pl2vv1

2 .

~7.16!

Our line shape (L/2p)bk approachesd(vk2v1)/2 in the
limit l→0, which is consistent with the lowest-order a
proximation in thel expansion.

From Eq.~7.15! the average energy of the emitted dress
photons is given by

^E&[
L

2pE2`

1`

vkbk dk5
L

pE0

1`

vbv dv5ṽ11O~l4!,

~7.17!
05210
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where we have approximated the integration by extend
the lower bound of the integration overv to 2` in Eq.
~7.17! to obtain the last equality.

Our line shape has a well-defined mean deviation of
energy. Indeed, we obtain from Eq.~7.15! that

^DE&2[
L

2pE2`

1`

vk
2bk dk2S L

2pE2`

1`

vkbk dkD 2

5l4g2
21O~l6!, ~7.18!

which leads to

^DE&Dt5 1
2 1O~l2!, ~7.19!

where Dt[1/(2g) is the lifetime of the unstable particle
Therefore, our line shape satisfies the energy-time ‘‘unc
tainty relation.’’

It is interesting to compare our line shape (L/2p)bk with
the Lorentzian given by

bk
L[S 2p

L D 1

2p

l2g2

~vk2ṽ1!21l4g2
2

, ~7.20!

which also approachesd(vk2v1)/2 in the limit l→0. The
Lorentzian line shape gives the distribution of photon en
gies emitted by thebare unstable stateu1;1&&. While the
Lorentzian distribution gives the same average energy as
~7.17!, the mean deviation of energy diverges. This div
gence, associated with the approximate Lorentzian
shape, corresponds to the exact energy fluctuationDEbarefor
the bare state. This is an invariant of motion and also co
sponds to the exact mean deviation of energy of emit
photons. As mentioned below Eq.~6.15!, DEbare is much
larger than the decay rate.

The difference between our line shape and the Lorentz
line shape may be understood as follows. As is well kno
the time evolution of the bare state involves an initial fa
dressing process associated with the quantum Zeno ef
This process occurs during a short-time scaletshort
;(DEbare)

21. The survival probabilityu^1uexp(2iHt)u1&u2 of
the bare state decreases ast2 during this initial period. The
observation of the large energy fluctuationDEbare in the ex-
act Friedrichs solution therefore is a manifestation of t
short-time Zeno effect. We obtain the time-energy unc
tainty relationDEbaretshort;1. On the other hand, the tim
scale associated with the dressed state is the relaxation
(2g)21, which is much longer thantshort. For this is reason
our true dressed state generates a line shape narrower
the Lorentzian shape.

In Fig. 1 we show plots of our line shape (L/2p)bk and
of the Lorentzian distribution (L/2p)bk

L as a function
of vk5k.0 . In the figure we put 2g'2l2g250.1 and
ṽ151. The two line shapes cross at the pointsk2ṽ15

6g. For uk2ṽ1u,g we haveDbk[bk2bk
L.0, i.e., the

dressed particle is more likely to emit resonant photons.
the other hand, foruk2ṽ1u.g, the dressed state emits le
off-resonance photons than the bare state. This differe
6-15
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may be attributed to the existence of virtual photons involv
in the dressing process of the bare state, which are abse
the dressed state. Therefore, if these virtual photons ca
separated experimentally, the line shape generated by
remaining photons should be close to our line shapebk . This
will be further discussed in Ref.@31#.

To be consistent with dynamics, we expect that the ene
fluctuation associated with the dressed unstable particleur1

0&&
should satisfy an energy-time uncertainty relation similar
Eq. ~7.19!. In the next paragraph, we shall show indeed t
is the case.

E. Energy fluctuation in the dressed unstable state

By substituting Eqs.~6.13! and~6.15! with Eq. ~6.16! into
Eq. ~6.6!, we have for the energy fluctuation of the dress
unstable particle state

~DE1!25g2S 2

u11ju
21D2~dṽ1!2

1
2ig

u11ju ~ṽ12v1!~r 2r c.c.!. ~7.21!

Note thatj is of orderl2 @see Eq.~2.27!#. Expanding the
right-hand side in the perturbation series ofl, the second
term (dṽ1)2 is of orderl8 @see Eq.~6.14!#, while the last
term is of orderl6. Thus, we obtain

~DE1!25l4g2
21O~l6!. ~7.22!

Similar to Eq.~7.18! this leads to

DE1Dt5 1
2 1O~l2!. ~7.23!

Therefore, the energy-time uncertainty relation is also sa
fied for the dressed unstable particle.

The energy fluctuationDEk associated to a dressed ph
ton mode vanishes in the continuous spectrum limitL→`,

~DEk!
2[^̂ H2urk

0&&2@ ^̂ Hurk
0&&#2→0, ~7.24!

FIG. 1. The line shapes of (L/2p)bk ~solid! and the Lorentzian

distribution (L/2p)bk
L ~dashed! with 2l2g250.1 andṽ151. The

momentumk is measured in units ofṽ1, with \51 and c51;

(L/2p)bk is measured in units ofṽ1
21.
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which can be seen by using Eq.~7.7! with Eqs. ~2.32! and
~B18!.

The results@Eqs.~7.10a!, ~7.18!, ~7.22!, and~7.24!# offer
a consistent picture of the transformation process of the
ergy fluctuation of the dressed unstable particle to the
shape of the dressed photons. Indeed, in this process
energy fluctuation of the system is preserved, as it should

F. Energy shift

Because of the relation~6.16!, the expectation value o
the energy for the unstable particle deviates from Gree
function energyṽ1 by dṽ1 @see Eqs.~6.13! and~6.14!#. This
deviation depends on the decay rate 2g, and vanishes in the
stable case. Expandingdṽ1 in the perturbation series ofl
and taking the continous limit, we obtain

dṽ152
3il4g2

4 E
2`

1`

dl v l
2F 1

~v12v l1 i e!2 2c.c.G1O~l6!.

~7.25!

The difference between the average energy of the unst
particle and Green’s function energy thus starts at fourth
der in l. Up to this order, this result as well as the unce
tainty relation@Eq. ~7.23!# coincide with the results obtaine
in Ref. @26# based on a perturbative approach to construct
L transformation.

One can estimate order of magnitude ofdṽ1 using the
form factor for the hydrogen atom with the transition b
tween 2p and 1s states, which is given in Ref.@37#,

vv5
iv1/2

@11~v/M !2#2
. ~7.26!

In this form factor the three dimensionality of the atom
already taken into account.8 For the hydrogen atom

v1'1.631016 rad/s ~7.27!

is the frequency difference between the 2p and 1s states, and

M5
3

2a0
'8.531018 rad/s ~7.28!

is a natural cutoff frequency determined by the Bohr rad
a0. The coupling constantl is given by

l5S 2

p D 1/2S 2

3D 9/2

a3/2'0.831024 ~7.29!

with the fine-structure constanta.
The detailed calculation is presented in Appendix E, a

we present here only the result. We havedṽ1.0 and

dṽ1'l4
3p2v1

2
'0.63102153v1 . ~7.30!

8The factori does not play a role in the order estimation.
6-16



u

on
th

s

lu

in
en

t

s

e

s
re
te

un-
n a
rticle
y a

dif-
ral

are
n-
gen-
nting
tion

x or
t

er-
f

en-
the
p-
tion
ation
le

cer-
ion
n’s

that
era-
cles
il-

tates
n-
nt
and

ton
r-
der
with
his
der-
pe-
is

e to
he
ated
an
this
ho-

h as

rgy

QUANTUM TRANSITIONS AND DRESSED UNSTABLE STATES PHYSICAL REVIEW A63 052106
Moreover, expanding Green’s function energy in the pert
bation series,

ṽ15v11l2v2
G1l4v4

G1 . . . ~7.31!

we havel4v4
G,0 and

l4v4
G'2l4

5pM

32
@ ln~M /v1!21#. ~7.32!

Because of the factorM, this is much larger thandṽ1, and
we obtain

dṽ1

l4v4
G

'20.931022. ~7.33!

So our energy shift is about 1% of thel4 contribution to
Green’s function energy.

G. Asymptotic evolution of the dressed photons

It is interesting to compare the asymptotic time evoluti
of the dressed photons with the asymptotic evolution of
bare photons. The latter is given by the Mo¨ller states of
S-matrix theory,

lim
t→1`

e1 iH 0te2 iHt uk&5uf̃k&. ~7.34!

In the Liouville space we have limt→1`e2 iL Htuk;k&&
5uf̃k ;f̃k&&.

On the other hand Eqs.~7.10b! and ~7.7! lead to the
asymptotic time evolution of the dressed photon modesurk

0&&
as

lim
t→1`

e2 iL Hturk
0&&5uFk

0&&5uf̃k ;f̃k&&, ~7.35!

where we have used Eq.~B18! to get the last equality. Thu
for t→` ~the S-matrix regime! one cannot asymptotically
distinguish the evolution of dressed photons from the evo
tion of bare photons.

However for finite time scales, e.g., during the scatter
process of a large wave packet, one can see the differ
between the evolution of bare and dressed photons@see Eq.
~7.10b!#. Scattering for finite time scales~during the collision
process! has been studied in Refs.@16,38#. There, it has been
shown that there also appear differences between
asymptotic time evolution corresponding to theS-matrix re-
gime and the time evolution during the scattering proce
This distinction is important in many-particle systems~spe-
cially in dense systems! as the particles keep colliding all th
time, which is not taken into account in theS-matrix ap-
proach.

VIII. CONCLUDING REMARKS

Let us summarize our results. We have introduced dres
states in the Friedrichs model, which consists of a disc
state coupled to a continuum. Depending on the parame
05210
r-

e

-

g
ce

he

s.

ed
te
rs

of the system, the discrete state can be either stable or
stable. For the stable case it is straightforward to obtai
dressed discrete state, which corresponds to a stable pa
or the ground state of an atom. This state is obtained b
diagonalization of the Hamiltonian in the Hilbert space.

On the other hand for the unstable case there appear
ficulties. An unstable particle is expected to have seve
properties analogous to the properties of a stable particle~see
Sec. I!. As we have seen, for the Friedrichs model there
two known representations of the Hamiltonian in the u
stable case. In the Friedrichs representation the photon ei
states form a complete set and there is no state represe
the dressed unstable particle. In the complex representa
the factorizable density operators lead to either a comple
a vanishing energy~see Sec. II! and have other features tha
are not what we expect from an unstable particle.

An alternative approach to solve this problem is to p
form analytic continuation directly in the Liouville space o
density matrices@15# ~see also Ref.@13#!. This leads to a
nonfactorizable complex-spectral representationof the Liou-
ville operator extended outside the Hilbert space. The eig
states ofLH are generally not products of eigenstates of
Hamiltonian and they break time symmetry. Using this re
resentation we have constructed a star unitary transforma
L that maps bare states to dressed states. This transform
is star-unitary, which is an extension of unitarity to unstab
systems.

We have seen that the unstable state satisfies an un
tainty relation between lifetime and energy. The expectat
value of the energy has a deviation compared with Gree
function energy. These two effects are related to the fact
the unstable state is not an eigenstate of the evolution op
tor LH , and there is an energy transfer from dressed parti
to dressed photons. In this way we can avoid the ‘‘Ham
tonian dilemma’’@19#, which would occur if the definition of
dressed unstable particles was given in terms of eigens
of a diagonalized Hamiltonian. We would then obtain no
interacting units. In the Liouville space we have a differe
possibility. We can define dressed unstable particles
dressed photons that interact.

We have obtained, as well, a new line shape of pho
emission@see Eq.~7.15!#, associated with the dressed pa
ticle. This line shape gives an energy fluctuation of the or
of the decay rate. In contrast, the line shape associated
the bare particle gives a much larger energy fluctuation. T
may be understood from the fact that the bare state un
goes a rapid dressing process during the quantum Zeno
riod associated with memory effects. This fast process
responsible for the large energy fluctuation, in accordanc
the energy-time uncertainty relation. After a short time t
particle starts to decay. This is a slower process associ
with our new line shape. For a given initial condition we c
substract our line shape from the observed line shape. In
sense we distinguish photons involving the dressing and p
tons emitted by the unstable particle.

In this paper we have considered global quantities suc
the total energy and probability, which lie in theP (0) sub-
space@see Eq.~7.8!#. In the subsequent paper@31# we shall
consider local quantities such as the probability or ene
6-17
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densities. We shall discuss the role of the dressed state
the local evolution. We shall discuss also the possibility
preparing initial conditions belonging to the Hilbert spa
that can approximate the dressed unstable state we have
structed in this paper.

Quantum theory started from the Einstein-Bohr conc
of quantum transitions. It is interesting that there are s
aspects of quantum transitions that are worth discussing
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APPENDIX A: INTEGRAL EQUATIONS FOR THE
CREATION OPERATOR

In this appendix we give a solution of the nonline
Lippmann-Schwinger equation@Eq. ~4.19!# for the Friedrichs
model. This equation leads to a set of nonlinear integ
equations for the various matrix elements ofC(n). As an
example we consider the matrix elements forn50 in Eq.
~4.25!. For brevity we omit here the (0) superscript. Equ
tion ~4.19! leads to the set of equations

Ck1;115
l

i e2wk1
FVk2(

k8
Vk8Ckk8;11

2Ck1;11(
k8

Vk8~Ck81;112C1k8;11!G , ~A1!

C1k;115
l

i e2w1k
F2Vk1(

k8
Vk8Ck8k;11

1C1k;11(
k8

Vk8~C1k8;112Ck81;11!G , ~A2!

Ckk8;115
l

i e2wkk8
FVkC1k8;112Vk8Ck1;11

2Ckk8;11(
l

Vl~Cl1;112C1l ;11!G . ~A3!

Now we show that Eq.~4.25! is a solution of this set of
equations. Comparing Eq.~A1! and Eq.~A2! and using Eq.
05210
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~4.25a! we obtainC1k8;115Ck81;11
c.c. . Then Eq.~A1! can be

written as

Ck1;115
l

i e2wk1
FVk2(

k8
Vk8Ck1;11Ck81;11

c.c.

2Ck1;11(
k8

Vk8~Ck81;112Ck81;11
c.c.

!G . ~A4!

This leads to

i e2wk15Vk@Ck1;11#
212(

k8
Vk8Ck81;11

c.c.

2(
k8

Vk8~Ck81;112Ck81;11
c.c.

!

5Vk@Ck1;11#
212(

k8
Vk8Ck81;11. ~A5!

Substituting Eq.~4.25b! in this equation we get in the conti
nous limit

z15v11E dk
l2vk

2

~z2vk!z1

1
. ~A6!

This is simply the equationh1(z1)50, which is satisfied by
the definition of the complex polez1. This demonstrates tha
Eq. ~4.25! is indeed a solution of Eq.~A1!. Similarly one can
show that Eq.~4.25! satisfies Eq.~A3!. The solution Eq.
~4.25! coincides with the solution obtained by de Haan a
Henin@30#. The solutions for the other components includi
the nÞ0 subspaces are presented in Sec. 3 of Appendix

APPENDIX B: ON THE NONFACTORIZABLE
REPRESENTATION OF L H

In this Appendix we present the eigenstates ofLH for the
Friedrichs model. The eigenstates are presented in Sub
tion 5. Before reaching the final form of the eigenstates
need some preparations, which are presented in Subsec
1–4.

1. Eigenstates of the collision operators

As a first step to obtain the eigenstates ofLH we solve the
eigenvalue problem of the collision operators. Since the c
lision operatorsuC

(n) are non-Hermitian, their left eigenstate
are not necessarily the same as the right eigenstates.
denote the left eigenstates by^̂ ũ j

nu. Assuming biorthogonal-
ity and bicompleteness of the left and right eigenstates
have
6-18
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^̂ ũ j
nuui

m&&5dn,md j ,i , (
j

uuj
n&&^̂ ũ j

nu5P(n). ~B1!

Similarly the right and left eigenstates ofuD
(n) are denoted by

uv j
n&& and^̂ ṽ j

nu, respectively, and are assumed to form a co
plete biorthonormal set.

For then50 subspace we have the eigenvalue equati

uC
(0)uua

0&&5za
(0)uua

0&&. ~B2!

Since the statesuua
0&& belong to theP(0) subspace, their gen

eral form is a linear superposition of the statesu1;1&& and
uk;k&&. Noting the volume dependencies

u11;11
(0) ;L0, u11;kk

(0) ;ukk;11
(0) ;ukk;kk

(0) ;L21 ~B3!

as well as the relationukk;k8k8
(0)

5dkk8ukk;kk
(0) 1O(1/L2), where

we have abbreviatedu (0)[uC
(0) , we obtain the following so-

lutions by neglecting terms of higher order inL21,

uu1
0&&5u1;1&&1(

k

ukk;11
(0)

u11;11
(0)

uk;k&& for z1
(0)5u11;11

(0) ,

~B4!

uuk
0&&5uk;k&&2

u11;kk
(0)

u11;11
(0)

u1;1&& for zk
(0)5O~1/L !→0.

~B5!

As will be shown in Eq.~B14a! we havez1
(0)522ig.

The left eigenstates are similarly found to be given by

^̂ ũ1
0u5 ^̂ 1;1u1(

k

u11;kk
(0)

u11;11
(0) ^̂ k;ku,

^̂ ũk
0u5 ^̂ k;ku2

ukk;11
(0)

u11;11
(0) ^̂ 1;1u. ~B6!

From the second relation in Eq.~B1!, we obtain the in-
verse relations

u1;1&&5uu1
0&&2(

k

ukk;11
(0)

u11;11
(0)

uuk
0&&,

uk;k&&5
u11;kk

(0)

u11;11
(0)

uu1
0&&1uuk

0&&, ~B7a!

^̂ 1;1u5 ^̂ ũ1
0u2(

k

u11;kk
(0)

u11;11
(0) ^̂ ũk

0u,

^̂ k;ku5
ukk;11

(0)

u11;11
(0) ^̂ ũ1

0u1 ^̂ ũk
0u. ~B7b!
05210
-

The eigenstatesuva
0&& and ^̂ ṽa

0 u of the collision operator
associated with the destruction operator are given by
expressions ~B4!–~B6! with the replacement uaa;bb

(0)

⇒ubb;aa
(0) .

For the other subspaces the collision operators are sim
numbers since the subspaces are one dimensional. Then
have foraÞb:

uuab&&5ua;b&&, ^̂ ṽabu5 ^̂ a;bu,

z(ab)5 ^̂ a;buuC
(ab)ua;b&&. ~B8!

2. Matrix elements of the right eigenstates ofL H

We shall mainly consider the right eigenstates ofLH .
Similar considerations apply to the left eigenstates.

From the general expression for the right eigenstates@see
Eq. ~4.5a!#, we get

^̂ a;auF1
0&&5AN1

(0)^̂ a;auu1
(0)&&,

^̂ a;buF1
0&&5AN1

(0)^̂ a;buC(0)uu1
0&&5AN1

(0)Cab;11
(0) ,

^̂ a;auFk
0&&5ANk

(0)^̂ a;auuk
0&&,

^̂ a;buFk
0&&5ANk

(0)^̂ a;buC(0)uuk
0&&

5ANk
(0)F2Cab;11

(0)
u11;kk

(0)

u11;11
(0)

1Cab;kk
(0) G ~B9!

and foraÞb:

^̂ a;buFab&&5ANab,

^̂ a8;b8uFab&&5AN(ab)Ca8b8;ab
(ab) . ~B10!

3. Matrix elements of C„n…

We have presented the explicit forms of two matrix e
ments of the creation operator forn50 in the text@see Eq.
~4.25!#. Other matrix elements including other subspac
have been presented in Ref.@30#. One can verify by a direct
substitution that the expressions presented in Ref.@30# sat-
isfy the nonlinear Lippmann-Schwinger equation. For t
reader’s convenience we shall present all these matrix
ments in this section. In these elements there are two clas
one consists of the elements that are factorizable in term
the complex eigenstates of the Hamiltonian presented in S
II, and the other consists of nonfactorizable elements.

The factorizable elements are

Cab;11
(0) 5uN1u21^̂ a;buf1 ;f1&&, aÞb,

Cll 8;kk
(0)

5 ^̂ l ; l 8uf̃k ;f̃k&&,

C11;1k
(1k) 5N1

21/2^̂ 1;1uf1 ;fk&&,

Cab;1k
(1k) 5N1

21/2^̂ a;buf1 ;fk&&, aÞb,
6-19
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Cab;k1
(k1) 5@Cab;1k

(1k) #c.c.,

C11;kk8
(kk8)

5 ^̂ 1;1ufk ;fk8&&, ~B11!

Cab;kk8
(kk8)

5 ^̂ a;bufk ;fk8&&, aÞb.

The nonfactorizable elements are associated with the com
nents diagonal in momentum representation, such askk, i.e.,

C1l ;kk
(0) 5 ^̂ 1;l uf̃k ;f̃k&&1C1l ;11

(0)
u11;kk

(0)

u11;11
(0)

,

Cl1;kk
(0) 5@C1l ;kk

(0) #c.c.,

Ckk;1k
(1k) 5

lVk

z12vk
,

Cll ;1k
(1k) 52

lVk

hd
2~vk!

l2Vl
2

z12vk
F 1

v l2vk1 i e
1

1

~z2v l !z1

1G ,

~B12!

Ckk;kk8
(kk8)

5
lVk8

hd
2~vk8!

lVk

vk82vk1 i e
,

Cll ;kk8
(kk8)

5
l2VkVk8

hd
2~vk8!hd

1~vk!

l2Vl
2

vk2vk82 i e

3F 1

vk82v l2 i e
2

1

vk2v l1 i eG ,

Caa;a8b8
(a8b8)

5@Caa;b8a8
(b8a8)

#c.c..

For the destruction operators we present only the ma
elements that are used to determine the normalization
stantsNa

(n) in this paper. These are

D11;ab
(0) 5uN1u21^̂ f̃1 ;f̃1ua;b&&,

D1k;ab
(1k) 5N1

21/2^̂ f̃1 ;f̃kua;b&&, ~B13!

Dkk8;ab
(kk8)

5 ^̂ f̃k ;f̃k8ua;b&&, aÞb,

which are again factorizable in terms of the complex eig
states of the Hamiltonian. Similar to Eq.~B12! the elements
associated with thekk components are not factorizabl
Since these give negligible contributions of orderL21 to the
normalization constantsNa

(n) , we shall not present their ex
plicit forms. Readers interested in these forms should con
Ref. @30#.

The matrix elements ofuC
(0) are obtained from the relatio

uC
(0)5lP(0)LVC(0), which leads to

u11;11
(0) 5z12z1

c.c.522ig, ~B14a!

ukk;11
(0) 522igl2ckck

c.c., ~B14b!
05210
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u11;kk
(0) 52ig

l2Vk
2

uh1~vk!u2
, ~B14c!

ukk;kk
(0) 5l2Vk

2S 1

h1~vk!
2c.c.D , ~B14d!

uk8k8;kk
(0)

5O~1/L2!, ~B14e!

where we have neglectedL22 order terms.

4. Normalization constants

The normalization constants are given by the relation

^̂ F̃a
n uFa

n &&51. ~B15!

This leads to

@Na
(n)#215 ^̂ ṽa

(n)u~P(n)1D (n)C(n)!uua
(n)&&. ~B16!

Using the biorthogonality relation of the eigenstates ofH
@see Eq.~2.23!# we obtain

N1
(0)5uN1u25u11ju22,

Nk
(0)51,

~B17!
N(1k)5@N(k1)#c.c.5N15~11j!21,

N(kk8)51.

5. Explicit forms of the eigenstates ofL H

Using Eqs.~B9!, ~B10!, ~B11!, and~B17! and neglecting
terms of higher orders in 1/L we can write the right eigen
states ofLH as follows:

uF1
0&&5uf1 ;f1&&, uFk

0&&5uf̃k ;f̃k&&, ~B18!

uFkk8&&5ufk ;fk8&&. ~B19!

Hence, the eigenstates in then50 andn5kk8 subspaces are
factorizable in terms of the complex eigenstates of
Hamiltonian. In contrast, the eigenstates associated with
n51k,k1 subspaces are not factorizable and are given b

uF1k&&5uf1 ;fk&&2(
l

u l ; l && f ~k,l !, ~B20!

uFk1&&5@ uF1k&&#†, ~B21!

where

f ~k,l ![^̂ l ; l uf1 ;fk&&2N1
1/2Cll ;1k

(1k) . ~B22!

The appearance of the functionf (k,l ) is a direct conse-
quence of the nonfactorizability of the creation opera
6-20
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Cll ;1k
(1k) @cf. Eq. ~B12!#, in terms of eigenstates ofH.9 In the

stable case it can be verified thatf (k,l )→0 and hence we
recover the factorizable eigenstates ofLH .

For the left eigenstates we have

^̂ F̃1
0u5 ^̂ f̃1 ;f̃1u, ^̂ F̃k

0u5 ^̂ f̃k
c.c.;f̃k

c.c.u, ~B23!

^̂ F̃1ku5 ^̂ f̃1 ;f̃ku2(
l

^̂ l ; l u f̃ ~k,l !, ~B24!

^̂ F̃k1u5@ ^̂ F̃1ku#†, ~B25!

^̂ F̃kk8u5 ^̂ f̃k ;f̃k8u, ~B26!

where

f̃ ~k,l ![^̂ f̃1 ;f̃ku l ; l &&2N1
1/2D1k; l l

(1k) . ~B27!

We note that

^̂ f̃1 ;f̃kuH&&Þ0, ~B28!

which is a consequence of^f̃1uf̃k&Þ0 @see Eq.~2.29!#. In
contrast, by a direct calculation and using the explicit for

D1k; l l
(1k) 5

lVk

z12vk
F d l ,k2

l2Vl
2

h1~vk!

3S 1

v l2vk2 i e
2

1

~v l2z!z1

1 D G , ~B29!

one can show that our nonfactorizable eigenstate satisfie

^̂ F̃ (1k)uH&&50. ~B30!

APPENDIX C: RELATIONS USED IN SECTION VI

In this appendix we derive the relations~6.11b! and
~6.12!. Using Eq.~6.11a!, we obtain Eq.~6.11b!,

l(
k

vkck
25z1(

k

lVk
2

@~z2vk!z1

1 #2

1(
k

lVk
2

@~z2vk!z1

1 #2
~vk2z1!

5z1j2~z12v1!. ~C1!

Similarly, for Eq. ~6.12a! we have

9In contrast tof (k,l ), the differencê^ l ; l ufk ;fk8&&2Cll ;kk8
(kk8) van-

ishes in the sense of distributions. This is the reason why Eq.~B19!
is factorizable.
05210
l2(
k

Vkvkck5z1(
k

lVk
2

~z2vk!z1

1
1(

k

lVk
2

~z2vk!z1

1
~vk2z1!

5z1~z12v1!2(
k

l2Vk
2 , ~C2!

which leads to Eq.~6.12b!,

l2(
k

vk
2ck

25(
k

lVk
2

@~z2vk!z1

1 #2
@~vk2z1!~vk1z1!1z1

2#

52z1l2(
k

Vkck2l2(
k

Vkvkck1z1
2j

522z1~z12v1!1z1
2j1(

k
l2Vk

2 . ~C3!

APPENDIX D: HILBERT NORM OF THE DRESSED
STATES

In this Appendix we prove Eq.~7.1!, i.e., that the Hilbert
norm of ur1

0&& vanishes. The Hilbert norm is given by

^̂ r1
0ur1

0&&5 ^̂ 1;1ux†~P1C†!~P1C!xu1;1&&, ~D1!

where we have omitted the (0) superscripts in the crea
operator for brevity. Neglecting terms of orderL21 we ob-
tain

^̂ r1
0ur1

0&&5~x†!11;11~P1C†C!11;11x11;11

5ux11;11u2@11~C†C!11;11#. ~D2!

The matrix element (C†C)11;11 can be evaluated as

~C†C!11;115(
k FCk1;11Ck1;11

c.c. 1C1k;11C1k;11
c.c.

1(
k8

Ckk8;11Ckk8;11
c.c. G

5l2(
k

2ck~ck!
c.c.

1l4(
k

ck~ck!
c.c.(

k8
ck8~ck8!

c.c., ~D3!

where we used the relations for the matrix elements oC
given in Eq.~4.25!. Sinceck is a distribution with delayed
analytic continuation, the integral of the productck(ck)

c.c.

has to be carefully evaluated~see Refs.@2,30#!. Taking the
continous limit we have
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(
k

l2ck~ck!
c.c.→E

2`

`

dk
l2vk

2

~vk2z!z1

1~vk2z!z
1
c.c.

2

5
1

z1
c.c.2z1

E
2`

`

dk l2vk
2F 1

~vk2z!z1

1

2
1

~vk2z!z
1
c.c.

2 G
521, ~D4!

where we have used the relation in Eq.~2.19! to get the last
equality. Substituting this value in Eq.~D3!, we obtain our
desired result@Eq. ~7.1!#. This indicates that the stateur1

0&& is
not an element in the Hilbert space.

In contrast forurk
0&& we have

^̂ rk
0urk

0&&5 ^̂ k;kux†~P1C†C!xuk;k&&511O~1/L !,
~D5!

where we have used Eq.~5.15! and ^̂ k;kuC†Cuk;k&&;1/L.
This shows thaturk

0&& belongs to the Hilbert space.

APPENDIX E: ORDER ESTIMATION OF dṽ1

In this Appendix we evaluate the frequency shift given
Eqs.~7.30! and~7.32!. Since the three dimensionality of th
atom has been already taken into account in the Hamilton
discussed by Facchi and Pascazio in Ref.@37#, we shall use
their Hamiltonian to evaluate the frequency shift, instead
our Hamiltonian@Eq. ~2.1!#. In the continous limit one can
obtain their Hamiltonian replacingvk by v and the wave-
vector integration*2`

1`dk by the energy integration*0
1`dv

as

H5v1u1&^1u1E
0

`

dv vuv&^vu

1lE
0

`

dv vv~ uv&^1u1u1&^vu!. ~E1!

We have incorporated the sum over spin and orbital ang
momenta indices into the interaction.

Then, we have for the Green function energy in E
~7.31!,

v2
G5 1

2 E
0

`

dvuvvu2F 1

v12v1 i e
1c.c.G ~E2!

and
05210
n

f

ar

.

v4
G52

v2
G

2 E
0

`

dvuvvu2F 1

~v12v1 i e!2 1c.c.G
1

ig2

2 E
0

`

dvuvvu2F 1

~v12v1 i e!2 2c.c.G
5v2

G
]v2

G

]v1
2g2

]g2

]v1
. ~E3!

From the expression corresponding to Eq.~7.16! we have

g25pv1 . ~E4!

From the expression corresponding to Eq.~7.25! we have

dṽ1'
3l4g2

2

]g2

]v1
5

3l4

2
p2v1 . ~E5!

This leads to the estimation in Eq.~7.30!.
Performing the integration in Eq.~E2! with the form fac-

tor @Eq. ~7.26!#, we obtain

v2
G'v1 lnS M

v1
D2

5pM

32
, ~E6!

where we have neglected terms of orderv1 /M!1. Substi-
tuting Eq.~E6! into Eq. ~E3! we obtain

l4v4
G'2l4

5pM

32 F lnS M

v1
D21G . ~E7!

These results give the order estimation presented in Sec.

APPENDIX F: OTHER POSSIBILITIES OF DRESSED
UNSTABLE STATE

In this Appendix we comment on other possible choic
of the star-unitary transformationL. As we shall see, thes
choices lead to unsatisfactory definitions of the dressed
stable state.

In Ref. @15# we have introduced the star-unitary opera
LC defined by

LC5(
n

(
j

uuj
n&&^̂ F̃ j

nu, ~F1a!

LC
215(

n
(

j
uF j

n&&^̂ ũ j
nu. ~F1b!

In contrast to Eq.~6.25!, this transformation connects th
eigenstates of the Liouvillian to the eigenstates of the co
sion operator. In other words, we have a similitude relat
betweenLH anduC

(n) through this transformation,

LCLHLC
215QC , ~F2!

where

QC[(
n

uC
(n) . ~F3!
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For the stable case this transformation is reduced to a un
transformation. Hence, one could consider the possibility
identifying the dressed states as

ur 1
0&&[LC

21u1;1&&5uF1
0&&2(

k
uFk

0&&
ukk;11

(0)

u11;11
(0)

, ~F4!

where we have used Eq.~B6! to obtain the last equality
However, this quantity does not satisfy our basic condit
~1! in the Introduction. Indeed, using Eqs.~B14a!, ~B14b!,
and ~B18!, one can see that this state reduces in the st
limit Im z1→0 with v1,0 to

ur 1
0&&→uf̄1 ;f̄1&&2(

k
uf̄k ;f̄k&&

l2Vk
2

~v12vk!
2 . ~F5!

Hence ur 1
0&& does not reduce to the dressed stable s

uf̄1 ;f̄1&&, but reduces to a superposition of degenerate st
8

m

.

el

05210
ry
f

n

le

te

le

eigenstates ofLH with zero eigenvalue. Therefore,ur 1
0&& is

not a suitable choice of the dressed unstable particle.
Another possibility to constructL is that we choosexkk;11

(0)

in such a way that the average energy of the dressed uns
particle is the same as Green’s function energyṽ1. This
alternative condition leads to a different value ofr in Eq.
~6.4! as @cf. Eq. ~6.17!#

r 5
1

qj2c.c.
@q~ u11ju21!2~ṽ12v!jc.c.#, ~F6!

where

q[ṽ12v12 ig~jc.c.21!. ~F7!

However, since this leads to an energy fluctuation of
dressed particle that is not of the order of the inverse l
time, this choice is inadequate to identify the dressed
stable particle.
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